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Abstract — Turbo multiuser detection refers to joint
channel decoding and multiuser detection using an it-
erative exchange of soft information between the two
processes. This technique has been examined by sev-
eral authors in recent years, with very promising re-
sults. This paper provides a brief introduction to this
area.

I. INTRODUCTION

Multiuser detection refers to the detection of data from
multiple users when observed in a non-orthogonal mul-
tiplex. This problem arises naturally, for example, in
code-division multiple-access (CDMA) systems using non-
orthogonal spreading codes. It also arises in orthogonally mul-
tiplexed wireless channels, such as TDMA channels, due to ef-
fects such as multipath or non-ideal frequency channelization,
and in wireline channels such as digital subscriber lines (DSLs)
in which crosstalk is a major impairment [7]. The basic idea of
multiuser detection is to exploit the cross-correlations among
the signals to be demodulated in order to improve the data
detection process.

Error control coding is, of course, ubiquitous in wireless
and other impaired channels. Similarly to multiuser detection,
the decoding of error-control coding exploits the dependencies
among successive channel symbols to improve the detection of
a single stream of data symbols. Both multiuser detection and
channel decoding typically involve very complex optimal algo-
rithms, and so complexity issues often dominate the study of
these problems. Notable among coding techniques with this
problem are parallel and serially concatenated codes separated
by interleavers, which have been shown to offer considerable
performance improvement over traditional codes, exhibiting
near-Shannon-limit performance in many cases. However, al-
though the optimal decoding of such codes is of particularly
high complexity, iterative or “turbo” decoding algorithms that
involve the iterative exchange of soft information between con-
stituent decoders (separated by interleavers/de-interleavers)
have been shown to be very effective approximations to op-
timal decoding. These ideas are exposed for example, in
[4, 5, 6, 12, 13, 14, 17].

Many wireless communication systems, such as the IS-
95 cellular telephony system and its third-generation descen-
dants, involve both error-control coding and non-orthogonal
multiplexing. A typical configuration is a convolutional en-
coder mapping data symbols into channel symbols, followed
by an interleaver, and finally a CDMA modulator for the chan-
nel symbols, as shown in Fig. 1. (Interleaving refers to the
permutation of the time order of the symbols.) In this paper,
we will focus on this model, although other applications can

1This work was prepared under the support of the National Sci-
ence Foundation under Grant CCR-99-80590.
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also fit within the formalism discussed here. One can view
the configuration of Fig. 1 as a serially concatenated code, in
which the CDMA spreading code is the inner code, and the
convolutional code is the outer code. A traditional way of de-
coding this concatentation is to first demodulate the CDMA
signals (using either a conventional matched-filter detector, or
a multiuser detector), and then to follow this demodulator by
a de-interleaver and a channel decoder.

To seek optimality in such a situtation, one could replace
this traditional configuration with an overall optimal demod-
ulator/decoder that uses an optimal (say maximum-likelihood
or minimum-error-probability) mapping from the received sig-
nal to the original data symbols. The complexity of such
a system is potentially quite high. This complexity can be
mitigated however, by appealing to the turbo principle for de-
coding concatenated codes noted above. In particular we can
reduce the complexity of joint decoding and multiuser detec-
tion by an iterative exhange of soft information between mul-
tiuser detection and channel decoding, iterating until some
kind of convergence is reached. Like turbo decoding, this
iterative approach to joint multiuser detection and channel
decoding shows considerable promise for achieving very good
error-probability performance (close to the single-user bound).
The purpose of this paper is to give a brief introductory review
of the basic ideas behind such turbo multiuser detection.

The rest of this paper is organized as follows. First, in
Section II, we give a very brief overview of basic multiuser de-
tection and (convolutional) channel-decoding techniques, as
a prelude to our discussion of the combination of these tasks.
Then, in Section III, we discuss the problem of combined mul-
tiuser detection and channel decoding, noting that the com-
plexity of optimal algorithms for this purpose is prohibitive
in most cases of practical interest. We then, in Section IV,
discuss a low-complexity turbo multiuser detection algorithm
developed by Wang and the author in [31]. And finally, in
Section V we provide some concluding remarks.

