ln2 Method |
ln3 Equivalent |
Notes |
Package |
Function |
x.Assign |
|
|
Use operator = |
x.AssignHex |
|
|
|
x.BetweenBits |
|
|
|
x.Binomial( n, k ) |
nttl |
Binomial( &x, n, k ) |
|
x.Bit( i ) |
ln3 |
x.GetBit( i ) |
|
x.Compare( y ) |
ln3 |
x.Compare( y ) |
Note that the return type of these functions are different than the
corresponding ln2 methods. |
x.CompareAbs( y ) |
ln3 |
x.CompareAbs( y ) |
x.Digit( i ) |
ln3 |
x.GetDigit( i ) |
|
x.Digits( ) |
ln3 |
x.GetSize( ) |
|
::Divide( n, d, q, r ) |
ln3 |
n.Divide( d, &q, &r ) |
|
x.Dump( ) |
|
|
|
x.Factorial( n ) |
nttl |
Factorial( &x, n ) |
|
x.FactorPowerOf2( k, e ) |
nttl |
FactorPowerOrTwo( x, &k, &e ) |
|
x.FastExp( e, m ) |
ln3 |
x.FastExp( e, m ) |
This method will soon be obsolete. Consider using the nttl Power function,
instead. |
x.GCD( y ) |
nttl |
GCD( x, y ) |
|
x.Index( ) |
|
|
Use x.GetSize( ) - 1 |
x.Inverse( m ) |
nttl |
Inverse( x, m ) |
|
x.IsPrime( ) |
nttl |
IsPrime( x ) |
|
x.IsSmallPrime( ) |
|
|
Planned for the prime package. |
x.IsSquare( ) |
|
|
Planned for nttl. |
x.Jacobi( m ) |
nttl |
Jacobi( x, m ) |
|
x.LehmerSqrt( m ) |
|
|
Planned for nttl. |
x.Max( y ) |
|
|
Consider the template min/max. |
x.Min( y ) |
|
|
Consider the template min/max. |
x.ModSqrt( m ) |
nttl |
SqrtMod( x, m ) |
|
x.NextPrime( ) |
|
|
Planned for the prime package. |
x.PowerOfTwo( e ) |
|
|
Planned for nttl. |
x.PrevPrime( ) |
|
|
Planned for the prime package. |
x.PrintBinary( ) |
|
|
|
x.PrintDecimal( ) |
|
|
Use x.Print( ) |
x.PrintHex( ) |
|
|
Use cout << hex << x; |
x.PrintIB( ) |
|
|
|
x.Product( n ) |
nttl |
Product( &x, n ) |
|
::Random( s ) |
ln3 |
x.Random( s ) |
|
x.RandomPrime( s ) |
nttl |
RandomPrime( &x, s ) |
|
x.Sign( ) |
ln3 |
x.GetSign( ) |
Note that the return type is different. |
x.Square( ) |
|
|
Planned for ln3. |
x.Sqrt( ) |
nttl |
Sqrt( x ) |
|
x.Version( ) |
|
|
Will possibly be added to ln3. |