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Abstract-111 traditional computational complexity theory, the informal notion of eff 
ciently verif’rable sets of statements is formalized as nondeterministic polynomial time sets. 
Recently, an alternative formalization has emerged: sets with interactive proof systems. An 
interactive proof system is called zero-knowledge if it succeeds in proving the desired state- 
ments and nothing else. This chapter surveys definitions, examples, known results, and open 
problems in the area of interactive proof systems and zero-knowledge. 

Some basic problems in complexity theory and cryptography can be thought of as 
two-player games in which one player (the “prover”) tries to convince the other player 
(the “verifier”) of the truth of an assertion. Indeed, the complexity class NP can be 
formulated in these terms. To convince a verifier that a string x is in the language L, 
where L is in NP, the prover can provide a “short certificate” of membership; if x is 
not in L, then no “cheating prover” could produce a certificate because none exists. In 
cryptography, we have the example of authentication schemes. To gain access to a com- 
puter, a building, or some other secure facility, a user must convince an operating sys- 
tem, a guard, or some other type of player that he is who he claims to be and he is 
entitled to access. Thus the user can be thought of as a prover and the operating system 
as a verifier. 

The work surveyed in this chapter addresses two questions about such games: 

l How much interaction is needed for the prover to convince the verifier? 
l How much knowledge does the verifier gain during the course of the interaction? 
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426 Section 3 Protocols 

Let us look more closely at NP languages in terms of two-player games. For ex- 
ample, consider the language L of pairs (G, k), where G is a finite, undirected graph 
that contains a k-clique-that is, a k-vertex subgraph every two vertices of which are 
connected by an edge. The obvious way to play a game in which the prover’s objective 
is to convince the verifier that a pair (G, k) is in L is to require the prover to produce a 
subset {vi, . . . , v& of the vertex set of G and to require the verifier to check that 
every {vi, vj>, 1 I i < j 5 k, is in the edge set of G. This game is very efficient in 
terms of interaction. The prover has to send only one message to the verifier in order 
to prove his claim. On the other hand, this game may be inefficient in terms of knowl- 
edge. After receiving this one message from the prover, the verifier has full knowledge 
of how to prove that (G, k) is in L; he could turn around and use this knowledge 
to convince a third party that (G, k) is in L, which is something he might not have 
been able to do before he received a message from the prover. Finally, note that this 
game involves no random choices and no probability of error: If (6, k) is in L, then, 
given enough computing power, the prover can always produce a k-clique, and the ver- 
ifier will accept the prover’s claim with probability 1; if (G, k) is not in L, then no 
k-clique exists, and the probability is zero that a dishonest prover can convince the 
verifier to accept. 

It is fairly easy to formalize the statement that games with these three properties 
(one message from prover to verifier, full knowledge of the proof given to the verifier, 
and no probability of error) exactly characterize NP-that is, the assertions that can be 
proven with these games arc those of the form “x is in L,” where L is a language in NP 

What if we allow games in which the prover and verifier exchange more mes- 
sages? What if we allow a small probability of error-that is, what if a true assertion is 
rejected once in while or a false assertion believed? Can we then devise games for 
languages that are not known to be in NP? Can we devise games that are more 
knowledge-efficient? For example, is it possible for the prover to convince the verifier 
that his assertion is true without giving him any knowledge of the proof? 

These questions motivate the theory of interactive proof systems and zero- 
knowledge, which is surveyed in this chapter. In Section 2 we give formal definitions of 
these concepts; the definitions are taken from the seminal papers of Goldwasser, Micali, 
and Rackoff [24], Babai and Moran [6], and Ben-Or, Goldwasser, Kilian, and Widger- 
son [lo]. Section 3 reviews two well-known examples of interactive proof systems, one 
drawn from cryptography and one from complexity theory. Major results of the theory 
are given in Section 4. Section 5 contains a brief discussion of related notions such as 
arguments, program checkability, and instance-hiding; these notions are related in two 
ways: Their study is motivated by intuitively similar concerns, and they are used in 
some of the proofs of the main results stated in Section 4. Finally, open problems are 
given in Section 6. 

2 DEFINITIONS 

The reader is assumed to be familiar with the basic notions of computational complexity 
theory. Refer to the Appendix for a brief review of these notions. 

