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Preface

In 2000 I wrote a book called The Haskell School of Expression – Learning
Functional Programming through Mulitmedia. In that book I used graphics,
animation, music, and robotics as a way to motivate learning how to pro-
gram, and specifically how to learn functional programming using Haskell,
a purely functional programming language. Haskell is quite a bit differ-
ent from conventional imperative or objected-oriented languages such as C,
C++, Java, C#, and so on. It takes a different mind-set to program in such
a language, and appeals to the mathematically inclined and to those who
seek purity and elegance in their programs. Although Haskell was designed
almost twenty years ago, it has only recently begun to catch on, not just be-
cause of its purity and elegance, but because with it you can solve real-world
problems quickly and efficiently, and with great economy of code.

I have also had a long, informal, yet passionate interest in music, being
an amateur jazz pianist and having played in several bands over the years.
About ten years ago, in an effort to combine work with play, I wrote a Haskell
library called Haskore for expressing high-level computer music concepts
in a purely functional way. Indeed, three of the chapters in The Haskell
School of Expression summarize the basic ideas of this work. Thus, when I
recently became responsible for the Music Track in the new Computing and
the Arts major at Yale, and became responsible for teaching not one, but
two computer music courses in the new curriculum, it was natural to base
the course material on Haskell. This current book is essentially a rewrite of
The Haskell School of Expression with a focus entirely on music, based on,
and improving upon, the ideas in Haskore.

Haskell was named after the logician Haskell B. Curry who, along with
Alonzo Church, established the theoretical foundations of functional pro-
gramming in the 1940’s, when digital computers were mostly just a gleam
in researchers’ eyes. A curious historical fact is that Haskell Curry’s fa-
ther, Samuel Silas Curry, helped found and direct a school in Boston called
the School of Expression. (This school eventually evolved into what is now

v



PREFACE vi

Curry College.) Since pure functional programming is centered around the
notion of an expression, I thought that The Haskell School of Expression
would be a good title for my first book. And it was thus quite natural to
choose The Haskell School of Music for my second!

How To Read This Book

As mentioned earlier, there is a certain mind-set, a certain viewpoint of
the world, and a certain approach to problem solving that collectively work
best when programming in Haskell (this is true for any new programming
paradigm). If you teach only Haskell language details to a C programmer,
she is likely to write ugly, incomprehensible functional programs. But if
you teach her how to think differently, how to see problems in a different
light, functional solutions will come easily, and elegant Haskell programs
will result. As Samuel Silas Curry once said:

All expression comes from within outward, from the center to
the surface, from a hidden source to outward manifestation. The
study of expression as a natural process brings you into contact
with cause and makes you feel the source of reality.

What is especially beautiful about this quote is that music is a kind of ex-
pression, although Curry was more likely talking about speech. In addition,
as has been noted by many, music has many ties to mathematics. So for me,
combining the elegant mathematical nature of Haskell with that of music is
as natural as singing a nursery tune.

Using a high-level language to express musical ideas is, of course, not
new. But Haskell is unique in its insistence on purity (no side effects),
and this alone makes it particularly suitable for expressing musical ideas.
By focusing on what a musical entity is rather than on how to create it,
we allow musical ideas to take their natural form as Haskell expressions.
Haskell’s many abstraction mechanisms allow us to write musical programs
that are elegant, concise, yet powerful. We will consistently attempt to let
the music express itself as naturally as possible, without encoding it in terms
of irrelevant language details.

Of course, my ultimate goal is to teach computer music concepts. But
along the way you will also learn Haskell. There is no limit to what one
might wish to do with compuiter music, and therefore the better you are
at programming, the more success you will have. This is why I think that
many languages designed specifically for computer music—although fun to
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work with, easy to use, and cute in concept—will ultimately be too limited
in expressiveness.

My general approach to introducing computer music concepts is to first
provide an intuitive explanation, then a mathematically rigorous definition,
and finally fully executable Haskell code. In the process I will introduce
Haskell features as they are needed, rather than all at once. I believe that
this interleaving of concepts and applications makes the material easier to
digest.

Another characteristic of my approach is that I won’t hide any details—I
want Haskore to be as transparent as possible! There are no magical built-in
operations, no special computer music commands or values. This works out
well for several reasons. First, there is in fact nothing ugly or difficult to
hide—so why hide anything at all? Second, by reading the code, you will
better and more quickly understand Haskell. Finally, by stepping through
the design process with me, you may decide that you prefer a different
approach—there is, after all, no One True Way to express computer music
ideas. Indeed, I expect that this process will position you well to write rich,
creative musical applications on your own.