II. MULTIUSER DETECTION AND THE DECODING OF
CoNvVOLUTIONAL CODES

Consider the reception a rate- R-coded multiple-access com-
munication signal of the following form

K B
r(t) = Z Z be,i(dk) pr(t—iT—7x) + o n(t), —00 <t < 0,
k=1 i=1
)
where
e K is the number of users active in the channel,

e B is the number of channel symbols per user in a re-
ceived frame to be processed,

e T is the per-user channel symbol interval (so, 1/T is the
per-user signaling rate)



e d; is a set of RB data symbols being transmitted by
user k,

e bi(dx) (with components bk i,i = 1,..., B) is the vec-
tor of channel symbols obtained by encoding d,

® pi is the signaling waveform of user k,

e 7, € [0,T] is the delay with which user k's signal is
received,

e n(-) is a white Gaussian process with unit intensity, and
" e ¢ is the noise intensity.

For the sake of exposition we assume that the data and chan-
nel symbols take binary (+1) values, although this is easily
relaxed to include any finite alphabet. We also assume that
the observations are real-valued, although again this assump-
tion is not essential to any of what follows.

We would like to make inferences about the set of data sym-
bol vectors dy, ..., dx, which contain a total of KRB symbols.
A sufficient statistic for such inferences is formed by the set
of KB matched-filter outputs

oo
ye(i) = / (t) pe(t—iT—me)dt , k=1,...,K,i=1,...
(2
Organizing these observables into a vector y € IRKE by sorting

them first by symbol number and then by user number, the
model (1) can be rewritten as a linear model

y = Hb + N(0,6°H) , (3)

where b € {—1,+1}*® denotes a vector containing the chan-
nel symbols {bx,i(dx)} sorted conformally with y, and where
H denotes a matrix of cross-correlations

Hun =/ pe(t —iT — ) pe(t — §T — 7)) dt (4)

with the indices (k,¢) and (£, j) corresponding in the model
(1) to the indices n and m, respectively, in the vector y. The
term N (0,0°H) denotes a noise term having the multivariate
Gaussian distribution with zero mean and covariance matrix
o*H.

Multiuser detection (MUD) and channel decoding are prob-
lems of sequence detection, which involve mapping the vector
y into estimates al,&z,.. . ,Elx, of the data symbol vectors
of the various users. When this mapping is chosen to sat-
isfy optimality criteria such as maximum likelihood (ML) or
maximum a posteriori probability (MAP), the resulting com-
plexity is nominally quite high - O (ZK RB ) . Fortunately, these
problems typically can be solved with much lower complexity
via dynamic programming [21]. For example, in the case of
a single user (K = 1), non-dispersive (p:(t) = 0,V¢ ¢ [0,T])
channel with convolutional coding, the complexity of these
optimal decoders reduces to O (2”), where v is the constraint
length of the code. This dynamic program is specified by the
Viterbi algorithm [29] in the case of ML decoding and by the
BCJR algorithm [3] in the case of MAP decoding. Alterna-
tively, in the uncoded (R = 1, by,; = dy,;) dispersive channel,
in which the waveforms p, span at most A symbol intervals,
the complexity can be reduced to O (254) . The correspond-
ing dynamic program for the single-user (K = 1) dispersive
(A > 1) case is given in the ML case by the Forney [9] or
Ungerboeck [26] maximum-likelihood sequence detector, and
for the multiuser (K > 1) nondispersive (A = 1) case by the
Verdd ML [27] or the MAP [28] multiuser detector.
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III. ITERATIVE JOINT MULTIUSER DETECTION AND
DEcoDING: TurBO MUD

In the preceding section, we noted that the problems of
multiuser detection and convolutional coding can each be
solved individually by dynamic programs whose complexity
is O (2) in the uncoded multiuser case and is O (2") in the
coded single-user case. We now consider the situation in which
we have multiple (K > 1) users, each of which bears a convo-
lutionally coded data stream with constraint length ». In [10],
Giallorenzi and Wilson show that optimal (detection and) de-
coding in this problem essentially combines the complexity of
the constituent problems, to yield a dynamic program with
(¢ (2“”) complexity.! This complexity would typically be
too high for most applications, since the constraint length of
the code would normally be chosen to meet the limits of the
receivers processing capabilities. Amplifying this constraint
length by a factor of K in the exponent will push the pro-
cessing capability well beyond its limits. (Some suboptimal
receivers for joint MUD and decoding are also considered by
Giallorenzi and Wilson in {11].)

