
A simple protocol for secure circuit evaluation

(Extended abstract)

Mart in Abadi

DEC Systems Research Center

130 Lytton Avenue

Palo Alto, CA 94301

Joan Feigenbaum

AT&T Belt Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974

Abstract: We present a simple protocol for secure circuit evaluation. In its most basic for-

mulation, the protocol enables two players C and D to cooperate in the computation of f (x)

while D conceals her da ta x from C and C conceals his circuit for f from D.

1. Introduction

This paper describes a protocol for secure circuit evaluation. We think of player C as

a computer that runs a secret program for f and player D as another computer with some

confidential da ta x. Suppose that D wishes to compute f (x) but does not have an algorithm for

f , and that C is willing to let D use his algorithm but does not want to reveal it. Alternatively,

suppose that C has an algorithm, and possibly some confidential da ta as well, but needs D's

confidential da ta in order to perform the computation. In its most basic formulation, the

protocol enables C and D to cooperate in the computation of f (x) while D conceals her data

x from C and C conceals his circuit for f from D; in fact, the circuit is hidden from D in an

information-theoretic sense.

For example, suppose that C is a computer and that D is one of C's users. Typically, when

D wants to log in, she submits a name and a password, and C runs a program that checks

whether they axe correct. Of course, C does not have to divulge his program. Our protocol

provides a way for D to log in without revealing her name or her password.

This protocol is very simple and easy to analyze, and it has many of the desirable properties

of more complex ones. We demonstrate that only simple tools are needed to conceal circuits

and data. The simplicity of our scheme makes it easy to focus on specific new themes, such as

the tradeoff between hiding in an information-theoretic sense and encryp*ion under complexity-

theoretic assumptions.

We discuss the security properties of the protocol~ and, in general, discuss hiding vs. en-

eryption. For instance, we show that it is not. possible to hide everything about the computation

except the value f (x) ; a similar result is suggested in [CDvdG]. We also study the efficiency

of the protocol. We show that the number of rounds of communication that it requires is less

than or equal to the depth of C's circuit.

The basic protocol can be extended in a number of useful ways. C can hide some secret

265

da ta as well as his circuit. The players can compute a sample point of a distribution, instead of

a functional value, just by including some random inputs. C can coopel"ate with several other

players, D1, . . . , Din, each with some private data. We discuss variations on the basic protocol.

The issue of cheating is different in frameworks in which some secrets are hidden rather than

encrypted. We discuss what forms of cheating might arise and how they can be thwarted.

In the next section we describe the protocol. In Sections 3 and 4 we consider security and

efficiency issues, respectively. In Section 5, we sketch two variants of the protocol for many

players. We study cheating in Section 6. In Section 7, we describe some recent related work.

We conclude with an open problem in Section 8.

2. A bas ic p r o t o c o l

As a preliminary, we review one of the results from our joint work with Killan ([AFK]).

The quadratic residuosity function takes two arguments, an integer k of the form p . q,

where p = q = 3 rood 4, and an integer u in the set Z~[+l] - - the integers relatively prime to

k with Jacobi symbol 1. (One can define the quadratic residuosity of a broader class of pairs

of integers, but the increased generality is not needed here.) The value r(u, k) is 1 if there is

an integer a in Z~[+I] such that a 9" -_- u rood k, and it is 0 otherwise.

In [AFK], we discussed the following scheme for computing the quadratic residuosity

function with secret data. To conceal the instance (u, k), the player chooses b from Z~[+I] and

c from {0,1}, both according to uniform distributions, and computes v = u- b 2- (- 1) c rood k.

Informally, we often denote v by E(u). The new instance is (v, k), and the key is the pair

(b, c). Let e = r(u, k) and e' = r(v, k). Then, to decode, that is, to compute e from e', we

let e equal e ~ if c = 0, and we let e equal 1 - e ~ if e = 1. We denote the decoded answer by

F(et). Correctness follows from the facts that u • v is a residue rood k if and only if both u

and v are residues or neither is a residue and that - 1 is a quadratic nonresidue if k is of the

specified form. Only k needs to be known for all the operations to be feasible in polynomial

time. We gave a simple proof in [AFK] that this scheme for encoding instances of the quadratic

residuosity problem allows the encoder to obtain r(u, k) without revealing anything about u,

in an information-theoretic sense - - that is, while hiding u.