I encourage the seasoned programmer having experience only with con-
ventional imperative and/or object-oriented languages to read this text with
an open mind. Many things will be different, and will likely feel awkward.
There will be a tendency to rely on old habits when writing new programs,
and to ignore suggestions about how to approach things differently. If you
can manage to resist those tendencies I am confident that you will have an
enjoyable learning experience. Many of those who succeed in this process
find that many ideas about functional programming can be applied to im-
perative and object-oriented languages as well, and that their imperative
coding style changes for the better.

I also ask the experienced programmer to be patient while in the earlier
chapters I explain things like “syntax,” “operator precedence,” etc., since it
is my goal that this text should be readable by someone having only modest
prior programming experience. With patience the more advanced ideas will
appear soon enough.

If you are a novice programmer, I suggest taking your time with the
book; work through the exercises, and don’t rush things. If, however, you
don’t fully grasp an idea, feel free to move on, but try to re-read difficult
material at a later time when you have seen more examples of the concepts
in action. For the most part this is a “show by example” textbook, and
you should try to execute as many of the programs in this text as you can,
as well as every program that you write. Learn-by-doing is the corollary to
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show-by-example.

Haskell Implementations

There are several good implementations of Haskell, all available free on the
Internet through the Haskell Home Page at http://haskell.org. One that
I especially recommend is GHC, an easy-to-use and easy-to-install Haskell
compiler and interpreter (see http://haskell.org/ghc). GHC runs on
a variety of platforms, including PC’s (Windows XP and Vista), various
flavors of Unix (Linux, FreeBSD, etc.), and Mac OS X. Any text edi-
tor can be used to create the source files, but I prefer to use emacs (see
http://www.gnu.org/software/emacs), along with its Haskell mode (see
http://www.haskell.org/haskell-mode). All of the source code from this
textbook can be found at http://plucky.cs.yale.edu/cs431. Feel free
to email me at paul.hudak@yale.edu with any comments, suggestions, or
questions.

Happy Haskell Music Making!

Paul Hudak
New Haven
September 2008



Chapter 1

Computation by Calculation

Programming, in its broadest sense, is problem solving. It begins when we
look out into the world and see problems that we want to solve, problems
that we think can and should be solved using a digital computer. Under-
standing the problem well is the first—and probably the most important—
step in programming, since without that understanding we may find our-
selves wandering aimlessly down a dead-end alley, or worse, down a fruitless
alley with no end. “Solving the wrong problem” is a phrase often heard in
many contexts, and we certainly don’t want to be victims of that crime. So
the first step in programming is answering the question, “What problem am
I trying to solve?”

Once you understand the problem, then you must find a solution. This
may not be easy, of course, and in fact you may discover several solutions,
so we also need a way to measure success. There are various dimensions in
which to do this, including correctness (“Will I get the right answer?”) and
efficiency (“Will I have enough resources?”). But the distinction of which
solution is better is not always clear, since the number of dimensions can
be large, and programs will often excel in one dimension and do poorly in
others. For example, there may be one solution that is fastest, one that
uses the least amount of memory, and one that is easiest to understand.
Deciding which to choose can be difficult, and is one of the more interesting
challenges that you will face in programming.

The last measure of success mentioned above—clarity of a program—is
somewhat elusive, most difficult to measure, and, quite frankly, sometimes
difficult to rationalize. But in large software systems clarity is an especially
important goal, since the most important maxim about such systems is that
they are never really finished! The process of continuing work on a software

1



CHAPTER 1. COMPUTATION BY CALCULATION 2

system after it is delivered to users is what software engineers call software
maintenance, and is the most expensive phase of the so-called “software life-
cycle.” Software maintenance includes fixing bugs in programs, as well as
changing certain functionality and enhancing the system with new features
in response to users’ experience.

Therefore taking the time to write programs that are highly legible—easy
to understand and reason about—will facilitate the software maintenance
process. To complete the emphasis on this issue, it is important to realize
that the person performing software maintenance is usually not the person
who wrote the original program. So when you write your programs, write
them as if you are writing them for someone else to see, understand, and
ultimately pass judgement on!

