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Neurons in primary visual cortex respond selectively to oriented stimuli such as

edges and lines. The long-range horizontal connections between them are thought

to facilitate contour integration. While many physiological and psychophysical

findings suggest that colinear or association-field models of good continuation dic-

tate particular projection patterns of horizontal connections to guide this integra-

tion process, significant evidence of interactions inconsistent with these hypotheses

is accumulating. We first show that natural random variations around the colinear

and association-field models cannot account for these inconsistencies, a fact that

motivates the search for more principled explanations. We then develop a model of

long-range projection fields that formalizes good continuation based on differential

geometry. The analysis implicates curvature(s) in a fundamental way and the re-

sulting model explains both consistent data and apparent outliers. It quantitatively

predicts the (typically ignored) spread in projection distribution, its non-monotonic

variance, and the differences found between individual neurons. Surprisingly, and

for the first time, this model also indicates that texture (and shading) continuation

can serve as alternative and complimentary functional explanations to contour in-

tegration. Because current anatomical data support both (curve and texture) in-

tegration models equally, and because both are important computationally, new

testable predictions are derived to allow their differentiation and identification.
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1 Introduction

The receptive fields (RFs) of neurons in visual cortex characterize their response to pat-

terns of light in the visual field. In primary visual cortex this response is often selective

for stimulus orientation in a small region (Hubel and Wiesel, 1977). The clustered long-

range horizontal connections between such cells (Rockland and Lund, 1982) link those

with non-overlapping RFs and are thought to facilitate contour integration (Field et al.,

1993). However, there is no direct physiological evidence that these connections only

support curve integration while, on the other hand, there also remains much ambiguity

about the precise connections required to support the integration of curves. Our goal in

this paper is to address both of these concerns.

1.1 Biological data and integration models

The argument that associates long-range horizontal connections with curve integration

begins with the realization that the finite spatial extent of RFs and their broad orientation

tuning lead to significant uncertainties in the position and the local orientation measured

from visual stimuli. This causes a further uncertainty in determining which of the many

nearby RFs signal the next section of a curve (Fig. 1a).

[ Figure 1 about here ]

All these uncertainties underlying curve integration can be reduced by interactions

between neurons whose RFs are close in retinotopic coordinates. Starting with Mitchi-

son and Crick and their hypothesis about interactions between iso-oriented RFs (Mitchi-

son and Crick, 1982), physiological and anatomical findings have been accumulating to

suggest a roughly colinear interaction. The main evidence supporting this conclusion

is based on the distribution of angular differences between preferred orientations of

connected cells. These distributions are computed by taking the orientation difference

between a target cell and every other cell it is connected to with a long-range horizontal
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connection. Indeed, as is exemplified in Fig. 1b, these distributions have been shown to

be unimodal on average, with maximal interaction between iso-oriented RFs (Ts’o et al.,

1986; Gilbert and Wiesel, 1989; Weliky et al., 1995; Schmidt et al., 1997; Buzás et al.,

1998; Bosking et al., 1997; Malach et al., 1993; Sincich and Blasdel, 2001; Schmidt

and Löwel, 2002). Furthermore, direct anatomical studies reveal long-range interac-

tions between co-axial cells (Bosking et al., 1997; Schmidt et al., 1997) and indirect

psychophysical experiments report a general association field (Field et al., 1993; Kapa-

dia et al., 1995, 2000) which emphasizes straight or slowly varying continuations while

allowing some support for more rapidly varying continuations as well (Fig. 2a).

[ Figure 2 about here ]

With the accumulation of these data, however, are a growing number of observa-

tions that are difficult to reconcile with the intuition that neural spatial integration is

based on colinearity, or that it only serves curve integration. Facilitory interaction be-

tween cells of significant orientation difference (Kapadia et al., 1995), short range co-

axial inhibition (Polat and Sagi, 1993), iso-orientation side facilitation (Adini et al.,

1997), and strong correlations between iso-oriented, non-overlapping, and parallel re-

ceptive fields (Ts’o et al., 1986, see bottom cell on page 1163 or top cell on page 1164)

are functionally inconsistent. Evidence of cross-orientation (Matsubara et al., 1985;

Kisvárday et al., 1997) and non-axial (Gilbert and Wiesel, 1989) connections, plus

roughly isotropic retinotopic extent (Malach et al., 1993; Sincich and Blasdel, 2001),

suggest anatomical inconsistencies.

These inconsistencies prompt a closer examination of the interactions within visual

cortex and their population statistics. As the evidence suggests, individual cells, or small

collections of adjacent cells captured in tracer injections, may have qualitatively differ-

ent connectivity distributions (Bosking et al., 1997): some are narrow and high while

others are very wide, as is illustrated in Fig 1c. When averaged, the pooled distribution

of long-range connections (e.g., those extending beyond
�������

m in Bosking et al., 1997)
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is

� unimodal,

� peaks at zero orientation offset,

� indicates a non-negligible fraction of connections linking cells of significantly

different orientation preferences (Malach et al., 1993; Kisvárday et al., 1994;

Kisvárday et al., 1997; Bosking et al., 1997),

� crosses the uniform distribution at approximately
��� �

degrees 1, and

� has a non-monotonically changing variance as the orientation difference increases (Malach

et al., 1993; Bosking et al., 1997).

Neither colinearity nor association field models predict all of these features. While both

models imply unimodal pooled distributions over orientation differences (Fig. 2b), they

also suggest a fixed projection field and thus neither predicts any variance for the pooled

distribution, let alone a non-monotonic one. Furthermore, colinearity is clearly at odds

with the significant spread in the distribution of connections over orientation differences,

whether it is measured via extracellular injections (e.g., Bosking et al., 1997) or the more

elaborate intracellular protocol (Buzás et al., 1998).

The data in Bosking et al. (1997) contain one injection site of possibly different con-

nection distribution which may substantially contribute to the non-monotonic nature of

the variance. Since the variance will become central to this paper, we examined whether

or not this statistical feature depends critically on this one, possibly outlier, measure-

ment. We re-analyzed the data from Bosking et al. (1997) after removing the data from

this injection site and calculating the statistical properties of the rest. We further exam-

ined the robustness of the non-monotonicity by running two additional analyses: one in

1This crossing point provides a reference for the bias of projection patterns toward

particular orientations; considering the offsets where the connection distribution crosses

the uniform line quantifies this bias in way independent of scale or quantization level.
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which we removed the sample points (one from each orientation bin) that contribute the

most to the variance, and another in which we removed those sample points (again, one

from each bin) that maximized local changes in the variance. In all these tests, includ-

ing the last one which flattens the variance the most, the tri-modal non-monotonicity,

and the two local minima at
�������

, were preserved. All these findings suggest that the

non-monotonicity of the variance is a critical feature that deserves attention both from

biologists and from modelers.

