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RANDOM PLANE NETWORKS*
E. N. GILBERTY}

1. Introduction. Recently random graphs have been studied as models
of communications networks. Points (vertices) of a graph represent sta-
tions; lines of a graph represent two-way channels. In the literature [1, 3, 5]
each pair of stations has some probability (the same for all pairs of stations
regardless of their separation) of being joined by a channel. Such a model
cannot represent accurately a network of shortrange stations spread over
a wide area. The random plane networks of this paper provide a simple
model in which the range of the stations is a parameter.

To construct a random plane network, first pick points from the infinite
plane by a Poisson process with density D points per unit area. Next join
each pair of points by a line if the pair is separated by distance less than R.

The random plane network represents an infinite communication net-
work of stations with range R. Another application is to the study of
spread of a contagious disease. Points represent individuals susceptible to
the disease. If sick individuals infect all others within distance R, the dis-
ease spreads along lines of the network.

The random plane network falls into disjoint connected components. In
the first application a station can relay messages to any other station in the
same component. In the second application an entire component becomes
infected when one of its members acquires the disease. The function of main
interest here is P(IV), the probability that a point belongs to a component
containing at least N — 1 additional points.

Fig. 1 shows two networks, obtained from the same random point pattern
but with different values of B. The parameter F in Fig. 1 is the expected
number of points in a circle of radius R; E = wR’D. Not all lines of the
network are drawn, just enough to show the connected components. Natu-
rally, the components for E = 4.7 are bigger than those for £ = 1.8 but
there is even a qualitative difference. The small components of the E = 1.8
network are so merged together in the £ = 4.7 network that most of the
points belong to a single large component. This phenomenon suggests that
there is a component with infinitely many points in the infinite plane. Then
the limit

limy,o P(N) = P()

need not be zero. It represents the probability of belonging to an infinite
component.

* Received by the editor December 14, 1960 and in revised form March 6, 1961.
t Bell Telephone Laboratories, Inc., Murray Hill, New Jersey.
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CONNECTIONS WHEN E=1.8
————— ADDITIONAL CONNECTIONS WHEN E=4.7

F1a. 1. Random plane network.

Section 2 shows that P( ) = 0 when E < 1.75. Section 3 shows P(» ) >
0 when F is sufficiently large. Thus there exists a critical value E, which
is the largest value of  for which P(« ) = 0. In the communication model,
the network provides only local communication if £ < E, and provides
some long-distance communication if £ > E,. In the disease model, a
widespread epidemic can occur only if E > E,.

The bounds on E,, which §2 and §3 provide, are far apart. Section 5
describes a computer simulation of random plane networks. The simula-
tion gives an estimate E, = 3.2 and also gives curves of P(N) and P( ).

2. A branching process. The component containing a given point P might
have been constructed step-by-step as follows. First pick the points which
are connected directly to P. These are found by a Poisson process of density
D in the circle A(1) of radius R centered at P. These points, if any, will be
said to belong to the first generation of descendants of P. Continuing, the
second generation points are to be chosen within distance R of first genera-
tion points but more than distance R away from P. In general, in choosing
generationn 4 1, draw the set 4 (n -+ 1) of all points lying within distance
R of a point of generation n and not in A(1), A(2),---, A(n). Then
generation n + 1 is obtained by a Poisson process of density D in the set
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A(n + 1). If at some generation the Poisson process produces no points,
then the construction stops and the component is finite.

A related but simpler construction, which will be called construction B,
proceeds as follows. Construct the first generation as before. Suppose the
nth generation has been found and call its points ¢1, ¢z, * * + , ¢z . Construct
circles Cy, Cy, - - -, Cy of radius R and centered at ¢, g2, -+, gx . Pick
points independently from C;, C:, - -+, C; by Poisson processes of density
D. These points form generation n 4 1.

Clearly the probability of obtaining N or more points by process B is
greater than P(N). In fact, the component in the random network might
have been constructed by process B, deleting at each step any new point
which belongs to a circle C; already considered (in the same or earlier
generations).

Construction B is a simple branching process (see 4], Ch. 12) of the sort
which occurs in the study of survival of family names. Here the probability
pi that a point produces k& descendants in the next generation is

k —E
pk=‘§k‘+ (k=0,1,2 - ).

The probability s that B produces infinitely many points may he computed
as an upper bound on P( ). Since s = 0 for E £ 1, we have E. = 1. If
E > 1, s is the smallest real root of

(1) s=1—¢".