As we work through the many musical examples in this book, we will
sometimes express them in several different ways (some of which are dead-
ends!), taking the time to contrast them in style, efficiency, clarity, and
functionality.1 We do this not just for pedagogical purposes. Such reworking
of programs is the norm, and you are encouraged to get into the habit of
doing so. Don’t always be satisfied with your first solution to a problem,
and always be prepared to go back and change—or even throw away—those
parts of your program that you later discover do not fully satisfy your actual
needs.

1.1 Computation by Calculation in Haskell

In this text we use the programming language Haskell to address many
of the issues discussed in the last section. We will avoid the approach of
explaining Haskell first and giving examples second. Rather, we will walk,
step by step, along the path of understanding a problem, understanding the
solution space, and understanding how to express a particular solution in
Haskell. It is important to learn how to problem solve!

Along this path we will use whatever tools are appropriate for analyzing
a particular problem, very often mathematical tools that should be familiar
to the average college student, indeed most to the average high-school stu-
dent. As we do this we will evolve our problems toward a particular view
of computation that is especially useful: that of computation by calculation.
You will find that such a viewpoint is not only powerful—we won’t shy away
from difficult problems—it is also simple. Haskell supports well the idea of
computation by calculation. Programs in Haskell can be viewed as functions

1At times we will also explore different methods for proving properties of programs.
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whose input is that of the problem being solved, and whose output is our
desired result; and the behavior of functions can be understood easily as
computation by calculation.

An example might help to demonstrate these ideas. Suppose we want to
perform an arithmetic calculation such as 3× (9 + 5). In Haskell we would
write this as 3 ∗ (9 + 5), since most standard computer keyboards and text
editors do not recognize the special symbol ×. To calculate the result, we
proceed as follows:

3 ∗ (9 + 5)
⇒ 3 ∗ 14
⇒ 42

It turns out that this is not the only way to compute the result, as evidenced
by this alternative calculation:2

3 ∗ (9 + 5)
⇒ 3 ∗ 9 + 3 ∗ 5
⇒ 27 + 3 ∗ 5
⇒ 27 + 15
⇒ 42

Even though this calculation takes two extra steps, it at least gives the
correct answer. Indeed, an important property of each and every program
in this textbook—in fact every program that can be written in the functional
language Haskell—is that it will always yield the same answer when given the
same inputs, regardless of the order we choose to perform the calculations.3

This is precisely the mathematical definition of a function: for the same
inputs, it always yields the same output.

On the other hand, the first calculation above took less steps than the
second, and so we say that it is more efficient. Efficiency in both space
(amount of memory used) and time (number of steps executed) is important
when searching for solutions to problems, but of course if we get the wrong
answer, efficiency is a moot point. In general we will search first for any
solution to a problem, and later refine it for better performance.

The above calculations are fairly trivial, of course. But we will be do-
ing much more sophisticated operations soon enough. For starters—and to

2This assumes that multiplication distributes over addition in the number system being
used, a point that we will return to later.

3As long as we don’t choose a non-terminating sequence of calculations, another issue
that we will return to later.
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introduce the idea of a function—we could generalize the arithmetic opera-
tions performed in the previous example by defining a function to perform
them for any numbers x , y , and z :

simple x y z = x ∗ (y + z )

This equation defines simple as a function of three arguments, x , y ,
and z . In mathematical notation, we might see the above written slightly
differently, namely:

simple(x, y, z) = x× (y + z)

In any case, it should be clear that “simple 3 9 5” is the same as “3∗(9+5).”
In fact the proper way to calculate the result is:

simple 3 9 5
⇒ 3 ∗ (9 + 5)
⇒ 3 ∗ 14
⇒ 42

The first step in this calculation is an example of unfolding a function defi-
nition: 3 is substituted for x , 9 for y , and 5 for z on the right-hand side of
the definition of simple . This is an entirely mechanical process, not unlike
what the computer actually does to execute the program.

When we wish to say that an expression e evaluates (via zero, one, or
possibly many more steps) to the value v, we will write e =⇒ v (this arrow
is longer than that used earlier). So we can say directly, for example, that
simple 3 9 5 =⇒ 42, which should be read “simple 3 9 5 evaluates to 42.”

With simple now suitably defined, we can repeat the sequence of arith-
metic calculations as often as we like, using different values for the arguments
to simple . For example, simple 4 3 2 =⇒ 20.