We are concerned with the following model of interactive computation. In a one- 
prover interactive protocol (P. V), the prover P and verifier V have a shared input x, 
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two private sources of unbiased random bits (say r, and rv, respectively), and a way to 
send messages to each other. On input x, the transcript of the protocol is a sequence of 
moves (a,, Is,, a3, &, . . . , a,,-, , /3,,), where t = r(n) is a polynomially bounded 
function of n = bI. There is also a polynomial 1 such that (czzi- i( and I&i( are bounded 
by l(n), for 1 5 i I C. Each azi-i is a message from the verifier to the prover and is a 
polynomial-time computable function of x, rv, and (a,, &, . . . , azim3, &-J. Each 
rgZi is a message from the prover to the verifier and is a function of x, r,, and 
(a,, S*, . . . , &i-*3 a,,-,); note that no restrictions are placed on this function except 
that its output be bounded in length by l(n). After receiving at, the verifier computes a 
polynomial-time function of n, rv and the entire transcript; the output of this computa- 
tion is either ACCEPT or REJECT 

Let (P, V)(x) denote the verifier’s final output. For every X, (P, V)(x) is a random 
variable whose distribution is induced by the uniform distributions on the random vari- 
ables r, and rv and the functions computed by P and V Similarly, we denote by View 
(P, V, n) the random variable consisting of the transcript ((x1, & . . . , a*,-, , &,) pro- 
duced by an execution of the protocol, together with the prefix of rv that the verifier 
consumes during the execution. More generally, if M is any probabilistic Turing ma- 
chine, the output of M on input x is a random variable denoted by M(x). 

For any interactive protocol (P, V), we denote by (P*, V) the interactive protocol 
in which the verifier behaves exactly as in the original protocol (P, V), but the prover 
computes the functions specified by P*; this is a “cheating prover” if P* # P Simi- 
larly, we denote by (P, V*) the interactive protocol in which the prover behaves exactly 
as in the original protocol, but the (potentially cheating) verifier computes the functions 
specified by V*. The potentially cheating prover P* is limited only in that the messages 
that it sends must be of length at most l(n); the potentially cheating verifier V* is 
limited to probabilistic polynomial-time computation. 

Definition 2.1 (see also [24]): The interactive protocol (P, V) recognizes the 
language L $, for all x E L, 

Prob((P, V)(x) = ACCEPT) > 2/3 

and, for all x Cj?! L, for all provers P*, 

Prob((P*, V)(x) = REJECT) > 2/3 

We denote by IP(k) the class of all languages recognized by interactive protocols 
with at most k moves. In the above discussion, k = 2t. IP(poly) is the union, over all 
polynomially bounded k, of IP(k); the shorthand IP is used for IP(poly). The statement 
that (P, V) is a (one-prover) interactive proof system for the language L is synonymous 
with the statement that (P. V) recognizes L. 

Note that the definition of IP, like the definition of BPP, allows for error proba- 
bility l/3. In both cases, the error probability can be made exponentially small by per- 
forming polynomially many repetitions of the computation and taking the majority 
answer. Note that these are sequential repetitions; so, in the case of IP, this procedure 
reduces the error probability at the expense of increasing the number of moves. 



428 Section 3 Protocols 

Definition 2.2 (see also [24]): The interactive proof system (P, V) for the lun- 
guage L is computational (resp. petfect) zero-knowledge if, for every verifier V*, there 
exists a probabilistic, expected polynomial-time machine Mp, called the simulator, 
such that the ensembles {View (P, V*, x)},,, and {M,(x)},,, are compututionally in- 
distinguishable (resp. the same). 

Informally speaking, two ensembles are said to be computationally indistinguish- 
able if no probabilistic polynomial-sized circuit family can tell them apart. The term is 
supposed to convey the idea that the ensembles are computationally “close” to being 
equal. Refer to Goldwasser et al. [24] for a formal definition. There is also an interme- 
diate notion of statistical zero-knowledge and a corresponding notion of statistical indis- 
tinguishability of ensembles. Many of the results on perfect zero-knowledge that are 
stated in Section 4 below actually hold for statistical zero-knowledge. Refer to [2, 191 
for details. 

The statement that (P, V) is an interactive proof system for L can be viewed as 
a limitation on the prover: No matter what P* does, it cannot force the verifier to accept 
a string x that is not in L, except with negligible probability. Similarly, the statement 
that (P, V) is zero-knowledge can be viewed as a limitation on the verifier: No matter 
what V* does, the only distributions that it computes by interacting with P are distri- 
butions that it could have computed in expected polynomial time without interacting 
with I! 