(see [4], p. 275).

A simple refinement B* of construction B replaces the circles C; of radius
R by certain lune-shaped ﬁgures Note that circles C;, C./ surrounding a
point ¢; and its descendant ¢’ in the next generation always intersect in an
area at least (27r/3 — 4/3/2)R’. This area would be forbidden to de-
scendants of ¢/ in the random plane network. The remaining part of C’
is a lune of area (7/3 + \/3/2)R’. In B*, the descendants of ¢;’ are picked
by a Poisson process of density D in this lune. Using B* the bound on E.
will be improved to

E, = = 1.75.
(2) Ly \f
3

In construction B*, the first generation again has a number K of points
distributed according to the Poisson Law with mean E. Each of these K
points initiates a simple branching process in which numbers of offspring
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have the Poisson distribution, now with mean
N L) P M%v
- (s )i (1 )
As in (1), each of the K branching processes has a probability s* of con-
tinuing forever, where now

s* =0 (if B¥ £ 1),
s =1— ¢ (if E* > 1).

The probability S that at least one of the branching processes continues
forever is

0 K —E*
3) S=1-3 EVET (| gyr o g o

K=0 K!
Since P() £ 8, (3) shows that P(») = 0 when s* = 0, i.e., when
E* £ 1. Then (2) follows.

The results derived from construction B apply to a somewhat more
general kind of random plane network. Instead of connecting points (z,y)
and (2, y') if and only if they are closer than R apart, a line may be drawn
by a random choice. The probability of drawing a line may be an arbitrary
function f(|z — ' |, |y — ¥’ |) of the absolute coordinate differences of
the end points (z, y), (', ¥'). However, the mean number £ of lines to
a point,

E=0[ [ el lyhdedy =D [ [ few) deay,

is assumed to exist. Again E, = 1 follows. Moreover, the number of lines
at a point still has a Poisson distribution and s, given by (1), remains an
upper bound on P( ).

3. A percolation process. Percolation processes [2, 6, 7, 8, 9] produce
random networks as models of porous media through which a fluid seeps.
The percolation process produces a network G by deleting lines at random
from a fixed underlying graph G’. All points of G’ remain as points of G.
The remaining lines (those of G) represent tunnels through which fluid
may seep. In a typical special case the underlying graph G’ might be one
of the regular arrangements of points and lines which occur in crystal-
lography. In any case, lines of G’ are deleted independently and all with
the same probability g.

The authors cited find, for certain graphs G, that the fluid can percolate
infinitely far if ¢ is below a critical value. Thus the random plane network
problem strongly resembles a percolation problem. Unfortunately the two
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Fia. 2.

are enough different that the theorems of percolation theory do not apply
directly here. Suppose one seeks a percolation process which will produce
random plane networks. Since any point of the plane may become a station
in the network, G’ should contain all points of the plane and all lines of
length R or less. The present theorems of percolation theory do not allow
this; however, one might consider the limiting case as M — « of a percola-
tion on a graph G’ with M points per unit area. In order to keep the number
of lines per unit area of G fixed at the correct value pE/2, one must set
g =1 — 0(M™).In the limit as M — o, not only do almost all points of
G have no line but, further, almost all points which have a line have no
other line.

A correspondence between random networks and a certain percolation
process can, however, supply bounds on E.. The percolation process in
question has a square lattice as its underlying graph. This square lattice,
shown in Fig. 2, has all lines of length L = R/2. Imagine this lattice to be
drawn on the same plane as the random network. Surround each line X of
the square lattice by a square S(A) (shown in dotted lines) having A as
diagonal. In the percolation process, A is deleted if and only if the square
S(\) contains no point of the random network. Thus each line of the lattice
has probability
p = 1 — e—mﬂ/z
of remaining. If p is larger than some critical probability p. , this percolation
process has probability 1 of producing an infinite component. Hammersley
[8] shows .35 < p. < .65. Harris [9] improves the lower bound to .50 < p. .
Let P, be a point of the random network. P; belongs to some dotted square,
say S(\1). Let F(p) be the probability that A, belongs to an infinite com-
ponent of the percolation graph. If A, belongs to an infinite component,
one can find an infinite path A;, A2, «- -, in which (for¢ = 1,2, --- )\
and A;y; have a common end point. Then our random network contains
points Py, P, -+ in S(A2), S(As), - -+, and P; and P;y, are closer to-
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gether than 2L = R. Thus we conclude
(4) P() z F(p) = F(1 — ¢ ™).

