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Abstract
Several recent projects have argued that users would benefit from
having a relational interface to operating systems state. In this
paper, we report on the progress of a tool to automate this data
modeling process. While automating schema inference in the gen-
eral case appears to be intractable, we argue that it is feasible in the
limited domain of operating system. Our approach leverages static
analysis on the tightly-controlled coding styles common in OS ker-
nels and hybridized techniques from the programming languages
and databases literature for inferring and propagating constraints.
We use a simple static analysis to extract relation names, types, and
arity from constrained operating system source code patterns. We
then leverage LLMs and iterative refinement to identify constraints.
Our prototype implementation automates the extraction of 10% of
the operating system structure into the relational model.

CCS Concepts
• Software and its engineering → Operating systems; • In-
formation systems → Entity relationship models; Data access
methods.
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1 Introduction
The relational model is always finding ways to escape the walled
garden of databases. Over the last 20 years, adopting a uniform
representation of system state that is amenable to composition via
join has shown benefits in the domains of networks [9], distributed
systems [6], program analysis [8], and many others. One research
area, however, abounds with proposals for relational interfaces [17–
19] but has yet to yield a full-featured prototype: operating systems
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(OS). This is a pity, as operating systems present uniquely difficult
data management challenges.

The idea of a relational OS, while old [18], has received recent
attention. DBOS [17] is a clean-slate proposal to implement all
OS state as relations and OS policy as queries atop a minimalist
kernel, while OSDB [19] embeds a query processor in existing OSs
and presents existing data, as tables, which provide both read and
udpate semantics. Something that both proposals have in common
is that they are a long way from their goal of a realistic modern
operating system. To the best of our understanding, DBOS cannot
even be prototyped until its micro-kernel is developed, and the
OSDB prototype models only a handful of OS abstractions (e.g.,
processes and sockets). That progress should be slow is unsurprising
given the magnitude of the task of developing a data model for
production operating systems, which are enormous code bases
that have been developed over decades. As an example, consider
FreeBSD, which includes code that goes back to the 1980s, and is
currently 9,533,488 lines of code spread across 16,376 files.

Given that there is such broad agreement that OS should more
closely resemble databases, why don’t we have such an OS—and
how long will we need to wait? In this paper, we present a vision
alongside early evidence that we can reach the goal of a complete
relational interface to a full-featured, modern OS very soon. This
vision favors pragmatism over purity, and relies on two principles:
incrementality and automation. The incremental approach, exempli-
fied by OSDB, makes it possible to convert OS state into relations
one relation at a time, all the while measuring the benefits of queries
over that newly-represented state. We believe this to be the only
realistic path forward: the clean-slate approach is unlikely to ever
catch up with a state-of-the-art that keeps moving forward more
quickly than any research team can.

However, incrementality is not enough, and OSDB is a long way
from a full-featured relational OS. We also need some mechanism
to accelerate the data modeling of OS kernel state. We believe that
this seemingly intractable problem of automating schema inference
may be attacked by exploiting the tightly-controlled coding styles
common in OS kernels and by hybridizing techniques from the
programming languages and databases literature for inferring and
propagating constraints. We use a simple static analysis to extract
relation names, types, and arity from constrained operating sys-
tem source code patterns. We then leverage LLMs and iterative
refinement to identify constraints.

In the database community, there has been a wealth of prior
work on sound inference of functional dependencies [1, 2, 4, 7, 10,
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13, 15, 16, 21–23]. Our approach differs from this prior work in
three key respects. First, we are explicitly not trying to solve this
for the general case, but rather, we focus exclusively on the domain
of OS kernels. Second, rather than taking an incomplete schema
(i.e., one missing dependencies) as input, we attempt to extract both
the structure and semantics from the kernel code. Finally, and most
significantly, we do not strive for soundness. Rather, we prioritize
expediency and practicality, relying on the richness of OS workload
traces to provide iterative refinement of our guesses.

In our OSDB [19] paper, our prototype included 5 hand-written
tables. In a few short months, using the algorithms and tools de-
scribed in this paper, we have increased the number of tables that
we can query in the operating system by two orders of magnitude.
Moreover, the number of fields in each table has increased signif-
icantly as well. For example, the process table in the OSDB [19]
paper had 7 fields and now includes 110.

Below, we describe the design of a tool to automatically extract
the relational model from the operating system kernel source code
(§2). We then present initial results from using the tool on the
FreeBSD operating system (§3). We then discuss limitations and
future work (§4). Finally, we briefly discuss related work (§5) and
conclude (§6).

2 System Design
Data modeling involves identifying and organizing the data entities
and their relationships to create a structured representation. In the
relational model [3], the structures are tables (relations) with rows
(tuples) and columns (attributes). The structural model is further
refined via constraints, which restrict which tuples constitute a valid
instance of the schema.

