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Preface

In 2000 I wrote a book called The Haskell School of Expression — Learning
Functional Programming through Mulitmedia. In that book I used graphics,
animation, music, and robotics as a way to motivate learning how to pro-
gram, and specifically how to learn functional programming using Haskell,
a purely functional programming language. Haskell is quite a bit differ-
ent from conventional imperative or objected-oriented languages such as C,
C++, Java, C#, and so on. It takes a different mind-set to program in such
a language, and appeals to the mathematically inclined and to those who
seek purity and elegance in their programs. Although Haskell was designed
almost twenty years ago, it has only recently begun to catch on, not just be-
cause of its purity and elegance, but because with it you can solve real-world
problems quickly and efficiently, and with great economy of code.

I have also had a long, informal, yet passionate interest in music, being
an amateur jazz pianist and having played in several bands over the years.
About ten years ago, in an effort to combine work with play, I wrote a Haskell
library called Haskore for expressing high-level computer music concepts
in a purely functional way. Indeed, three of the chapters in The Haskell
School of Expression summarize the basic ideas of this work. Thus, when I
recently became responsible for the Music Track in the new Computing and
the Arts major at Yale, and became responsible for teaching not one, but
two computer music courses in the new curriculum, it was natural to base
the course material on Haskell. This current book is essentially a rewrite of
The Haskell School of Expression with a focus entirely on music, based on
and improving upon the ideas in Haskore.

Haskell was named after the logician Haskell B. Curry who, along with
Alonzo Church, established the theoretical foundations of functional pro-
gramming in the 1940’s, when digital computers were mostly just a gleam
in researchers’ eyes. A curious historical fact is that Haskell Curry’s fa-
ther, Samuel Silas Curry, helped found and direct a school in Boston called
the School of Ezpression. (This school eventually evolved into what is now
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PREFACE iv

Curry College.) Since pure functional programming is centered around the
notion of an expression, 1 thought that The Haskell School of Expression
would be a good title for my first book. And it was thus quite natural to
choose The Haskell School of Music for my second!

How To Read This Book

As mentioned earlier, there is a certain mind-set, a certain viewpoint of
the world, and a certain approach to problem solving that collectively work
best when programming in Haskell (this is true for any new programming
paradigm). If you teach only Haskell language details to a C programmer,
she is likely to write ugly, incomprehensible functional programs. But if
you teach her how to think differently, how to see problems in a different
light, functional solutions will come easily, and elegant Haskell programs
will result. As Samuel Silas Curry once said:

All expression comes from within outward, from the center to
the surface, from a hidden source to outward manifestation. The
study of expression as a natural process brings you into contact
with cause and makes you feel the source of reality.

What is especially beautiful about this quote is that music is a kind of ex-
pression, although Curry was more likely talking about speech. In addition,
as has been noted by many, music has many ties to mathematics. So for me,
combining the elegant mathematical nature of Haskell with that of music is
as natural as singing a nursery tune.

Using a high-level language to express musical ideas is, of course, not
new. But Haskell is unique in its insistence on purity (no side effects), and
this alone makes it particularly suitable for expressing musical ideas. By
focusing on what a musical entity is rather than on how we should create
it, we allow musical ideas to take their natural form as Haskell expressions.
Haskell’s many abstraction mechanisms allow us to write musical programs
that are elegant, concise, yet powerful. We will consistently attempt to let
the music express itself as naturally as possible, without encoding it in terms
of irrelevant language details.

Of course, my ultimate goal is to teach computer music concepts. But
along the way you will also learn Haskell. There is no limit to what one
might wish to do with compuiter music, and therefore the better you are
at programming, the more success you will have. This is why I think that
many languages designed specifically for computer music—although fun to
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work with, easy to use, and cute in concept—will ultimately be too limited
in expressiveness.

My general approach to introducing computer music concepts is to first
provide an intuitive explanation, then a mathematically rigorous definition,
and finally fully executable Haskell code. In the process I will introduce
Haskell features as they are needed, rather than all at once. I believe that
this interleaving of concepts and applications makes the material easier to
digest.

Another characteristic of my approach is that I won’t hide any details—I
want Haskore to be as transparent as possible! There are no magical built-in
operations, no special computer music commands or values. This works out
well for several reasons. First, there is in fact nothing ugly or difficult to
hide—so why hide anything at all? Second, by reading the code, you will
better and more quickly understand Haskell. Finally, by stepping through
the design process with me, you may decide that you prefer a different
approach—there is, after all, no One True Way to express computer music
ideas. Indeed, I expect that this process will position you well to write rich,
creative musical applications on your own.

I encourage the seasoned programmer having experience only with con-
ventional imperative and /or object-oriented languages to read this text with
an open mind. Many things will be different, and will likely feel awkward.
There will be a tendency to rely on old habits when writing new programs,
and to ignore suggestions about how to approach things differently. If you
can manage to resist those tendencies I am confident that you will have an
enjoyable learning experience. Many of those who succeed in this process
find that many ideas about functional programming can be applied to im-
perative and object-oriented languages as well, and that their imperative
coding style changes for the better.

I also ask the experienced programmer to be patient while in the earlier
chapters I explain things like “syntax,” “operator precedence,” etc., since it
is my goal that this text should be readable by someone having only modest
prior programming experience. With patience the more advanced ideas will
appear soon enough.

If you are a novice programmer, I suggest taking your time with the
book; work through the exercises, and don’t rush things. If, however, you
don’t fully grasp an idea, feel free to move on, but try to re-read difficult
material at a later time when you have seen more examples of the concepts
in action. For the most part this is a “show by example” textbook, and
you should try to execute as many of the programs in this text as you can,
as well as every program that you write. Learn-by-doing is the corollary to
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show-by-example.

Haskell Implementations

There are several good implementations of Haskell, all available free on the
Internet through the Haskell Home Page at http://haskell.org. One that
I especially recommend is GHC, an easy-to-use and easy-to-install Haskell
compiler and interpreter (see http://haskell.org/ghc). GHC runs on
a variety of platforms, including PC’s (Windows XP and Vista), various
flavors of Unix (Linux, FreeBSD, etc.), and Mac OS X. Any text edi-
tor can be used to create the source files, but I prefer to use emacs (see
http://www.gnu.org/software/emacs), along with its Haskell mode (see
http://www.haskell.org/haskell-mode). All of the source code from this
textbook can be found at http://plucky.cs.yale.edu/cs431. Feel free
to email me at paul.hudak@yale.edu with any comments, suggestions, or
questions.

Happy Haskell Music Hacking!

Paul Hudak
New Haven
September 2008



Chapter 1

Computation by Calculation

Programming, in its broadest sense, is problem solving. It begins when we
look out into the world and see problems that we want to solve, problems
that we think can and should be solved using a digital computer. Under-
standing the problem well is the first—and probably the most important—
step in programming, since without that understanding we may find our-
selves wandering aimlessly down a dead-end alley, or worse, down a fruitless
alley with no end. “Solving the wrong problem” is a phrase often heard in
many contexts, and we certainly don’t want to be victims of that crime. So
the first step in programming is answering the question, “What problem am
I trying to solve?”

Once you understand the problem, then you must find a solution. This
may not be easy, of course, and in fact you may discover several solutions,
so we also need a way to measure success. There are various dimensions in
which to do this, including correctness (“Will I get the right answer?”) and
efficiency (“Will I have enough resources?”). But the distinction of which
solution is better is not always clear, since the number of dimensions can
be large, and programs will often excel in one dimension and do poorly in
others. For example, there may be one solution that is fastest, one that
uses the least amount of memory, and one that is easiest to understand.
Deciding which to choose can be difficult, and is one of the more interesting
challenges that you will face in programming.

The last measure of success mentioned above—clarity of a program—is
somewhat elusive, most difficult to measure, and, quite frankly, sometimes
difficult to rationalize. But in large software systems clarity is an especially
important goal, since the most important maxim about such systems is that
they are never really finished! The process of continuing work on a software
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system after it is delivered to users is what software engineers call software
maintenance, and is the most expensive phase of the so-called “software life-
cycle.” Software maintenance includes fixing bugs in programs, as well as
changing certain functionality and enhancing the system with new features
in response to users’ experience.

Therefore taking the time to write programs that are highly legible—easy
to understand and reason about—will facilitate the software maintenance
process. To complete the emphasis on this issue, it is important to realize
that the person performing software maintenance is usually not the person
who wrote the original program. So when you write your programs, write
them as if you are writing them for someone else to see, understand, and
ultimately pass judgement on!

As I work through the many musical examples in this book, I will some-
times express them in several different ways (some of which are dead-ends!),
taking the time to contrast them in style, efficiency, clarity, and functional-
ity.! I do this not just for pedagogical purposes. Such reworking of programs
is the morm, and you are encouraged to get into the habit of doing so. Don’t
always be satisfied with your first solution to a problem, and always be
prepared to go back and change—or even throw away—those parts of your
program that you later discover do not fully satisfy your actual needs.

1.1 Computation by Calculation in Haskell

In this text I will use the programming language Haskell to address many of
the issues discussed in the last section. I have tried to avoid the approach of
explaining Haskell first and then giving examples second. Rather, I will walk
with you, step by step, along the path of understanding a problem, under-
standing the solution space, and understanding how to express a particular
solution in Haskell. I want you to learn how to problem solve!

Along this path I will use whatever tools are appropriate for analyzing a
particular problem, very often mathematical tools that should be familiar to
the average college student, indeed most to the average high-school student.
As I do this I will evolve our problems toward a particular view of compu-
tation that I find especially useful: that of computation by calculation. You
will find that such a viewpoint is not only powerful—we won’t shy away
from difficult problems—it is also simple. Haskell supports well the idea of
computation by calculation. Programs in Haskell can be viewed as functions
whose input is that of the problem being solved, and whose output is our

LAt times I also explore different methods for proving properties of programs.
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desired result; and the behavior of functions can be understood easily as
computation by calculation.

An example might help to demonstrate these ideas. Suppose we want to
perform an arithmetic calculation such as 3 x (9 + 5). In Haskell we would
write this as 3 % (94 5), since most standard computer keyboards and text
editors do not recognize the special symbol x. To calculate the result, we
proceed as follows:

3% (9+5)
= 3% 14
= 42

It turns out that this is not the only way to compute the result, as evidenced
by this alternative calculation:?

3% (945)
=3%x94+3x%5
=27T+3%5
=27+ 15

= 42

Even though this calculation takes two extra steps, it at least gives the
correct answer. Indeed, an important property of each and every program
in this textbook—in fact every program that can be written in the functional
language Haskell—is that it will always yield the same answer when given the
same inputs, regardless of the order we choose to perform the calculations.?
This is precisely the mathematical definition of a function: for the same
inputs, it always yields the same output.

On the other hand, the first calculation above took less steps than the
second, and so we say that it is more efficient. Efficiency in both space
(amount of memory used) and time (number of steps executed) is important
when searching for solutions to problems, but of course if we get the wrong
answer, efficiency is a moot point. In general we will search first for any
solution to a problem, and later refine it for better performance.

The above calculations are fairly trivial, of course. But we will be do-
ing much more sophisticated operations soon enough. For starters—and to

2This assumes that multiplication distributes over addition in the number system being
used, a point that I will return to later.

3 As long as we don’t choose a non-terminating sequence of calculations, another issue
that we will return to later.
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introduce the idea of a function—we could generalize the arithmetic opera-
tions performed in the previous example by defining a function to perform
them for any numbers z, y, and z:

simple x y z =z x (y + 2)

This equation defines simple as a function of three arguments, z, vy,
and z. In mathematical notation, we might see the above written slightly
differently, namely:

simple(x,y,z) =z X (y + z)

In any case, it should be clear that “simple 3 9 5” is the same as “3%(9+5).”
In fact the proper way to calculate the result is:

stmple 395
=3%(94+5)
= 3x 14

= 42

The first step in this calculation is an example of unfolding a function defi-
nition: 3 is substituted for z, 9 for y, and 5 for z on the right-hand side of
the definition of simple. This is an entirely mechanical process, not unlike
what the computer actually does to execute the program.

When we wish to say that an expression e evaluates (via zero, one, or
possibly many more steps) to the value v, we will write e = v (this arrow
is longer than that used earlier). So we can say directly, for example, that
simple 39 5 = 42, which should be read “simple 3 9 5 evaluates to 42.”

With simple now suitably defined, we can repeat the sequence of arith-
metic calculations as often as we like, using different values for the arguments
to simple. For example, simple 4 3 2 = 20.

We can also use calculation to prove properties about programs. For
example, it should be clear that for any a, b, and ¢, simple a b ¢ should
yield the same result as simple a ¢ b. For a proof of this, we calculate
symbolically; that is, using the symbols a, b, and ¢ rather than concrete
numbers such as 3, 5, and 9:

stmple a b ¢
= ax*(b+c)
= ax(c+b)
= simple a c b
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I will use the same notation for these symbolic steps as for concrete ones. In
particular, the arrow in the notation reflects the direction of our reasoning,
and nothing more. In general, if el = e2, then it’s also true that e2 = el.

I will also refer to these symbolic steps as “calculations,” even though
the computer will not typically perform them when executing a program
(although it might perform them before a program is run if it thinks that
it might make the program run faster). The second step in the calculation
above relies on the commutativity of addition (namely that, for any numbers
x and y,  +y = y +x). The third step is the reverse of an unfold step, and
is appropriately called a fold calculation. It would be particularly strange if
a computer performed this step while executing a program, since it does not
seem to be headed toward a final answer. But for proving properties about
programs, such “backward reasoning” is quite important.

When I wish to make the justification for each step clearer, whether
symbolic or concrete, I will present a calculation with more detail, as in:

sitmple a b c

= {unfold }
ax(b+c)

= { commutativity }
ax(c+b)

= {fold}

stmple a ¢ b

In most cases, however, this will not be necessary.

Proving properties of programs is another theme that will be repeated
often in this text. As the world begins to rely more and more on computers to
accomplish not just ordinary tasks such as writing term papers and sending
email, but also life-critical tasks such as controlling medical procedures and
guiding spacecraft, then the correctness of the programs that we write gains
in importance. Proving complex properties of large, complex programs is
not easy—and rarely if ever done in practice—but that should not deter us
from proving simpler properties of the whole system, or complex properties
of parts of the system, since such proofs may uncover errors, and if not, at
least help us to gain confidence in our effort.

If you are someone who is already an experienced programmer, the idea
of computing everything by calculation may seem odd at best, and naive at
worst. How does one write to a file, draw a picture, play a sound, or respond
to mouse-clicks? If you are wondering about these things, I hope that you
have patience reading the early chapters, and that you find delight in reading
the later chapters where the full power of this approach begins to shine. I
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will avoid, however, most comparisons between Haskell and conventional
programming languages such as C, C++, Java, or even Scheme or ML (two
“almost functional” languages).

In many ways this first chapter is the most difficult chapter in the entire
text, since it contains the highest density of new concepts. If you have
trouble with some of the ideas here, keep in mind that we will return to
almost every idea at later points in the text. And don’t hesistate to return
to this chapter later to re-read difficult sections; they will likely be much
easier to grasp at that time.

Exercise 1.1 Write out all of the steps in the calculation of the value of
simple (simple 23 4) 56
Exercise 1.2 Prove by calculation that simple (a — b) a b => a® — b?.

Details: In the remainder of the text the need will often arise to explain
some aspect of Haskell in more detail, without distracting too much from
the primary line of discourse. In those circumstance | will off-set the
comments and proceed them with the word “Details,” such as is done
with this paragraph.

1.2 Expressions, Values, and Types

In Haskell, the entities that we perform calculations on are called expres-
sions, and the entities that result from a calculation—i.e. “the answers”—
are called values. It is helpful to think of a value just as an expression on
which no more calculation can be carried out.

Examples of expressions include atomic (meaning, indivisible) values
such as the integer 42 and the character ’a’, which are examples of two
primitive atomic values. In the next Chapter we will will also see exam-
ples of user-defined atomic values, such as the pitch classes C, Cs, Df, etc.
(denoting the musical notes C, Ct, Db, etc.).