Like turbo-coded systems, this complexity can be mitigated
by making use of the turbo decoding principle of iterating be-
tween algorithms for the constituent problems, and exchang-
ing soft information between iterations. This idea has been
explored by Moher in [18]. The basic building blocks of a
turbo multiuser detector are a soft-input/soft-output (SISO)
multiuser detector and a bank of single-user SISO channel de-
coders, as shown in Fig. 2. The role of each of these algorithms
is to compute posterier probabilities of the channel symbols
based on given prior probabilities and on the corresponding
signal structure. That is, the SISO multiuser detector uses
prior symbol probabilities and the CDMA signaling structure
to compute posterior symbol probabilities conditioned on the
observations. Similarly, the SISO channel decoders use prior
symbol probabilities and the structure imposed by the channel
code to compute posterior symbol probabilities. (Of course,
the SISO decoders also compute posterior data symbol prob-
abilities, which will ultimately yield the overall output of the
combined algorithm.)

The turbo multiuser detector begins with a SISO multiuser
detector applied to a frame of B channel symbols (B is as-
sumed to be equal to the interleaver length). This detector
particularly computes a posteriori probabilities, conditioned
on the observations y, for each of the channel symbols of each
of the users; that is, for each element of the vector b. This
first set of posterior probabilities is based on the prior as-
sumption that the channel symbols are drawn uniformly from
{—1,+1}¥5; that is, that the channel symbols are indepen-
dent and identically distributed (i.i.d.) £1 random variables.
Although this assumption is not correct due to the channel
coding (which correlates the channel symbols), it serves as a
useful approximation for initializing the algorithm because the
interleavers at the transmitter serve to decorrelate the symbols
as they appear at the input to the CDMA modulator.

The posterior probabilities computed by the SISO MUD
will then be used as prior probabilities in the next step of the
algorithm, which makes use of the bank of single-user chan-
nel decoders. Before applying channel decoding, however, the

!Here we will not consider the dispersive case (A > 1) directly,
although the extension to this case is straightforward. An approach
to joint iterative equalization and channel decoding for the single-
user (K = 1) case has been examined in [8].



symbols must be de-interleaved to return them to their correct
order for decoding. This de-interleaving has the approximate
effect of removing any correlations that are introduced into the
channel symbols by conditioning on the observations y in the
SISO MUD. Thus, after SISO MUD and de-interleaving, the
channel symbols can again be assumed to be independent of
one another, but now having marginal (i.e., individual) proba-
bility distributions determined by the probabilities computed
by the SISO MUD. This probability model becomes the prior
probability model used by the SISO channel decoders, which
compute (via, say, the BCJR algorithm) corresponding poste-
rior probabilities for both the channel and data symbols.

These posterior probabilities for the data symbols could,
at this point, be used to MAP-decode the data symbols.
This would correspond to a conventional receiver approach
based on MUD followed by decoding. However, a more pow-
erful receiver results by re-interleaving the channel symbols
at the output of the decoders and returning to the SISO
MUD, now using as a prior distribution the posterior channel-
symbol probabilities computed by the SISO decoders. The
SISO MUD then refines its estimates of the posterior prob-
abilities of the symbol probabilities, and hands them back
to the channel decoders after de-interleaving again. This pro-
cess of soft-information exchange between the SISO MUD and
the SISO decoders can continue until the posterior channel-
symbol probabilities converge to stable values, at which point
the data symbols can be MAP decoded via the data-symbol
-+ posterior probabilities computed on the last application of the
SISO decoding algorithm.

From this description, it can be seen that the interpretation
of the multiuser detector as a posterior-probability calculator
is an essential philosophical underpinning of this approach.
However, unlike the case with turbo decoding, in which the
complexity of the constituent decoders is controlled by the sys-
tem designer, the complexity of the SISO multiuser detector
used in this turbo multiuser detector is dependent on the num-
ber of users in the channel and is thus beyond the designer’s
immediate control. Thus, although the O (2K ") complexity of
optimal joint detection and decoding noted in [10] is reduced
to O(2")+ O (2K ) via the turbo principle, the second term
in this complexity order is prohibitive for most applications.

Because of this complexity issue, some simpler techniques,
in which the multiuser detection component of such an itera-
tive scheme is replaced by simpler suboptimal algorithms such
as interference cancellers, etc., have been considered by sev-
eral authors. (See, e.g., [1, 2, 19, 20, 23, 24, 25].) Moreover,
an alternative approach based on an approximate posterior-
probability calculator that significantly simplifies the SISO
MUD has been developed by Wang and the author in [31],
and this approach is described briefly in the following section.