We can also use calculation to prove properties about programs. For
example, it should be clear that for any a, b, and c, simple a b c should
yield the same result as simple a c b. For a proof of this, we calculate
symbolically ; that is, using the symbols a, b, and c rather than concrete
numbers such as 3, 5, and 9:

simple a b c
⇒ a ∗ (b + c)
⇒ a ∗ (c + b)
⇒ simple a c b
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We will use the same notation for these symbolic steps as for concrete ones.
In particular, the arrow in the notation reflects the direction of our reasoning,
and nothing more. In general, if e1 ⇒ e2 , then it’s also true that e2 ⇒ e1 .

We will also refer to these symbolic steps as “calculations,” even though
the computer will not typically perform them when executing a program
(although it might perform them before a program is run if it thinks that
it might make the program run faster). The second step in the calculation
above relies on the commutativity of addition (namely that, for any numbers
x and y, x+ y = y + x). The third step is the reverse of an unfold step, and
is appropriately called a fold calculation. It would be particularly strange if
a computer performed this step while executing a program, since it does not
seem to be headed toward a final answer. But for proving properties about
programs, such “backward reasoning” is quite important.

When we wish to make the justification for each step clearer, whether
symbolic or concrete, we will present a calculation with more detail, as in:

simple a b c
⇒ {unfold }
a ∗ (b + c)
⇒ {commutativity }
a ∗ (c + b)
⇒ {fold }
simple a c b

In most cases, however, this will not be necessary.
Proving properties of programs is another theme that will be repeated

often in this text. As the world begins to rely more and more on computers to
accomplish not just ordinary tasks such as writing term papers and sending
email, but also life-critical tasks such as controlling medical procedures and
guiding spacecraft, then the correctness of the programs that we write gains
in importance. Proving complex properties of large, complex programs is
not easy—and rarely if ever done in practice—but that should not deter us
from proving simpler properties of the whole system, or complex properties
of parts of the system, since such proofs may uncover errors, and if not, at
least help us to gain confidence in our effort.

If you are someone who is already an experienced programmer, the idea
of computing everything by calculation may seem odd at best, and naive
at worst. How does one write to a file, draw a picture, play a sound, or
respond to mouse-clicks? If you are wondering about these things, it is
hoped that you have patience reading the early chapters, and that you find
delight in reading the later chapters where the full power of this approach
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begins to shine. We will avoid, however, most comparisons between Haskell
and conventional programming languages such as C, C++, Java, or even
Scheme or ML (two “almost functional” languages).

In many ways this first chapter is the most difficult chapter in the entire
text, since it contains the highest density of new concepts. If you have
trouble with some of the ideas here, keep in mind that we will return to
almost every idea at later points in the text. And don’t hesistate to return
to this chapter later to re-read difficult sections; they will likely be much
easier to grasp at that time.

Exercise 1.1 Write out all of the steps in the calculation of the value of

simple (simple 2 3 4) 5 6

Exercise 1.2 Prove by calculation that simple (a − b) a b =⇒ a2 − b2.

Details: In the remainder of the text the need will often arise to explain

some aspect of Haskell in more detail, without distracting too much from

the primary line of discourse. In those circumstance we will off-set the

comments and proceed them with the word “Details,” such as is done

with this paragraph.

1.2 Expressions, Values, and Types

In Haskell, the entities that we perform calculations on are called expres-
sions, and the entities that result from a calculation—i.e. “the answers”—
are called values. It is helpful to think of a value just as an expression on
which no more calculation can be carried out.

Examples of expressions include atomic (meaning, indivisible) values
such as the integer 42 and the character ’a’, which are examples of two
primitive atomic values. In the next Chapter we will will also see examples
of user-defined atomic values, such as the pitch classes C , Cs, Df , etc.
(denoting the musical notes C, C�, D�, etc.).

In addition, there are structured (meaning, made from smaller pieces)
expressions such as the list [C ,Cs ,Df ] and the pair (’b’, 4) (lists and pairs
are different in a subtle way, to be described later). Each of these structured
expressions is also a value, since by themselves there is no calculation that
can be carried out. As another example, 1 + 2 is an expression, and one
step of calculation yields the expression 3, which is a value, since no more
calculations can be performed.
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Sometimes, however, an expression has only a never-ending sequence of
calculations. For example, if x is defined as:

x = x + 1

then here’s what happens when we try to calculate the value of x :

x
⇒ x + 1
⇒ (x + 1) + 1
⇒ ((x + 1) + 1) + 1
⇒ (((x + 1) + 1) + 1) + 1
...

This is clearly a never-ending sequence of steps, in which case we say that
the expression does not terminate, or is non-terminating. In such cases
the symbol ⊥, pronounced “bottom,” is used to denote the value of the
expression.