1.2 Integration models and random physiological variations

It is tempting to explain the apparent anomalies and inconsistencies between the pre-

dicted and measured distributions of long-range horizontal connections as random phys-

iological variations, for example by asserting that anatomy only approximates the cor-

rect connections. We tested this explanation by applying different noise models to the

colinearity and association field connectivity distributions from Fig. 2, and checked

whether the resultant pooled distributions posses the properties listed above. The re-

sults of the most natural noise model are illustrated in Fig. 3b. Under this model, each

long-range horizontal connection, ideally designated to connect cells of orientation dif-

ference ��� , is shifted to connect cells of orientation difference ���	��
� , where 
�� is

a wrapped Gaussian (i.e., normally distributed and wrapped on ��� ) random variable

with zero mean and variance � (see appendix for details). As the figure shows, it takes

an overwhelming amount of noise (s.d. � � ���
) to transform the colinear distribution to

one that resembles the measured data in terms of spread and peak height, but the non-

monotonic behavior of the variance is never reproduced (for space considerations we

omit the results of other connection-based noise models, or the noisy distributions based

on the association field model, all of which were even less reminiscent of the measured

physiological data).

A second possible source for the inconsistencies between the predicted and mea-
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sured distributions may be the extracellular injection protocol commonly in use by

physiologists to trace long-range horizontal connections (e.g., Gilbert and Wiesel, 1989;

Malach et al., 1993; Kisvárday et al., 1994; Kisvárday et al., 1997; Bosking et al., 1997;

Schmidt et al., 1997; Sincich and Blasdel, 2001). Due to the site-selection procedure

used, cells stained by these injections are likely to have similar orientation preferences

(e.g. Bosking et al. (1997), page 2113; or Schmidt et al. (1997), page 1084). However,

their orientation tuning may nevertheless be different, sometimes significantly (e.g., note

such a cell in Bosking et al., 1997, Fig. 4B). Consequently, the distribution of presy-

naptic terminals (boutons) traced from the injection site may incorporate an artificial,

random spread relative to the single orientation typically assumed at the injection site.

Preliminary evidence from a recently developed single-cell protocol (Buzás et al., 1998)

suggests that leakage in the injection site cannot bridge the gap between the predicted

colinear distribution and those measured anatomically. However, we also examined this

possibility computationally by modeling the leakage in the injection site as a wrapped

Gaussian random variable of predefined variance2. The base distribution (colinear or

association field) of the computational cells selected by this process were then summed

up and normalized, and the resultant (random) distribution was attributed to the original

cell representing the injection site. Repeating this process many times yielded a collec-

tion of (different) distributions, for which we calculated an average and variance (see

appendix for details). The results are illustrated in Fig. 3c. Similar to random varia-

tions at the level of individual connections, here too it takes an overwhelming amount of

noise (s.d. � � � �
) to transform the colinear distribution to one that resembles the mea-

sured data in terms of spread and peak height, but the non-monotonic behavior of the

variance is never reproduced.

[ Figure 3 about here ]

2A wrapped Gaussian model was particularly suitable here due to the injection site

selection protocol typically used in the extracellular injection protocol; see appendix).
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The thinking around long-range horizontal connections has been dominated by their

first-order statistics and its peak at zero orientation offset. However, the non-monotonicity

of the variance was first reported almost a decade ago (Fig. 3d in Malach et al., 1993)

and we have further confirmed it from the more detailed measurements in Bosking et al.

(1997), as was illustrated in Fig. 3a. Since neither colinearity nor association field mod-

els can explain this aspect of the physiological data, even if much noise is allowed, it

is necessary to consider whether this and the other subtle properties of the pooled data

reflect genuine functional properties of long-range horizontal connections. We there-

fore developed a geometric model of projection patterns, and examined quantitatively

both pooled connection statistics and connectivity patterns of individual cells generated

by it. Since many findings suggest that long-range horizontal connections are primar-

ily excitatory, especially those extending beyond one hypercolumn (Ts’o et al., 1986;

Gilbert and Wiesel, 1989; Kapadia et al., 1995; Kisvárday et al., 1997; Buzás et al.,

1998; Sincich and Blasdel, 2001), our model concentrates on this class of connections.

2 From differential geometry to integration models

Curve integration, the hypothesized functional role ascribed to long-range horizontal

connections, is naturally based in differential geometry. The tangent, or the local lin-

ear approximation to a curve, abstracts orientation preference, and the collection of all

possible tangents at each (retinotopic) position can be identified with the orientation hy-

percolumn (Hubel and Wiesel, 1977). Formally, since position takes values in the plane
���

(think of image coordinates ����� ) and orientation in the circle � � (think of an angle

� varying between
�

and 	�
 ), the primary visual cortex can be abstracted as the product

space
� �� � � (Fig. 4). Points in this space represent both position and orientation to ab-

stract visual edges of given orientation at a particular spatial (i.e., retinotopic) position.

It is in this space that our modeling takes place.

[ Figure 4 about here ]

7



Since any single tangent is the limit of any smooth curve passing through a given

(retinotopic) point in a given direction, the question of curve integration becomes one

of determining how two tangents at nearby positions are related. (Colinearity, for ex-

ample, asserts that the tangent orientation hardly changes for small displacements along

the curve). In general terms, the angular difference between RFs captures only one part

of the relationship between nearby tangents; their relative spatial offset also must be

considered. Thus, in the mathematical abstraction, relationships between tangents cor-

respond to relationships between points in
� � � � � . Physiologically, these relationships

are carried by the long-range horizontal connections, with variation in retinotopic posi-

tion corresponding to
� �

, and variation along orientation hypercolumns corresponding

to � � (Fig. A). Determining them amounts, in mathematical terms, to determining what

is called a connection structure. As we discuss in the rest of this paper, the relationship

between these two types of “connections”, the mathematical and the physiological, is

more than linguistic.

[ Figure 5 about here ]

2.1 The geometry of orientation in the retinal plane

Orientation in the 2D (retinal) plane is best represented as a unit length tangent vec-

tor
�������	� attached to point of interest

���
 � ����� �� ���
. Having such a tangent vec-

tor attached to every point of an object of interest (e.g., a smooth curve or oriented

texture) results in a unit length vector field (O’Neill, 1966). Assuming good contin-

uation (Wertheimer, 1955), a small translation
��

from the point
�� results in a small

change (i.e., rotation) in the vector
�������	� . To apply techniques from differential geom-

etry, a suitable coordinate frame � ���� � ������ is placed at the point
�� and the basis vector����

is identified with
�������	� – the tangent vector at

�� (Fig. 6). Note that
����

is drawn at

an angle � – the local orientation measured relative to the horizontal axis in retinotopic

coordinates – such that
� �� ��� ��� � � � � � . Nearby tangents are displaced both in po-
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sition and orientation according to the covariant derivatives of the underlying pattern.