A more restricted form of interactive protocol, the Arthur-Merlin protocol, is 
considered in [6]. In an Arthur-Merlin protocol, two players, Arthur and Merlin, have 
a common input x of length n. Once again, there is a sequence of moves. In odd- 
numbered moves, Arthur simply sends to Merlin a string of l(n) unbiased random bits. 
In even-numbered moves, Merlin sends to Arthur a string of length l(n) that is optimal 
(in a sense that will be made precise shortly). After k(n) moves, a deterministic 
polynomial-time Turing machine, the referee, decides the winner; so each polynomial- 
time referee determines an Arthur-Merlin protocol. Because Arthur’s moves are ran- 
dom, Merlin’s winning probability depends only on x-call this probability W(x). It is 
required that W(x) be greater that f or less than f, for each x. The referee is known in 
advance to both Arthur and Merlin; because the referee is polynomial-time bounded and 
Merlin is not, Merlin can make optimal moves-that is, he can maximize W(x). 

Definition 2.3 (see also [a]): The languuge recognized by an Arthur-Merlin 
protocol is the set of all x for which W(x) > f. 

Think of Merlin’s objective as “trying to convince” Arthur to accept the string x. 
Thus he is analogous to the prover in II-? 

The class of languages recognized by Arthur-Merlin protocols with at most k 
moves is denoted AM(k), and AM(poly) is the union of AM(k) over all polynomially 
bounded k. Unlike the notation IP, the notation AM is used for AM(2). Merlin-Arthur 
protocols are also considered in [6]; they are the same as Arthur-Merlin protocols, 
except that Merlin makes the odd-numbered moves. So the sequence of movers for a 
language in MA(4) is MAMA; the sequence for a language in AM(3) is AMA. 

Multiprover interactive protocols are defined analogously to one-prover interactive 
protocols. Instead of one prover P, there are m provers P,, . . . , P,, where m = m(n) 
is a polynomially bounded function of n = /xl. If the verifier V makes the tfh move, he 
sends m messages (a,,, . . . , a,,) simultaneously. For each i, 1 5 i 5 m, Pi receives 
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a,, and Pi cannot overhear aj,, for any j # i. Similarly, if the provers make the trh 
move, each Pi sends a message pi, to V, who receives all of (&, . . . , /I,,) simulta- 
neously, and no Pi can overhear pj,, for j # i. The notation IP(m, poly) is used for the 
class of languages recognizable by m-prover interactive protocols with polynomially 
many moves. Zero-knowledge for multiprover interactive protocols is defined in terms 
of simulation of transcripts, as it is in the one-prover case; there is one nonobvious part 
of the definition-the provers P,, . . . , P, use a shared random string that is unknown 
to the verifier. This is often interpreted as follows: The provers can get together in 
advance to “agree on a strategy” by picking a shared random string and deciding how 
to compute the /&‘s; during the execution of the protocol, however, the provers are 
“kept separate,’ ’ which gives the verifier a chance to catch them in an inconsistency if 
they try to cheat. 

The definitions given above are for (zero-knowledge) interactive proofs of lan- 
guage membership. The following notions also have rigorous definitions: proofs that the 
functional vulueflx) is what the prover claims it is (see, for example, [21]), and proofs 
of knowledge (see, e.g., [17]). The latter are particularly relevant to the original cryp- 
tographic motivation for zero-knowledge proof systems: The prover wants to convince 
the verifier that he “knows” a secret without revealing that secret. The example in 
Section 3.1 is a protocol for proofs of knowledge. 

3 EXAMPLES 

3.1 A Cryptographic Example: Proofs of Identity 

The following example, a system for proofs of knowledge, is taken from Feige, Fiat, 
and Shamir [17]. It is designed to allow a community of users to authenticate them- 
selves to each other. For each user, there is a pair (I, S). The public information I can be 
interpreted as the user’s identity and the private information S as his secret key. The 
goal of the proof system is for a user with identity I to convince another user that he 
“knows” the corresponding key S without revealing anything about S beyond the fact 
that he knows it. The effectiveness of the proof system is based on the assumption that 
it is computationally infeasible to compute square roots modulo a large composite inte- 
ger with unknown factorization; this is provably equivalent to the assumption that fac- 
toring large integers is difficult. 