To automate data modeling, a tool must perform the following
tasks: (i) determine the name of each table, (ii) choose the arity
of the tables and assign each column a unique name, (iii) decide
the domain of the elements of the columns, and (iv) decide the
constraints on the permitted values. We perform steps i-iii via a
direct structural translation. For step (iv), we use a combination of
heuristics, learning, and refinement to indentify primary keys, and
static code analysis to identify foreign key constraints.

2.1 Structural Extraction
The modeling task is aided by a few key observations about operat-
ing system code. First, the majority of modern operating systems
are developed in low-level, systems programming languages (i.e.,
C) with few, or no, built-in complex data types. Second, the overall
structure of operating systems are relatively simple, as developers
tend to avoid complex abstractions in favor of low overhead. Indeed,
the majority of the data structures in an operating system kernel
are lists of C structures. In FreeBSD nearly every complex data
structure depends on macros from a single header file (queue.h)
which provides singly and doubly linked lists, and tail queues. Fi-
nally, as with any large code base, operating system developers
have already naturally modularized their code into the relevant
entities.

These observations lead us to a design that allows us to automate
the structural extraction of a significant portion of the operating
system. Lists of flat structures map directly onto the relational

model, with every such list represented as a table, every element
(struct) in the list as a tuple (row), and every data member of a
structure as an attribute (column). We can re-use the names of
structs and fields as well as the declared types directly in our tables.

The implementation of this design is complicated by two factors.
First, the queue.h header file in both FreeBSD and Linux provide
a set of macros that define and operate on the list structures. As
a consequence, the static analysis to identify list and queue uses
must be able to analyze the C preprocessor (CPP) directives. Sec-
ond, the operating system code makes frequent use of typedef
statements to alias existing primitive types (e.g., pid_t is a 32-bit,
signed int). Thus, the static analyzer must be able to perform the
type resolution. To address these complications, the structural ex-
tractor is implemented as a plugin to the Clang compiler, which
provides an API to access CPP directives and the symbol table after
the compiler’s semantic analysis pass. We explored an alternative
implementation that extracted the symbols from the gdb debugger,
but it was not able to meet these requirements.

2.2 Semantic Extraction
The structural extraction to relations is relatively straightforward,
in large part due to the regularity of operating system data orga-
nization. However, identifying an appropriate set of constraints
would appear to be impossible. After all, just as one cannot infer
what a box is meant to contain just by looking at it, we cannot in
general determine a set of constraints merely by studying a schema
or instances of a schema. A human expert—the person doing the
modeling—is typically required to supply these semantics. And yet,
as we argued above, doing the data modeling for the OS by hand
would be a tremendous effort.

In this section, we discuss how we combine a variety of tech-
niques for constraint inference, ranging from simple syntactic anal-
ysis to heuristics to approaches that leverage machine learning (and
hence from sound to unsound). We discuss how by combining cov-
ering workloads with constraint checking in the query processor
can provide the necessary guardrails to quickly repair incorrect
guesses. We focus for now on primary and foreign key constraints.

2.2.1 Workloads and Traces. The viability of our approach, which
will involve a lot of guesswork (and hence a lot of mistakes!) hinges
on two features of datamanagement systems and operating systems,
respectively. First, although constraints are difficult to soundly infer,
they are extremely cheap to check. A hypothesis about a candidate
key can always be tested by creating a checked constraint in the
database and watching for violations. Second, unlike application
software for which representative workloads may not exist or may
be shallow, OS benchmarks (e.g. UNIXBench, Spec CPU, FIO) are
abundant. We exploit these and other workload generators not to
measure the performance of the OS but to drive the system under
test into a large number of different states. Each such state is a
distinct schema instance, allowing us to check all of our hypotheses
and refine them as needed.

In the OSDB paper [19], we discussed the snapshot mechanism
by which OSDB creates a transactionally-consistent, time-series
view of the structurally-transformed kernel state. We have modified
that mechanism such that the snapshot data is not just stored in
memory, but written to persistent disk. The structural extraction
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process significantly increases the number of tables that OSDB
snapshots, allowing us to collect a fairly complete trace of kernel
state after running the combined workloads.

2.2.2 Primary Key Constraints. As a first step, we start with trying
to identify a primary key, i.e., a column or a set of columns that
uniquely identifies each row in a table, for each table that we ex-
tracted. In general, the primary key would have to be given from
the domain expert or derived from a set of functional dependencies
which, again, were provided from the domain expert. Following
our principle of aggressive automation we seek to remove this
requirement in the common case.