In addition, there are structured (meaning, made from smaller pieces)
expressions such as the list [ C, Cs, Df] and the pair (*b?,4) (lists and pairs
are different in a subtle way, to be described later). Each of these structured
expressions is also a value, since by themselves there is no calculation that
can be carried out. As another example, 1 + 2 is an expression, and one
step of calculation yields the expression 3, which is a value, since no more
calculations can be performed.
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Sometimes, however, an expression has only a never-ending sequence of
calculations. For example, if z is defined as:

r=x+1
then here’s what happens when we try to calculate the value of z:

=z+1

= (r+1)+1
=((z+1)+1)+1

= ((z+1)+1)+1)+1

This is clearly a never-ending sequence of steps, in which case we say that
the expression does not terminate, or is non-terminating. In such cases the
symbol bottom, pronounced “bottom,” is used to denote the value of the
expression.

Every expression (and therefore every value) also has an associated type.
You can think of types as sets of expressions (or values), in which members
of the same set have much in common. Examples include the atomic types
Integer (the set of all fixed-precision integers) and Char (the set of all char-
acters), as well as the structured types [ Integer| and [ PitchClass] (the set of
all lists of integers and pitch classes, respectively) and (Char, Integer) (the
set of all character/integer pairs). The association of an expression or value
with its type is very important, and there is a special way of expressing it
in Haskell. Using the examples of values and types above, we write:

42 :: Integer
>a’ it Char
[C, Cs, Df] :: [ PitchClass]
(°’b’,4) :: (Char, Integer)

Details: Literal characters are written enclosed in single forward quotes,
as in ’a’, ’A’, ’b’, ?,?, ’!? >  (a space), etc. (There are some
exceptions, however; see the Haskell Report for details.)

The “:” should be read “has type,” as in “42 has type Integer.”

Details: Note that the names of specific types are capitalized, such as
Integer and Char, but the names of values are not, such as simple and x.
This is not just a convention: it is required when programming in Haskell.
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In addition, the case of the other characters matters, too. For example,
test, teSt, and tEST are all distinct names for values, as are Test, TeST,
and TEST for types.

Haskell’s type system ensures that Haskell programs are well-typed; that
is, that the programmer has not mismatched types in some way. For ex-
ample, it does not make much sense to add together two characters, so the
expression ’a’+’b’ is ill-typed. The best news is that Haskell’s type system
will tell you if your program is well-typed before you run it. This is a big
advantage, since most programming errors are manifested as typing errors.

1.3 Function Types and Type Signatures

What should the type of a function be? It seems that it should at least
convey the fact that a function takes values of one type—7T1, say—as input,
and returns values of (possibly) some other type—T2, say—as output. In
Haskell this is written T1 — T2, and we say that such a function “maps
values of type T'1 to values of type T2.” If there is more than one argument,
the notation is extended with more arrows. For example, if our intent is
that the function simple defined in the previous section has type Integer —
Integer — Integer — Integer, we can declare this fact by including a type
stgnature with the definition of simple:

stmple :: Integer — Integer — Integer — Integer
simple x y z =z x (y + 2)

Details: When you write Haskell programs using a typical text editor,
you will not see nice fonts and arrows as in Integer — Integer. Rather,
you will have to type Integer -> Integer.

Haskell’s type system also ensures that user-supplied type signatures
such as this one are correct. Actually, Haskell’s type system is powerful
enough to allow us to avoid writing any type signatures at all, in which case
we say that the type system infers the correct types for us.* Nevertheless,
judicious placement of type signatures, as we did for simple, is a good habit,
since type signatures are an effective form of documentation and help bring
programming errors to light. Also, in almost every example in this text, I

4There are a few exceptions this rule, and in the case of simple the inferred type is
actually a bit more general than that written above. Both of these points will be returned
to later.
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will make a habit of first talking about the types of expressions and functions
as a way to better understand the problem at hand, organize our thoughts,
and lay down the first ideas of a solution.

The normal use of a function is referred to as function application. For
example, simple 3 9 5 is the application of the function simple to the argu-
ments 3, 9, and 5.

Details: Some functions, such as (+), are applied using what is known
as infix syntax; that is, the function is written between the two arguments
rather than in front of them (compare z +y to f z y). Infix functions are
often called operators, and are distinguished by the fact that they do not
contain any numbers or letters of the alphabet. Thus “! and *# : are infix
operators, whereas thislsAFunction and f9¢ are not (but are still valid
names for functions or other values). The only exception to this is that
the symbol ’is considered to be alphanumeric; thus f/ and one’s are valid
names, but not operators.

In Haskell, when referring to an operator as a value, it is enclosed in
parentheses, such as when declaring its type, as in:

(4) :: Integer — Integer — Integer

Also, when trying to understand an expression such as f = + g y, there
is a simple rule to remember: function application always has “higher
precedence” than operator application, so that f z + g y is the same as

(fz)+(gy)
Despite all of these syntactic differences, however, operators are still just
functions.

Exercise 1.3 Identify the well-typed expressions in the following and, for
each, give its proper type:

[(2,3),(4,5)]

[Cs,42]

(Dfa _42)

sitmple >a’ b’ ’c’
(simple 1 2 3, simple)

1.4 Abstraction, Abstraction, Abstraction

The title of this section is the answer to the question: “What are the three
most important ideas in programming?” Well, perhaps this is an overstate-
ment, but I hope that I've gotten your attention, at least. Webster defines
the verb “abstract” as follows:
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abstract, vt (1) remove, separate (2) to consider apart from
application to a particular instance.

In programming we do this when we see a repeating pattern of some
sort, and wish to “separate” that pattern from the “particular instances”
in which it appears. Let’s refer to this process as the abstraction principle,
and see how it might manifest itself in problem solving.

1.4.1 Naming

One of the most basic ideas in programming—for that matter, in every day
life—is to mame things. For example, we may wish to give a name to the
value of 7, since it is inconvenient to retype (or remember) the value of =
beyond a small number of digits. In mathematics the greek letter m in fact
is the name for this value, but unfortunately we don’t have the luxury of
using greek letters on standard computer keyboards and text editors. So in
Haskell we write:

pi o Float
pi = 3.1415927

to associate the name pi with the number 3.1415927. The type signature in
the first line declares pi to be a floating-point number, which mathematically—
and in Haskell—is distinct from an integer.> Now we can use the name pi in
expressions whenever we want; it is an abstract representation, if you will,
of the number 3.1415927. Furthermore, if we ever have a need to change a
named value (which hopefully won’t ever happen for pi, but could certainly
happen for other values), we would only have to change it in one place,
instead of in the possibly large number of places where it is used.

Suppose now that we are working on a problem whose solution requires
writing some expression more than once. For example, we might find our-
selves computing something such as:

z :: Float
z=f(a—b0+2)+gy(a—b+2)

The first line declares = to be a floating-point number, while the second is
an equation that defines the value of . Note on the right-hand side of this
equation that the expression a — b + 2 is repeated—it has two instances—
and thus, applying the abstraction principle, we wish to separate it from

51 will have more to say about floating-point numbers later in this chapter.
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these instances. We already know how to do this—it’s called naming—so
we might choose to rewrite the single equation above as two:

c=a—b+2
r=fc+gyc

If, however, the definition of ¢ is not intended for use elsewhere in the
program, then it is advantageous to “hide” the definition of ¢ within the
definition of z. This will avoid cluttering up the namespace, and prevents
¢ from clashing with some other value named c. To achieve this, we simply
use a let expression:

r=letc=a—b+2
infc+gyec

A let expression restricts the wvisibility of the names that it creates to the
internal workings of the let expression itself. For example, if we write:

c =42
z=letc=a—b+2
infc+gyec

then there is no conflict of names—the “outer” c¢ is completely different
from the “inner” one enclosed in the let expression. Think of the inner ¢ as
analogous to the first name of someone in your household. If your brother’s
name is “John” he will not be confused with John Thompson who lives down
the street when you say, “John spilled the milk.”

Details: An equation such as ¢ = 42 is called a binding. A simple rule
to remember when programming in Haskell is never to give more than one
binding for the same name in a context where the names can be confused,
whether at the top level of your program or nestled within a let expression.
For example, this is not allowed:

a =42
a =43
nor is this:
a =42
b=43
a =44

So you can see that naming—using either top-level equations or equa-
tions within a let expression—is an example of the abstraction principle in
action.
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1.4.2 Functional Abstraction

[I should replace the following with something musical, but for now it will
have to do as is.]

Let’s now consider a more complex example. Suppose we are computing
the sum of the areas of three circles with radii r1, r2, and r3, as expressed
by:

totalArea :: Float
totalArea = pi* rl1 "2+ pi* r2°2+ pi* r3°2

Details: () is Haskell's integer exponentiation operator. In mathematics

2

we would write 7 x r2 or just w2 instead of pi * r°2.

Although there isn’t an obvious repeating expression here as there was
in the last example, there is a repeating pattern of operations. Namely, the
operations that square some given quantity—in this case the radius—and
then multiply the result by w. To abstract a sequence of operations such
as this, we use a function—which we will give the name circleArea—that
takes the “given quantity”—the radius—as an argument. There are three
instances of the pattern, each of which we can expect to replace with a call
to circleArea. This leads to:

circleArea :: Float — Float
circleArea v = pix r"2

totalArea = circleArea r1 + circleArea r2 + circleArea r3

Using the idea of unfolding described earlier, it is easy to verify that this
definition is equivalent to the previous one.

This application of the abstraction principle is sometimes called func-
tional abstraction, since the sequence of operations is abstracted as a func-
tion, in this case circleArea. Actually, it can be seen as a generalization of
the previous kind of abstraction: maming. That is, circleArea r1 is just a
name for pixrl "2, circleArea r2 for pixr2°2, and circleArea r3 for pixr3”"2.
Or in other words, a named quantity such as ¢ or pi defined previously can
be thought of as a function with no arguments.

Note that circleArea takes a radius (a floating-point number) as an ar-
gument and returns the area (also a floating-point number) as a result, as
reflected in its type signature.

The definition of circleArea could also be hidden within totalArea using
a let expression as we did in the previous example:
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totalArea = let circleArea r = pi * r"2
in circleArea r1 + circleArea r2 + circleArea r3

On the other hand, it is more likely that computing the area of a circle will
be useful elsewhere in the program, so leaving the definition at the top level
is probably preferable in this case.

1.4.3 Data Abstraction

The value of totalArea is the sum of the areas of three circles. But what if in
another situation we must add the areas of five circles, or in other situations
even more? In situations where the number of things is not certain, it is
useful to represent them in a list whose length is arbitrary. So imagine that
we are given an entire list of circle areas, whose length isn’t known at the
time we write the program. What now?

I will define a function listSum to add the elements of a list. Before
doing so, however, there is a bit more to say about lists.

Lists are an example of a data structure, and when their use is motivated
by the abstraction principle, I will say that we are applying data abstraction.
Earlier we saw the example [1,2,3] as a list of integers, whose type is thus
[Integer]|. A list with no elements is—mnot surprisingly—written [/, and
pronounced “nil.” To add a single element z to the front of a list zs, we
write z : zs. (Note the naming convention used here; zs is the plural of
z, and should be read that way.) In fact, the list [1,2,3] is equivalent to
1:(2:(3:[])), which can also be written 1:2:3:[] since the infix operator
(:) is “right associative.”

Details: In mathematics we rarely worry about whether the notation
a+ b+ c stands for (a + b) + ¢ (in which case + would be “left associa-
tive") or a + (b+ ¢) (in which case + would “right associative"). This is
because in situations where the parentheses are left out it's usually the case
that the operator is mathematically associative, meaning that it doesn't
matter which interpretation we choose. If the interpretation does matter,
mathemeticians will include parentheses to make it clear. Furthermore,
in mathematics there is an implicit assumption that some operators have
higher precedence than others; for example, 2 X a + b is interpreted as
(2xa)+b, not2x(a+bd).

In most programming languages, including Haskell, each operator is de-
fined as having some precedence level and to be either left or right as-
sociative. For arithmetic operators, mathematical convention is usually
followed; for example, 2% a+ b is interpreted as (2% a)+ b in Haskell. The
predefined list-forming operator (:) is defined to be right associative. Just
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as in mathematics, this associativey can be over-ridden by using paren-
theses: thus (a:b): ¢ is a valid Haskell expression (assuming that it is
well-typed), and is very different from a: b: c. | will explain later how to
specify the associativity and precedence of new operators that we define.

Examples of pre-defined functions defined on lists in Haskell include
head and tail, which return the “head” and “tail” of a list, respectively.
That is, head (z :xs) = z and tail (z:zs) = xs (we will define these
two functions formally in Section 3.1). Another example is the function
() which concatenates, or appends, together its two list arguments. For
example, [1,2,3] H[4,5,6] = [1,2,3,4,5,6] ((+) will be defined in Section
3.3).

Returning to the problem of defining a function to add the elements of
a list, let’s first express what its type should be:

listSum :: [ Float] — Float

Now we must define its behavior appropriately. Often in solving problems
such as this it is helpful to consider, one by one, all possible cases that could
arise. To compute the sum of the elements of a list, what might the list
look like? The list could be empty, in which case the sum is surely 0. So we
write:

listSum [] =0

The other possibility is that the list ¢sn’t empty—i.e. it contains at least
one element—in which case the sum is the first number plus the sum of the
remainder of the list. So we write:

listSum (z : zs) = = + listSum xs

Combining these two equations with the type signature brings us to the
complete definition of the function listSum:

listSum :: [ Float] — Float
listSum [] =0
listSum (z : zs) = = + listSum xs

Details: Although intuitive, this example highlights an important aspect
of Haskell: pattern matching. The left-hand sides of the equations contain
patterns such as [] and z : zs. When a function is applied, these patterns
are matched against the argument values in a fairly intuitive way ([] only
matches the empty list, and z : zs will successfully match any list with at
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least one element, while naming the first element z and the rest of the list
xs). If the match succeeds, the right-hand side is evaluated and returned
as the result of the application. If it fails, the next equation is tried, and
if all equations fail, an error results. All of the equations that define a
particular function must appear together, one after the other.

Defining functions by pattern matching is quite common in Haskell, and
you should eventually become familiar with the various kinds of patterns
that are allowed; see Appendix C for a concise summary.

This is called a recursive function definition since listSum “refers to
itself” on the right-hand side of the second equation. Recursion is a very
powerful technique that you will see used many times in this text. It is also
an example of a general problem-solving technique where a large problem is
broken down into many simpler but similar problems; solving these simpler
problems one-by-one leads to a solution to the larger problem.

Here is an example of listSum in action:

listSum [1,2, 3]

= listSum (1:(2:(3:[])))
= 1+ listSum (2:(3:[)]))
= 1+ (24 listSum (3:]]))
= 1+ (2 + (3 4 listSum []))
=1+(12+4+(3+0))

=1+ (2+43)

=145

=6

The first step above is not really a calculation, but rather a rewriting of the
list syntax. The remaining calculations consist of four unfold steps followed
by three integer additions.

Given this definition of listSum we can rewrite the definition of totalArea
as:

totalArea = listSum [circleArea 11, circleArea 12, circleArea 13|

This may not seem like much of an improvement, but if we were adding
many such circle areas in some other context, it would be. Indeed, lists
are arguably the most commonly used structured data type in Haskell. In
the next chapter we will see a more convincing example of the use of lists;
namely, to represent the vertices that make up a polygon. Since a polygon
can have an arbitrary number of vertices, using a data structure such as a
list seems like just the right approach.
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In any case, how do we know that this version of totalArea behaves the
same as the original one? By calculation, of course:

listSum [circleArea 11, circleArea 12, circleArea 13|
= {unfold listSum (four succesive times)}
circleArea r1 + circleArea v2 + circleArea r3 + 0
= {unfold circleArea (three places) }

pixrl 24+ pixr2° 24+ pixr38 240

= {simple arithmetic}

pixTl 2+ pixr2°24 pix 13" 2

1.5 Code Reuse and Modularity

There doesn’t seem to be much repetition in our last definition for totalArea,
so perhaps we’re done. In fact, let’s pause for a moment and consider how
much progress we’ve made. We started with the definition:

totalArea = pix r1 "2+ pi *x r2°2 + pi *x 13" 2
and ended with:
totalArea = listSum |circleArea 11, circleArea 12, circleArea r3 ]

But additionally, we have introduced definitions for the auxiliary func-
tions circleArea and listSum. In terms of size, our final program is actually
larger than what we began with! So have we actually improved things?