IV. A Low-CoMPLEXITY TURBO MULTIUSER
DETECTOR

The basic difficulty with the turbo multiuser detector de-
scribed in the preceding section is the O (ZK ) complexity of
the MAP multiuser detection stages. A considerable amount
of research has been devoted to the development of subopti-
mal multiuser detectors that mitigate the complexity of op-
timal multiuser detection (see, e.g., [27]). One well-studied
family of suboptimal multiuser detector consists of the linear
multiuser detectors, which can be described briefly as follows.

The sufficient statistic y obeys the linear model (3), and
multiuser detection (and decoding and equalization as well)
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can be viewed as the fitting of this model to the observa-
tions. The complexity of these problems comes from the fact
that the elements of the vector b take values in a finite al-
phabet. Without this constraint, the fitting of linear models
such as (3) is of relatively low complexity. The basic idea
of linear multiuser detection is to take advantage of this low
complexity of unconstrained linear model-fitting by first esti-
mating b in (3) as if it were a vector with real components,
and then to project these real estimates onto the finite al-
phabet of the actual symbols. This, of course, will not yield
maximum-likelihood or MAP symbol decisions, but it often
works quite well. Key examples of linear multiuser detectors
are the decorrelating (or zero-forcing) detector which produces
its linear estimates by simply inverting the channel; i.e.,

b = sgn {H'ly} (5)

and the linear minimum-mean-square-error (MMSE) detector,
which detects b via

b = sgn{(H+¢721)—ly} (6)

where I denotes the KB x KB identity matrix. The latter
detector uses, as its linear estimation stage, the linear MMSE
estimator of b given y in (3) under the assumption that the
symbols have a prior distribution under which they are uncor-
related with zero means; namely, (H + 021)_1 y. The stan-
dard linear MMSE detector of (6) can be modified to account
for a prior-distribution with non-zero mean, which results in
the linear estimator

@

where C and b denote, respectively, the prior covariance and
mean of b. The elements of b are thus given by

(H+0°C™") ™ [y - HE]

bei = 2prs — 1, (8)

where py,; denotes the prior probability that by ; = 1; and C
is a diagonal matrix with diagonal elements

Cnn = 4pki (1 —peyi) . 9

(Here, as in (4), the indices (k,i) correspond in the model (1)
to the index = in the vector y.)

Although linear detectors are of considerable interest in the
implementation of practical multiuser detection (and equal-
ization) systems, they do not immediately appear to be use-
ful in the context of turbo multiuser detection since they are
based on linear regression type criteria rather than on pos-
terior probability computation. So, for example, while the
linear MMSE detector allows for the incorporation of prior
channel-symbol probabilities via (7), it still does not seem to
be amenable to posterior-probability calculation. However, it
happens that the linear MMSE detector can, in fact, be used
as an approximate posterior-probability calculator. This is
due to the property, exposed by Verdd and the author in [22],
that the residual error in the linear MMSE estimator used
by the MMSE detector is approximately Gaussian. From this
property, we can obtain posterior probability estimates for
the channel symbols conditioned on the output of the linear
MMSE transformation (7) straightforwardly via Bayes’ for-
mula.

The application of this idea, which is explored more fully
in [31], leads to excellent performance with only a few cycles



through the turbo algorithm. Figure 3 shows a typical perfor-
mance result, from which it can be seen that near-single-user
performance can be achieved quite easily when there is suf-
ficient signal-to-noise ratio for the initial SISO MUD to gain
useful information about the channel symbols. (In this case,
the SNR required is quite small - only a few dB.) Further ap-
- proximations to this detector with even lower complexity have
also been developed in [31], with comparable performance re-
sults.

V. CONCLUSION

This paper has briefly introduced the problem of turbo mul-
tiuser detection, which allows for low-complexity joint channel
decoding and multiuser detection. This area is a very active
one at present, as is evidenced by the special session in which
this paper appears. Recent contributions to this area include,
for examples, its application in turbo-coded CDMA systems
[32] and in space-time coded systems [16], and the introduc-
tion of adaptivity [15, 30] into the SISO multiuser detector.
The reader is referred to the remaining papers in this special
session for note of further recent contributions.
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Figure 1: A Transmitter Configuration with Convolutional Coding and CDMA Modulation.
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Figure 2: General Structure of Turbo Multiuser Detection.
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Figure 3: Performance Simulation of the Turbo Multiuser Detector Developed in [31](Synchonous transmission of
K = 4 users with equal inter-user correlations of p = 0.7, rate-1/2 convolutional encoding with constraint length 5,

and inteleaver length B = 128.).
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