These covariant derivatives, ���� ���� and ���� �� � , are naturally represented as vectors in

the basis � ���� � ������ itself:�� ���� �������� �� �
��

 	
�� � � � �� � � � � � �� �� � � � �� � � � � � �� �

���� �� �
�� �

����
(1)

The coefficients ����� � �� � , known as 1-forms, are functions of the displacement direc-

tion vector
��

, and since the basis � ���� � �� � � is orthonormal, they are skew-symmetric����� � �� � 
�� ����� � �� � . Thus � � � � �� � 
 � � � � �� � 
 �
and the system reduces to:�� ���� ����� �� �� �

��

 	
 � � � � � �� �� � � � � �� � �

� �� ����
�� �

����
(2)

This last system is known as Cartan’s connection equation (O’Neill, 1966) and � � � � �� �
is called the connection form. Since � � � � �� � is linear in

��
, it can be represented in terms

of � �� � � �� � � :

� � � � �� � 
 � � � ��� ���� ��� ���� � 
 � � � � � ���� � ��� � � � � ���� � �
The relationship between nearby tangents is thus governed by two scalars at each point.

We define them as follows  �"!
 � � � � ���� � �#!
 � � � � �� � � (3)

and interpret them as tangential (
 �

) and normal (
 �

) curvatures, since they represent a

directional rate of change of orientation in the tangential and normal directions, respec-

tively.

[ Figure 6 about here ]

While the connection equation describes the local behavior of orientation for the

general two dimensional case, it is equally useful for the one-dimensional case of curves.
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Now, only ������ is relevant and Equation 2 simplifies to�� � ���� �� �� ���� �� �
��

 	
 � � � � � �� � �� � � � � ���� � �

���� ����
�� �

����
(4)

In its more familiar form, where
�

, � , and
 

replace
����

,
�� �

, and
 �

, respectively, this is

the classical Frenet equation (O’Neill, 1966) (primes denote derivatives by arclength):�� ���
� �

��

 	
 �

 
�  �

� �� �
�

�� �
(5)

2.2 Integration models and projection patterns of horizontal con-

nections

The geometrical analysis discussed above and illustrated in Fig 6 shows how the rela-

tionship between nearby tangents depends on the covariant derivative: for curves the

connection is dictated by one curvature; for texture flows – or oriented 2-dimensional

patterns – two curvatures are required. By estimating these quantities at a given reti-

nal point
�� it is possible to approximate the underlying geometrical object, and thus a

coherent distribution of tangents, around
�� . This, in turn, can be used to model the set

of horizontal connections that are required to facilitate the response of a cell if its RF

is embedded in a visual context that reflects good continuation . Naturally, to describe

such a local approximation and to use it for building projection patterns, the appropriate

domain of integration must be determined. However, since RF measurements provide

only the tangent, possibly curvature (Dobbins et al., 1987; Versavel et al., 1990), but not

whether the stimulus pattern is a curve (1D) or a texture (2D), it is necessary to consider

continuations for both.

Since estimates of curvature at point
�� hold in a neighborhood containing the tan-

gent, the discrete continuation for a curve is commonly obtained by approximating it lo-

cally by its osculating circle (do Carmo, 1976) and quantizing. This relationship, which

is based on the constancy of curvature around
�� , is known as co-circularity (Parent and
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Zucker, 1989; Zucker et al., 1989; Sigman et al., 2001; Geisler et al., 2001), and in
��� � � � it takes the form of a helix (Fig. 7a-b). Different estimates of curvature give rise

to different helices whose points define both the spatial position and the local orientation

of nearby RFs that are compatible with the estimate at
�� (Fig. 7c). Together, all these

compatible cells induce a curvature-based field of long-range horizontal connections

(Fig. 7a-c and Fig. 8a-d). While different curvatures induce different projection fields,

the “sum” over curvatures gives an association field (Fig. 8e) reminiscent of recent psy-

chophysical findings (Field et al., 1993). Note, however, that as a psychophysical entity,

the association field is not necessarily a one-to-one reflection of connectivity patterns in

the visual cortex. In fact, representing a “cognitive union” across displays of different

continuations, the association field is unlikely to characterize any single cell.

[ Figure 7 about here ]

Similar considerations can be applied toward the local approximation of texture

flows, although now the construction of a rigorous local model is slightly more chal-

lenging. Unlike curves, this model must depend upon the estimate of two curvatures

at the point
�� , � � 


 � � �� � and � � 

 ��� �� � , but more importantly, these estimates

cannot be held constant in the neighborhood of
�� , however small; they must covary for

the pattern to be feasible (Ben-Shahar and Zucker, 2003b). Nevertheless, invariances

between the curvatures do exist and formal considerations of good continuation have

been shown to yield a unique approximation which, in
� � � � � , takes the form of a right

helicoid (Fig. 7c-d) and whose orientation function has the following expression

� � ����� � 
�������� � � � � ���	� � �

 �	� � � � � � � �

�
(6)

The most unique property of this object is that it induces an identical covariation of the

two curvature functions
 �

and
 �

in the neighborhood of the point
�� . The osculating

helicoid is the formal 2D analogue of the osculating circle and, as with co-circularity for

curves, the fields of connections between neurons that this model generates (Fig. 8f-j)
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depend intrinsically on curvature(s). Such connectivity structures can be used to com-

pute coherent texture and shading flows in a “neural”, distributed fashion (Ben-Shahar

and Zucker, 2003b) and two examples are shown in Fig. 9.

[ Figure 8 about here ]

[ Figure 9 about here ]

3 Results

The computational connection fields generated above contain all the geometrical infor-

mation needed for predictions about long-range horizontal connections of individual

cells (or after some averaging, that of tracer injection sites) in visual cortex. Thus we

now turn to the central question: how well do these connectivity maps match the avail-

able data about projection fields in visual cortex? In particular, do they make better

predictions than those arising from colinearity or association field models (Section 1)?

To answer these questions, we focused on anatomical studies that report population

statistics (Malach et al., 1993; Bosking et al., 1997) and compared their data to predic-

tions produced by performing “computational anatomy” on our model3. We randomly

sampled the population of model-generated fields analogously to the way anatomists

sample cells, or injection sites, in neural tissue and computed both individual and pop-

ulation statistics of their connection distributions. To generate robust predictions we

repeated these sampling procedures many times and calculated the expected values and

standard errors of the frequency distribution.

3Anatomical studies such as Bosking et al. (1997) and Malach et al. (1993) were pre-

ferred to psychophysical or electrophysiological studies because the latter two typically

contribute no population statistics and are generally more difficult to interpret directly

in terms of the structure of horizontal connections.
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3.1 Computational anatomy predicts biological measurements

Fig. 10 illustrates the main results computed from our models, and compares them to

the corresponding anatomical data reported in the literature (Malach et al., 1993; Bosk-

ing et al., 1997). The agreement of the computational process to the biological data is

striking, both qualitatively and quantitatively. As with the association field, our model

correctly predicts the spread of the pooled distribution with similar peak height (approx-

imately 11 � for orientation resolution of 10 degrees) and a similar orientation offset at

which it crosses the uniform distribution (approximately
��� �

degrees). Unlike colinear-

ity and association field models, however, ours predict qualitative differences between

distributions of individual neurons, or injection sites, similar to findings in the litera-

ture (Fig 10c). Most importantly, our model predicts the consistently non-monotonic

standard deviation. At orientation resolution of 10 degrees, both the anatomical data

and the computational models exhibit variance local minima at approximately
�����

de-

grees. This property holds both for a random sample of cells (Fig. 11), and for the

computational population as a whole (not shown for space consideration).

