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Abstract—This paper investigates the properties of a method
for obtaining Markov models of unspecified order to be applied to
narrow-band fading channels with additive white Gaussian noise.
The models are obtained by applying the context tree pruning
algorithm to experimental or simulated sequences. Fading envi-
ronments are identified in which the extension from first-order to
higher order models is justified. The paper presents, as examples,
the evaluation of the covariance function and the packet error
distribution.

Index Terms—Context trees, error analysis, fading channels,
Markov processes.

I. INTRODUCTION

E FFICIENT channel utilization in designing wireless ser-
vices is helped by the availability of accurate tractable

channel models. Markov models are often employed, due to
their consolidated theory.

Starting from early works of Gilbert [1] and Elliot [2], an
effective representation of digital communication channels with
memory is given in finite state Markov channels (FSMC’s).
An FSMC is a discrete valued time-varying channel, whose
variation is determined by a finite-state Markov chain: each
state corresponds to a known memoryless channel [3]. For
narrow band systems in flat fading with additive white Gaussian
noise (AWGN), the signal-to-noise ratio (SNR) at the receiver
is proportional to channel attenuation (fading). Fading can be
discretized by sampling and quantization wherein one fading
state is associated to each interval of attenuation values. If a
binary modulation format is used on the channel, a binary sym-
metric channel (BSC) is associated to each fading state [4]. An
FSMC model, specific for narrow-band fading channels, was
introduced by Wang [4], describing fading state evolution as a
first-order Markov chain, and it was applied to the evaluation
of system-related channel properties [5]–[7].

In [8] and [9], it is pointed out that a first-order model is
not always satisfactory. In [8], the context tree pruning (CTP)
algorithm is proposed as a method to build higher order Markov
models to improve FSMC description. Such a method can be
applied to fit models to a wide variety of discrete phenomena.

In this letter, state definitions that the CTP selects for
Rayleigh fading are shown; the Ricean case has also been fully
investigated. A range of fading rates and threshold values are
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considered in building models, and the results are summarized
according to state space size and structure. Being non-Mar-
kovian, the quantized fading channel theoretically requires
an infinite-order CT model for exact description, however
tractable models with an order higher than one can be obtained
for several relevant fading regimes. They exhibit a degree
of accuracy and complexity that is sufficient for evaluating
system-related parameters. The autocorrelation coefficient
(ACC) of quantized fading and the packet error distribution
(PED) are evaluated to demonstrate model accuracy.

II. CTP-BASED MARKOV MODELS

Let be the envelope of a narrow-band Ricean fading
process, modeled according to Clarke’s model [10] and having
maximum Doppler spread and . Let the instan-
taneous “fading power” be sampled with period

and quantized with respect to a set of thresholds to
obtain an -ary discrete time fading process

(1)

with , , . If
binary quantization is considered, the channel is either good or
bad depending on whether fading power is greater than or less
than , where (decibels) is the fade margin. For
the process , the fading rate is defined as and the symbol

is the fading state at time .
In the terms of [11], a context is a short sequence of fading

states and contexts can have different lengths. A CT model is de-
fined by a set of contexts together with transition probabilities

. The context set has the property that
for any given sequence and any value of ,
the suffix of matches exactly one context (with length

) as follows: . The CT depth (memory)
is the length of the longest context in . Transition probabili-
ties are such that , where
is the unique context of . Every CT model may be converted
simply to a Markov chain without estimation of additional pa-
rameters. Its state set is also made of short sequences (con-
texts) either coincident with the ones in or made by their ex-
tension. The number of free parameters is . If the data
generating source is Markovian and the given sequence is suf-
ficiently long, the CTP algorithm [11] is capable of selecting
the correct CT model. For this work, CTP-based models were
chosen over other CT models because the model family has a
recursive structure that facilitates efficient selection of the con-
text set, .

The FSMC model is completed by specifying the transmis-
sion mode. If transmission power is constant, then at the receiver
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, where is the average value of
. Assume binary modulation. Define the crossover prob-

ability as the average error probability on the BSC associ-
ated with the occurrence of fading state , . Crossover
probabilities are evaluated as in [4]

error (2)

where is the probability of fading state
, is probability density of fading power (noncentral

with two degrees of freedom for Ricean fading, exponential for
Rayleigh fading) and is the error probability associated
to the given modulation format, when SNR is equal to and
AWGN is present on the channel.

Observe that each Markov state (context) does not hide the
fading state, being . All the evaluations that can
be performed for a first-order model can be repeated with higher
order CT models (Section IV), using the same techniques. It is
worth repeating that CT models determine fading state evolution
and not quantities directly related to the fading state itself.

III. MODEL STRUCTURE

Fading has been simulated according to the filtering method
proposed in [12] and the resulting process has been quantized on
several levels. CTP has been applied to the discretized fading,
choosing as maximum context length (depth). However,
recall that discretized fading process can be exactly represented
only by an infinite depth CT. The increase of training sequence
length and of depth can lead to models with increasing
complexity and accuracy [8]. Training length sam-
ples and depth constraint were chosen as a common
basis for model comparison. Using that combination, it happens
that the maximum context length was strictly less than 7 in all
models constructed over the range of fading environments in-
vestigated. Section IV shows that models within this scope can
predict significant channel properties.

Fig. 1 shows some properties of context sets for models
fitted to Rayleigh fading, assuming binary quantization,
using threshold , and letting (fade margin) vary in the
range (decibels). Results for Rice fading or
multiple-level quantization continue the trends of Fig. 1.