This technique for consulting an oracle with no information transfer is a buiMing block

in our protocol for secure circuit evaluation. We also use a standard technique for encrypting

single bits: given a bit b, it is easy to generate a y such that r(y, k) = b ([GM]). Informally, we

often denote y by Y(b).

In our current setting, player D has the input x, which can be written x l . . . xn in binary.

Player C has a circuit to compute f on inputs of length n. In the initial phase of the protocol,

C sends to D the number a of AND gates in his circuit. D then generates k = p . q, where p

and q are primes congruent to 3 mod 4 and large enough with respect to a, in a sense that we

make precise in the next section. Next, D encrypts her input bits x l , . . . ,xn, using modulus k

as explained above. Finally, D sends k and Y(x l) , Y(xn) to C.

We assume without loss of generality that player C's circuit consists of unary NOT gates

266

and binary AND gates and that it has no consecutive NOT gates. In the protocol, C simulates

the evaluation of the circuit on D's input. Instead of bits b~, C will have integers of the form

Y(bl) that represent bits. We must now show how to simulate the logical operations NOT and

AND using this scheme for representing bits.

When C must compute the NOT of a bit b, represented by its encryption Y(b), he computes

Y(b). Because p = q - 3 rood 4, - 1 is a quadratic nonresidue mod k, and thus C does not

need to know b: Y(b) -- (- 1) - Y (b) rood k.

To compute the AND of two bits b and b ~, represented by their encryptions Y(b) and
Y(b'), C requires the cooperation of D. C transforms b and b' further, to obtain E(Y(b)) and

E(V(b')), which he sends to D. Then D computes be = r(E(Y(b)), k), b' e = r(E(Y(b')), k),

which she can do efficiently, because she knows p and q. Let b3, b2, bt, and b0 equal (be A b~),

(be A b~), (be A b~), and (be A b~), respectively. D returns (Y(b3), Y(b2), Y(bl), Y(bo)). Since

C knows whether b -- be and whether b t --- b~, he can easily obtain the encrypted conjunction

of Y(b) and Y(b') from the message: it is Y(b3) if both equations hold, Y(b2) if only the first

equation holds, Y(b~) if only the second equation holds, and Y(bo) if neither equation holds.

The players follow one of two versions of the final phase of the protocol, depending upon

which of them is supposed to receive the answer f(x). In Case 1, C retains the answer. At

the end of the gate-simulation phase, C has the encrypted bit Y(f(x)). He encodes this bit

further by computing E(Y(f(x))), which he then sends to D. Player D returns the residuosity

bit r(E(Y(I(x))), k). C decodes the bit to obtain f(x). In Case 2, in which player D receives

the answer, C sends to D the encrypted bit Y(1) • Y(f(x)), and D decrypts to obtain the

residuosity bit r(Y(1) • Y(f(x)), k), which is, by definition, f(x).
In the following description of the protocol, the notation "P1 --+ P2: m" means player P1

sends the message m to player P2. The notation "P: s" means that player P evaluates the

statement s.

Initial Phase:

C ---* D: The number of AND gates in his circuit.

D: Generate k and Y(xl) , . . . ,Y(x,) .
D --* C: k, f (x i) , . . . ,Y(xu).

Gate-Simulat ion Phase:

NOT gate with input Y(b)
C: Y(b) := (- 1) . Y(b) rood ~.

AND gate with inputs Y(b), Y(b')
C ~ D: E(Y(b)),E(Y(b')).
D: be := r(E(Y(b)), k); b~ := r(E(Y(b')), k).

--t t (b3, b~, bl, b0) := (bo ^ b;, be ^ G Be ^ be, be A b'~).
D --* C: Y(bs), Y(b~), Y(bl), Y(bo).
C: If b = be and b' = b: then Y(b A b') := Y(b3).