From the standpoint of “removing repeating patterns,” we certainly
have, and we could argue that the resulting program is easier to under-
stand as a result. But there is more. Now that we have defined auxiliary
functions such as circleArea and listSum, we can reuse them in other con-
texts. Being able to reuse code is also called modularity, since the reused
components are like little modules, or bricks, that can form the foundation
of many applications.® We've already talked about reusing circleArea; and
listSum is surely reusable: imagine a list of grocery item prices, or class
sizes, or city populations, for each of which we must compute the total.
In later chapters you will learn other concepts—most notably higher-order
functions and polymorphism—that will substantially increase your ability
to reuse code.

6“Code reuse” and “modularity” are important software engineering principles.
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1.6 Beware of Programming with Numbers

In mathematics there are many different kinds of number systems. For ex-
ample, there are integers, natural numbers (i.e. non-negative integers), real
numbers, rational numbers, and complex numbers. These number systems
possess many useful properties, such as the fact that multiplication and ad-
dition are commutative, and that multiplication distributes over addition.
You have undoubtedly learned many of these properties in your studies, and
have used them often in algebra, geometry, trigonometry, physics, etc.

Unfortunately, each of these number systems places great demands on
computer systems. In particular, a number can in general require an arbi-
trary amount of memory to represent it—even an infinite amount! Clearly,
for example, we cannot represent an irrational number such as 7 exactly; the
best we can do is approximate it, or possibly write a program that computes
it to whatever (finite) precision that we need in a given application. But
even integers (and therefore rational numbers) present problems, since any
given integer can be arbitrarily large.

Most programming languages do not deal with these problems very well.
In fact, most programming languages do not have exact forms of any of
these number systems. Haskell does slightly better than most, in that it has
exact forms of integers (the type Integer) as well as rational numbers (the
type Rational, defined in the Ratio Library). But in Haskell and most other
languages there is no exact form of real numbers, for example, which are
instead approximated by floating-point numbers with either single-word pre-
cision (Float in Haskell) or double-word precision (Double). What’s worse,
the behavior of arithmetic operations on floating-point numbers can vary
somewhat depending on what CPU is being used, although hardware stan-
dardization in recent years has reduced the degree of this problem.

The bottom line is that, as simple as they may seem, great care must be
taken when programming with numbers. Many computer errors, some quite
serious and renowned, were rooted in numerical incongruities. The field of
mathematics known as numerical analysis is concerned precisely with these
problems, and programming with floating-point numbers in sophisticated
applications often requires a good understanding of numerical analysis to
devise proper algorithms and write correct programs.

As a simple example of this problem, consider the distributive law, ex-
pressed here as a calculation in Haskell and used earlier in this chapter in
calculations involving the function simple:

ax(b+c)=axb+axc
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For most floating-point numbers, this law is perfectly valid. For example,
in the GHC implementation of Haskell, the expressions pi * (3 + 4) :: Float
and pi *x 3 4+ pi x4 :: Float both yield the same result: 21.99115. But funny
things can happen when the magnitude of b+ ¢ differs significantly from the
magnitude of either b or c. For example, the following two calculations are
from GHC:

5% (—0.123456 + 0.123457) :: Float = 4.991889%¢ — 6
5% (—0.123456) + 5 * (0.123457) = Float = 5.00679% — 6

Although the error here is small, its very existence is worrisome, and in
certain situations it could be disastrous. I will not discuss the nature of
floating-point numbers much further in this text, but just remember that
they are approximations to the real numbers. If real-number accuracy is
important to your application, further study of the nature of floating-point
numbers is probably warranted.

On the other hand, the distributive law (and many others) is valid in
Haskell for the exact data types Integer and Ratio Integer (i.e. rationals).
However, another problem arises: although the representation of an Integer
in Haskell is not normally something that we are concerned about, it should
be clear that the representation must be allowed to grow to an arbitrary
size. For example, Haskell has no problem with the following number:

veryBigNumber :: Integer
veryBigNumber = 43208345720348593219876512372134059

and such numbers can be added, multiplied, etc. without any loss of ac-
curacy. However, such numbers cannot fit into a single word of computer
memory, most of which are limited to 32 bits. Worse, since the computer
system does not know ahead of time exactly how many words will be re-
quired, it must devise a dynamic scheme to allow just the right number
of words to be used in each case. The overhead of implementing this idea
unfortunately causes programs to run slower.

For this reason, Haskell provides another integer data type called Int
which has maximum and minimum values that depend on the word-size of
the CPU being used. In other words, every value of type Int fits into one
word of memory, and the primitive machine instructions for integers can
be used to manipulate them very efficiently.” Unfortunately, this means

"The Haskell Report requires that every implementation support Ints in the range
—2%9 t0 229 — 1, inclusive. The GHC implementation running on a Pentium processor, for
example, supports the range —23! to 23! — 1.
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that overflow or underflow errors could occur when an Int value exceeds
either the maximum or minumum values. However, most implementations
of Haskell (as well as most other languages) do not even tell you when this
happens. For example, in GHC, the following Int value:

1 Int
1 = 1234567890

works just fine, but if you multiply it by two, GHC returns the value
—1825831516! This is because twice i exceeds the maximum allowed value,
so the resulting bits become nonsensical,® and are interpreted in this case
as a negative number of the given magnitude.

This is alarming! Indeed, why should anyone ever use Int when Integer
is available? The answer, as mentioned earlier, is efficiency, but clearly
care should be taken when making this choice. If you are indexing into a
list, for example, and you are confident that you are not performing index
calculations that might result in the above kind of error, then Int should
work just fine, since a list longer than 23! will not fit into memory anyway!
But if you are calculating the number of microseconds in some large time
interval, or counting the number of people living on earth, then Integer
would most likely be a better choice. Choose your number data types wisely!

In this text I will use the data types Integer, Int, Float, Double and
Rational for a variety of different applications; for a discussion of the other
number types, consult the Haskell Report. As I use these data types, I will
do so without much discussion—this is not, after all, a book on numerical
analysis—but I will issue a warning whenever reasoning about floating-point
numbers, for example, in a way that might not be technically sound.

8Actually, they are perfectly sensible in the following way: the 32-bit bi-
nary representation of ¢ is 01001001100101100000001011010010, and twice that is
10010011001011000000010110100100. But the latter number is seen as negative be-
cause the 32nd bit (the highest-order bit on the CPU on which this was run) is a one,
which means it is a negative number in “twos-complement” representation. The twos-
complement of this number is in turn 01101100110100111111101001011100, whose decimal
representation is 1825831516.



Chapter 2

Simple Music

module Haskore. Music where
import Data.lz
infixr 5:4:, :=:

In the previous chapter we introduced some of the fundamental ideas of
functional programming in Haskell. In this chapter we begin to develop
some musical ideas as well. As we do so, more Haskell features will be
introduced.

2.1 Preliminaries

Sometimes it is useful to use a built-in Haskell data type to directly represent
some concept of interest. For example, we may wish to use Int to represent
octaves, where by convention octave 4 corresponds to the octave containing
middle C on the piano. We can express this in Haskell using a type synonym:

type Octave = Int

A type synonym does not create a new data type—it just gives a new name
to an existing type. Type synonyms can be defined not just for atomic
types such as Int, but also for structured types such as pairs. For example,
in music theory a pitch is normally defined as a pair, a pitch class and an
octave. Assuming the existence of a data type called PitchClass, we can
write the following type synonym:

type Pitch = (PitchClass, Octave)

20



CHAPTER 2. SIMPLE MUSIC 21

For example, “concert A,” i.e. A above middle C (sometimes written A4)
corresponds to the pitch (A,4). For convenience we could define a Haskell
variable with that value as follows:

a4 :: Pitch
aj = (A,4) -- concert A

Details: This example also demonstrates the use of program comments.
Any text to the right of “ -- " till the end of the line is considered
to be a comment, and is effectively ignored. Haskell also permits nested
comments that have the form {- this is a comment -} and can appear

anywhere in a program.

Another useful musical concept is duration. Rather than use either in-
tegers or floating-point numbers, we will use rational numbers to denote
duration:

type Dur = Rational

Rational is the data type of rational numbers expressed as ratios of Integers
in Haskell.

Rational numbers in Haskell are printed by GHCi in the form n % d,
where n is the numerator, and d is the denominator. Even a whole number,
say the number 42, will print as 42 % 1 if it is a Rational number. To create
a Rational number in our program, however, all we have to do is use the
normal division operator, as in the following definition of a a quarter note:

qn :: Dur
gn=1/4 -- quarter note

So far so good. But what about PitchClass? We might try to use integers
to represent pitch classes as well, but this is not very elegant—ideally we
would like to write something that looks more like the conventional pitch
class names C, Cf, Db, D, etc. The solution is to use an algebraic data type
in Haskell:

data PitchClass = Cf | C | Cs | Df | D | Ds | Ef | E| Es | Ff | F'| Fs
| Gf | G| Gs | Af | A| As | Bf | B| Bs
deriving (Eq, Ord, Iz, Show, Read)

Ignoring the line beginning with “deriving” for the moment, this data type
declaration simply enumerates the 21 pitch class names (three for each of
the note names A through G). Note that enharmonics (such as Gf and Ab)
are listed separately, which may be important in certain applications.
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Details: All constructors in a data declaration must be capitalized. In
this way they are syntactically distinguished from ordinary values. This
distinction is useful since only constructors can be used in the pattern
matching that is part of a function definition, as will be described shortly.

Keep in mind that PitchClass is a completely new, user-defined data
type that is not equal to any other.

2.2 Notes and Music

We can of course define other data types for other purposes. For example,
we will want to define the notion of a note (the pairing of a pitch with a
duration), and a rest. Both of these can be thought of as primitive musical
values, and thus we write:

data Prim = Note Dur Pitch
| Rest Dur
deriving (Show, Eq, Ord)

For example, Note qn a4 is concert A played as a quarter note, and Rest 1
is a whole-note rest.

This definition is not completely satisfactory, however, because we may
wish to attach other information to a note, such as its loudness, or some
other annotation or articulation. Furthermore, the pitch itself may actually
be a percussive sound, having no true pitch at all. To fix this we will intro-
duce an important concept in Haskell, namely polymorphism—the ability to
parameterize over types. Instead of fixing the type of the pitch of a note,
we will leave it unspecified through the use of a type variable, as follows:

data Primitive a = Note Dur a
| Rest Dur
deriving (Show, Eq, Ord)

Note the type variable a, which is used as an argument to Primitive, and
then used in the body of the declaration—just like a variable in a function.
Primitive Pitch is now the same as (or, technically, is now isomorphic to)
the type Prim. Indeed, instead of defining Prim as above, we could now use
a type synonym instead:

type Prim = Primitive Pitch
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But Primitive is more flexible than Prim, since, for example, we could add
loudness by pairing loudness with pitch, as in Primitive (Pitch, Loudness).
We will see more concrete instances of this idea later.

So far we only have a way to express primitive notes and rests—how do
we combine many notes and rests into a larger composition? To achieve this
we will define another polymorphic data type, perhaps the most important
data type used in this book, which defines the fundamental structure of a
musical entity:

data Music a = Primitive (Primitive a) -- primitive value
| Music a :+: Music a -- sequential composition
| Music a :=: Music a -- parallel composition
| Modify Control (Music a) -- modifier

deriving (Show, Eq, Ord)

Details: The first line here looks odd: the name Primitive appears
twice. The first occurence, however, is the name of a new constructor
in the Music data type, whereas the second is the name of the existing
data type defined above. Haskell allows using the same name to define a
constructor and a data type, since they can never be confused: the context
in which they are used will always be sufficient to distinguish them.

Also note the use of infix constructors (:+:) and (:=:). Infix constructors
are just like infix operators in Haskell, but they must begin with a colon.
This distinction exists to make it easier to pattern match, and is analogous
to the distinction between ordinary names (which must begin with a lower-
case character) and constructor names (which must begin with an upper-
case character).

It is convenient to represent these musical ideas as a recursive datatype
because we wish to not only construct musical values, but also take them
apart, analyze their structure, print them in a structure-preserving way,
interpret them for performance purposes, etc. We will see many examples
of these kinds of processes shortly.

This data type declaration essentially says that a value of type Music a
has one of four possible forms:

e Primitive p, where p is a primitive value of type Primitive a, for some
type a. For example:

ma4 :: Music Pitch
ma4 = Primitive (Note qn a4)
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is the musical value corresponding to a quarter-note rendition of con-
cert A.

e ml :4: m2 is the sequential composition of mI and m2; i.e. mI and
m2 are played in sequence.

e ml :=:m2 is the parallel composition of m1 and m2; i.e. mI and m2
are played simultaneously.

e Modify cntrl m is an “annotated” version of m in which the control
parameter cntrl specifies some way in which m is to be modified.

Details: Note that Music a is defined in terms of Music a, and thus we
say that is a recursive data type. It is also often called an inductive data
type, since it is, in essence, an inductive definition of an infinite number
of values, each of which can be arbitrarily complex.

The Control data type is defined as follows:

data Control =
Tempo Rational -- scale the tempo
| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- intrument label
| Phrase [ PhraseAttribute | -- phrase attributes
| Player PlayerName -- player label
deriving (Show, Eq, Ord)

type PlayerName = String

It allows one to annotate a Music value with a tempo change, a transposition,
a phrase attribute, a player name, or an instrument. Instrument names are
borrowed from the General MIDI standard, and are captured as an algebraic
data type in Figure 2.1. Phrase attributes and the concept of a “player” are
closely related, but a full explanation is deferred until Chapter 6.