One straw-man approach for finding a primary key could be
the following. We know that although we can’t look at the data to
determine if an attribute is a primary key, we can look at the data
to determine that a candidate key is not a primary key. So, if we had
a sufficient amount of data, we might try an iterative approach: we
first guess, “is this a key?” and then we check if it is not one against
a sufficiently size trace. If it is not a key, then we make another
guess, and repeat.

Of course, this straw-man approach is an exponential-time algo-
rithm in the size of the problem. For a set of 𝑛 attributes, there are
2𝑛 − 1 non-empty subsets, and trying them all would be prohibi-
tively expensive. So, to reduce this search space, we might try to use
heuristics for choosing candidate keys. There are certain “patterns”
in the kernel source code that might suggest that an attribute or set
of attributes is a primary key. As a simple example, if an attribute
name includes “id” in it, then the attribute is probably an identifier,
and possibly unique. This is the case, for example, with pid in the
process table and tid in the threads table. However, this hunch
about variables that end in “id” is not always correct. For example,
the files table includes an attribute p_uid and the vnodes table
includes the attribute f_fsid, neither of which are primary keys.

While an experienced operating system developer might be able
to articulate a good set of heuristics in the form of patterns in the
code to look for, Large Language Models (LLMs) are really good
at looking for patterns. So, while we hate to follow the trend of
“just throw AI at the problem”, this seemed like a viable use. The
strength of our approach is that we can treat the LLM as a black
box for “guessing keys”. It doesn’t need to be correct, since we have
guardrails in the form of traces to check if a guess is wrong.

2.2.3 Foreign Key Constraints. Having identified primary keys, we
next try to identify foreign keys, i.e., a set of attributes in one table
that refers to the primary key of another table. Foreign keys help
enforce referential integrity. For foreign keys, we again examine
structural patterns in operating systems implementations from
which we can soundly infer foreign key relationships. There are
two cases we consider.

Nested structures. A common pattern in OS data structures be-
sides lists of flat structures is lists of structures with nested struct
elements. When one structure is nested inside another, either di-
rectly or via a pointer, we can use the primary key of the enclosing
structure as a primary key in the inner structure. In the FreeBSD
kernel, for example, a proc structure contains an array of pointers
to thread structures. We can then model thread as a relation, with
a foreign key constraint on proc.pid, even though this attribute

does not occur in the thread struct, because we know that every
thread belongs to a process. As was the case with primary keys,
this nesting pattern may not actually be a foreign key relationship,
as the enclosing structure may not contain the only pointers to the
nested structure. Again, we can revert to examining data traces for
violations.

We enact this design with a three step algorithm. First, we per-
form an initial structural extraction to record the inner-outer rela-
tionship. We then perform a semantic extraction pass, as described
above, to infer the primary key of the outer struct. Finally, we make
a second structural extraction pass, incorporating the primary key
of the outer struct into the schema of the inner struct.

Invariant pointers. There are times when we may not know the
primary key of the outer structure. This can occur in C code, for
example, when the relationship between in-memory structures are
established through pointers. In such situations, we can build on an
idea of Erik Meijer, who argues that memory pointers are foreign
keys that go the wrong way [12]. In these cases, we include pointers
as a field in many table representations of OS structures. We note
that the pointers in an operating system kernel are unique because
the kernel program executes in a single address space, making them
a suitable choice for foreign keys. Once a kernel data structure is
allocated, it is never moved and its address never changes.

3 Initial Results

Prototype Implementation. We have implemented a prototype
for automatically extracting the relational model from the operating
system. The structural extractionwas implemented as a Clang 14.0.5
plugin in approximately 600 lines of C code. We integrated this
plugin with the kernel build process. The semantic extraction was
implemented in 223 lines of Python code, using the ChatGPT API.

Structural Extraction.Overall, there are 3,286 non-static C structs
in the FreeBSD kernel, including the driver code. When we pub-
lished the OSDB paper [19], our prototype included 5 tables: pro-
cesses, threads, files, TCP connections, and UDP connections. We
wrote these tables by hand and, for expediency, included only the
subset of attributes that we needed to conduct our experiments.
For example, the processes table included 7 fields, while the ac-
tual process struct from FreeBSD includes 110 members. Our TCP
connections table had 10 fields, while the tcpcb struct has 153
members. Using our Clang plugin to automatically extract table
definitions, OSDB now supports 328 tables, or 10% of the structs in
the kernel. These structures were extracted because they exist in
natural tables, lists of C structures, which are amenable to being
exposed as relations. Moreover, every table definition includes all
fields in every struct.

Semantic Extraction. Table 1 lists a subset of relations we ex-
tracted and their predicted primary keys. For processes and threads,
the predicted keys match our expectations, i.e., our framework
accurately identifies pid and tid as one attribute keys. We also
see that for TCP and UDP connections, our framework correctly
identifies the classic 5-tuple as the primary key, demonstrating that
our approach can identify even multi-attribute keys.