If b =- b e and b' # b~ then V(b A b') := Y(b2).
If b # be and b = b~ then Y(b h b') := Y(bl).
If b • be and b' # b1¢ then Y(b A b') := Y(bo).

267

F i n a l P h a s e :

Case 1: C keeps the answer

C --* D: E(Y(f (x))) .

D: b := r (E(Y(f (x))) , k).

D - * C: b.

C: f (x) := F(b).

Case 2: D receives the answer

C --~ D: Y(1) . Y(f (x)) .

D: f (x) := r(Y(1) • Y (f (x)) , k).

From this description of the basic protocol, it is clear that the distinction between "data"

and "circuits" is unnecessary. If C has the ability to hide a circuit, then he can also hide some

private data, simply by "hardwiring" it into the circuit. Conversely, in protocols in which C

has the ability to hide data, he can also hide a circuit through a detour: C can run the protocol,

take f to be a universal function, and use the GSdel number of the circuit he wants to hide as

input.

3. S e c u r i t y p r o p e r t i e s of t he bas ic p r o t o c o l

Our first result is that the initial and gate-simulation phases of the protocol hide the

circuit from D, regardless of how powerful she is.

T h e o r e m 1: During the initial and gate-simulation phases, C reveals no information about

his circuit except the number of AND gates. At the end of arbitrarily many gate simulations,

possibly in different runs of the protocol, each circuit with this number of AND gates is equally

probable from D's point of view.

In the protocol, D's data is not hidden from C, but it is encrypted. In our terminology,

this means that the security of the data follows from a hypothesis about the intractability of a

computational problem. Here, the hypothesis we use is the Quadratic Residuosity Assumption

(QRA).

QRA: Suppose that k is known to be of the form p • q, where p and q are primes congruent

t0 3 rood 4, but that the factors p and q are unknown. Suppose that u @ Z;[+l] . Then r(u, k)

cannot be computed in random polynomial time,

The QRA is ubiquitous in recent cryptographic literature. The problem of finding all four

square roots of u, where k = p . q and r(u, k) = 1, is equivalent to factoring k's of that form,

under randomized polynomial-time reductions.

T h e o r e m 2: Let c be a positive constant and a be the number of AND gates in C's circuit.

Assume that Ikl > a ¢. Then, under the QRA, with high probability, C learns nothing about D's

input bits during the initial and gate-simulation phases of the protocol.

Thus, in the second step of the initial phase, D must choose p and q large enough so that

!k I > a c. That is required to prove security of D's input bits under the QRA; in practice, D

268

would choose k large enough so that it could not be factored in a reasonable amount of time

using the best known factoring algorithms.

We now state our results about the information communicated during the final phase.

T h e o r e m 3: In Case 1 of the final phase, D learns nothing, and, under the QRA, C learns

only f(~).
T h e o r e m 4: In Case 2 of ~he final phase, C (obviously) learns nothing, and D learns only

f(x).

In Case 2, C multiplies the encrypted output of the circuit's final gate by a random square so

that D does not learn whether the final gate is a NOT or an AND. Suppose that C did not

multiply by a random square but instead sent the output of the final gate, that is, Y(f(x)) . If

the final gate is a NOT, then Y(f(x)) is the additive inverse, rood k, of one of the elements of

some quadruple that D sent during the protocol. If the from gate is an AND, then Y(f(x)) is

itself one of the elements of the last quadruple that D sent. The probability that Y(f(x)) is

both of these is exponentially small; thus translation by a random square is necessary in order

to conceal whether the final gate is a NOT.

Why would one want a protocol that hides some secrets while others are just encrypted? In

other words, if we believe the QRA, then why do we need to hide some secrets unconditionally?

First, as demonstrated above, hiding can be conceptually simpler than encryption, and it is

not necessarily more expensive in terms of computational resources, even though it is certainly

more secure. Second, there may be a disparity in power among players. We may want to

treat only certain players as though they could crack cryptosystems based on intractability

assumptions. Finally, there may be a disparity in the sensitivity of different secrets. For

instance, some data is so ephemeral that by the time it is decrypted it is no longer useful. On

the other hand, a circuit (or a secret algorithm) may need to be used repeatedly over a long

period.