2.3 Convenient Auxiliary Functions

For convenient we define a number of functions to make it easier to write
certain kinds of musical values. For starters, we define:

note d p = Primitive (Note d p)
rest d = Primitive (Rest d)
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data InstrumentName
= AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano
| HonkyTonkPiano | RhodesPiano | ChorusedPiano
| Harpsichord | Clavinet | Celesta | Glockenspiel | MusicBox
| Vibraphone | Marimba | Xylophone | TubularBells
| Dulcimer | HammondOrgan | PercussiveOrgan
| RockOrgan | ChurchOrgan | ReedOrgan
| Accordion | Harmonica | TangoAccordion
| AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz
| ElectricGuitarClean | ElectricGuitarMuted | OverdrivenGuitar
| DistortionGuitar | GuitarHarmonics | AcousticBass
| ElectricBassFingered | ElectricBassPicked | FretlessBass
| SlapBass! | SlapBass2 | SynthBass1 | SynthBass2
| Violin | Viola | Cello | Contrabass | TremoloStrings
| PizzicatoStrings | OrchestralHarp | Timpani
| StringEnsemblel | StringEnsemble2 | SynthStrings1
| SynthStrings2 | ChoirAahs | VoiceOohs | SynthVoice
| OrchestraHit | Trumpet | Trombone | Tuba
| Muted Trumpet | FrenchHorn | BrassSection | SynthBrass1
| SynthBrass2 | SopranoSazx | AltoSax | TenorSax
| BaritoneSaz | Oboe | Bassoon | EnglishHorn | Clarinet
| Piccolo | Flute | Recorder | PanFlute | BlownBottle
| Shakuhachi | Whistle | Ocarina | Lead1Square
| Lead2Sawtooth | Lead3Calliope | Lead4 Chiff
| Lead5Charang | Lead6Voice | Lead7Fifths
| Lead8BassLead | PadlNewAge | Pad2Warm
| Pad3Polysynth | Pad4Choir | Pad5Bowed
| Pad6Metallic | Pad7Halo | Pad8Sweep
| FX1Train | FX2Soundtrack | FX3Crystal
| FX4Atmosphere | FX5Brightness | FX6Goblins
| FX7Echoes | FX8SciFi | Sitar | Banjo | Shamisen
| Koto | Kalimba | Bagpipe | Fiddle | Shanai
| TinkleBell | Agogo | SteelDrums | Woodblock | TaikoDrum
| MelodicDrum | SynthDrum | ReverseCymbal
| GuitarFretNoise | BreathNoise | Seashore
| BirdTweet | TelephoneRing | Helicopter
| Applause | Gunshot | Percussion
| Custom String
deriving (Show, Eq, Ord)

Figure 2.1: General MIDI Instrument Names
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Cfa ¢, CS, dfa da dS, efa ¢, es7ﬁafafs7gfa 9,95, a’fa a,as, bf7 b7 bs::
Octave — Dur — Music Pitch

cf o d=note d (Cf,0)
cod=mnoted (C,o0)
cs o d = note d (Cs, o)
df o d = note d (Df, o)
d o d =note d (D, o)
ds o d = note d (Ds, o)
ef o d = note d (Ef,0)
e od=mnoted (E,o)
es o d = note d (Es, 0)
ff o d =mnote d (Ff,0)
f od=mnote d (F,o)
fs 0 d = note d (Fs,0)
gf o d =mnote d (Gf, o)
g od=note d (G,o)
gs o d = note d (Gs, 0)
af o d = note d (Af, o)
a o d=noted (4A,o)
as o d = note d (As, o)
bf o d = note d (Bf,0)
b o d=noted (B,o)
bs 0o d = note d (Bs, o)

Figure 2.2: Convenient note names.

tempo r m = Modify (Tempo ) m
transpose i m = Modify ( Transpose i) m
instrument i m = Modify (Instrument i) m
phrase pa m = Modify (Phrase pa) m
player pn. m = Modify (Player pn) m

We can also create simple names for familiar notes, durations, and rests,
as shown in Figures 2.2 and 2.3. Despite the large number of them, these
names are sufficiently “unusual” that name clashes are unlikely.

As a simple example, here is a ii-V-I chord progression in C major:

t251 :: Music Pitch
t251 = let dMinor = d 3 wn:=:f31:=:a 3 wn
gMajor = g3 wn:=:031:=:d4 wn
cMajor = c3bn:=:e32:=:g3 bn
in dMinor +: gMajor +: cMajor
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bn, wn, hn, gn, en, sn, tn, sfn, dwn, dhn,
dgn, den, dsn, dtn, ddhn, ddgn, dden :: Dur

bnr, wnr, hnr, gnr, enr, snr, tnr, dwnr, dhnr,
dgnr, denr, dsnr, dtnr, ddhnr, ddgnr, ddenr :: Music Pitch

bn = 2; bnr = rest bn -- brevis rest

wn = 1; wnr = rest wn -- whole note rest

hn =1/2; hnr = rest hn -- half note rest

gn =1 /4; qnr = rest qn -- quarter note rest

en =1/8;enr = rest en -- eight note rest

sn=1/16; snr = rest sn -- sixteenth note rest

tn =1/ 32; tnr = rest tn -- thirty-second note rest

sfn =1/ 64; sfar = rest sfn - sixty-fourth note rest

dwn = 3/ 2; dwnr = rest dwn -- dotted whole note rest

dhn =3 / 4; dhnr = rest dhn -- dotted half note rest

dgn = 3/ 8; dgnr = rest dgn -- dotted quarter note rest

den = 3 / 16; denr = rest den -- dotted eighth note rest

dsn =3/ 32; dsnr = rest dsn -- dotted sixteenth note rest

dtn = 3 / 64; dtnr = rest din -- dotted thirty-second note rest
ddhn =7 / 8; ddhnr = rest ddhn -- double-dotted half note rest
ddgn =7 / 16; ddgnr = rest ddgqn -- double-dotted quarter note rest
dden =7 / 32; ddenr = rest dden -- double-dotted eighth note rest

Figure 2.3: Convenient rest names.
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Details: Note that more than one equation is allowed in a let expression.
The first characters of each equation, however, must line up vertically, and
if an equation takes more than one line then the subsequent lines must be
to the right of the first characters. For example, this is legal:

let a = aLongName
+ anFEvenLongerName
b =56
in...

but neither of these are:

let a = aLongName
+anFvenLongerName
b =56
in...

let a = aLongName
+ anFvenLongerName
b =56
in...

(The second line of the first example is too far to the left, as is the third
line in the second example.)

Although this rule, called the layout rule, may seem a bit ad hoc, it avoids
having to use special syntax to denote the end of one equation and the
beginning of the next (such as a semicolon), thus enhancing readability.
In practice, use of layout is rather intuitive. Just remember two things:

First, the first character following either where or let (and a few other
keywords that we will see later) is what determines the starting column
for the set of equations being written. Thus we can begin the equations
on the same line as the keyword, the next line, or whatever.

Second, just be sure that the starting column is further to the right than
the starting column associated with any immediately surrounding clause
(otherwise it would be ambiguous). The “termination” of an equation
happens when something appears at or to the left of the starting column
associated with that equation.

In order to play this simple example, we can import the play function
from Hasore’s MIDI library, and simply type:

play t251

at the GHC command line. Default instruments and tempos are used to
then play the resulting composition.
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2.4 Absolute Pitches

Treating pitches simply as integers is useful in many settings, so let’s use a
type synonym to introduce a concept of “absolute pitch:”

type AbsPitch = Int

The absolute pitch of a (relative) pitch can be defined mathematically as 12
times the octave, plus the index of the pitch class. We can express this in
Haskell as follows:

absPitch :: Pitch — AbsPitch
absPitch (pe, oct) = 12 % oct + pcTolnt pc

Details: Note the use of pattern-matching to match the argument of
absPitch to a pair.

pcTolnt is simply a function that converts a particular pitch class to an
index, easily expressed as:

pcTolnt :: PitchClass — Int
pcTolnt Cf = —1
pcTolnt C' =0
pcTolnt Cs =1
pcTolnt Df =1
pcTolnt D = 2
pcTolnt Ds = 3
pcTolnt Ef =3
pcTolnt £ =4
pcTolnt Es =5
pcTolnt Ff =4
pcTolnt FF =5
pcTolnt Fs =6
pcTolnt Gf =6
pcTolnt G =17
pcTolnt Gs = 8
pcTolnt Af =8
pcTolnt A =9
pcTolnt As = 10
pcTolnt Bf = 10
pcTolnt B =11
pcTolnt Bs = 12
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Converting an absolute pitch to a pitch is a bit more tricky, because of
enharmonic equivalences. For example, the absolute pitch 15 might corre-
spond to either (Ds, 1) or (Ef,1). We take the approach of always returning
a sharp in such ambiguous cases:

pitch :: AbsPitch — Pitch
pitch ap = ([C, Cs, D, Ds,E, F,Fs, G, Gs, A, As, B] !l mod ap 12,
quot ap 12)

Details: (!) is Haskell's zero-based list-indexing function; list!! n returns
the (n + 1)th element in list. mod z n is the value of 2 modulo n; and
quot = n is the integer quotient of z divided by n.

We can also define a function trans, which transposes pitches:

trans :: Int — Pitch — Pitch
trans i p = pitch (absPitch p + 1)

Exercise 2.1 Show that abspitch (pitch ap) = ap, and, up to enharmonic
equivalences, pitch (abspitch p) = p.

Exercise 2.2 Show that trans i (trans j p) = trans (i + j) p.



Chapter 3

Polymorphic and
Higher-Order Functions

In the last chapter we learned a little about polymorphic data types. In this
chapter we will also learn about polymorphic functions, which are essentially
functions defined over polymorphic data types. The already familiar list is
the most common example of a polymorphic data type, and I will discuss it
at length in this chapter. Although lists have no direct musical connection,
they are perhaps the most commonly used data type in Haskell, and have
many applications in computer music programming.

We will also learn about higher-order functions, which are functions that
take one or more functions as arguments or return a function as a result
(functions can also be placed in data structures, making the data construc-
tors higher-order too). Together, polymorphic and higher-order functions
substantially increase our expressive power and our ability to reuse code.
We will see that both of these new ideas naturally follow the foundations
that we have already built.

(A more detailed discussion of pre-defined polymorphic functions that
operate on lists can be found in Chapter A.)

3.1 Polymorphic Types

In previous chapters we saw examples of lists containing several different
kinds of elements—integers, characters, pitch classes, and so on—and you
can well imagine situations requiring lists of other element types as well.
Sometimes, however, we don’t wish to be so particular about the precise
type of the elements. For example, suppose we want to define a function

31
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length that determines the number of elements in a list. We don’t really
care whether the list contains integers, pitch classes, or even other lists—we
imagine computing the length in exactly the same way in each case. The
obvious definition is:

length [] =0
length (x : xs) = 1 + length xs

This recursive definition is self-explanatory. We can read the equations as
saying: “The length of the empty list is 0, and the length of a list whose
first element is z and remainder is zs is 1 plus the length of zs.”

But what should the type of length be? Intuitively, what we’d like to
say is that, for any type a, the type of length is [a] — Integer. In Haskell
we write this simply as:

length :: [a] — Integer

Details: Generic names for types, such as a above, are called type vari-
ables, and are uncapitalized to distinguish them from specific types such
as Integer.

So length can be applied to a list containing elements of any type. For
example:

length 1,2, 3] = 3
length [ C, Cs, Df | = 3
length [[1],[],[2,3,4]] = 3

Note that the type of the argument to length in the last example is
[[Integer]]; that is, a list of lists of integers.

Here are two other examples of polymorphic list functions, which happen
to be pre-defined in Haskell:

head :: [a] — a

head (z:_) ==z

tail :: [a] — [a]
tail (—:xs) = xs

Details: The _ on the left-hand side of these equations is called a wild-
card pattern. It matches any value, and binds no variables. It is useful
as a way of documenting the fact that we do not care about the value in
that part of the pattern.
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These two functions take the “head” and “tail,” respectively, of any
non-empty list:

head [1,2,3] = 1

head [’a’,’b’,’c’| = ’a’

tail [1,2,3] = [2,3]

tail [;a;’ ’b’, ’C’] = [’b’, ’C’]

Functions such as length, head, and tail are said to be polymorphic (poly
means many and morphic refers to the structure, or form, of objects). Poly-
morphic functions arise naturally when defining functions on lists and other
polymorphic data types, including the Music data type defined in the last
chapter.

3.2 Abstraction Over Recursive Definitions

Suppose we have a list of pitches, and we wish to convert each of them to
an absolute pitch. We might write a function:

toAbsPitches :: [ Pitch| — [AbsPitch]
toAbsPitches [] =[]
toAbsPitches (p : ps) = absPitch p : toAbsPitches ps

We might also want to convert a list of absolute pitches to a list of pitches:

toPitches :: [AbsPitch| — [ Pitch]
toPitches [] =[]
toPitches (a : as) = pitch a : toPitches as

These two functions are different, but share something in common: there
is a repeating pattern of operations. But the pattern is not quite like any
of the examples that we studied earlier, and therefore it is unclear how to
apply the abstraction principle. What distinguishes this situation is that
there is a repeating pattern of recursion.

In discerning the nature of a repeating pattern it’s sometimes helpful
to identify those things that aren’t repeating—i.e. those things that are
changing—since these will be the sources of parameterization: those values
that must be passed as arguments to the abstracted function. In the case
above, these changing values are the functions absPitch and pitch; let’s
consider them instances of a new name, f. If we then simply rewrite either
of the above functions as a new function—Ilet’s call it map—that takes an
extra argument f, we arrive at:
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map f [] =[]
map f (x:x8)=f x:map [ s

With this definition of map, we can now redefine toAbsPitches and toPitches
as:

toAbsPitches :: [ Pitch] — [ AbsPitch]
toAbsPitches ps = map absPitch ps

toPitches :: [ AbsPitch| — [ Pitch]
toPitches as = map pitch as

Note that these definitions are non-recursive; the common pattern of recur-
sion has been abstracted away and isolated in the definition of map. They
are also very succinct; so much so, that it seems unnecessary to create new
names for these functions at all! One of the powers of higher-order functions
is that they permit concise yet easy-to-understand definitions such as this,
and you will see many similar examples throughout the remainder of the
text.

A proof that the new versions of these two functions are equivalent to
the old ones can be done via calculation, but requires a proof technique
called induction, because of the recursive nature of the original function
definitions. We will discuss inductive proofs in detail, including these two
examples, in Chapter 77.

3.2.1 Map is Polymorphic

What should the type of map be? Let’s look first at its use in toAbsPitches:
it takes the function absPitch :: Pitch — AbsPitch as its first argument, a
list of Pitchs as its second argument, and it returns a list of AbsPitchs as
its result. So its type must be:

map :: (Pitch — AbsPitch) — [ Pitch] — [AbsPitch)|

Yet a similar analysis of its use in toPitches reveals that map’s type should
be:

map :: (AbsPitch — Pitch) — [AbsPitch| — | Pitch)|

This apparent anomaly can be resolved by noting that map, like length,
head and tail, does not really care what its list element types are, as long as
its functional argument can be applied to them. Indeed, map is polymorphic,
and its most general type is:
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map :: (a — b) — [a] — [b]

This can be read: “map is a function that takes a function from any type a
to any type b, and a list of a’s, and returns a list of b’s.” The correspon-
dence between the two a’s and between the two b’s is important: a function
that converts Int’s to Char’s, for example, cannot be mapped over a list of
Char’s. Tt is easy to see that in the case of toAbsPitches, a is instantiated
as Pitch and b as AbsPitch, whereas in toPitches, a and b are instantiated
as AbsPitch and Pitch, respectively.

Details: In Chapter 1 we mentioned that every expression in Haskell has
an associated type. But with polymorphism, you might wonder if there is
just one type for every expression. For example, map could have any of
these types:

(a = b) — [a] — [b]

(Integer — b) — [Integer] — [b]

(a — Float) — [a] — [Float]

(Char — Char) — [Char] — [ Char]

and so on, depending on how it will be used. However, notice that the
first of these types is in some fundamental sense more general than the
other three. In fact, every expression in Haskell has a unique type known
as its principal type: the least general type that captures all valid uses of
the expression. The first type above is the principal type of map, since
it captures all valid uses of map, yet is less general than, for example,
the type a — b — c. As another example, the principal type of head is
[a] — a; the types [b] — a, b — a, or even a are too general, whereas
something like [ Integer] — Integer is too specific.!

3.2.2 Using map

Now that we can picture map as a polymorphic function, it is useful to look
back on some of the examples we have worked through to see if there are
any situations where map might have been useful. For example, recall from
Section 1.4.3 the definition of totalArea:

totalArea = listSum |circleArea 11, circleArea 12, circleArea r3 ]

It should be clear that this can be rewritten as:

!The existence of unique principal types is the hallmark feature of the Hindley-Milner
type system [Hin69, Mil78] that forms the basis of the type systems of Haskell, ML [MTH90]
and many other functional languages [Hud89).
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totalArea = listSum (map circleArea [r1,7r2,13])
A simple calculation is all that is needed to show that these are the same:

map circleArea [11,712, 73]

= circleArea r1 : map circleArea [r2,r3]

= circleArea r1 : circleArea 2 : map circleArea [13]

= circleArea r1 : circleArea 12 : circleArea 13 : map circleArea []
= circleArea rl1 : circleArea 12 : circleArea 13 : []

= [circleArea 11, circleArea r2, circleArea 13]

For an interesting musical example, let’s generate a whole-tone scale starting
at a given pitch:

wts :: Pitch — [ Music Pitch]
wts p = let ap = absPitch p
f ap = note gn (pitch ap)
in map f [mec, me +2..mc+ 12]

Details: A list [a,b..c] is called an arithmetic sequence, and is special
syntax for the list [a,a + d,a+2x d,...,c] where d = b — a.