Modulus generation: A trusted center generates two large primes each congruent 
to 3 mod 4. The product m of these primes is published, but the primes are not. 

Note that -1 is a quadratic non-residue modulo m-that is, there is no a such 
that a* = - 1 mod m. In what follows, 2: [ + l] denotes the set of integers between 1 
and m that are relatively prime to m and have Jacobi symbol fl with respect to m. 

Key generation: Each user chooses t, random numbers Si, . . . , S,, in Zz[+ l] 
and t, random bits b,, . . . , b,,. He sets Ii equal to (- l)“j/Sj mod m, for 1 % j I t, . 
This user’s identity, which he publishes, is I = (Ii, . . . , Z,,), and his secret key, which 
he keeps private, is S = (S,, . . . , S,,). 

Proofs of identity: User A authenticates himself to user B as follows. Let I be A’s 
published identity and S his secret key. A and B repeat the following four steps t2 times. 
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1. A picks a random R in Zz[+ l] and a random bit c and sends 
X = (- l)‘R* mod m to B. 

2. B sends a random vector of bits (E,, . . . , E,,) to A. 
3. A sends Y = R aEII=,Sj mod m to B. 

4. B verifies that Y2’* mj lj mod m is equal to *X. 

B believes that A is who he claims he is if the verification in Step 4 succeeds in each of 
the t, trials. 

In [17], it is shown that this scheme provides zero-knowledge proofs of knowledge 
for the values t, = O(log log m) and t2 = @(log m). A bit more care is needed when 
implementing the scheme in practice; for example, B should check in Step 2 that A 
actually sent an element of 2: [ + 11, lest a cheating prover just send X = Y = 0 in each 
of the t, executions (refer to [16] for more discussion of this issue). The most important 
feature of the scheme is that there is no need for the prover to have significant compu- 
tational power. These identity proofs require only a few modular multiplications and can 
be implemented on smart cards. 

3.2 A Complexity-Theoretic Example: Proofs for the PERM 
Function 

The following interactive proof system is due to Lund, Fortnow, Karloff, and Nisan 
[30]. It provides a way for P to convince V that the permanent of an integer matrix is 
what P claims it is. Because the permanent function is complete for the complexity 
class #P (see also [36]), this proof system of Lund et al., combined with the seminal 
theorem of Toda [35] that PH C P”, shows that every language in the PH has a one- 
prover interactive proof system and goes a long way toward a complete characterization 
of IF? 

It is easy to see (and is shown in [30]) that it suffices to prove the values of 
permanents modulo a large prime p. Let A = (a$ be an N X N matrix over Zp and Alli 
denote the (1, i)-minor of A. Recall the formula 

PERM@) = c a10(1)~20(2) . . . gnu 

for the permanent of A and the fact that PERM(A) 
expansion: 

N 

can be computed by cofactor 

PERM(A) = C Uli * PERM(Alli) 
i=l 

If C = (cii> and D = (d$ are N X N matrices over Z,, and x is an indeterminant, we 
denote by (C + x(D - C)) the N X N matrix whose ij’* entry is the degree-l polyno- 
mial cij + x(d, - cii> in Z,Jx]. Notice that PERM(C + x(D - C)) is a polynomial fix) 
in Z,,[x] of degree at most N. Furthermore, JO) = PERM(C) and fll) = PERM(D). 

The following is a protocol for P to prove that PERM(A) is equal to a mod p. 
Each stage of the protocol is either an expand stage or a shrink stage. The object that is 
expanded and shrunk is a list 9 = ((B, , b,), . . . , (Bt, bt)) in which bi is P’s claimed 
value for PERM(B,) mod p. 
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Initially, 9 contains only (A, u). P and V repeat the following steps until 9 con- 
sists of a single entry (B, b), where B is 1 X 1. 

If JZ = (B, b), where B is r X r and r > 1, then EXPAND: 
V: Let Ci = B,li. Ask P for the permanents of Ci, 1 5 i 5 r. 
P: Send claimed values ci = PERM(C,) to V, 1 I i I r. 
V: If b # &, blici modp, then REJECT and terminate the protocol. Other- 

wise, set 9 to (CC,, c,), . . . , (C,, c,)). 