Thus it is natural to ask whether we could evaluate circuits while hiding all secrets. For

instance, can we transform our basic protocol so that D's data, as well as C's circuit, is

hidden? It is clear from our remarks at the end of Section 2 about the equivalence of "data"

and "circuits" that we can trade off hiding and encryption, i.e., that we can transform the

protocol so that D's secret is hidden and C's is encrypted. Can we go further and design a

protocol for secure circuit evaluation in which only one bit of information (say, the functional

value f(x)) is exchanged? Our next result says that such protocols do not exist.

T h e o r e m 5: No protocol that hides all secrets and communicates only one bit of information

can compute f (x) accurately for all f and all x.

To prove Theorem 5, we show that, even for some very simple functions f , one can

construct runs in which a protocol that hid both C's and D's secrets would not compute f (x)

correctly. We give this and all other proofs m the full paper.

269

4. Ef f ic iency considerations

The basic protocol of Section 2 is conceptually simple and amenable to implementation.

Like Galil et aL's protocol, and unlike Yao's original protocol, our scheme requires the gen-

eration of only one large modulus k. The amount of communication required is one message

in each direction for every AND gate, plus one exchange of messages during the initial phase

and one during the final phase. This compares favorably with the requirements of previously

published schemes.

We can reduce the number of messages even further by having C send simultaneously the

pairs of hidden inputs E(Y(b)), E(Y(b')) of all the AND gates at a given level in his circuit.

In order to avoid leaking some additional information about the structure of the circuit, e.g.,

the maximum number of AND gates at a level, C could add some extra questions to each

round. Note that this reduces the number of rounds of communication between C and D to

the nesting depth of AND gates in the circuit, but it does not reduce the total length of the

messages exchanged; so it may or may not be a worthwhile optimization.

There is no need to restrict ourselves to the primitives NOT and AND; other gates, such as

OR's, can be implemented completely analogously. In general, the implementation of a logical

primitive entails communication between C and D (as in the case of our implementation of

AND), but some useful primitives (like NOT) can be implemented with no communication.

For instance, the EQUAL gate, which tests for the equality of two bits, can be simulated by

C alone: Y(b). Y(b') is a residue rood k if and only if Y(b) and Y(b') are both residues or

neither is a residue, i.e., if and only if b = bq Hence the bit b = b' can be represented by

Y(b). Y(b') *nod k, which C can compute without help from D.

In summary, the basic protocol is a reasonable start ing point for an implementation of

a secure circuit-evaluation system. It performs particularly well on circuits with many gates

that do not require communication, and with a shallow nesting of gates that require more

communication.

5. Secu re computations among many players

In this section we briefly discuss the extension of the basic protocol to computations among

an arbi trary number of players. Our discussion is brief, because similar extensions have been

thoroughly studied for related protocols. The basic protocol can be generalized to the case in

which there are m databases DI, . . . , Din, each with some secret data, and one computer C.

For simplicity, we assume that C retains the answer.

W'e modify the basic protocol to achieve the same protection for m + 1 players that the

basic protocol achieves for two, under the assumption that D1 will not collude with C and

that D2 , . . . , Dm can each send one message to C that D 1 will not intercept. D1 generates k

and shares it with everyone (including C), but does not reveal the factorization. Then each

D~ produces encrypted bits and sends them to C, and C interacts with D1 according to the

270

basic two-player protocol. This modification makes all data secure from everyone, under our

assumption. In particular, C's questions do not reveal any secret data. In fact, the data is

hidden from D1 during the computation.

There is also a simple solution to the mult iparty problem that does not rely on the assump-

tion that D1 will not collude with C and that D2, . . . , Dm can each send one message to C that

D1 will not intercept. In this solution, C follows the two-player protocol with D1, . . . , Dm as if

they were a single player D. Together, D1, • •., Dm carry out all of the computations expected

of D without revealing da ta to one another. For instance, D1, . . . , Dm cooperate to generate

k without giving any one of them enough information ~o factor k effieientl~: Among them-

selves, D1, . . . , Drn may use our protocol recursively, or they may use an equivalent protocol

for multiparty computations with secret data.