3.3 Append

Let’s now consider the problem of concatenating or appending two lists to-
gether; that is, creating a third list that consists of all of the elements from
the first list followed by all of the elements of the second. Once again the
type of list elements does not matter, so we will define this as a polymorphic
infix operator (+):

(+) = [a] = [a] — [a]
For example, here are two uses of (+) on different types:

[1,2,3] 4+ [4,5,6] = [1,2,3,4,5,6]
(C,E,G]+ [D,F,A]= [C,E,G,D,F,A|

As usual, we can approach this problem by considering the various possi-
bilities that could arise as input. But in the case of (+) we are given two
inputs—so which do we consider first? In general this is not an easy ques-
tion, but in the case of (+) we can get a hint about what to do by noting
that the result contains firstly all of the elements from the first list. So let’s
consider the first list first: it could be empty, or non-empty. If it is empty
the answer is easy:
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[] 4 ys = ys

and if it is not empty the answer is also straightforward:
(x:zs) Hys =z (xs H ys)

Note the recursive use of (+-). Our full definition is thus:

(+) = [a] = [a] — [a]
[] 4 ys = ys
(z:28) Hys =z : (zs H ys)

The Efficiency and Fixity of Append In Chapter 7?7 we will prove the
following simple property about (H+-):

(zs H ys) H zs = zs +H (ys H zs)

That is, (4) is associative.

But what about the efficiency of the left-hand and right-hand sides of
this equation? It is easy to see via calculation that appending two lists
together takes a number of steps proportional to the length of the first list
(indeed the second list is not evaluated at all). For example:

[1,2,3] + zs

= 1:([2,3] # as)
= 1:2:([3] # x3)
=1:2:3:([] # xs)
=1:2:3:2s

Therefore the evaluation of xs + (ys H zs) takes a number of steps propor-
tional to the length of zs plus the length of ys. But what about (zs -+ ys) H
28?7 The leftmost append will take a number of steps proportional to the
length of zs, but then the rightmost append will require a number of steps
proportional to the length of zs plus the length of ys, for a total cost of:

2 x length xs + length ys

Thus zs + (ys H zs) is more efficient than (zs 4 ys) + zs. This is why the
Standard Prelude defines the fixity of (4) as:

infixr 5-H

In other words, if you just write zs H ys + zs, you will get the most efficient
association, namely the right association zs + (ys + zs). In the next section
I will demonstrate a more dramatic example of this property.
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3.4 Fold

Suppose we wish to take a list of notes (each of type Music) and convert
them into a line, or melody. We can define a recursive function to do this:

line :: [ Music a] — Music a
line [] = rest 0
line (m : ms) = m +: line ms

In a different situation we might wish to compute the highest pitch in a list
of pitches:

maxPitch :: | Pitch] — Pitch
mazxPitch [] =0
maxPitch (p : ps) = p N mazPitch ps

where !!! is defined as:
pl M p2 = if absPitch p1 > absPitch p2 then pl else p2

Once again we have a situation where several definitions share something
in common—a repeating recursive pattern. Using the process that we used
to discover map, let’s first identify those things that are changing. There
are two pairs: the Primitive (Rest 0) and 0 values (for which we’ll use the
generic name init, for “initial value”), and the (:+:) and (!!!) operators (for
which we’ll use the generic name op, for “operator”). If we now rewrite
either of the above functions as a new function—lets call it fold—that takes
extra arguments op and nit, we arrive at:?

fold op init [] = init
fold op init (x : xs) = x ‘op* fold op init xs

Details: Any normal binary function name can be used as an infix oper-
ator by enclosing it in backquotes; = ‘f* y is equivalent to f = y. Using
infix application here for op better reflects the structure of the repeating
pattern that we are abstracting.

With this definition of fold we can now rewrite the definitions of line
and maxPitch as:

2The use of the name “fold” for this function is historical, and has little to do with the
use of “fold” and “unfold” to describe steps in a calculation.
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line :: [ Music] — Music
line ms = fold (:+:) (Primitive (Rest 0)) ms

mazxPitch :: | Pitch] — Pitch
maxPitch ps = fold () 0 ps

Details: Just as we can turn a function into an operator by enclosing
it in backquotes, we can turn an operator into a function by enclosing it
in parentheses. This is required in order to pass an operator as a value
to another function, as in the examples above. (If we wrote fold ! 0 ps
instead of fold (1) 0 ps it would look like we were trying to compare fold
to 0 ps, which is nonsensical and ill-typed.)

In Chapter 7?7 we will use induction to prove that these new definitions
are equivalent to the old ones.
As another example, recall the definition of listSum from Section 1.4.3:

listSum :: [ Float] — Float
listSum [] =0
listSum (z : xs) = z + listSum xs

We can now rewrite this more succinctly using fold:

listSum :: [ Float] — Float
listSum zs = fold (+) 0 zs

fold, like map, is a highly useful—reusable—function, as we will see through
several other examples later in the text. Indeed, it too is polymorphic, for
note that it does not depend on the type of the list elements. Its most
general type—somewhat trickier than that for map—is:

fold::(a—b—>b)—b—[a]—b
This allows us to use fold whenever we need to “collapse” a list of elements
using a binary (i.e. two-argument) operator.

3.4.1 Haskell’s Folds

Haskell actually defines two versions of fold in the Standard Prelude. The
first is called foldr (“fold-from-the-right”) which is defined the same as our
fold:
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foldr::(a —b—b) —b—[a] —b
foldr op init [] = init
foldr op init (z : xs) = z ‘op* foldr op init xs

A good way to think about foldr is that it replaces all occurences of the
list operator (:) with its first argument (a function), and replaces [] with its
second argument. In other words:

foldr op init (z1 :22:...:2n:[])
= 1 ‘op* (22 ‘op* (...(zn ‘op‘ init)...))

This might help you to understand the type of foldr better, and also explains
its name: the list is “folded from the right.” Stated another way, for any
list zs, the following always holds:?

foldr (:) [] zs = ws
Haskell’s second version of fold is called foldl:

foldl:: (b —a—b)—b—[a] —b
foldl op init [] = init
foldl op init (z : xs) = foldl op (init ‘op‘ z) xs

A good way to think about foldl is to imagine “folding the list from the
left:”

foldl op init (x1 :x2:...:2n:[])
= (...((init ‘op‘ 1) ‘op* x2)...) ‘op* xn

3.4.2 Why Two Folds?

Note that if we had used foldl instead of foldr in the definitions given earlier
then not much would change; foldr and foldl would give the same result.
Indeed, judging from their types, it looks like the only difference between
foldr and foldl is that the operator takes its arguments in a different order.

So why does Haskell define two versions of fold? It turns out that there
are situations where using one is more efficient, and possibly “more defined,”
than the other. (By more defined, I mean that the function terminates on
more values of its input domain.)

Probably the simplest example of this is a generalization of the associa-
tivity of () discussed in the last section. Suppose that we wish to collapse
a list of lists into one list. The Standard Prelude defines the polymorphic
function concat for this purpose:

3We will formally prove this in Chapter ??.



CHAPTER 3. POLYMORPHIC AND HIGHER-ORDER FUNCTIONS41

concat :: [[a]] — [a]
concat zss = foldr (+) [] zss

For example:

concat [[1],[3,4],[],[5,6]]
= [1.2,3,4,5,6]

More importantly, from the earlier discussion it should be clear that this
property holds:

concat [xs1,xs2, ..., xsn]
= foldr () [] [zsl,xs2, ..., xsn]
= x5l H (2s2 H (...(zn H[]))...)

The total cost of this computation is proportional to the sum of the lengths
of all of the lists. If each list has the same length len, then this cost is n*len.
On the other hand, if we had defined concat this way:

slowConcat xss = foldl (+) [] zss
then we have:

slowConcat [zs1, 152, ..., xsn ]
= foldl (+) [] [wsl,xs2, ..., zsn]
= (L (([] H21) H 22)...) H# an

If each list has the same length len, then the cost of this computation will
be:

len 4 (len 4 len) 4 (len + len 4+ len) + ... + (n — 1) x len
=nx*(n—1)*len

which is considerably worse than n * len. Thus the choice of foldr in the
definition of concat is quite important.

Similar examples can be given to demonstrate that foldl is sometimes
more efficient than foldr. On the other hand, in many cases the choice does
not matter at all (consider, for example, (4)). The moral of all this is that
care must be taken in the choice between foldr and foldl if efficiency is a
concern.
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3.4.3 Fold for Non-empty Lists

One might argue that both line and maxPitch should not be well defined on
an empty list, and for that purpose the Standard Prelude provides functions
foldr1l and foldll, which return an error if applied to an empty list. Our
preferred definitions for line and maxzPitch, as well as a function chord that
is similar to line except that it does parallel composition, are:

line, chord :: [ Music] — Music
line ms = foldr1 (:+:) ms
chord ms = foldr1 (:=:) ms

mazxPitch :: | Pitch] — Pitch
maxPitch ps = foldr1 () ps

3.5 A Final Example: Reverse

As a final example of a useful list function, consider the problem of reversing
a list, which we will capture in a function called reverse. For example,
reverse [1,2,3] is [3,2,1]. Thus reverse takes a single list argument, whose
possibilities are the normal ones for a list: it is either empty, or it is not.
And so we write:

reverse :: [a] — [a]
reverse [| =[]
reverse (z : xs) = reverse s +H [z]

This, in fact, is a perfectly good definition for reverse—it is certainly clear—
except for one small problem: it is terribly inefficient! To see why, first note
that the number of steps needed to compute zs + ys is proportional to the
length of xs. Now suppose that the list argument to reverse has length n.
The recursive call to reverse will return a list of length n — 1, which is the
first argument to (+-). Thus the cost to reverse a list of length of n will be
proportional to n — 1 plus the cost to reverse a list of length n — 1. So the
total cost is proportional to (n —1) + (n —2) +--- 4+ 1 =n(n — 1)/2, which
in turn is proportional to the square of n.

Can we do better than this? Yes we can.

There is another algorithm for reversing a list, which goes something like
this: take the first element, and put it at the front of an empty auxiliary
list; then take the next element and add it to the front of the auxiliary list
(thus the auxiliary list now consists of the first two elements in the original
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list, but in reverse order); then do this again and again until you reach the
end of the original list. At that point the auxiliary list will be the reverse of
the original one.

This algorithm can be expressed recursively, but the auxiliary list implies
that we need a function that takes two arguments—the original list and the
auxiliary one—yet reverse only takes one. So we create an auxiliary function
rev:

reverse s = rev || zs
where rev acc [] = acc
rev acc (z : xs) = rev (z : acc) xs

The auxiliary list is the first argument to rev, and is called acc since it
behaves as an “accumulator” of the intermediate results. Note how it is
returned as the final result once the end of the original list is reached.

A little thought should convince the reader that this function does not
have the quadratic (n?) behavior of the first algorithm, and indeed can be
shown to execute a number of steps that is directly proportional to the
length of the list, which we can hardly expect to improve upon.

But now, compare the definition of rev with the definition of foldl:

foldl op init [] = init
foldl op init (z : xs) = foldl op (init ‘op‘ ) xs

They are somewhat similar. In fact, suppose we were to slightly rewrite rev,
yielding:

rev op acc ] = acc
rev op acc (z : xs) = rev op (acc ‘op* x) s

Now rev looks exactly like foldl, and the question becomes whether or not
there is a function that can be substituted for op that would make the latter
definition of rev equivalent to the former one. Indeed there is:

revOp a b=">b:a
For note that:

acc ‘revOp‘ x = revOp acc £ = x : acc
So reverse can be rewritten as:

reverse xs = rev revOp [] xs
where rev op acc [| = acc
rev op acc (z :xs) = rev op (acc ‘op‘ x) s
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which is the same as:
reverse xs = foldl revOp [] xs

If all of this seems like magic, well, you are starting to see the beauty of
functional programming!

3.6 Errors

In the last section we talked about the idea of “returning an error” when
the argument to foldr! is the empty list. As you might imagine, there are
other situations where an error result is also warranted.

There are many ways to deal with such situations, depending on the
application, but sometimes we wish to literally stop the program, signalling
to the user that some kind of an error has occurred. In Haskell this is done
with the Standard Prelude function error :: String — a. Note that error is
polymorphic, meaning that it can be used with any data type. The value
of the expression error s is bottom, the completely undefined, or “bottom”
value. As an example of its use, here is the definition of foldri from the
Standard Prelude:

foldr! ::(a — a — a) — [a] — a

foldrl f [z] =

foldrl f (x:zs ) f x (foldrl f xs)

foldr1 f [] = error "Prelude.foldrl: empty list"

Thus if the anomalous situation arises, the program will terminate immedi-
ately, and the string "Prelude.foldrl: empty list" will be printed.

Exercise 3.1 What is the principal type of each of the following expres-
sions:

map map
map foldl

Exercise 3.2 Rewrite the definition of length non-recursively.

Exercise 3.3 Define a function that behaves as each of the following:

1. Doubles each number in a list. For example:

doubleFEach [1,2,3] = [2,4, 6]
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2. Pairs each element in a list with that number and one plus that num-
ber. For example:

pairAndOne [1,2,3] = [(1,2),(2,3),(3,4)]
3. Adds together each pair of numbers in a list. For example:
addEachPair [(1,2),(3,4),(5,6)] = [3,7,11]

In this exercise and the two that follow, give both recursive and (if possible)
non-recursive definitions, and be sure to include type signatures.

Exercise 3.4 Define a function mazList that computes the maximum ele-
ment of a list. Define minList analogously.

Exercise 3.5 Define a function that adds “pointwise” the elements of a list
of pairs. For example:

addPairsPointwise [(1,2),(3,4),(5,6)] = (9,12)

Exercise 3.6 Freddie the Frog wants to communicate privately with his
girlfriend Francine by encrypting messages sent to her. Frog brains are
not that large, so they agree on this simple strategy: each character in
the text shall be converted to the character “one greater” than it, based
on the representation described below (with wrap-around from 255 to 0).
Define functions encrypt and decrypt that will allow Freddie and Francine
to communicate using this strategy.

Hint: Characters are often represented inside a computer as some kind
of an integer; in the case of Haskell, a 16-bit unicode representation is used.
For this exercise, you will want to use two Haskell functions, toEnum and
fromEnum. The first will convert an integer into a character, the second
will convert a character into an integer.

Exercise 3.7 Suppose you are given a non-negative integer amt represent-
ing a sum of money, and a list of coin denominations [v1,v2,...,vn], each
being a positive integer. Your job is to make change for amt using the coins
in the coin supply. Define a function makeChange to solve this problem.
For example, your function may behave like this:

makeChange 99 [5,1] = [19, 4]
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where 99 is the amount and [5, 1] represents the types of coins (say, nickels
and pennies in US currency) that we have. The answer [19,4] means that
we can make the exact change with 19 5-unit coins and 4 single-unit coins;
this is the best (in terms of the total number of coins) possible solution.

To make things slightly easier, you may assume that the list representing
the coin denominations is given in descending order, and that the single-unit
coin is always one of the coin types.

[Need to add some musical exercises.]



Chapter 4

More About Higher-Order
Functions

You have now seen several examples where functions are passed as arguments
to other functions, such as with fold and map. In this chapter I will show
several examples where functions are also returned as values. This will lead
to several techniques for improving definitions that we have already written,
techniques that we will use often in the remainder of the text.

4.1 Currying

The first improvement relates to the notation we have used to write func-
tion applications, such as simple = y z. Although I have noted the simi-
larity of this to the mathematical notation simple(x,y, z), in fact there is
an important difference, namely that simple = y z is actually equivalent to
(((simple z) y) z). In other words, function application is left associative,
taking one argument at a time.

Let’s look at the expression (((simple =) y) z) a bit closer: there is an
application of simple to z, the result of which is applied to y; so (simple x)
must be a function! The result of this application, ((simple x) y), is then
applied to z, so ((simple x) y) must also be a function!