If 2 contains two or more pairs, then SHRINK: 
V: Take the first two pairs (C, c) and (D, d) from 2 and ask P for the permanent 

of C + x(D - C). 
P: Send a claimed value g(x) for PERM(C + x(D - C)). 
V: If g(0) # c or g(1) # d, then REJECT and terminate the protocol. Otherwise, 

choose a random s E Zp, send it to P, and replace the first two pairs of 2 with 
(C + s(D - 0, g(s)). 

It is clear that an honest P will always convince V that PERM(A) is what 
he claims it is. The essential reason that a cheating P* cannot convince V to accept 
a wrong value with high enough probability is that Ax) = PERM(C + x(D - C)) 
has low degree. Specifically, it has degree r I N, where N is the dimension of the 
original input. If P* sends a degree-r polynomial g f f in some shrink stage, then g 
and f can agree on at most r points; if p is sufficiently large with respect to r, then f 
and g are unlikely to agree on a random s E Z,,. Thus, it is likely that 
g(s) # PERM(C + s(D - C)) and that P* will have to lie in subsequent stages. The 
matrices whose permanents he lies about get smaller and smaller, and eventually V can 
catch him. 

4 KNOWN RESULTS 

One of the most exciting recent developments in complexity theory is the complete 
characterization of the language-recognition power of interactive proof systems. 

Theorem 4.1: AM(poly) = IP = PSPACE. 

The fact that AM(poly) is contained in IP is clear from the definitions, because 
Arthur and Merlin of Definition 2.3 are just special cases of the verifier and prover of 
Definition 2.1. The equality of IP and AM(poly) was proven by Goldwasser and Sipser 
[25]; actually, they proved the sharper result IP(k(n)) c AM(k(n) + 2), for all polyno- 
mially bounded functions k. The upper bound IP C PSPACE is also clear from the 
definitions: IP is contained in the class of languages accepted by games against nature, 
which was defined earlier by Papadimitriou [33] and shown to be equal to PSPACE. 
The fact that the PSPACE-complete language quantified Boolean formulas (QBF) and 
hence every PSPACE language, has an interactive proof system was obtained by Shamir 
[34]; his work relies heavily on the work of Lund et al. discussed in Section 3.2; in 
particular, it uses a similar low-degree polynomial trick. 

Given the widespread interest in interactive proof systems and zero-knowledge, 
it is clear why a definitive theorem like IP = PSPACE would be exciting. But why was 
it surprising? One reason is that it is a rare example of a nonrelutivizing result in 
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complexity theory; see [3] for a discussion of relativization and its relationship to the 
characterization of IF! Another reason for the surprise is the technical simplicity of 
Shamir’s result and the results leading to it; some of the key ingredients are discussed 
briefly in Section 5. 

Now that we know exactly which languages have interactive proof systems, it is 
natural to ask how much interaction is required for languages of interest. It is clear from 
the definitions that AM(k(n)) c AM(k(n) + 1) for every polynomially bounded func- 
tion k. Babai and Moran have shown that these inclusions are not always proper. 

Theorem 4.2 (see also [6]): For any polynomially bounded function k(n) 2 2, 
AM(2k(n)) = AM(k(n)). In particular, AM(c) = AM(2), for any constunt c 2 2. 

The known proof systems for PERM and QBF involve a polynomial number of 
moves. It is unknown whether QBF is provable in a constant number of moves; the 
following results address this question. 

Theorem 4.3 (see also [6]): AM(2) G IIS. 

Thus, if QBF does have a constant-move interactive proof system, all of PSPACE 
is contained in the second level of the polynomial-time hierarchy. So such a proof 
system for QBF may be impossible to obtain and, in any case, would require a revolu- 
tionary new idea. A weaker, but still revolutionary, consequence would follow from 
the weaker assumption that every language in coNP has a constant-move interactive 
proof system. 

Theorem 4.4 (see also [13]): If coNP C AM(2), then the PH collapses at the 
second level. 

How serious a restriction is the requirement of zero-knowledge? The answer de- 
pends on which definition of zero-knowledge is used. 

Theorem 4.5: If one-way functions exist, then every language in IP has Q com- 
putational zero-knowledge proof system. 