6. O n c h e a t i n g

In this section, we address the question of what happens when either C or D tries to cheat.

It is common to provide mechanisms to avoid or to detect cheating in protocols for secure

computation, e.g., to turn protocols into "validated protocols" where the players use zero-

knowledge subprotocols to prove that they have acted honestly ([GHY]). However, the issue of

cheating is different in a setting in which some secrets are hidden rather than encrypted.

How might C try to cheat? He could try to choose the sequence of AND computations

that he requests so as to compromise D's data rather than to compute f (x) . However, under

the QRA, everything that she sends him during the gate-simulation phase of the protocol is

something that he could generate himself - quadruples of elements of Z~[+I], three of which

are nonresidues and one of which is a residue. In Case 1 of the final phase, she "opens" one

bit, allowing him to learn f (z) . Thus, by using a different circuit, he could obtain a different

boolean function of a, but nothing else. Because Case 1 of the final phase involves the opening

of one bit, C could, instead, cheat by obtaining the value r(u, k) for one arbitrary u.

I t is meaningless to require that C prove that he has used the right circuit, because he

is not committed to one circuit. In fact, he could not possibly be committed to a circuit,

because commitment implies information transfer, and the protocol transfers no information

to D about C's secrets. Similarly, it is impossible to require that C prove that he has requested

the right bit without revealing some information. At the cost of some transfer of information

about his circuit, C can be required to give zero-knowledge proofs that he has acted as required

by the protocol (e.g., [BC1, GMWS6]).

How might D try to cheat? We cannot accuse D of sending incorrect encrypted bits,

because x is D's private data. D could deviate from the protocol by sending wrong answers

when C asks her for the AND of two encrypted bits or by sending the wrong residuosity bit

in Case 1 of the final phase. This could cause C to compute a wrong answer, but it would not

compromise the privacy of C's secrets. C is capable of hiding; that is, none of the messages

that he sends to D in the course of the computation conveys any information at all, even when

D leads the computation astray. Therefore, D cannot cheat to "decrypt" C's messages and

271

learn something she is not supposed to know.

In any case, D can be required to prove that she computes the (encrypted) output of the

AND gates correctly and that she sends the correct residuosity bit in the final phase. The set of

tuples (k, Y(b), Y(b'), Y(b3), Y(b2), Y(bi), Y(bo)) that satisfy the following conditions is an

NP set: k = p.q; Y(b) and Y(b') are legal encryptions of bits; and (Y(ba), Y(b2), Y(bl), Y(bo)>

is a legal reply from D to C's query about the AND of b and b'. Therefore, D can prove that

her replies are correct with a zero-knowledge subprotocol. Similarly, in the final phase, we can

require D to prove that she knows a certificate of the residuosity of Y'(f(x)); that is, if b = 1,

D must prove that she knows a number u such that u 2 - E (Y (f (x))) mod k, and, if b = 0, she

must prove that she knows a number u such that (- 1) - u 2 ==- E(Y(f (x))) rood k.

7. R e l a t e d w o r k

There has been other recent work on secure circuit evaluation and related topics. Yao

was the first to devise protocols for multiparty computations with secret inputs ([Y82, Y86]).

His scheme involves the generation of man>" large primes during each run of the protocol and

achieves encryption of secrets but not hiding. In independent work, Chaum ct at., Galil et aL,

and Goldreich et aI. developed new schemes in which some secrets are hidden (during some

phases of the protocols) and in which the number of large primes required is reduced ([CDvdG,

GHY, GMW87, GV]). All of these protocols conceal data, but not circuits. Furthermore, they

are quite complex and their analyses are long and elusive.