Since each of these intermediate applications yields a function, it seems
perfectly reasonable to define a function such as:

multSumByFive = simple 5

What is simple 57 From the above argument we know that it must be a func-
tion. And from the definition of simple in Section 1.1 we might guess that

47
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this function takes two arguments, and returns 5 times their sum. Indeed,
we can calculate this result as follows:

multSumByFive a b
= (simple 5) a b

= simple 5 a b

= 5% (a+b)

The intermediate step with parentheses is included just for clarity. This
method of applying functions to one argument at a time, yielding interme-
diate functions along the way, is called currying, after the logician Haskell
B. Curry who popularized the idea.! It is helpful to look at the types of the
intermediate functions as arguments are applied:

stmple :: Float — Float — Float — Float
stmple 5 :: Float — Float — Float
simple 5 a :: Float — Float

stmple 5 a b :: Float

How can we use currying to improve any of our previous examples? One
place is in these definitions of line and maxPitch:

line :: [ Music] — Music
line ms = fold (:+:) (Primitive (Rest 0)) ms

maxPitch :: | Pitch] — Pitch
mazxPitch ps = fold () 0 ps

which can be simplified to:
line :: [ Music] — Music
line = fold (:+:) (Primitive (Rest 0))
mazxPitch :: [ Pitch] — Pitch
mazxPitch = fold () O

Similarly, this defintion of listSum:

listSum :: [ Float] — Float
listSum xs = foldl (+) 0 xs

Tt was actually Schénfinkel who first called attention to this idea [Sch24], but the word
“schonfinkelling” is rather a mouthful!
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can be simplified to:

listSum :: [ Float] — Float
listSum = foldl (+) 0

We will refer to this kind of simplification as “currying simplification” or
just “currying,” even though it actually has a more technical name, “eta
contraction.”

Details: Some care should be taken when using this simplification idea.
In particular, note that an equation such as f z = g = y = cannot be
simplified to f = g z y, since then the z would become undefined!

Here is a more interesting example, in which I will use currying simpli-
fication three times. Recall from Section 3.5 the definition of reverse using
foldl:

reverse xs = foldl revOp [] xs
where revOp acc x = z : acc

Using the polymorphic function flip which is defined in the Standard Prelude
as:

flip::(a—b—¢)— (b—a—c)

fipfry=fyz

it should be clear that revOp can be rewritten as:
revOp acc x = flip (:) acc x

But now currying simplification can be used twice to reveal that:
revOp = flip (3)

This, along with a third use of currying, allows us to rewrite the definition
of reverse simply as:

reverse = foldl (flip (3)) []

This is in fact the way reverse is defined in the Standard Prelude.
Exercise 4.1 Show that flip (flip f) is the same as f.

Exercise 4.2 What is the type of ys in:
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xs =[1,2,3] :: [ Float]
ys = map (+) xs

Exercise 4.3 Define a function applyEach that, given a list of functions,
applies each to some given value. For example:

applyEach [simple 2 2,(+3)] 5 = [14, 8]
where simple is as defined in Section 1.1.

Exercise 4.4 Define a function applyAll that, given a list of functions
[f1,f2,...,fn] and a value v, returns the result f1 (f2 (...(fn v)...)). For
example:

applyAll [simple 2 2, (4+3)] 5 = 20

Exercise 4.5 Recall the discussion about the efficiency of () and concat
in Chapter 3. Which of the following functions is more efficient, and why?

appendr, appendl :: [[a]] — [a]
appendr = foldr (flip (+)) []
appendl = foldl (flip (+)) []

4.2 Sections

With a bit more syntax, we can also curry applications of infix operators
such as (+). This syntax is called a section, and the idea is that, in an
expression such as (4 y), you can omit either the z or the y, and the result
(with the parentheses still intact) is a function of that missing argument.
If both variables are omitted, it is a function of two arguments. In other
words, the expressions (z+), (+y) and (4) are equivalent, respectively, to
the functions:

fly=z+y
fr=x+y
fBry=z+y

For example, suppose that we need to determine whether each number in a
list is positive. Instead of writing:

posints :: [ Integer] — [Bool ]
posInts rs = map test xs
where test x =z >0
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we can simply write:

posints :: [ Integer] — [Bool |
posInts xs = map (>0) zs

which can be further simplified using currying;:

posInts :: [ Integer| — [ Bool]
posInts = map (>0)

This is an extremely concise definition.

As you gain experience with higher-order functions you will not only be
able to start writing definitions such as this directly, but you will also start
thinking in “higher-order” terms. We will see many examples of this kind of
reasoning throughout the text.

Exercise 4.6 Define a function twice that, given a function f, returns a
function that applies f twice to its argument. For example:

(twice (+1)) 2 =4

What is the principal type of twice? Describe what twice twice does, and
give an example of its use. How about twice twice twice and twice (twice twice)?

Exercise 4.7 Generalize twice defined in the previous exercise by defining
a function power that takes a function f and an integer n, and returns a
function that applies the function f to its argument n times. For example:

power (+2) 51 =11

Use power to define something (anything!) useful.

4.3 Anonymous Functions

The final way to define a function in Haskell is in some sense the most funda-
mental: it is called an anonymous function, or lambda expressions (since the
concept is drawn directly from Church’s lambda calculus [Chu41]). The idea
is that functions are values, just like numbers and characters and strings,
and therefore there should be a way to create them without having to give
them a name. As a simple example, an anonymous function that incre-
ments its numeric argument by one can be written Az — z + 1. Anonymous
functions are most useful in situations where you don’t wish to name them,
which is why they are called “anonymous.”
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Details: The typesetting that we use in this book prints an actual Greek
lambda character, but in writing Az — 2 + 1 in your programs you will
have to write "\x -> x+1" instead.

As another example, to add one and then divide by two every element
of a list, we could write:

map Az — (z+1) /2) zs

An even better example is an anonymous function that pattern-matches its
argument, as in:

map (A(a,b) — a+b) xs
Details: Anonymous functions can only perform one match against an

argument. That is, you cannot stack together several anonymous functions
to define one function, as you can with equations.

Anonymous functions are considered most fundamental because defini-
tions such as that for simple given in Chapter 1:

simple x y z =z x (y + 2)
can be written instead as:
simple =Xz y z — x % (y + 2)
Details: Az y z — exp is shorthand for Az — Ay — Az — exp.

We can also use anonymous functions to explain precisely the behavior
of sections. In particular, note that:

(z4+) =Xy —z+y
(H+y) =Xz —z+y
(H)=Xry—z+y

Exercise 4.8 Suppose we define a function fiz as:

fi f = [ (fix f)

What is the principal type of fir? (This is tricky!) Suppose further that we
have a recursive function:

remainder :: Integer — Integer — Integer
remainder a b =if a < b then a
else remainder (a — b) b

Rewrite this function using fiz so that it is not recursive. (Also tricky!) Do
you think that this process can be applied to any recursive function?
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Figure 4.1: Gluing Two Functions Together

4.4 Function Composition

An example of polymorphism that has nothing to do with data structures
arises from the desire to take two functions f and g and “glue them to-
gether,” yielding another function A that first applies g to its argument,
and then applies f to that result. This is called function composition, and
Haskell pre-defines a simple infix operator (o) to achieve it, as follows:

(0)::(b—¢)—(a—b)—a—c

(fog)z=FfI(g2)

Details: The symbol for function composition is typeset in this book
as o, which is the proper mathematical convention. When writing your

programs, however, you will have to use a “period” , asin “f . g".

Note the type of the operator (o); it is completely polymorphic. Note
also that the result of the first function to be applied—some type b—must be
the same as the type of the argument to the second function to be applied.
Pictorially, if you think of a function as a black box that takes input at
one end and returns some output at the other, function composition is like
connecting two boxes together, end to end, as shown in Figure 4.1.

The ability to compose functions using (o) is extremely useful. For ex-
ample, consider this function to compute the sum of the areas of circles with
various radii:

totalCircleArea :: [ Float] — Float
totalCircleArea radii = listSum (map circleArea radii)

We can first add parentheses to emphasize the application of interest:

totalCircleArea :: [ Float] — Float
totalCircleArea radii = listSum ((map circleArea) radii)
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then rewrite as a function composition:

totalCircleArea :: [ Float] — Float
totalCircleArea radii = (listSum o (map circleArea)) radii

and finally use currying to simplify:

totalCircleArea :: [ Float] — Float
totalCircleArea = listSum o map circleArea

Similarly, this definition:

totalSquareArea :: [ Float] — Float
totalSquareArea sides = listSum (map squareArea sides)

can be rewritten as:

totalSquareArea :: [ Float] — Float
totalSquareArea = listSum o map squareArea

But let’s also create additional compositions. A function that determines
whether all of the elements in a list are greater than zero, and one that
determines if at least one is greater than zero, can be written:

allOverZero, oneOverZero :: [ Integer] — Bool
allOverZero = and o posInts
oneQverZero = or o posints

Note that the auxiliary function posiInts is simple enough that we could
incorporate its definition directly, as in:

allOverZero, oneOverZero :: [ Integer| — Bool
allOverZero = and o map (>0)
oneOQverZero = or o map (>0)

In the remainder of this text I will not refrain from writing definitions such
as this directly, using a small set of rich polymorphic functions such as fold
and map, plus a few others drawn from the Prelude and Standard Libraries.

Exercise 4.9 Rewrite this example:
map Az — (z+1) /2) zs

using a composition of sections.

Exercise 4.10 Consider the expression:
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map f (map g xs)

Rewrite this using function composition and a single call to map. Then
rewrite the earlier example:

map Az — (z+1) /2) zs

as a “map of a map.”

Exercise 4.11 Go back to any exercises prior to this chapter, and simplify
your solutions using ideas learned here.

Exercise 4.12 Using higher-order functions that we have now defined, fill
in the two missing functions, fI and f2, in the evaluation below so that it
is valid:

f1 (2 (+) [1,2,3,4]) 5 = [5,10,15,20]



Chapter 5

More Music

module Haskore. MoreMusic where
import Data.lz
import Haskore. Music

In this chapter we will explore a number of simple musical ideas, and con-
tribute to a growing collection of Haskell functions for expressing those ideas.

5.1 Delay and Repeat

Suppose that we wish to describe a melody m accompanied by an iden-
tical voice a perfect 5th higher. In Haskore we can simply write m :=:
transpose 7 m. Similarly, a canon-like structure involving m can be ex-
pressed as m :=: delay d m, where:

delay :: Dur — Music a — Music a
delay d m = rest d -+:m

More interestingly, Haskell’s non-strict semantics also allows us to define
infinite musical values. For example, a musical value may be repeated ad
nauseum using this simple function:

repeatM :: Music a — Music a
repeatM m = m :+: repeatM m

Thus, for example, an infinite ostinato can be expressed in this way, and
then used in different contexts that automatically extract only the portion
that is actually needed. We will see more examples of this shortly.

o6
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5.2 Inversion and Retrograde

The notions of inversion, retrograde, retrograde inversion, etc. as used in
12-tone theory are also easily captured in Haskore. [insert explanation of
these concepts]

First let’s define a transformation from a line created by line to a list:

lineToList :: Music a — [ Music a]

lineToList nQ(Primitive (Rest 0)) =[]

lineToList (n :+: ns) = n : lineToList ns

lineToList _ = error "lineToList: argument not created by line"

Using this function it is then straightforward to define invert, from which
the other functions are easily defined via composition:

retro, invert, retrolnvert, invertRetro :: Music Pitch — Music Pitch
invert m = line (map inv [)
where [Q(Primitive (Note _ 1) : _) = lineToList m
inv (Primitive (Note d p)) =
note d (pitch (2 x absPitch v — absPitch p))
inv (Primitive (Rest d)) = rest d
retro = line o reverse o lineToList
retrolnvert = retro o tnvert
wvertRetro = invert o retro

Exercise 5.1 Show that retro o retro, invert o invert, and retrolnvert o
tnvertRetro are the identity on values created by line.

5.3 Polyrhythms

For some rhythmical ideas, first note that if m is a line of three eighth
notes, then tempo (3 /2) m is a triplet of eighth notes. In fact tempo can be
used to create quite complex rhythmical patterns. For example, consider the
“nested polyrhythms” shown in Figure 5.1. They can be expressed naturally
in Haskore as follows (note the use of the where clause in pr2 to capture
recurring phrases):

prl,pr2 :: Pitch — Music Pitch
prl p = tempo (5 / 6)
(tempo (4 /3) (mkLn 1 p qn:+:
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N
Oepl

Figure 5.1: Nested Polyrhythms (top: prl; bottom: pr2)

tempo (3 /2) (mkLn 3 p en:+:
mkLn 2 p sn:+:
mkLn 1 p qn):+:
mkLn 1 p gn):+:
tempo (3 /2) (mkLn 6 p en))

pr2 p = tempo (7 / 6) (m1:+:
tempo (5 /4) (mkLn 5 p en):+:

ml:+:
tempo (3 /2) m2)
where m1 = tempo (5 /4) (tempo (3 /2) m2 +: m2)
m2 = mkLn 3 p en

mkLn n p d = line (take n (repeat (note d p)))

Details: take n Ist is the first n elements of the list Ist. For example,
take 3 [C, Cs,Df, D, Ds] = [ C, Cs, Df]. repeat x is the infinite list of
the same value z. For example, take 3 (repeat 42) = [42, 42, 42].

To play polyrhythms pri and pr2 in parallel using middle C and middle

G, respectively, we do the following;:

pri2 :: Music Pitch
pri2 = prl (C,4) :=:pr2 (G,4)
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5.4 Symbolic Meter Changes

We can implement the notion of “symbolic meter changes” of the form “old-
note = newnote” (quarter note = dotted eighth, for example) by defining
an infix function:

(=:=) :: Dur — Dur — Music a — Music a
old =:= new = tempo (new / old)

Of course, using the new function is not much longer than using Tempo
directly, but it may have nemonic value.

5.5 Computing Duration

It is often desirable to compute the duration, in whole notes, of a musical
value; we can do so as follows:

dur :: Music a — Dur

dur (Primitive (Note d _)) = d

dur (Primitive (Rest d)) = d

dur (m1 :+:m2) = dur m1 + dur m2
dur (m1 :=:m2) = dur m1 ‘maz‘ dur m2
Modify (Tempo r) m) = dur m / r
Modify —m) = dur m

dur
dur

P

5.6 Super-retrograde

Using dur we can define a function revM that reverses any Music value (and
is thus considerably more useful than retro defined earlier). Note the tricky
treatment of (:=:).

revM :: Music a — Music a
revM n@(Primitive _) = n
revM (Modify ¢ m) = Modify ¢ (revM m)
revM (m1 4:m2) = revM m2 :+: revM m1
revM (ml1 :=:m2) =
let d1 = dur m1
d2 = dur m2
in if d1 > d2 then revM m1 :=: (rest (d1 — d2) :+: revM m2)
else (rest (d2 — d1) :+: revM m1) :=: revM m2
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5.7 Truncating Parallel Composition

Note that the duration of m1 :=:m2 is the maximum of the durations of m1
and m2 (and thus if one is infinite, so is the result). Sometimes we would
rather have the result be of duration equal to the shorter of the two. This
is not as easy as it sounds, since it may require interrupting the longer one
in the middle of a note (or notes).

We will define a “truncating parallel composition” operator (/=:), but
first we will define an auxiliary function cut such that cut d m is the musical
value m “cut short” to have at most duration d:

:t Dur — Music a — Music a
cut newDur m | newDur < 0 = rest 0
cut newDur (Primitive (Note oldDur x)) = note (min oldDur newDur) x
cut newDur (Pmmztwe (Rest oldDur)) = rest (min oldDur newDur)
cut newDur (m1 :=: m2) = cut newDur m1 :=: cut newDur m2
(m1 +: m2) let m1’ = cut newDur m1
m2' = cut (newDur — dur m1’) m2
in m1’ +: m2’
cut newDur (Modify (Tempo r) m) = tempo 1 (cut (newDur * 1) m)
cut newDur (Modify ¢ m) = Modify ¢ (cut newDur m)

cut newDur

Note that cut is equipped to handle a Music value of infinite length.
With cut, the definition of (/=:) is now straightforward:

(/=:) = Music a — Music a — Music a
m1 /=:m2 = cut (min (dur m1) (dur m2)) (ml :=: m2)

Unfortunately, whereas cut can handle infinite-duration music values, (/=:)
cannot.