[ Figure 10 about here ]

[ Figure 11 about here ]

3.2 Curvature quantization and population statistics

The geometrical model discussed in this paper must be quantized both in orientation and

curvature before projection patterns can be computed and computational predictions can

be made. We fixed the orientation quantization to the same level used in Bosking et al.

(1997). Curvature quantization, however, is not addressed in the physiological literature

and thus it is necessary to examine its effect on the resultant connectivity distributions.

We note that even with orientation represented to hyper-acuity levels there are sufficient

number of cells to represent such quantization (Miller and Zucker, 1999).
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Broad orientation tuning implies discrete orientation quantization and suggests even

more discrete curvature quantization. The results presented in Figs 10 and 11 are based

on quantizing curvature into 5 classes4. This is a likely upper bound, given the broad

band-pass tuning of cortical neurons that have been observed (Dobbins et al., 1987; Ver-

savel et al., 1990) and modeled (Dobbins et al., 1989). However, to study the effect of

curvature quantization, we repeated the entire set of computations with both a smaller

(3) and a larger (7) number of curvature classes. 3 is clearly the lower limit, which may

correspond to the tree shrew (Bosking et al., 1997) or other simple mammals, and 7 is

more than required computationally (Ben-Shahar and Zucker, 2003b). We found that all

of the properties predicted initially remain invariant under these changes. In particular,

regardless of quantization level, the pooled distribution remains unimodal, it peaks at

zero orientation difference with approximately

 
 � , it crosses the uniform distribution

at
� ��� �

, and it has non-monotonic variance with local minima at
����� �

(with somewhat

increased variance around zero orientation for higher quantization levels). Qualitative

differences between individual neurons are predicted regardless of the number of curva-

ture classes. All these results are illustrated in Fig. 12.

[ Figure 12 about here ]

3.3 Relationship between cells’ distribution and connections’ distri-

bution

Since both anatomical and computational studies must sample the population of (biolog-

ical or computational) cells to measure the distribution of their horizontal connections,

an important consideration is whether the underlying distribution of cells (based on their

curvature tuning) can affect the pooled distribution of connections. For example, if most

4In the context of curves these 5 classes may be labeled as straight, slowly curving

to the left, slowly curving to the right, rapidly curving to the left, and rapidly curving to

the right.
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cells in the population are tuned for zero or very small curvature, the pooled connection

distribution may differ from that of a population dominated by high curvature cells.

The results presented in Figs 10 and 11 are based on the assumption that cells of

different curvature tuning (or put differently, of different connectivity patterns) are dis-

tributed uniformly. Such an assumption follows naturally from the mathematical ab-

straction that allocates the same number of computational units to equal portions of
� � � � � . However, if this assumption were wrong, would a bias in the distribution of

cells affect significantly the predictions made from our models?

Unfortunately, few data about such distributions are available, partially because

anatomists need not assume any particular cells’ distribution for their measurements

of projection fields, and partially because curvature tuning is rarely considered. Some

data available on the distribution of end-stopped cells (Kato et al., 1978; Orban, 1984),

in conjunction with the functional equivalence of end-stopping with curvature selectiv-

ity (Orban et al., 1987; Dobbins et al., 1987, 1989; Versavel et al., 1990), suggest that

cells are distributed bimodally in the curvature domain, with peaks at both zero and

high curvature tuning. Alternatively, statistical studies of edge correlations in natural

images (Dimitriv and Cowan, 1998; August and Zucker, 2000; Sigman et al., 2001;

Kaschube et al., 2001; Geisler et al., 2001; Pedersen and Lee, 2002) show that colinear

co-occurrences are more frequent than others. Although these co-occurrence measure-

ments neither depend on curvature nor do they necessarily indicate any particular dis-

tribution of cells at the computational level, implicitly they may suggest that cells are

distributed unimodally in the curvature domain, with peak at zero curvature only.

Since our model raises the possibility of a curvature bias effect, we thus redistributed

the population of our computational cells by one or the other of these non uniform (bi-

modal and unimodal) distributions, and then repeated the computational anatomy pro-

cess described in Section 3.1. All computations were done on the more general 2D

(texture) model. The bimodal distribution was modeled as a radial two-Gaussian mix-

ture model (GMM) parametrized by the total curvature
 
��  �� �  � � and parameters
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��� 
 �
, � � , � � , and � � . The unimodal distribution was modeled as a two dimensional

Gaussian of zero mean and variances � � and � � in the
 �

and
 �

dimensions, respec-

tively.

Fig 13 illustrates one example of the resultant statistical measures for the bimodal

cell distribution. In this example � � 
 �

�
� �

and � �

 �

�
� �

, where the slight differ-

ence accounts for corresponding differences in the two modes as reported in Kato et al.

(1978) and Orban (1984). As is shown, this non-uniform distribution hardly changes the

expected median, while further emphasizing the non-monotonic nature of the variance

(compared to the statistics obtained with the same number of curvature classes and uni-

form cell distribution; Fig. 12d). Similar results were obtained with other values of � �

and � � , and for the curvature quantized to 5 classes as well5.

[ Figure 13 about here ]

Fig 14 illustrates another example, this time using the unimodal cell distribution

mentioned above. In this example � � 
 � � 
 �

�

 �

such that cells with zero curvature

tuning are 8 times more frequent than cells tuned to the maximum value of curvatures.

As expected, this strongly non-uniform distribution slightly elevated the peak of the pop-

ulation statistics, but otherwise, all other features that were predicted from the uniform

cell distribution, and in particular the non-monotonic variance, were fully preserved.

Similar results were obtained with other values of � � and � � , and for all quantization

levels of the curvatures (as in Section 3.2).

[ Figure 14 about here ]

In summary, we have shown that even if cells in primary visual cortex were dis-

tributed non-uniformly in their curvature tuning, the pooled distribution of long-range

5Quantization of curvature to 3 classes was irrelevant in this case because the bi-

modality of the distribution could bot be expressed using too few samples.
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horizontal contentions in the orientation domain would preserve its fundamental prop-

erties, and in particular its wide spread and non-monotonic variance. Thus, our conclu-

sions are not biased by an implicit assumption about curvature-dependent distribution

of cells.

4 Discussion

The findings presented from our computational anatomy support the functional identi-

fication of the long-range horizontal connections with those obtained mathematically.