The protocol that we present here is also related to our previous work with Kilian on

hiding information from an oracle. In [AFK], we considered the scenario in which player A

wishes to know f (x) but lacks the computational resources to compute f . We asked whether

she cotfld query an oracle B, who was assumed to have unlimited computing power, and obtain

f (x) while hiding x. We provided some examples of functions f for which this is possible;

one of the encryption schemes given in [AFK] is used as a building block in the basic protocol

given here. However, the main result of [AFK] was negative: A cannot obtain f (x) from B

while revealing only txt for any f that is NP-hard. In tiffs paper, we consider a more popular

model, namely one in which the computation of f requires knowledge of secret algorithms or

data~ rather than oracular power. Here, our main result is positive.

8. A n o p e n p r o b l e m

Our protocol uses the quadratic residuosity predicate r(u, k) as a building block. No com-

munication is required for C to compute the negation of an encrypted bit, but communication

is required for C to compute a conjunction. Can C, by computing some function of Y(b)
and Y(bt), take the AND of two encrypted bits without asking for help from D? Brassard and

Cr@peau raised a similar question in [BC2], where they used a circuit-evaluation protocol based

272

on "permuted truth tables" in their work on zero-knowledge proof systems.

The quadratic residuosity predicate is not the only one that can be used as a building

block in a protocol for secure circuit evaluation. To be usable as a building block, a boolean

function must be encryptable (in the sense of [AFK]), be computable by player D (perhaps

with knowledge of a secret key), and not be computable by player C. Is it possible to design a

better protocol using a different building block? More specifically, we would like to reduce the

number of rounds of communication needed by each run of the protocol, or, alternatively, to

prove a nontrivial lower bound on the number of rounds needed for secure circuit evaluation.

9. Acknowledgements

We are grateful to Gilles Brassard for pointing out a bug in an earlier version and to

Cynthia Hibbard for editorial help.

i 0 . R e f e r e n c e s

[AFK] Mart{n Abadi, Joan Feigenbaum, and Joe Kilian. "On Hiding Information from an
Oracle," Proceedings of the 19 th Annual ACM Symposium on Theory of Computing, 19, 1987,
195-203.

[BC1] Gilles Brassard and Claude Cr~peau. "Nontransitive Transfer of Confidence: A Perfect
Zero-Knowledge Interactive Protocol for SAT and Beyond," Proceedings of the 27 th Annual
IEEE Symposium on Foundations of Computer Science, 27, 1986, 188-195.

[BC2] Gilles Brassard and Claude Cr~peau. "Zero-knowledge Simulation of Boolean Circuits,"
Advances in Cryptology - - CRYPTO '86 Proceedings, Andrew Odlyzko (ed.), Springer-Verlag
(pub.), 1987, 223-233.

[CDvdG] David Chaum, Ivan Damgaard, and Jeroen van de Graaf. "Multiparty Computa-
tions Ensuring Secrecy of Each Party's Input and Correctness of the Output," to appear in
Proceedings of CRYPTO '87.

[GHY] Zvi Galil, Stuart Haber, and Moti Yung. "Cryptographic Computation: Secure Fault-
Tolerant Protocols and the Public-Key Model," to appear in Proceedings of CRYPTO '87.

[GM] Shaft Goldwasser and Silvio Micali. "Probabilistic encryption," JCSS, 28, 1984, 270-299.

[GMW86] Oded Goldreich, Silvio Mica]i, and Avi Wigderson. "Proofs that Yield Nothing
but their Validity and a Methodology of Cryptographic Protocol Design," Proceedings of the
27 th Annual IEEE Symposium on Foundations of Computer Science, 27, 1986, 174-187.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. "How to Play ANY Mental
Game," Proceedings of the 19 th Annual ACM Symposium on Theory of Computing, 19, 1987,
218-229.

[GV] Oded Goldreich and Ronen Vainish. "How to Solve any Protocol Problem - - An Effi-
ciency Improvement," to appear in Proceedings of CRYPTO '87.

[Y82] Andrew C. Yao. "Protocols for Secure Computations," Proceedings of the 23 rd Annual
IEEE Symposium on Foundations of Computer Science, 23, 1982, 160-164.

[Y86] Andrew C. Yao. "How to Generate and Exchange Secrets," Proceedings of the 27 th
Annual IEEE Symposium on Foundations of Computer Science, 27, 1986, 162-167.