Exercise 5.2 Define a version of (/=:) that shortens correctly when either
or both of its arguments are infinite in duration.

5.8 Trills

A trillis an ornament that alternates rapidly between two (usually adjacent)
pitches. We will define two versions of a trill function, both of which take
the starting note and an interval for the trill note as arguments (the interval
is usually one or two, but can actually be anything). One version will
additionally have an argument that specifies how long each trill note should
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be, whereas the other will have an argument that specifies how many trills
should occur. In both cases the total duration will be the same as the
duration of the original note.

Here is the first trill function:

trill :: Int — Dur — Music Pitch — Music Pitch
trill i sDur (Primitive (Note tDur p)) =

if sDur > tDur then note tDur p

else note sDur p

+: trill (negate i) sDur (note (tDur — sDur) (trans i p))

trill i d (Modify (Tempo r) m) = tempo r (trill i (d * r) m)
trill i d (Modify ¢ m) = Modify c (trill i d m)
trill _ _ _ = error "trill: input must be a single note."

It is simple to define a version of this function that starts on the trill note
rather than the start note:

trill’ :: Int — Dur — Music Pitch — Music Pitch
trill’ i sDur m = trill (negate i) sDur (transpose i m)

The second way to define a trill is in terms of the number of subdivided
notes to be included in the trill. We can use the first trill function to define
this new one:

trilln :: Int — Int — Music Pitch — Music Pitch
trilln © nTimes m = trill i (dur m / fromIntegral nTimes) m

This, too, can be made to start on the other note.

trilln’ :: Int — Int — Music Pitch — Music Pitch
trilln’ i nTimes m = trilln (negate i) nTimes (transpose i m)

Finally, a roll can be implemented as a trill whose interval is zero. This
feature is particularly useful for percussion.

roll :: Dur — Music Pitch — Music Pitch
rolln :: Int — Music Pitch — Music Pitch

roll dur m = trill O dur m
rolln nTimes m = trilln 0 nTimes m



CHAPTER 5. MORE MUSIC 62

data PercussionSound =

AcousticBassDrum -- MIDI Key 35
| BassDrum1 -- MIDI Key 36
| SideStick - ..

| AcousticSnare | HandClap | ElectricSnare | LowFloor Tom
| ClosedHiHat | HighFloorTom | PedalHiHat | LowTom
| OpenHiHat | LowMidTom | HiMidTom | CrashCymball
| HighTom | RideCymball | ChineseCymbal | RideBell
| Tambourine | SplashCymbal | Cowbell | CrashCymbal2
| Vibraslap | RideCymbal2 | HiBongo | LowBongo
| MuteHiConga | OpenHiConga | LowConga | HighTimbale
| LowTimbale | HighAgogo | LowAgogo | Cabasa
| Maracas | ShortWhistle | LongWhistle | ShortGuiro
| LongGuiro | Claves | HiWoodBlock | LowWoodBlock
| MuteCuica | OpenCuica | MuteTriangle
| OpenTriangle -- MIDI Key 82
deriving (Show, Eq, Ord, Iz, Enum,)

Figure 5.2: General MIDI Percussion Names

5.9 Percussion

Percussion is a difficult notion to represent in the abstract. On one hand,
a percussion instrument is just another instrument, so why should it be
treated differently? On the other hand, even common practice notation
treats it specially, even though it has much in common with non-percussive
notation. The midi standard is equally ambiguous about the treatment of
percussion: on one hand, percussion sounds are chosen by specifying an
octave and pitch, just like any other instrument; on the other hand these
pitches have no tonal meaning whatsoever: they are just a convenient way to
select from a large number of percussion sounds. Indeed, part of the General
MIDI Standard is a set of names for commonly used percussion sounds.
Since MIDI is such a popular platform, we can at least define some handy
functions for using the General MIDI Standard. We start by defining the
data type shown in Figure 5.2, which borrows its constructor names from
the General MIDI standard. The comments reflecting the “MIDI Key”
numbers will be explained later, but basically a MIDI Key is the equivalent
of an absolute pitch in Haskore terminology. So all we need is a way to
convert these percussion sound names into a Music value; i.e. a Note:

perc :: PercussionSound — Dur — Music Pitch



CHAPTER 5. MORE MUSIC 63

perc ps dur = note dur (pitch (fromEnum ps + 35))

Details: fromFEnum is a method in the Enum class, which is all about
enumerations. A data type that is a member of this class can be enumer-

ated—i.e. the elements of the data type can be listed in order. fromEnum

maps each value to its index in this enumeration. Thus fromEnum AcousticBassDrum
is 0, fromEnum BassDruml is 1, and so on.

For example, here are eight bars of a simple rock or “funk groove” that
uses perc and roll:

funkGroove
=let pI = perc LowTom qn
p2 = perc AcousticSnare en
in tempo 3 (instrument Percussion (cut 8 (repeatM
((p1 +: gnr +: p2 +: qnr +: p2:+:

pl +: pl +: gnr+: p2 +: enr)
:=:roll en (perc ClosedHiHat 2))

)

Exercise 5.3 Find a simple piece of music written by your favorite com-
poser, and transcribe it into Haskore. In doing so, look for repeating pat-
terns, transposed phrases, etc. and reflect this in your code, thus revealing
deeper structural aspects of the music than that found in common practice
notation.



Chapter 6

Interpretation and
Performance

module Haskore.Performance
where

import Haskore. Music
import Haskore. MoreMusic

instance Show (a — b) where
showsPrec p f = showString "<<function>>"

6.1 Abstract Performance

So far, our presentation of musical values in Haskell has been entirely struc-
tural, i.e. syntactic. But what do these musical values actually mean, i.e.
what is their semantics, or interpretation? The formal process of giving a
semantic interpretation to syntactic constructs is very common in computer
science, especially in programming language theory. But it is obviously also
common in music: the interpretation of music is the very essence of musical
performance. However, in conventional music this process is usually infor-
mal, appealing to aesthetic judgments and values. What we would like to
do is make the process formal in Haskore—but still flexible, so that more
than one interpretation is possible, just as in music.

To begin, we need to say exactly what an abstract performance is. Our
approach is to consider a performance to be a time-ordered sequence of
musical events, where each event captures the playing of one individual
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note. In Haskellese:

type Performance = [ Event]

data Fvent = Event{ eTime :: Time, elnst :: InstrumentName, ePitch :: AbsPitch,
eDur :: DurT, eVol :: Volume, pFields :: [ Float] }
deriving (Eq, Ord, Show)

type Time = Rational
type DurT = Rational
type Volume = Integer

An event Event{eTime = s, elnst = i, ePitch = p,eDur = d,eVol = v}
captures the fact that at start time s, instrument ¢ sounds pitch p with
volume v for a duration d (where now duration is measured in seconds,
rather than beats). (The pField of an event is for special instruments that
require extra parameters, and will not be discussed much further in this
chapter.)

An abstract performance is the lowest of our music representations not
yet committed to MIDI, csound, or some other low-level computer music

representation. In a later chapter we will discuss how to map a performance
into MIDI.

Details: The data declaration for Event uses Haskell's field label syntax,
also called record syntax, and is equivalent to:

data Fvent = Fvent Time InstrumentName AbsPitch DurT Volume [ Float]
deriving (Eq, Ord, Show)

except that the former also defines “field labels” eTime, elnst, ePitch,
eDur, eVol, and pFields, which can be used both to create and select
from Event values. For example, this equation:

e = Event 0 Cello 27 (1 / 4) 50 []
is equivalent to:

e = Event{ eTime = 0, eInst = Cello, ePitch = 27,
eDur =1 /4, eVol =50, pFields =[]}

The latter is more descriptive, however, and the order of the fields does
not matter.

Field labels can be used to select fields from an Event value; for example,
elnst e = Cello, eDur e = 1 /4, and so on. They can also be used to
selectively update fields of an existing Fvent value. For example:
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e{ elnst = Flute } = Event 0 Flute 27 (1 /4) 50 []
Finally, they can be used selectively in pattern matching:

f (Bvent{ eDur = d, ePitch =p}) = ...d ... p...

Field labels do not change the basic nature of a data type; they are simply
a convenient syntax for referring to the components of a data type by
name rather than by position.

To generate a complete performance of, i.e. give an interpretation to, a
musical value, we must know the time to begin the performance, and the
proper instrument, volume, key and tempo. In addition, to give flexibility to
our interpretations, we must also know what player to use; that is, we need
a mapping from the PlayerNames in a Music value to the actual players
to be used.! We capture these ideas in Haskell as a “context” and “player
map”:

data Context a = Context{ cTime :: Time, cPlayer :: Player a,
cInst :: InstrumentName, cDur :: DurT,
cKey :: Key, cVol :: Volume}

deriving Show
type PMap a = PlayerName — Player a
type Key = AbsPitch

Finally, we are ready to give an interpretation to a piece of music, which we
do by defining a function perform, which is conceptually perhaps the most
important function defined in this book:

perform :: PMap a — Context a — Music a — Performance
perform pmap
c@QContext{ cTime = t, cPlayer = pl, cDur = dt, cKey = k}m =
case m of
Primitive (Note d p) — playNote pl ¢ d p
Primitive (Rest d) — []
ml +: m2 — perform pmap ¢ ml-+
perform pmap (c{ cTime =t + dur m1 x dt}) m2
m1 :=: m2 — merge (perform pmap ¢ m1) (perform pmap ¢ m2)
Modify (Tempo 1) m — perform pmap (c{cDur =dt /r}) m

"'We don’t need a mapping from InstrumentNames to instruments, since this is handled
in the translation from a performance into, say, MIDI.
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perform :: PMap a — Context a — Music a — Performance
perform pmap ¢ m = fst (perf pmap ¢ m)

perf :: PMap a — Context a — Music a — (Performance, DurT)
perf pmap
cQContext{ cTime = t, cPlayer = pl, cDur = dt, cKey = k}m =
case m of
Primitive (Note d p) — (playNote pl ¢ d p, d * dt)
Primitive (Rest d) — ([], d  dt)
ml1 +:m2 — let (pfl,d1) = perf pmap ¢ m1
(pf2,d2) = perf pmap (c{cTime =t + d1}) m2
in (pf1 # pf2,d1 + d2)
m1 :=:m2 — let (pf1,d1) = perf pmap ¢ m1
(pf2,d2) = perf pmap ¢ m2
in (merge pfl pf2, maz d1 d2)
Modify (Tempo ) m — perf pmap (¢{cDur =dt /r}) m
Modify (Transpose p) m — perf pmap (c{cKey=k+p}) m
Modify (Instrument i) m — perf pmap (c{cInst =i}) m
Modify (Player pn) m — perf pmap (c{ cPlayer = pmap pn}) m
Modify (Phrase pas) m — interpPhrase pl pmap ¢ pas m

Figure 6.1: The “real” perform function.

Modify (Transpose p) m — perform pmap (c{cKey =k +p}) m
Modify (Instrument i) m — perform pmap (c{cInst =i}) m
Modify (Player pn) m — perform pmap (c{ cPlayer = pmap pn}) m
Modify (Phrase pa) m — interpPhrase pl pmap ¢ pa m

Some things to note about perform:

1. The Context is the running “state” of the performance, and gets up-
dated in several different ways. For example, the interpretation of the
Tempo constructor involves scaling dt appropriately and updating the
DurT field of the context.

2. The interpretation of notes and phrases is player dependent. Ulti-
mately a single note is played by the playNote function, which takes
the player as an argument. Similarly, phrase interpretation is also
player dependent, reflected in the use of interpPhrase. Precisely how
these two functions work is described in Section 6.2.
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3. The DurT component of the context is the duration, in seconds,
of one whole note. To make it easier to compute, we can define a
“metronome” function that, given a standard metronome marking (in
beats per minute) and the note type associated with one beat (quarter
note, eighth note, etc.) generates the duration of one whole note:

metro :: Int — Dur — DurT
metro setting dur = 60 / (fromIntegral setting % dur)

Thus, for example, metro 96 gn creates a tempo of 96 quarter notes
per minute.

4. In the treatment of (:4:), note that the sub-sequences are appended
together, with the start time of the second argument delayed by the
duration of the first. The function dur (defined in Section 5.5) is used
to compute this duration. However, this results in a quadratic time
complexity for perform. A more efficient solution is to have perform
compute the duration directly, returning it as part of its result. This
version of perform is shown in Figure 6.1.

5. The sub-sequences derived from the arguments to (:=:) are merged
into a time-ordered stream. The definition of merge is given below.

merge :: Performance — Performance — Performance

merge a@Q(el : esl) bQ(e2 : es2) =
if el < e2 then el : merge esl b
else e2 : merge a es2
merge [] es2 = es2
merge esl [] = esl

Note that merge compares entire events rather than just start times. This
is to ensure that it is commutative, a desirable condition for some of the
proofs used later in the text. Here is a more efficient version that will work
just as well in practice:

merge a@Q(el : esl) bQ(e2 : es2) =
if eTime el < eTime e2 then el : merge esl b
else e2 : merge a es2
merge [] es2 = es2
merge esl [] = esl
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data PhraseAttribute = Dyn Dynamic
| Tmp Tempo
| Art Articulation
| Orn Ornament
deriving (Fq, Ord, Show)

data Dynamic = Accent Rational | Crescendo Rational | Diminuendo Rational
| StdLoudness StdLoudness | Loudness Rational
deriving (FEq, Ord, Show)

data StdLoudness = PPP | PP | P | MP | SF | MF' | NF | FF | FFF
deriving (Fq, Ord, Show, Enum)

data Tempo = Ritardando Rational | Accelerando Rational
deriving (Eq, Ord, Show)

data Articulation = Staccato Rational | Legato Rational | Slurred Rational
| Tenuto | Marcato | Pedal | Fermata | FermataDown | Breath
| DownBow | UpBow | Harmonic | Pizzicato | LeftPizz
| BartokPizz | Swell | Wedge | Thumb | Stopped
deriving (Eq, Ord, Show)

data Ornament = Trill | Mordent | InvMordent | DoubleMordent
| Turn | TrilledTurn | Short Trill
| Arpeggio | ArpeggioUp | ArpeggioDown
| Instruction String | Head NoteHead
deriving (Fq, Ord, Show)

data NoteHead = DiamondHead | SquareHead | XHead | TriangleHead

| TremoloHead | SlashHead | ArtHarmonic | NoHead
deriving (FEq, Ord, Show)

Figure 6.2: Phrase Attributes
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6.2 Players

Recall from Section 2.2 the definition of the Control data type:

data Control =
Tempo Rational -- scale the tempo
| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- intrument label
| Phrase [ PhraseAttribute | -- phrase attributes
| Player PlayerName -- player label
deriving (Show, Eq, Ord)

type PlayerName = String

We mentioned, but did not define, the PhraseAttribute data type, shown
now fully in Figure 6.2. These attributes give us great flexibility in the in-
terpretation process, because they can be interpreted by different players in
different ways. For example, how should “legato” be interpreted in a per-
formance? Or “diminuendo?” Different players interpret things in different
ways, of course, but even more fundamental is the fact that a pianist, for
example, realizes legato in a way fundamentally different from the way a
violinist does, because of differences in their instruments. Similarly, dimin-
uendo on a piano and diminuendo on a harpsichord are different concepts.

With a slight stretch of the imagination, we can even consider a “notator”
of a score as a kind of player: exactly how the music is rendered on the
written page may be a personal, stylized process. For example, how many,
and which staves should be used to notate a particular instrument?