However, the question of why the texture model is necessary becomes unavoidable,

and we believe this issue is more than just formal mathematics. Certain physiolog-

ical and psychophysical findings, such as iso-orientation side facilitation (Adini et al.,

1997), functional and anatomical connections between retinotopically parallel receptive

fields (Ts’o et al., 1986; Gilbert and Wiesel, 1989), and roughly isotropic retinotopic

extent of projection fields (Malach et al., 1993; Sincich and Blasdel, 2001), suggest the

perceptual integration of texture flows rather than curves. Although this class of pat-

terns may seem less important than curves as a factor in perceptual organization, their

perceptual significance has been established (Glass, 1969; Kanizsa, 1979; Todd and Re-

ichel, 1990). Furthermore, recent computational vision research implicates them in the

analysis of visual shading (Lehky and Sejnowski, 1988; Huggins et al., 2001), as was

demonstrated in Fig. 9), and even color (Ben-Shahar and Zucker, 2003a).

Whether or not projection patterns of cells in primary visual cortex come in differ-

ent flavors (i.e., curve vs. texture/shading integration) is an open question. To answer it

one is likely to exploit the many physiologically measurable differences between these

classes of projection patterns as suggested by Fig. 8. Unfortunately, the statistical data

obtained so far do not distinguish between the two (curve and texture) integration mod-

els; without a spatial dimension, the statistical differences between the two models in the

orientation domain are too fine to measure relative to the accuracy of current laboratory
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techniques.

Until full spatio-angular data are obtained, however, the inclusion of even weak spa-

tial information is sufficient to generate further testable predictions. In particular, incor-

porating the retinotopic distance between linked cells into the statistics (or estimating

it from their cortical distance) can produce predictions regarding the dependency of

the distribution’s spread and shape on the integration distance, as illustrated in Fig. 15.

Some verification for these predictions can be seen in the measurements of Kisvárday

et al. (Kisvárday et al., 1997) (top row in their Fig. 9 shows developing peaks resembling

the ones in Fig 15b,c). Similar annular analyses, which focus on sectors of the annuli

in directions other than parallel to the RF’s preferred orientation, provide measurable

differences between curve and texture projection fields.

[ Figure 15 about here ]

In summary, we have presented mathematical analysis and computational models

that predict both the pooled distribution of long-range horizontal connections and the

distributions of individual cells/injection sites. For the first time the modeling goes be-

yond the unimodal first-order data and falsifies a common conclusion from it. In partic-

ular, while co-aligned facilitation entails the pooled first-order data, the converse it not

necessarily true: these data are also consistent with curvature-dependent connections.

The second-order (variance) data, however, remain consistent with curvature-dependent

connections but not with co-aligned facilitation.

The explanatory force of our model derives from sensory integration, and we ob-

served in the Introduction that most researchers limit this to curve integration via co-

linearity. We, however, conclude in an enlarged context: differential geometry pro-

vides a foundation for connections in visual cortex that predicts both dependency on

curvature(s) and an expanded functional capability, including curve, texture, and shad-

ing integration. Since the same geometrical analysis applies to many other domains in

which orientation and direction fields are fundamental features, coherent motion pro-
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cessing (Series et al., 2002) and coherent color perception (Ben-Shahar and Zucker,

2003a) might also have been included. Since all follow from the geometry, and all are

important for vision, more targeted experiments are required to articulate their neural

realization.
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A Noise models

Two basic noise models are used in this paper to examine whether variations of the basic

colinear distribution (Fig. 2) can produce a pooled statistics with similar properties to

the biological one. This appendix describes both procedures in detail.

To examine natural random variations at the level of individual connections, each

long-range horizontal connection, ideally designated to connect cells of orientation dif-

ference ��� , is shifted to connect cells of orientation difference ��� � 
� , where 
 � is a

wrapped Gaussian noise with zero mean and variance � . To do this computation, the

base distribution (colinear or association field) from Fig. 2, initially given as probabili-

ties over 18 orientation bins of

 ���

each, was normalized and quantized to a connection

histogram in the range
� � � ��� , where � represents the total number of connections a cell

makes. To each such connection to orientation difference ��� we then added a wrapped

Gaussian noise 
�� of zero mean and variance � , and the new (random) connection was

accumulated at the bin ����� 
�� of the resultant histogram. This process was repeated
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200 times to produce 200 different perturbations, from which both expected distribu-

tion and variance were computed bin-wise. The parameter � was set to the value that

produced an expected distribution of peak height and spread similar to the biological

one. Since different anatomical studies, and protocols, indicate a different number of

total connections (e.g., hundreds in Schmidt et al. (1997), approximately 3500 in Buzás

et al. (1998), and up to 20K for injection sites of approximately 20 cells in Bosking

et al. (1997)), we repeated this statistical test for normalizations in different ranges. As

expected, changing � only scaled the variance uniformly across the expected distribu-

tion but did not affect its mean. Thus, for better clarity of its monotonicity, the result in

Fig. 3b reflects a smaller number of total connections ( � 
 	 ��� ), as in, e.g., Schmidt

et al. (1997).

To examine random variations due to “leakage” of tracer from an injection site of

preferred orientation � � to nearby orientation columns, we modeled such leakage by se-

lecting � 
 

� � �

�
cells of preferred orientation � � 
 � � � ��� � , where ��� � is a wrapped

Gaussian random variable of zero mean and variance � . A normalized and quantized

based distribution (colinear or association field) was then centered around each of � � and

all were summed up and normalized to yield a resultant (random) distribution of con-

nections for the injection site at � � . As before, we repeated this generation process 200

times to produced 200 different perturbations, from which both expected distribution

and variance were computed bin-wise. The parameter � was again set to that value that

produced an expected distribution of peak height and spread similar to the biological

one. The number of cells in an injection was set to
� 
 	 � , approximately as reported

in Bosking et al. (1997). Unlike random variations at the level of individual connections,

the range parameter � had no effect on the variance of the expected distribution.
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Kisvárday, Z., Tóth, É., Rausch, M., and Eysel, U. (1997). Orientation-specific relation-

ship between populations of excitatory and inhibitory lateral connections in the visual

cortex of the cat. Cereb. Cortex, 7, 605–618.

Lehky, S. and Sejnowski, T. (1988). Network model of shape-from-shading: neural

function arises from both receptive and projective fields. Nature, 333, 452–454.

Malach, R., Amir, Y., Harel, M., and Grinvald, A. (1993). Relationship between intrin-

sic connections and functional architecture revealed by optical imaging and in vivo

targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. U.S.A.,

90, 10469–10473.

Matsubara, J., Cynader, M., Swindale, N., and Stryker, M. (1985). Intrinsic projections

within visual cortex: Evidence for orientation specific local connections. Proc. Natl.

Acad. Sci. U.S.A., 82, 935–939.

Miller, D. and Zucker, S. (1999). Computing with self-excitatory cliques: A model and

and application to hyperacuity-sclae computation in visual cortex. Neural Comput.,

11, 21–66.

Mitchison, G. and Crick, F. (1982). Long axons within the striate cortex: Their distri-

bution, orientation, and patterns of connections. Proc. Natl. Acad. Sci. U.S.A., 79,

3661–3665.

23



O’Neill, B. (1966). Elementary Differential Geometry. Academic Press.