For file and vnode, our framework does not predict a primary
key. Perhaps counter-intuitively, this result is encouraging. Indeed,
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Relation Primary Key

proc pid

thread tid

tcp laddr, lport, faddr, fport, inp_ip_p
udp laddr, lport, faddr, fport, inp_ip_p
file No primary key predicted.
vnode No primary key predicted.

Table 1: Predicted Primary Keys

struct file {

void *f_data; /* File -specific data */

struct fileops *f_ops; /* File operations */

struct ucred *f_cred; /* Associated credentials */

struct vnode *f_vnode; /* Vnode */

off_t f_offset; /* File offset */

int f_flag; /* Open flags */

int f_count; /* Reference count */

struct mtx f_mtx; /* Mutex to protect struct */

struct knlist *f_knlist; /* Kernel event list */

short f_type; /* Type of the file */

volatile u_int f_count_atomic; /* Reference count */

};

Figure 1: FreeBSD file structure

if we examine the fields of the file struct, shown in Figure 1, we can
confirm that their is no field that would serve as a suitable primary
key. This example serves to remind us that kernel developers did
not organize their data structures with the relational model in mind.
If they had, perhaps the file struct would have included a unique file
id field. As we continue developing our prototype, we seek to find
the limits of an incremental and automatic approach. We continue
to discuss this in the next section.

4 Limitations and Future Work
In this paper, we have demonstrated first steps towards accelerating
the data modeling of OS state. Motivated by practical concerns,
we threw the kitchen sink at the problem, combining sound and
unsound approaches and relying on constraint enforcement and
covering workloads to catch mistakes. In our race to build a data
model, we skipped directly to the problem of inferring primary and
foreign keys on relations, without first understanding the functional
dependencies (FDs) among attributes that would have guided a
more principled data modeling effort.

With our proof-of-concept in place, the next phase of our re-
search will focus on modeling FDs. Our experience combining
heuristics, structural rules, and machine learning to make informed
guesses, and using rich workloads and dynamic assertions to pro-
vide guard rails, generalizes to the problem of identifying likely
FDs. Once we have seeded our inference system with ground truth
by combining these techniques, we may apply techniques such as
the chase [11] to soundly infer additional FDs that are implied by
those that we have identified.

5 Related Work

Inferring Functional Dependencies. The idea of automating the
determination of functional dependencies dates back at least 40
years to the work of Dina Bitton [2]. Some more recent efforts in-
clude Tane [7], Fun [13], FD_Mine [22, 23], DFD [1], Dep-Miner [10],
FastFDs [21], Fdep [4], and Papenbrock et al. [15, 16]. In general,
the problem cannot be solved without additional information. Most
efforts, very broadly speaking, attempt to generate candidate keys,
prune the search space, and validate the results. We differ in that
we are not only trying to infer the functional dependencies, but are
also trying to extract the structure of the relations. Our approach
also differs in that we are not trying to solve the problem in general,
but concentrate on the limited domain of operating systems.

Relational Interfaces for Operating Systems. Operating sys-
tems and databases have a complex relationship. Early on, databases
offered an alternative to general-purpose operating systems for
resource and data management [5]. Today, databases are often
thought of as applications that make use of the operating system’s
facilities for managing hardware resources. However, databases
and operating systems are often at odds, e.g., with respect to cache
replacement, scheduling, and file management [20].

ROSI [18] is the first work that we are aware of to propose a
relational interface to the operating system to improve usability.
osquery [14] mirrors important OS state in a user-space database,
but offers onlyweak semantics including stale reads and non-atomic
updates to kernel state. At the other end of the design spectrum,
DBOS [17] advocates for a “clean slate” approach that entirely
replaces the OS with a query processor. Our own OSDB [19] shares
similar goals but offers an incremental approach.

6 Conclusion
The idea of applying the relational model to operating system data
is not a new one. Our previous results, using an incremental ap-
proach to exposing existing data structures with an in-kernel query
processor has proven that such is a system is not only possible but
that there is a clear path to a fully relational operating system.

Our present work automates the tasks of extracting structural
and semantic knowledge from the operating system’s source as
well as execution state to accelerate work that would normally re-
quire a set of human experts and a great deal of tedious effort. The
structural extraction is straightforward because of the narrow way
in which operating systems implement and utilize their internal
data structures. The extraction of semantic knowledge is the more
challenging task and we have brought to bear several techniques,
including syntactic analysis, inference using LLMs, and refinement,
to take the first steps in achieving fully automatic relational model-
ing of the operating system’s state. We have shown that our system
can correctly identify primary keys within the operating system
state, a significant first step along the path to full automation.
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