Fig. 1(a) concerns the depth (memory) of the models obtained
in different fading environments. The plotted contours sepa-
rate regions where a memoryless model (depth 0), a first-order
Markov model (depth 1), or more complex models result from
CTP. For the Rayleigh case, when fading is slow ( ),
a first-order model is supplied, coincident with the Wang model,
while for fast fading ( ), a memoryless model results
for practical values of ( ). Such conclusions hold for
any number of levels and are found in the two- and three-level
cases with the aid of statistical tests in [13]. On the other side,
the intermediate range is characterized with
larger models. Note that information provided by the training
sequence is insufficient to discover higher order models when

, where it appeared that too long sequences are
needed.

Fig. 1(b) shows the number of contexts in each model. For
CTP, the value of depth is chosen a priori and it bounds the
depth . With alphabet size , a depth CT model gener-
ates a process that admits an exact representation as the Markov
chain with states. By CTP, such a process can be generally
represented using many fewer than states: a Markov model
with order (depth) needs the estimation of
parameters, whereas the equivalent CT model needs only

.
Fig. 1(c) shows the state reductions allowed using CTP, as

quantified by the ratio . Where ,
it indicates that only a few (judiciously selected) long memory
states are used. In some environments, a CT model has an order
of magnitude fewer states. The meaning of this gain can be ex-
plained as follows. Central limit theorem arguments [14] state
that a -dimensional model estimated from training data has
redundancy

where and is the expec-
tation operator. If the unknown process were of similar or less
complexity than an th-order Markov chain, and models were
estimated using both CT parameterization and th-order pa-
rameterization, then . That is,
the redundancy performance using the traditional parameteri-
zation is worse by a factor of . Performance could also
be compared by specifying equal model fidelity

and asking how much extra data is required by the
nonparsimonious fitting method, i.e., solve for . For large ,
the exact solution (available using Lambert’s function [15])
is bounded by . From Fig. 1(c), one sees that
a traditional Markov model can require even an order of magni-
tude more training than CTP.

Fig. 1(d) depicts a classification of models in terms of
state space structure. Four kinds of model structure are put on
evidence by data analysis: memoryless, first-order Markovian,
runlength, and general. The term runlength denotes models
for which every sequence in the context set has the form
with (Fritchman-like) [3]. The term
general indicates models for which none of the preceding
highly structured state spaces is adequate; general contexts
contain arbitrary patterns (e.g., 01 101). As the number of
quantization levels increases, the region of Fritchman-like and
general models expands to higher fade margins, but covers
approximately the same range of fading rates. Among these
complex models, the region of Fritchman-like models becomes
narrower, that is, transitions between nonadjacent fading states
become more relevant as quantization is refined.

IV. APPLICATIONS

CTP-based models can be applied to the evaluation of channel
or system properties such as the PED; the ACC of the quantized
fading process [9], the distribution of time in a given channel
state (in ), examined in [16], the level crossing statistics [17],
digital channel properties [6], [18], and protocol performance
evaluation and optimization [19].
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(a) (b)

(c) (d)

Fig. 1. Survey CT model properties for two-level quantized Rayleigh fading (K = 0, L = 2,M = 7) as a function of the fading rate f T and the fade margin
F . Each data point represents a CT model that has been fitted to 5 � 10 simulated samples of the indicated fading environment: (a) maximum context length; (b)
number of contexts; (c) ratio between the number of parameters k needed to specify a traditional Markov model and the number of parameters k needed to
specify the equivalent CT model; and (d) model type—1) memoryless, 2) first-order Markov, 3) runlength or Fritchman-like, and 4) general.

A. PED

PED , that is the probability of exactly errors
within an
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Fig. 2. Comparison between PED behaviors, obtained by direct simulation
(“�”), by using first-order CT (approximately Wang) model ( – � – � – � ), and
by higher order CT models ( ——— : M , – – – : M ), for the case treated
in the text.

is 2-FSK with noncoherent detection [20, Sect. 4.3.1]. From
(2), assuming [20, eq. (4.3.19)]
and for Rayleigh fading, the average crossover
probability in state [i.e., when the context is and the fading
state is ] is

with (Section II) and . The
parameter values for simulation are
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If is a fitted CT process, the evaluation is performed from
(7), as in [9]

(8)

where is the context at time , is the transpose op-
erator, and
are row vectors. Fig. 4 refers to the binary quantized Rayleigh
process . Note that less complex models are required in this
case.

V. CONCLUSIONS

The CTP algorithm can be applied to quantized “fading
power” sequences, fitting nonhidden Markov models with
generic state space structure. CTP is optimal in the sense
that it among Markov descriptions with observable states,
it provides nearly the smallest parameterization. For several
fading regimes, tractable models with higher order than the
well-known first-order model can be discovered, by using
training sequences with nonexcessive length (residence time
distribution in any state will be matrix-geometric [22], not
geometric). Higher order models appear to be useful in specific
applications, related to error behavior or to the analog channel
properties, while low-order models with few states suffice for
protocol evaluation.

CTP-based models give good results for applications that are
conditioned by limited channel memory, such as evaluation of
PED and related parameters in channels with fading that is not
either fast or slow. In this case, accurate CTP models can be
extracted having a weak dependence on the training sequence
length. When the effect of very long memory must be consid-
ered, for example, fade length statistics in slow fading channels,
CTP models may require excessive training data and grow to in-
convenient size. Hidden Markov Models [17] accommodate that
situation with more compact parameterization, though at the ex-
pense of state visibility and by the use of more elaborate model
fitting tools.
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