Orban, G. (1984). Receptive field organization in areas 17,18 and 19 of the cat. In

Neural Operations in the Visual Cortex, chapter 4, pages 87–124. Springer-Verlag.

Orban, G., Versavel, M., and Lagae, L. (1987). How do striate neurons represent curved

stimuli. In Abstracts of the Society for Neuroscience, volume XIII, page 404.10.

Parent, P. and Zucker, S. (1989). Trace inference, curvature consistency, and curve

detection. IEEE Trans. Pattern Anal. Machine Intell., 11(8), 823–839.

Pedersen, K. and Lee, A. (2002). Toward a full probability model of edges in natural

images. APPTS Technical Report 02-1, Division of Applied Mathematics, Brown

University.

Polat, U. and Sagi, D. (1993). Lateral interactions between spatial channels: Suppres-

sion and facilitation revealed by lateral masking exteriments. Vision Res., 33(7), 993–

999.

Rockland, K. and Lund, J. (1982). Widespread periodic intrinsic connections in the tree

shrew visual corte. Science, 215(19), 1532–1534.
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Caption of Figure 1: Visual integration and the distribution of long-range projections.

(a) Broad tuning in orientation and position introduce uncertainty in curve integration

even if a single curve model (thick, red curve) is assumed through the RF. Determining

which nearby RF the curve continues through can be facilitated by interaction between

neurons with mutually aligned, retinotopically close RFs. (b) A fundamental measur-

able property of long-range connection is their distribution in the orientation domain,

i.e., the percentage of connections between interconnected neurons as a function of pre-

ferred orientation (angular) difference. This graph shows the median distribution of

lateral connections (distance �
�������

m) of 7 cell clusters in primary visual cortex of

tree shrew (redrawn from Bosking et al., 1997, their Fig. 6c). Qualitatively similar

(though coarser) measurements are available on primates as well (Malach et al., 1993).

(c) Connectivity distribution of individual cell clusters reveals significant variability and

qualitative differences between them. Shown here are distributions from two injection

sites from Bosking et al. (1997).
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Caption of Figure 2: Colinear facilitation, association fields, and their predicted distri-

bution of connections. (a) Informally, two visual integration, or continuation models are

typically considered in the physiological and psychophysical literatures. Collinearity,

the predominant model, predicts only few possible curve continuations (top). On the

other hand, many possible continuations reveal an association field (bottom), similar to

those observed psychophysically (Field et al., 1993). (b) The corresponding distribu-

tion derived from the collinearity and association field models. Observe that collinearity

predicts a very narrow distribution which is clearly at odds with the significant spread

frequently measured anatomically or electrophysiologically (compare to Fig. 1b). The

association field leads to a wider spread, but like collinearity, it predicts a fixed dis-

tribution for all cells, a hypothesis refuted in recent studies (see text). The collinearity

distribution (solid) was calculated from the field depicted in Fig 8a while the association

field distribution (dashed) was calculated from the field in Fig 8e. The dashed horizontal

line depicts the uniform distribution.
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Caption of Figure 3: Results of a statistical perturbation of colinear connectivity distri-

bution. (a) Mean connection distribution computed from the data in Bosking et al. (Bosk-

ing et al., 1997), shown here for reference. Error bars are
� 


standard deviation. Note

the unimodal distribution that peaks at approximately 11%, the wide spread, the crossing

of the uniform distribution (dashed horizontal line) around
� ��� �

, and the non-monotonic

variance. Can all these features be replicated by applying noise to the base distribution

induced by the standard collinearity model? (b) Result of simulating physiological de-

viation at the individual connection level. Dashed line is the base colinear distribution.

Gray region is the superposition of individual applications of the noise model to the

base distribution. Solid graph is the expected distribution and error bars are
� 


stan-

dard deviation. Permitting large enough developmental variations (shown here is the

result of wrapped Gaussian i.i.d. noise of s.d. 
 � � �
) in the connections to model the

first-order statistics significantly violates the underlying connectivity principle of good

continuation but still cannot model the second-order statistics. (c) Results of simulat-

ing measurement errors due to leakage in the injection site. All parts are coded as in

panel b. Again, permitting large enough injection spread to model the first-order statis-

tics (shown here is the result of Gaussian noise of s.d. 
 � � �
and assuming 20 cells per

injection site (Bosking et al., 1997)) cannot model the second-order statistics.
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Caption of Figure 4: Abstracting the primary visual cortex as
� � � � � , or position

�
orientation

space. (a) The “ice cube” cartoon of visual cortex (Hubel and Wiesel, 1977) (cytochrome-

oxidase blobs and distortions due to cortical magnification factor are not shown). A tan-

gential penetration in the superficial layers reveals an orientation hypercolumn of cells

whose RFs have similar spatial (retinotopic) coordinates. With cells of similar orienta-

tion tuning grouped by color, the hypercolumn is cartooned as a horizontal cylinder. (b)

With ocular dominance columns omitted, the superficial layers of the primary visual cor-

tex can be viewed as a collection of (horizontally arranged) orientation hypercolumns.

(c) Drawing the cylinders vertically emphasizes that RFs of cells within a column over-

lap in retinotopic coordinates
� ����� � and makes explicit this aspect of their organization.

(d) Since different hypercolumns correspond to different retinotopic positions, the set

of all hypercolumns abstracts the visible subspace of
� � � � � , with each column corre-

sponding to a different vertical fiber in that space. The � axis in this space corresponds

to a tangential penetration within V1 hypercolumns (colors within the column represent

different orientation tunings), and the ��� plane corresponds to retinotopic coordinates.
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Caption of Figure 5: Abstracting long-range horizontal connections as relationships

between points in
� � � � � . (a) Since visual integration must involve not only the rela-

tive orientation between RFs, but their spatial offset as well, it is more fully abstracted

by relationships between points in
� � � � � . The exact nature of these relationships

is determined by the underlying integration model. (b) Redrawing
� � � � � fibers as

orientation hypercolumns in V1 reveals the connection between the integration model

in
� � � � � and the distribution of long-range horizontal connections between the hy-

percolumns. (c) Collapsing the
� � � � � abstraction to a cortical orientation map (i.e.,

flattening each orientation cylinder and re-distributing its orientation-selective parts as

orientation columns in the superficial cortical layers), the integration model implies a

particular set of long-range horizontal connections between orientation domains (col-

ors represent orientation tuning similar to panels a,b and Fig. 4). Such links have been

identified and measured through optical imaging and anatomical tracing (e.g., (Malach

et al., 1993; Bosking et al., 1997; Buzás et al., 1998)) and thus can be compared to the

model’s predictions. (d) A real counterpart to the schematic in panel c. Reproduced

from Bosking et al. (1997), this image shows an optical image of intrinsic signals com-

bined with long-range horizontal connections traced through extracellular injection of

biocytin. The white dots at the upper left corner represent the injection site while the

black dots represent labeled boutons. The white bar in the inset represents the orienta-

tion preference at the injection site.