Now (4) provides E, < 8 log.(1/p.) but this is only a very weak upper
bound on E. . For example, even using the conjectured exact value p, =
0.50 of the critical probability in the percolation process, (4) only provides

E, < 8rlog.2 = 174.

4. Hex. The following argument suggests a better upper bound for E. .
The argument depends on well-known properties of the game of hex. Hex is
played on a honeycomb pattern of hexagonal cells. A typical cell H(u, v)
has its center at the point with Cartesian coordinates

(Y YE
x—(u+§>b, y—vbz,

where b is the separation between cell centers and » and v assume integer
values. A hexboard consists of all cells H(u,v) such that |u | ='K,|v| = K
for some integer K (see Fig. 3). One player, say White, tries to acquire
enough cells to have a connected path from v = —K to u = K. His op-
ponent, Black, needs a connected path from v = —K tov = K. No draw is
possible in hex; indeed every assignment of cells to White and Black finds

Fra. 3. Hexboard (K = 2).
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exactly one of the players with a winning path. A proof of this property
of hex will appear in a forthcoming book on communications by J. R. Pierce.

Imagine a hexboard drawn on the plane of the random plane network.
Give White cell H(u, v) if and only if it contains a point of the network.
The probability that Black receives a particular cell is

Q= e—-Dbﬂ\/'slz

Suppose Db’ is chosen so as to make Q = .50, i.e., Db = (2 log, 2) /3.
Then the game is symmetrical and Black and White have each probability
3 of winning; there is probability § of a connected path of hexagons from
u = —K tou = K. If in addition, one picks b = R+/3/13, then points in
neighboring hexagons are within distance E. A path by which White wins
now provides a component of the random network containing at least
2K 4 1 points. The final result is:

TuEOREM. Let E = (267/3+/3) log, 2 = 10.9, let K be an integer arbi-
trarily large, and let Hx be a hexboard of (2K + 1)* cells with separation
b = R/3/13 between cell centers. There is probability at least 1 that a com-
ponent of the random network joins a pair of opposite sides of the hexboard and
contains at least 2K + 1 points.

Since K can be arbitrarily large, the theorem shows that arbitrarily

1.0 l l
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F1q. 4. Estimates of P(N) from 11 networks.
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large components are easy to find when £ > 10.9. Unfortunately E, < 10.9
does not follow. One can imagine that each hexboard Hg contains a (2K +
1)-point component and yet no component of the random network is in-
finite. For example, the components of the network might be arranged as
a family of concentric polygons, becoming arbitrarily large but each finite.
Such arrangements seem very unlikely, and it would be interesting to have
a way of deriving B, < 10.9 from the theorem.

6. An experiment. The theoretical results of §2 and §3 are too weak to
estimate K, , P(N), or P( ) accurately. A computer experiment provided
better numerical results. An IBM 7090 computer simulated the construc-
tion of random plane networks in a large square. For each network the com-
puter printed a table of the fraction of points of the network which be-
longed to components of size N or more. This fraction is an estimate of
P(N).

Each curve in Fig. 4 uses results obtained from 11 independent networks
with the stated value of E. The fractions of points belonging to com-

1.0 -
-
z =
¥
8 Ve
2 o8-
8
- F
[72]
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204} NETWORKS
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[
Q - -
Q -———
E .
o 11 | . , A \ | . .
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F1G. 5. Estimates of P(=).
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ponents of size N or more were averaged over the 11 networks and plotted
as an estimate of P(NN). Since the networks had 1000 points each at £ = 5
and were proportionally smaller for E < 5, Fig. 4 does not estimate P(N)
reliably when N is large.