This general result follows from Impagliazzo and Yung’s theorem [26] that every 
language in IP has a computational zero-knowledge proof system if bit-commitment 
schemes exist and Naor’s theorem [31] that one-way functions yield bit-commitment 
schemes. Impagliazzo and Yung’s work relies heavily on earlier work by Goldreich, 
Micali, and Wigderson [23] and Brassard, Chaum, and Crepeau [14]. 

Theorem 4.6: PZK, the class of languages with perfect zero-knowledge proof 
systems, is contained in AM tl coAM. 

The inclusion of PZK in coAM is due to Fortnow [19], and its inclusion in AM is 
due to Aiello and H&tad [2]. Theorems 4.3 and 4.6 together imply that PZK is con- 
tained in X$ tl C$; so there is no reason to believe that PZK contains all of IP 

What about multiple provers? The first basic result, due to Ben-Or, Goldwasser, 
Kilian, and Wigderson [lo], is that two provers suffice. 

Theorem 4.7: For any polynomially bounded function m, IP(m(n), poly) = 
IW, POlY). 
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From now on, we denote by MIP the language class IP(2, p&y). This class has 
been fully characterized in terms of traditional complexity classes by Babai, Fortnow, 
and Lund [5]: 

Theorem 4.8: MIP = NEXP 

Unlike the one-prover case, two-prover interactive proof systems can always be 
made perfect zero-knowledge. 

Theorem 4.9 Every language in MIP has a perj2ct zero-knowledge, two-prover 
interactive proof system. 

Theorem 4.9 is due to Ben-Or, Goldwasser, Kilian, and Wigderson. For a com- 
plete proof, see [27]. 

So two-prover systems seem to be different from one-prover systems with respect 
to zero-knowledge. They also seem to be different with respect to move-complexity. 
Kilian [28] has shown recently that two provers and c moves suffice for any language 
in MIP, provided that error probability E is tolerated-here E is an arbitrarily small 
constant and c is a constant that depends on E. The best possible result would be 
that any language in MIP can be recognized in two moves with exponentially small 
error probability. * 

5 RELATED NOTIONS 

In most practical cryptographic situations, it does not make much sense to allow the 
prover to use unlimited computing power; for this reason, results such as “all of 
PSPACE has computational zero-knowledge proofs if one-way functions exist” are es- 
sentially impractical, beautiful as they are. In the model of Brassard, Chaum, and 
Crepeau [14], all parties are limited to reasonable computing power. The only advantage 
that the prover has over the verifier is a short piece of advice, such as the factorization 
of a large integer. Of course, limiting the prover’s power reduces the class of languages 
that can be handled from PSPACE down to MA. On the other hand, under suitable 
cryptographic assumptions, these limits increase the class of problems that can be 
handled in perfect zero-knowledge-that is, the problems in which the prover’s secret is 
protected unconditionally. It is shown in [14] that all languages in MA (and, afortiori, 
all languages in NP) admit perfect zero-knowledge protocols of this type, assuming that 
unconditionally concealing bit-commitment schemes exist. (This is in sharp contrast 
with the result of Fortnow [19] mentioned in Section 4.) Brassard, Crepeau, and Yung 
[15] have shown that all languages in NP admit constant-move, perfect zero-knowledge 
protocols of this type, under the same assumption. 

It is important to understand that the protocols in [14, 151 are nut IP-protocols-it 
would be easy for an arbitrarily powerful prover to cheat. In other words, these proto- 
cols are computation&y convincing, as opposed to proof-systems, which are statisti- 
cally convincing. To distinguish computationally convincing protocols from proof 

*Note added in proof: This result has been proven by Uriel Feige. 
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systems, the former are referred to as arguments. There is a strong duality between 
computational zero-knowledge IP-protocols and perfect zero-knowledge arguments for 
NP-complete problems. However, one important aspect of this duality breaks down. 
After a computational zero-knowledge IP-protocol is completed, the verifier has com- 
plete information about the prover’s secret, albeit in enciphered form. Working offline 
for long enough, the verifier may be able to decipher that secret. In sharp contrast, a 
dishonest prover must break the cryptographic assumption online, while the protocol is 
taking place, if he wishes to cheat in an argument. As a consequence, an algorithm 
capable of factoring large integers in a month of Cray time would be a severe threat to 
the security of computational zero-knowledge IP-protocols but of little practical conse- 
quences for perfect zero-knowledge arguments. 