E

E E(q)

E

E

q

V

N

N
V

V T

T

θ

=

E

E

E E(q)

E
V V T

V N

N

T

q

=

E E(q)

E  =0

E  =0

E

V

V

V
TN

θ
T

N

q

=

q

V

E

E

E E(q)

V
T

N
V

EN

θ
T
=

Figure 6: Ben-Shahar/#2773.



Caption of Figure 6: Visual integration under good continuation involves the question

of how a measurement of orientation at one retinal position relates to another measure-

ment of orientation at a nearby retinal position. Formally this amounts to specifying

how a tangent (orientation measurement) at position
�� relates to another nearby tangent

displaced by a vector
��

. This tangent displacement amounts to rotation, and as shown

above this rotation can differ for different displacements. Formally, the rotation is spec-

ified locally by the covariant derivative � �� , and the mathematical analysis is facili-

tated by defining an appropriate coordinate frame. Shown is the Frenet basis � ���� � �� � � ,
where

����
corresponds to a unit vector in the orientation’s tangential direction and

�� �
corresponds to a unit vector in the normal direction. Associated with this frame is an

angle � defined relative to external fixed coordinate frame (black horizontal line). The

covariant derivative specifies the frame’s initial rate of rotation for any direction vector��
. The four different cases in this figure illustrate how this rotation depends on

��
both

quantitatively (i.e,, different magnitudes of rotation) and qualitatively (i.e., clockwise,

counter-clockwise, or zero rotation). Since displacement is a two-dimensional vector

and � �� is linear, two numbers are required to fully specify the covariant derivative.

These two numbers describe the initial rate of rotation in two independent displacement

directions. Using the Frenet basis once again, two natural directions emerge. A pure

displacement in the tangential direction (
�� �

) specifies one rotation component, and a

pure displacement in the normal direction (
�� �

) specifies the other component. We call

them the tangential curvature (
 �

) and the normal curvature (
 �

), respectively. If visual

integration based on good continuation relates to two dimensional patterns of orienta-

tion, then both of these curvatures are required. For good continuation along individual

curves only the tangential curvature is required since displacement is possible only in

the tangential direction (that is, along the curve only).
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Caption of Figure 7: Differential geometry, integration models, and horizontal connec-

tions between compatible RFs. (a) Estimate of tangent (light blue vector) and curvature

at a point
�� permits modeling a curve with the osculating circle as a good-continuation

approximation in its neighborhood. Given the approximation, compatible (green) and

incompatible (pink) tangents at nearby locations can be explicitly derived. (b) With

height representing orientation (see scale along the � axis), the osculating circle lifts to a

helix in
� � � � � whose points define both the spatial location and orientation of compat-

ible nearby tangents. Color-coded as in panel a, the green point is compatible with the

blue one while the pink points are incompatible with it. (c) The consistent structure in

panels a,b illustrated as RFs and their spatial arrangement. As an abstraction for visual

integration, the ideal geometrical model – the osculating circle – induces a discrete set

of RFs which can facilitate the response of the central cell. Shown here is an example

for one particular curvature tuning at the central cell. (d) For textures, determination of

good continuation requires two curvatures at a point. Based on these curvatures, a local

model of good continuation can determine both the position, orientation, and curvatures

of (spatially) nearby coherent points. Given these two curvatures at a point, there exists

a unique model of good continuation that guarantees identical covariation of the curva-

ture functions. Given the approximation, compatible (green) and incompatible (pink)

flow patches at nearby locations can be explicitly derived. (e) In
� � � � � , our model

for 2D orientation good continuation lifts to a right helicoid, whose points define both

the spatial location and orientation of compatible (green) nearby flow tangents. (f) As

an abstraction for visual integration, the ideal geometrical model – the right helicoid –

induces a discrete set of RFs which can facilitate the response of the central cell. Shown

here is an example for one particular curvature tuning at the central cell. Note that broad

RF tuning means that both the helix and the helicoid must be dilated appropriately, thus

resulting in compatible “volumes” in
� � � � � and possibly multiple compatible orienta-

tions at given spatial positions. This dilation should be reflected in the set of compatible

RFs and the horizontal links to them, but to avoid clutter, we omit it from this figure.

The effect of this dilation is illustrated in Fig. 8 and consequently in all our calculations.
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Caption of Figure 8: Illustration of connection fields for curves (top, based on co-

circularity (Parent and Zucker, 1989)) and textures (bottom, based on right helicoidal

model (Ben-Shahar and Zucker, 2003b)). Each position in these fields represents one

orientation hypercolumn while individual bars represent the orientation preference of

single neurons, all of which are connected to the central cell in each field. Multiple bars

at any given point represent multiple neurons in the same hypercolumn that are con-

nected to the central cell, a result of the dilation of the compatible structure due to broad

RF tuning (see caption of Fig. 7). All fields assume that orientation tuning is quantized

to 10 degrees and their radius of influence is set to 4-5 non-overlapping hypercolumns

to reflect a 6-8mm cortical range of horizontal connections (Gilbert and Wiesel, 1989)

and hypercolumn diameter of 1.5mm (to account for ocular dominance domains). (a-d)

Examples of co-circularity projection fields (Parent and Zucker, 1989) for cells with ori-

entation preference of 150 degrees (center bars) and different values of curvature tuning

(based on the implementation by Iverson (Zucker et al., 1989)). (a)
 
 �

�
�

(curvature

in units of pixels � � ). (b)
 
 �

�
���

. (c)
 
 �

�

��

. (d)
 
 �

�
	 � . (e) The union of all pro-

jection fields of all cells with same orientation preference (0 degrees in this case) but dif-

ferent curvature tuning. Note the similarity to the schematic association field in Fig. 6b.

(f-j) Examples of the texture flow projection fields (Ben-Shahar and Zucker, 2003b) for

cells with horizontal orientation preference (center bars) and different curvature tuning.

Note the intrinsic dependency on curvatures and the qualitatively different connectivity

patterns that they induce. (f)
�  � �  � �
 � �

�
� � �
�
� � . (g)

�  � �  � �
 � �
�
	 � �
�
� � . (h)

�  � �  � � 
 � �
�
� � �
�
	 � . (i)

�  � �  � � 
 � �
�

 � �
�

 � . (j)

�  � �  � � 
 � �
�
	 � �
�
	 � . Note that

while the majority of connections link roughly co-linear cells, some connect cells of

large orientation differences. The fields shown are just a few examples sampled from

the models, both of which contain similar (rotated) connection fields for each of the pos-

sible orientation preferences in the central hypercolumn. The circles superimposed on

panels d,i are used to characterize retinotopic distance zones for the predictions made in

Fig. 15.
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Caption of Figure 9: Example of coherent texture (a-d) and shading (e-g) flow compu-

tation based on contextual facilitation with right helicoidal connectivity patterns (Ben-

