| ln2 Method | ln3 Equivalent | Notes | |
|---|---|---|---|
| Package | Function | ||
| x.Assign | Use operator = | ||
| x.AssignHex | |||
| x.BetweenBits | |||
| x.Binomial( n, k ) | nttl | Binomial( &x, n, k ) | |
| x.Bit( i ) | ln3 | x.GetBit( i ) | |
| x.Compare( y ) | ln3 | x.Compare( y ) | Note that the return type of these functions are different than the corresponding ln2 methods. |
| x.CompareAbs( y ) | ln3 | x.CompareAbs( y ) | |
| x.Digit( i ) | ln3 | x.GetDigit( i ) | |
| x.Digits( ) | ln3 | x.GetSize( ) | |
| ::Divide( n, d, q, r ) | ln3 | n.Divide( d, &q, &r ) | |
| x.Dump( ) | |||
| x.Factorial( n ) | nttl | Factorial( &x, n ) | |
| x.FactorPowerOf2( k, e ) | nttl | FactorPowerOrTwo( x, &k, &e ) | |
| x.FastExp( e, m ) | ln3 | x.FastExp( e, m ) | This method will soon be obsolete. Consider using the nttl Power function, instead. |
| x.GCD( y ) | nttl | GCD( x, y ) | |
| x.Index( ) | Use x.GetSize( ) - 1 | ||
| x.Inverse( m ) | nttl | Inverse( x, m ) | |
| x.IsPrime( ) | nttl | IsPrime( x ) | |
| x.IsSmallPrime( ) | Planned for the prime package. | ||
| x.IsSquare( ) | Planned for nttl. | ||
| x.Jacobi( m ) | nttl | Jacobi( x, m ) | |
| x.LehmerSqrt( m ) | Planned for nttl. | ||
| x.Max( y ) | Consider the template min/max. | ||
| x.Min( y ) | Consider the template min/max. | ||
| x.ModSqrt( m ) | nttl | SqrtMod( x, m ) | |
| x.NextPrime( ) | Planned for the prime package. | ||
| x.PowerOfTwo( e ) | Planned for nttl. | ||
| x.PrevPrime( ) | Planned for the prime package. | ||
| x.PrintBinary( ) | |||
| x.PrintDecimal( ) | Use x.Print( ) | ||
| x.PrintHex( ) | Use cout << hex << x; | ||
| x.PrintIB( ) | |||
| x.Product( n ) | nttl | Product( &x, n ) | |
| ::Random( s ) | ln3 | x.Random( s ) | |
| x.RandomPrime( s ) | nttl | RandomPrime( &x, s ) | |
| x.Sign( ) | ln3 | x.GetSign( ) | Note that the return type is different. |
| x.Square( ) | Planned for ln3. | ||
| x.Sqrt( ) | nttl | Sqrt( x ) | |
| x.Version( ) | Will possibly be added to ln3. | ||