M. Blum defined the related notion of program checkability. The goal of the work 
on program checkability (see, for example, [9, 11, 121) is to be able to check whether a 
program is correct on a specific input. One way to do this is to regard the program as 
a prover in an interactive proof system and design a checker that plays the role of the 
verifier. Note that this changes the nature of both the honest prover and the cheating 
prover; both are constrained to be non-self-modifying functional programs, and the hon- 
est prover must be a program that computes the function being checked. Because of the 
restriction on the honest prover, languages in IP are not necessarily checkable; in fact, 
Beige1 and Feigenbaum [9] give a “natural” complexity-theoretic hypothesis that im- 
plies the existence of a language in IP that is not checkable. Because of the restriction 
on the cheating prover, checkable languages are not necessarily in IP; in fact, Babai, 
Fortnow, and Lund [5] show that EXP-complete languages are checkable, whereas they 
are not in IP unless EXP = PSPACE. The fact that checkable languages are all in 
NEXP follows from the results in [20]. 

Abadi, Feigenbaum, and Kilian [l] defined the related notion of instance-hiding 
schemes. * In such a scheme, a polynomial-time querier interacts with an oracle in order 
to learn the value j(x), for some function f that the querier cannot compute on its own, 
without revealing x to the oracle-specifically, revealing nothing (in the information- 
theoretic sense) except the length of x. There is an approximate analogy with zero- 
knowledge proof systems, in which the prover convinces the verifier of the truth of a 
statement, without actually telling him the proof. In [l], it is shown that no NP-hard 
function has an instance-hiding scheme, unless the PH collapses at the third level. Bea- 
ver and Feigenbaum [7] considered a multioracle version of instance-hiding schemes; in 
this version, the querier asks questions of multiple oracles, and the oracles “cannot talk 
to each other,” by analogy with the multiple provers in MII? Here there are positive 
results: If the querier can talk to n + 1 oracles, where n is the length of the secret 
query, then any function has an instance-hiding scheme (see [7]; this construction was 
subsequently improved to work with n/log n oracles; see [S]). 

The instance-hiding schemes in [7] have a special form that is of complexity- 
theoretic significance; they are locally random reductions. Informally, f is k-locally ran- 
dom reducible (k-lrr) to g if there is a probabilistic polynomial-time algorithm that 
maps an arbitrary instance x in the domain off to a set of random instances yi , . . . , yk 
in the domain of g in such a way that j(x) is computable in polynomial time from 

*“Instance-hiding” is current terminology; in [l], these are called encryption schemes for 
functions. 
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g(y,), * . . 9 g(y,J and the distribution of each of the random instances yi depends only 
on b\; a formal definition can be found in [8]. If g = f, the reduction is called a 
k-random-self-reduction (k-rsr). It is shown in [7] that every Boolean function is 
(n + I)-lrr to a sequence {gn}nZ, of polynomials, where degree (g,) = It. This was the 
first use of the fateful low-degree polynomial trick that was to be used by Lund et al. 
and by Shamir in the proof systems discussed above. 

Building on Beaver and Feigenbaum [7], Lipton [29] observed that any f that is 
itself a low-degree polynomial (including the #P-complete function PERM) is random- 
self-reducible. PERM is also length-decreasing self-reducible-that is, computing the 
permanent of A can be reduced in polynomial time to computing permanents of matri- 
ces of smaller size; this is done by co-factor expansion, as discussed in Section 3.2. 
Blum, Luby, and Rubinfeld [12] showed that any function that is both random-self- 
reducible and length-decreasing self-reducible has a program checker; by the earlier 
observation of Fortnow, Rompel, and Sipser [20], such a function also has a multi- 
prover interactive protocol. Nisan [32] put all these observations together into the state- 
ment that PERM (and, from Toda [35], the entire PH) is in MIP This dramatic 
sequence of results culminated in the complete characterization of the language- 
recognition power of IP (see also [30, 341) and MIP (see also [5]) that was discussed in 
Section 4. 

One of the most interesting class of problems remaining concerns the necessary power 
of the prover. For example, in an interactive proof system for a PSPACE-complete lan- 
guage, the prover can be taken to be a PSPACE machine (see [34] for details). The 
analogous statements can be made about @P-complete languages (see also [4]) and 
#P-complete functions (see also [30]). Furthermore, in a two-prover interactive proof 
system for an EXP-complete language, both provers can be taken to be EXP machines 
(see also [5]). 