In any case, to handle these issues, Haskore has a notion of a player
that “knows” about differences with respect to performance and notation.
A Haskore player is a 4-tuple consisting of a name and three functions: one
for interpreting notes, one for phrases, and one for producing a properly
notated score.

data Player a = MkPlayer{pName :: PlayerName,
playNote :: NoteFun a,
interpPhrase :: PhraseFun a,
notatePlayer :: NotateFun a}
deriving Show

type NoteFun a = Context « — Dur — a — Performance
type PhraseFun a = PMap a — Context a — [PhraseAttribute]
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— Music a — (Performance, DurT)
type NotateFun a = ()

The last line above is because notation is currently not implemented.

6.2.1 Examples of Player Construction

In order to provide the most flexibility, we define attributes for individual
notes:

data NoteAttribute = Volume Integer -- by convention: 0=min, 100=max
| Fingering Integer
| Dynamics String
| PFields | Float]
deriving (Eq, Show)

Our goal then is to define a player for music values of type:
type Musicl = Music (Pitch, [ NoteAttribute])

A “default player” called defPlayer (not to be confused with “deaf player”!)
is defined for use when none other is specified in the score; it also functions
as a base from which other players can be derived. defPlayer responds only
to the Volume note attribute and to the Accent, Staccato, and Legato phrase
attributes. It is defined in Figure 6.3. Before reading this code, recall how
players are invoked by the perform function defined in the last section; in
particular, note the calls to playNote and interpPhrase. Then note:

1. defPlayNote is the only function (even in the definition of perform)
that actually generates an event. It also modifies that event based on
an interpretation of each note attribute by the function defHasHandler.

2. defNasHandler only recognizes the Volume attribute, which it uses to
set the event volume accordingly.

3. defInterpPhrase calls (mutually recursively) perform to interpret a
phrase, and then modifies the result based on an interpretation of
each phrase attribute by the function defPasHandler.

4. defPasHandler only recognizes the Accent, Staccato, and Legato phrase
attributes. For each of these it uses the numeric argument as a “scal-
ing” factor of the volume (for Accent) and duration (for Staccato and
Lagato). Thus Modify (Phrase [Legato (5/4)]) m effectively increases
the duration of each note in m by 25% (without changing the tempo).



CHAPTER 6. INTERPRETATION AND PERFORMANCE 72

defPlayer :: Player (Pitch, | NoteAttribute])

defPlayer = MkPlayer{pName = "Default",
playNote = defPlayNote defNasHandler,
interpPhrase = defInterpPhrase defPasHandler,
notatePlayer = defNotatePlayer ()}

defPlayNote :: (Context (Pitch,[a]) — a — Event — Event)
— NoteFun (Pitch,[a])
defPlayNote nasHandler
c@(Context cTime cPlayer cInst cDur cKey c¢Vol) d (p,nas) =
[foldr (nasHandler c)
(Event{ eTime = cTime, elnst = cInst,
ePitch = absPitch p + cKey,
eDur = d % cDur, eVol = cVol,
pFields = []})

nas|

defNasHandler :: Context a — NoteAttribute — Fvent — Event
defNasHandler ¢ (Volume v) ev = ev{eVol = v}
defNasHandler ¢ (PFields pfs) ev = ev{pFields = pfs}
defNasHandler _ _ ev = ev

defInterpPhrase :: (PhraseAttribute — Performance — Performance)
— PhraseFun a
defInterpPhrase pasHandler pmap context pas m =
let (pf, dur) = perf pmap context m
in (foldr pasHandler pf pas, dur)

defPasHandler :: PhraseAttribute — Performance — Performance
defPasHandler (Dyn (Accent x)) =

map (Ae — e{eVol = round (x * fromIntegral (eVol €))})
defPasHandler (Art (Staccato x)) = map (Ae — e{eDur = x x eDur e})
defPasHandler (Art (Legato x)) = map (Ae — e{eDur = z x eDur e})
defPasHandler _ =i

defNotatePlayer :: a — ()
defNotatePlayer _ = ()

Figure 6.3: Definition of default Player defPlayer.



CHAPTER 6. INTERPRETATION AND PERFORMANCE 73

It should be clear that much of the code in Figure 6.3 can be re-used in
defining a new player. For example, to define a player weird that interprets
note attributes just like defPlayer but behaves differently with respect to
phrase attributes, we could write:

weird :: Player (Pitch, [ NoteAttribute])

weird = MkPlayer{ pName = "newPlayer",
playNote = defPlayNote defNasHandler,
interpPhrase = defInterpPhrase myPasHandler,
notatePlayer = defNotatePlayer ()}

and then supply a suitable definition of myPasHandler. That definition
could also re-use code, in the following sense: suppose we wish to add an
interpretation for Crescendo, but otherwise have myPasHandler behave just
like defPasHandler.

myPasHandler :: PhraseAttribute — Performance — Performance
myPasHandler (Dyn (Crescendo x)) pf = ...
myPasHandler pa pf = defPasHandler pa pf

Exercise 6.1 Fill in the ... in the definition of myPasHandler according
to the following strategy: Gradually scale the volume of each event in the
performance by a factor of 1 through 14 x, using linear interpolation.

Exercise 6.2 Choose some of the other phrase attributes and provide in-
terpretations of them, such as Diminuendo, Slurred, Trill, etc. (The trill
functions from section 5.8 may be useful here.)

Figure 6.4 defines a relatively sophisticated player called fancyPlayer
that knows all that defPlayer knows, and much more. Note that Slurred
is different from Legato in that it doesn’t extend the duration of the last
note(s). The behavior of Ritardando x can be explained as follows. We'd
like to “stretch” the time of each event by a factor from 0 to x, linearly
interpolated based on how far along the musical phrase the event occurs.
Le., given a start time ¢y for the first event in the phrase, total phrase
duration D, and event time ¢, the new event time ¢’ is given by:

t—t
= (1+—"2

x)(t —to) + to

Further, if d is the duration of the event, then the end of the event t 4 d gets
stretched to a new time t/; given by:

t+d—t

t,=(1
a=(1+ D

z)(t 4+ d — to) + to
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The difference t/, — ¢’ gives us the new, stretched duration d’, which after

simplification is:

2(t —to) +d
D

Accelerando behaves in exactly the same way, except that it shortens event

times rather than lengthening them. And, a similar but simpler strategy
explains the behaviors of Crescendo and Diminuendo.

d=(1+ x)d
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fancyPlayer :: Player (Pitch, [ NoteAttribute))
fancyPlayer = MkPlayer{pName = "Fancy",
playNote = defPlayNote defNasHandler,
interpPhrase = fancylnterpPhrase,
notatePlayer = defNotatePlayer ()}
fancyInterpPhrase :: PhraseFun a
fancylnterpPhrase pmap c [] m = perf pmap ¢ m
fancylInterpPhrase pmap c¢Q Context{ cTime = t, cPlayer = pl, cInst = 1,
cDur = dt,cKey = k,cVol = v}
(pa : pas) m =
let pfdQ(pf, dur) = fancylnterpPhrase pmap ¢ pas m
loud © = fancyInterpPhrase pmap ¢ (Dyn (Loudness x) : pas) m
stretch x = let t0 = eTime (head pf);r = x / dur
upd (e@QEvent{ eTime = t,eDur = d}) =
let dt =t —t0
t'=0+dtxr)*dt+ 10
d=(0+2xdt+d)xr)xd
in e{eTime = t', eDur = d'}
in (map upd pf, (1 + z) * dur)
inflate © = let t0 = eTime (head pf);r =z / dur
upd (eQEvent{eTime = t,eVol =v}) =
e{ eVol = (round o fromRational) (1+ (t — t0) xr)* v}
in (map upd pf, dur)
in case pa of
Dyn (Accent ©) — (map (Ae — e{eVol = round (z * fromIntegral (eVol €))}) pf, dur)
Dyn (StdLoudness 1) —
case [ of
PPP — loud 40; PP — loud 50; P — loud 60
MP — loud 70; SF — loud 80; MF — loud 90
NF — loud 100; FF — loud 110; FFF — loud 120
Dyn (Loudness ©) — fancyInterpPhrase pmap c{ cVol = (round o fromRational) x }pas m
Dyn (Crescendo ©) — inflate x; Dyn (Diminuendo z) — inflate (—1)
Tmp (Ritardando x) — stretch x; Tmp (Accelerando x) — stretch (—x)
Art (Staccato x) — (map (Ae — e{ eDur = z * eDur e}) pf, dur)
Art (Legato ) — (map (Ae — e{eDur = z x eDur e}) pf, dur)
Art (Slurred ©) —
let lastStartTime = foldr (Ae t — mazx (eTime ¢e) t) 0 pf
setDur e = if eTime e < lastStartTime
then e{eDur =z * eDur e}

else e
in (map setDur pf, dur)
Art _ — pfd
Orn _ — pfd

-- Design Bug: To do these right we need to keep the KEY SIGNATURE
-- around so that we can determine, for example, what the trill note is.
-- Alternatively, provide an argument to Trill to carry this info.

Figure 6.4: Definition of Player fancyPlayer.



Appendix A

A Tour of the Preludelist
Module

The use of lists is particularly common when programming in Haskell, and
thus, not surprisingly, there are many pre-defined polymorphic functions for
lists. The list data type itself, plus some of the most useful functions on it,
are contained in the Standard Prelude’s PreludeList module, which we will
look at in detail in this chapter. There is also a Standard Library module
called List that has additional useful functions. It is a good idea to become
familiar with both modules.

Although this chapter may feel like a long list of “Haskell features,” the
functions described here capture many common patterns of list usage that
have been discovered by functional programmers over many years of tri-
als and tribulations. In many ways higher-order declarative programming
with lists takes the place of lower-level imperative control structures in more
conventional languages. By becoming familiar with these list functions you
will be able to more quickly and confidently develop your own applications
using lists. Furthermore, if all of us do this, we will have a common vocab-
ulary with which to understand each others’ programs. Finally, by reading
through the code in this module you will develop a good feel for how to
write proper function definitions in Haskell.

It is not necessary for you to understand the details of every function, but
you should try to get a sense for what is available so that you can return
later when your programming needs demand it. In the long run you are
well-advised to read the rest of the Standard Prelude as well as the various
Standard Libraries, to discover a host of other functions and data types that
you might someday find useful in your own work.
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A.1 The PreludeList Module

To get a feel for the PreludeList module, let’s first look at its module dec-
laration:

module PreludeList (
map, (4 ), filter, concat,
head, last, tail, init, null, length, (1),
foldl, foldl1, scanl, scanll, foldr, foldrl , scanr, scanrl,
iterate, repeat, replicate, cycle,
take, drop, splitAt, take While, drop While, span, break,
lines, words, unlines, unwords, reverse, and, or,
any, all, elem, notElem, lookup,
sum, product, maximum, minimum, concatMap,
zip, zip8, zip With, zip With3, unzip, unzip3)

where

import qualified Char (isSpace)

infix] 9!!
infixr 5-H
infix 4 €,¢

We will not discuss all of the functions listed above, but will cover most of
them (and some were discussed in previous chapters).

A.2 Simple List Selector Functions

head and tail extract the first element and remaining elements, respectively,
from a list, which must be non-empty. last and init are the dual functions
that work from the end of a list, rather than from the beginning.

head :: [a] — a
head (z:_) ==z
head || = error "Preludelist.head: empty list"
last :: [a] — a

last [z] = =

last (—: xzs) = last xs

last [] = error "Preludelist.last: empty list"
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tail :: [a] — [a]
tail (—:xs) = xs
tail [| = error "PreludelList.tail: empty list"

init :: [a] — [a]
init [x] = |

init (z:xs) = x :init s

init [] = error "PreludelList.init: empty list"

Although head and tail were previously discussed in Section 3.1, the defi-
nitions here include an equation describing their behaviors under erroneous
situations—such as selecting the head of an empty list—in which case the
error function is called. It is a good idea to include such an equation for
any definition in which you have not covered every possible case in pattern-
matching; i.e. if it is possible that the pattern-matching could “run off the
end” of the set of equations. The string argument that you supply to the
error function should be detailed enough that you can easily track down the
precise location of the error in your program.

Details: If such an error equation is omitted, and then during pattern-
matching all equations fail, most Haskell systems will invoke the error
function anyway, but most likely with a string that will be less informative
than one you can supply on your own.

The null function tests to see if a list is empty.

null :: [a] — Bool
null [ = True
null (—: _) = False

A.3 Index-Based Selector Functions

To select the nth element from a list, with the first element being the Oth
element, we can use the indexing function (!!):

M:=la] = Int — a

(z:)Nl0==x

(cras)!'n|n>0=as!(n—1)

(: )N _= error "PreludelList.!!: negative index"
[]" _ = error "PreludeList.!!: index too large"
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Details: Note the definition of two error conditions; be sure that you
understand under what conditions these two equations would succeed. In
particular, recall that equations are matched in top-down order: the first
to match is the one that is chosen.

take n xs returns the prefix of xs of length n, or xs itself if n > length ws.
Similarly, drop n xs returns the suffix of zs after the first n elements, or []
if n > length xs. Finally, splitAt n xs is equivalent to (take n xs, drop n xs).

take :: Int — [a] — [a]

take 0 — =[]

take —[] = ]

take n (z:xs) | n>0=z:take (n —1) s

take _ _ = error "Preludelist.take: negative argument"

drop :: Int — [a] — [a]
drop 0 xs = xs

drop _[] =]
drop n (—:xs) | n>0=drop (n —1) zs
drop _ _ = error "Preludelist.drop: negative argument"

splitAt :: Int — [a] — ([a],[a])
splitAt 0 zs = ([], zs)
splitAt _ [ = ([J,[)
splitAt n (z:xzs) | n>0= (z:as, zs")
where (zs', s") = splitAt (n — 1) zs
splitAt _ _ = error "Preludelist.splitAt: negative argument"

length :: [a] — Int
length [] =0
length (—:1) =1+ length

For example:

take 3[0,1..5] = [0,1,2]
drop 3 [0,1..5] = [3,4,5]
splitAt 3[0,1..5] = ([0,1,2],[3,4,5])

A.4 Predicate-Based Selector Functions

takeWhile p xs returns the longest (possibly empty) prefix of zs, all of whose
elements satisfy the predicate p. dropWhile p xs returns the remaining
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suffix. Finally, span p xs is equivalent to (take While p xs, drop While p xs),
while break p uses the negation of p.

take While :: (a — Bool) — [a] — [a]
take While p [] = []
take While p (x : xs)
| p x = x : take While p zs
| otherwise = []

dropWhile :: (a — Bool) — [a] — [a]
dropWhile p [] =[]
dropWhile p zsQ(z : zs')
| p x = dropWhile p xs'
| otherwise = zs

span, break :: (a — Bool) — [a] — ([a],[a])

span p [] = ([],[])

span p zsQ(z : zs’)
| p 2 = (z: s, 2s") where (zs', 2s") = span p xs
| otherwise = (s, [])

break p = span (= o p)
filter removes all elements not satisfying a predicate:

filter :: (a — Bool) — [a] — [a]
fitter p [] =[]
filter p (x:2s) | p x = x: filter p xs
| otherwise = filter p xs

A.5 Fold-like Functions

foldll and foldrl are variants of foldl and foldr that have no starting value
argument, and thus must be applied to non-empty lists.

foldl::(a — b —a) — a—[b] = a
foldl f z ][] ==
foldl f z (z:xs) = foldl f (f z x) xs

foldll :: (a — a— a) — [a] — a
foldll f (z : xs) = foldl f x xs
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foldll _[] = error "PreludeList.foldll: empty list"

foldr::(a —b—b)—b—[a] —b

foldr f z [] =
foldr f z (x :xzs) = f x (foldr f z xs)

foldr! :: (a — a — a) — [a] — a

foldrl f [z] =

foldrl f (x: xs ) f x (foldrl f xs)

foldr1 _[] = error "PreludeList.foldrl: empty list"

foldll and foldrl are best used