In a random plane network, a point has probability P( « ) of belonging to
a component of maximum size. This follows immediately when E, < E
since « is certainly a maximum size; also, when E < E., an infinite com-
ponent has probability zero and yet arbitrarily large finite component sizes
have nonzero probabilities. Thus, in the computer simulation the fraction
of points belonging to the component of largest size was used as an estimate
of P( ). For each value of E, these estimates from 11 networks were aver-
aged together to give a point on the solid curve shown in Fig. 5. Since the
computer only produced finite square approximations to random plane
networks, the values plotted in Fig. 5 do not become zero for small E. In
an attempt to obtain improved results, some networks were constructed in
a square of 2.5 times larger area. There were three of the larger networks
for each value of E; they produced the dotted curve in Fig. 5. Similarly a
dashed curve shows estimates of P( « ) from networks (five for each value
of E) of area smaller by a factor .25. In Fig. 5 networks were available at
E = 5,10,15,20,2.5,3.0,3.5,4.0,4.5, and 5.0. The corresponding num-
bers of points in the networks of the three sizes are shown on three addi-
tional scales on Fig. 5. The upper bound S on P( ) was computed from
(3) and appears in Fig. 5 for comparison.

In Fig. 5 the estimates of P( ) are so large for small E that it is difficult
to estimate E, accurately. If the true P( =) vs. E curve hits the E axis with
nonzero slope (as for the S vs. E curve of the branching process), then
Fig. 5 suggests a value of E, somewhere near 3.2. However, the author has
no proof that the true process resembles a branching process to that extent.

In the range 3 < E < 5, the estimates of P(« ) from the 11 individual
networks are widely scattered. For each E in this range the 11 estimates
appear on Fig. 5 as isolated points. Points for E < 3 are not shown because
they clustered well about the mean line. Increasing the size of the square
would decrease the scatter. However, for many communication network
applications, the actual number of stations is less than 1000 and such
scatter may be of interest.

The following calculations give rough indications of the sizes of the ex-
perimental errors for the curves in Figs. 4 and 5.

In Fig. 5 the 11 points for E = 4 spread out with a standard deviation of
.26. Take .26 as an estimate of the true standard deviation of the fraction
f of points in the largest component when 800 points are placed in a square
and when R is chosen to make E = 4. The curve plotted shows the average
of 11 independent measurements of f. This average is a random variable
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with standard deviation .26/4/11 = .077. In a similar way standard de-
viations for other points on the P( ) curve and for the P(N') curves of
Tig. 4 werc found. These are tabulated below. Of course, these figures only
represent errors in measurement for finite squares and tell nothing about
how well these squares approximate the infinite plane.

E P(3) P(10) P(30) P(100) P(x)
1 .008

2 .014 .021 .004

3 1007 .010 .041 .018

4 .003 .003 .022 .043 .077

5 .011

Since networks for a range of values of E were needed, much computing
time was saved by using old networks as parts of new networks with higher
E.In a typical run of the computer the range R and the area A of the square
were fixed parameters. Starting with a network of just one point the com-
puter added points one at a time to obtain networks with increasing values
of E. Each new point was selected by generating a pair of pseudo-random
numbers for coordinates. At suitable intervals the computer printed out
the required data. Thus the 110 networks used in plotting the solid curve
of Fig. 5 came from 11 runs, each of which constructed networks at & = .5,
1.0, - -+, and 5.0. This construction gave each network exactly EA/xR’
points instead of a true Poisson distribution of points.

Points near the edges of a square tend to belong to small components
because connection paths which go outside the square are missing. To offset
these edge effects the computation identified opposite sides of the square,
making the square topologically equivalent to a torus. Thus in Fig. 1 with
E = 4.7 small clusters of points at the top of the square are connected to
the large component at the bottom of the square.

In programming this experiment it was important to avoid using a
storage unit for each pair of points to remember whether or not the pair
was joined by a line. It was also desired to compute the distance between
each pair of points at most once. Both objectives were achieved by storing
the components in the computer as lists. To do this the computer stored
a single function I,ex:(J), the name of the point (if any) which followed
point J in its list. Other functions which were used were the coordinates
X(J), Y(J) of point J, the name K(J) of the list (component) con-
taining point J, the number N (K) of points in list K, the first and last
points in list K, and the number M (N) of lists of length N points.

In order to add point I to the network the computer began by putting I
temporarily in a list by itself. It then began computing distances from I
to 1,2, .-+, I — 1. Each time a point J was found, within distance R of
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point I but not already in list K(I), the lists K(I) and K(J) were com-
bined into a single list. To combine lists, the computer had only to change
some of the values of the eight functions mentioned above.

In simulating a network of M points the main storage requirement was
for the 8 values of the eight functions. The IBM 7090 has adequate
storage to handle 3000 points. Each of the eleven 1000 point cases took
two minutes on the IBM 7090. The 2000 point cases took seven minutes
each.
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