Question 1: Is there a one-prover interactive proof system for coSAT in which the 
prover is given only enough power to answer SAT queries? 
Question 2: Is there a two-prover interactive proof system for coSAT in which 
both provers are given only enough power to answer SAT queries? This is equiva- 
lent to the question of whether there is a program checker for SAT. 
Question 3: An easier question than 1 or 2: Is there a one- or two-prover inter- 
active proof system for coSAT in which the power of the prover(s) is somewhere 
in the PH? 
Question 4: Does every NEXP-complete language S have a two-prover interactive 
proof system in which both provers are given only enough power to answer que- 
ries about membership in S? 
The answer to Question 2 would be “yes” if SAT were random-self-reducible. It 
is known that, unless the PH collapses, any random-self-reduction for SAT would 
have to he adaptive-that is, if instance x is mapped to a set y,, . . . , yk of ran- 
dom instances, then instance yi+, has to depend on the answer to instance yi (see 
[18] for details). 
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Question 5: Is there an adaptive random-self-reduction for SAT? 
Question 6: Find other sufficient conditions for interesting classes of provers, 
besides random-self-reducibility and length-decreasing self-reducibility. 

There are also two obvious questions remaining about zero-knowledge. 

Question 7: Theorem 4.5 says that one-way functions are sufficient to ensure 
computational zero-knowledge proofs for all of PSPACE. Is there a weaker as- 
sumption that also suffices? For example, does the assumption that P # NP suf- 
fice to ensure computational zero-knowledge proofs for every language in NP 
(perhaps with a PSPACE-complete prover)? 
Question 8: Do one-way functions imply the existence of perfect zero-knowledge 
arguments for NP-complete languages? 

So far, all that is known about the question of whether more moves allow proof 
systems to recognize more languages is Theorems 4.1, 4.2, and 4.4. Further results on 
the move hierarchy would be interesting. 

Finally, one can ask which other notions in theoretical computer science can be 
fruitfully related to interactive proof systems, program checking, random- 
self-reducibility, and so on. One good candidate is machine-learning. 
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APPENDIX 
COMPLEXITY THEORETIC BACKGROUND 

The complexity classes that are most central to the ideas discussed in this chapter are 
as follows: 

P: deterministic polynomial time; those membership problems that can be com- 
puted efficiently with no errors, 
NP: nondeterministic polynomial time; those membership problems that can be 
verified efficiently, 
#P: counting functions associated with NP sets; for example, the set of all satis- 
fiable propositional formulas is called SAT and is in NP, and the function that 
maps a formula to the number of truth assignments that satisfy it is in #P, 
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PSPACE: deterministic polynomial space, 
EXP: deterministic exponential time, 
NEXP: nondeterministic exponential time, and 
BPP: probabilistic polynomial time; those membership problems that can be 
computed efficiently with error probability at most l/3. 

Other classes of interest include PH (the polynomial-time hierarchy C$‘, IIf, i L 0) 
and @P (“parity-p”). The class Zr, is referred to as the “ilh level” of the PH. 

The following inclusions are known. 

The only inclusion known to be proper is P C EXF? One often hears that all 
these inclusions are “believed” to be proper, but “belief” (like “knowledge”) is very 
hard to define mathematically. Suffice it to say that any resolution of the question of, 
whether these inclusions are proper (e.g., a theorem of the form “the PH collapses at 
the second level” or “PSPACE is contained in the second level of the PH”) would 
require a revolutionary new idea. See Garey and Johnson [22] for a thorough introduc- 
tion to these issues. 

We use the notation COC for the class of languages whose complements are in C 
and the notation COS for the complement of language S. Thus COSAT is the set of all 
unsatisfiable propositional formulas. The symbol IIyis used for ~0x7 . 

Finally, we will need the notion of one-way function. Intuitively, a function is 
one-way if it is easy to compute but hard to invert. For cryptography theory, we need 
that it is often hard to invert. One standard way to formalize this is as follows. Let f be 
computable in deterministic polynomial time. Then f is one-way if, for all polynomials 
4, for all probabilistic polynomial-time algorithms I (for “inverter”), for all sufficiently 
large n, the probability that f(l@))) = fix) is less than l/q(n). This probability is com- 
puted over uniformly chosen x of length n and uniform coin-toss sequences for 1. 
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