ln2/ln3 Method Equivalence

Overview
The following table shows the ln2 member methods, and their ln3 or nttl equivalents.   ln2 member methods that are exactly the same in ln3 are not shown.
 
ln2 Method ln3 Equivalent Notes
Package Function
x.Assign     Use operator =
x.AssignHex      
x.BetweenBits      
x.Binomial( n, k ) nttl Binomial( &x, n, k )  
x.Bit( i ) ln3 x.GetBit( i )  
x.Compare( y ) ln3 x.Compare( y ) Note that the return type of these functions are different than the corresponding ln2 methods.
x.CompareAbs( y ) ln3 x.CompareAbs( y )
x.Digit( i ) ln3 x.GetDigit( i )  
x.Digits( ) ln3 x.GetSize( )  
::Divide( n, d, q, r ) ln3 n.Divide( d, &q, &r )  
x.Dump( )      
x.Factorial( n ) nttl Factorial( &x, n )  
x.FactorPowerOf2( k, e ) nttl FactorPowerOrTwo( x, &k, &e )  
x.FastExp( e, m ) ln3 x.FastExp( e, m ) This method will soon be obsolete.  Consider using the nttl Power function, instead.
x.GCD( y ) nttl GCD( x, y )  
x.Index( )     Use x.GetSize( ) - 1
x.Inverse( m ) nttl Inverse( x, m )  
x.IsPrime( ) nttl IsPrime( x )  
x.IsSmallPrime( )     Planned for the prime package.
x.IsSquare( )     Planned for nttl.
x.Jacobi( m ) nttl Jacobi( x, m )  
x.LehmerSqrt( m )     Planned for nttl.
x.Max( y )     Consider the template min/max.
x.Min( y )     Consider the template min/max.
x.ModSqrt( m ) nttl SqrtMod( x, m )  
x.NextPrime( )     Planned for the prime package.
x.PowerOfTwo( e )     Planned for nttl.
x.PrevPrime( )     Planned for the prime package.
x.PrintBinary( )      
x.PrintDecimal( )     Use x.Print( )
x.PrintHex( )     Use cout << hex << x;
x.PrintIB( )      
x.Product( n ) nttl Product( &x, n )  
::Random( s ) ln3 x.Random( s )  
x.RandomPrime( s ) nttl RandomPrime( &x, s )  
x.Sign( ) ln3 x.GetSign( ) Note that the return type is different.
x.Square( )     Planned for ln3.
x.Sqrt( ) nttl Sqrt( x )  
x.Version( )     Will possibly be added to ln3.