Shahar and Zucker, 2003b). (a) Natural image of a tree stump with perceptual texture

flow. (b) A manually drawn flow structure as perceived by a typical observer. (c) Noisy

orientation field reminiscent of RF responses. The computed measurements are based

on the direction of the image intensity gradient. (d) The outcome of applying a con-

textual and distributed computation (Ben-Shahar and Zucker, 2003b) which facilitates

the response of individual cells based on their interaction with nearby cells through the

connectivity structures in Fig. 8. Compare to panel b and note how the measurements

in the area of the knot, where no RF is embedded in a coherent context, were rejected

altogether. (e) An image of a plane. (f) Measured shading flow field (white) and edges

(black). In biological terms edges are measured by RFs of particular orientation pref-

erences tuned to high spatial frequencies. The shading field may be measured by cells

tuned to low frequencies. (g) Applying the right helicoidal-based computation on the

shading information results in a coherent shading field on the plane’s nose and a com-

plete rejection of the incoherent shading information on the textured background. Such

an outcome can be used to segment smoothly curved surfaces in the scene (Ben-Shahar

and Zucker, 2003b), to resolve their shape (Lehky and Sejnowski, 1988), to identify

shadows (Breton and Zucker, 1996), and to determine occlusion relationship underlying

edge classification (Huggins et al., 2001).
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Caption of Figure 10: Comparison of anatomical data and model predictions for the

distribution of long-range horizontal connections in the orientation domain. In all graphs,

dashed horizontal lines represent the uniform distribution and error bars represent
� 


standard error. (a) Mean connection distribution of 4 injection sites from Malach et al.

(1993) vs. the computational prediction from our models (expected mean, N=4, 100

repetitions). Note the dominant peak around zero orientation difference and the con-

siderable width of the histogram. The asymmetry in the pooled distribution measured

by Malach et al. (1993) likely derives from a bias at the injection site (see their Fig. 4D)

rather than being intrinsic. (b) Median distribution of 7 injection sites from Bosking

et al. (1997) against the computational prediction from our models (expected median,

N=7, 100 repetitions). Note in particular the similarity in peaks’ height and in the ori-

entation offset at which the graphs cross the uniform distribution, and the strongly non-

monotonic behavior of the variance. (c) Two individual injection sites with qualitatively

different connection distributions reproduced from Bosking et al. (1997). The counter-

part computational instances are sampled from our models. Solid graphs correspond to

the fields in Fig. 8b,i. Dashed graphs correspond to the fields in Fig. 8c,j.
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Caption of Figure 11: Although both the computational and the physiologically mea-

sured distributions of the mean are monotonically decreasing, their standard deviation

is consistently non-monotonic. (a) While Bosking et al. (1997) used the population me-

dian, we further analyzed their published data (from 7 injection sites) to find its mean

and standard deviation. It is evident that the s.d. is non-monotonic, with two local min-

ima at
� ���

degrees (marked with red arrows). (b) Expected standard deviation for the

texture model. (c) Expected standard deviation for the curve model. Both graphs depict

the expected s.d. for 7 randomly selected cells (N=7, 100 repetitions). and both show

a similar non-monotonic behavior with pronounced s.d. local minima at approximately
�����

degrees. Note how the computational local minima coincide with the anatomical

ones (arrows are copied from panel a and overlaid on the computational graphs). Com-

pare also to the s.d. on the median graphs in Fig. 10b. Note that as with the distributions

themselves, both computational models produce quantitatively similar s.d. results.
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Caption of Figure 12: Different quantization levels of curvature tuning have little ef-

fect on the expected median distribution and its standard deviation. (a) Anatomical data

from Bosking et al. (1997) shown for comparison with the computational predictions.

(b) Computational predictions with 3 curvature classes. (c) Computational predictions

with 5 curvature classes. (d) Computational predictions with 7 curvature classes. In all

cases, left column depicts the expected median for 7 cells (bars are 1 s.d.), middle col-

umn depicts the expected standard deviation for 7 cells, and the right column shows two

qualitatively different distributions from two different cells. For space considerations

we show the results from the texture model only.
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Caption of Figure 13: A statistical confirmation that the properties of our models per-

sist even when the population of cells is distributed bimodally (Kato et al., 1978; Orban,

1984). Illustrated here is the result from a distribution modeled as a GMM with
� � 
 �

,

� � 
 �

�
� �

,
�

�

 �

�
	 , and � �


 �

�
���

. Since the bimodal nature of the distribution is best

represented with higher number of curvature classes, presented here is the case of the

texture model with curvatures quantized to 7 classes each. (a) The (radially) bimodal

distribution of cells in the curvature domain normalized for number of cells. X and Y

axes represent tangential and normal curvature tuning, respectively, and the Z axis rep-

resents the number of such curvature-tuned cells for any given orientation tuning. (b)

Expected median of 7 cells. Error bars are
� 


standard deviation. (c) Expected standard

error for 7 cells. Compare both graphs to Fig. 12d.
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Caption of Figure 14: A statistical confirmation that the properties of our models per-

sist even when the population of cells is distributed normally (i.e., unimodally). Such

distribution is implicitly suggested by statistics of edges in natural images (Dimitriv and

Cowan, 1998; August and Zucker, 2000; Sigman et al., 2001; Kaschube et al., 2001;

Geisler et al., 2001; Pedersen and Lee, 2002) in which colinear edges are much more

frequent. The case presented here ( � � 
 � � 
 �

�

 �

) induces a distribution in which

cells of zero curvature tuning are 8 times more frequent than those of maximal curva-

ture tuning. The graphs in this figure correspond to the texture model with curvatures

quantized to 3 classes each. Similar results were obtained with other quantization lev-

els as well. (a) The normal distribution of cells in the curvature domain normalized

for number of cells. X and Y axes represent tangential and normal curvature tuning,

respectively, and the Z axis represents the number of such curvature-tuned cells for any

given orientation tuning. (b) Expected median of 7 cells. Error bars are
� 


standard

deviation. (c) Expected standard error for 7 cells. Compare both graphs to Fig. 12b.
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Caption of Figure 15: Model predictions of connection distributions by retinotopic

annulus. Left, middle, and right columns correspond to predictions based on small,

medium, and large annuli, respectively (circles in Fig. 8d,i). All annuli refer to distances

beyond one orientation hypercolumn thus the small annulus should not be confused with

distances less than the diameter of one hypercolumn. In a,b the same sampling proce-

dure and the same sample set sizes described in Fig. 10 were repeated. For lack of

space we omit the very similar graphs of the mean and median of the entire population,

and present predictions from the texture model only. (a) Expected mean distribution

and standard error (N=4, 100 repetitions). Note the spread with increased retinotopic

distance. (b) Expected median distribution and standard error (N=7, 100 repetitions).

Note developing symmetric peaks that further depart from the iso-orientation domain

as the spatial distance increases. The correspondence of these peaks to the minima of

the standard error is remarkable, thus designating them as statistical “anchors” suitable

for empirical verification. (c) Individually tuned cells show the qualitative difference

between distributions of high and low curvature cells. In particular, note how the dis-

tributions of high curvature cells (dashed graphs) are the ones that develop the peaks

mentioned in panel b above.