Every expression (and therefore every value) also has an associated type.
You can think of types as sets of expressions (or values), in which members
of the same set have much in common. Examples include the atomic types
Integer (the set of all fixed-precision integers) and Char (the set of all char-
acters), as well as the structured types [Integer ] and [PitchClass ] (the set of
all lists of integers and pitch classes, respectively) and (Char , Integer ) (the
set of all character/integer pairs). The association of an expression or value
with its type is very important, and there is a special way of expressing it
in Haskell. Using the examples of values and types above, we write:

42 :: Integer
’a’ :: Char

[C ,Cs ,Df ] :: [PitchClass ]
(’b’, 4) :: (Char , Integer)

Details: Literal characters are written enclosed in single forward quotes,

as in ’a’, ’A’, ’b’, ’,’, ’!’, ’ ’ (a space), etc. (There are some

exceptions, however; see the Haskell Report for details.)

The “::” should be read “has type,” as in “42 has type Integer .”

Details: Note that the names of specific types are capitalized, such as

Integer and Char , but the names of values are not, such as simple and x .

This is not just a convention: it is required when programming in Haskell.
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In addition, the case of the other characters matters, too. For example,

test , teSt , and tEST are all distinct names for values, as are Test , TeST ,

and TEST for types.

Haskell’s type system ensures that Haskell programs are well-typed ; that
is, that the programmer has not mismatched types in some way. For ex-
ample, it does not make much sense to add together two characters, so the
expression ’a’+’b’ is ill-typed. The best news is that Haskell’s type system
will tell you if your program is well-typed before you run it. This is a big
advantage, since most programming errors are manifested as typing errors.

1.3 Function Types and Type Signatures

What should the type of a function be? It seems that it should at least
convey the fact that a function takes values of one type—T1 , say—as input,
and returns values of (possibly) some other type—T2 , say—as output. In
Haskell this is written T1 → T2 , and we say that such a function “maps
values of type T1 to values of type T2 .” If there is more than one argument,
the notation is extended with more arrows. For example, if our intent is
that the function simple defined in the previous section has type Integer →
Integer → Integer → Integer , we can declare this fact by including a type
signature with the definition of simple:

simple :: Integer → Integer → Integer → Integer
simple x y z = x ∗ (y + z )

Details: When you write Haskell programs using a typical text editor,

you will not see nice fonts and arrows as in Integer → Integer . Rather,

you will have to type Integer -> Integer.

Haskell’s type system also ensures that user-supplied type signatures
such as this one are correct. Actually, Haskell’s type system is powerful
enough to allow us to avoid writing any type signatures at all, in which case
we say that the type system infers the correct types for us.4 Nevertheless,
judicious placement of type signatures, as we did for simple, is a good habit,
since type signatures are an effective form of documentation and help bring
programming errors to light. Also, in almost every example in this text, we

4There are a few exceptions this rule, and in the case of simple the inferred type is
actually a bit more general than that written above. Both of these points will be returned
to later.
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will make a habit of first talking about the types of expressions and functions
as a way to better understand the problem at hand, organize our thoughts,
and lay down the first ideas of a solution.

The normal use of a function is referred to as function application. For
example, simple 3 9 5 is the application of the function simple to the argu-
ments 3, 9, and 5.

Details: Some functions, such as (+), are applied using what is known
as infix syntax ; that is, the function is written between the two arguments
rather than in front of them (compare x + y to f x y). Infix functions are
often called operators, and are distinguished by the fact that they do not
contain any numbers or letters of the alphabet. Thus ˆ! and ∗# : are infix
operators, whereas thisIsAFunction and f9g are not (but are still valid
names for functions or other values). The only exception to this is that
the symbol ’ is considered to be alphanumeric; thus f ′ and one ′s are valid
names, but not operators.

In Haskell, when referring to an operator as a value, it is enclosed in
parentheses, such as when declaring its type, as in:

(+) :: Integer → Integer → Integer

Also, when trying to understand an expression such as f x + g y, there
is a simple rule to remember: function application always has “higher
precedence” than operator application, so that f x + g y is the same as
(f x ) + (g y).

Despite all of these syntactic differences, however, operators are still just

functions.

Exercise 1.3 Identify the well-typed expressions in the following and, for
each, give its proper type:

[(2, 3), (4, 5)]
[Cs , 42]
(Df ,−42)
simple ’a’ ’b’ ’c’
(simple 1 2 3, simple)

1.4 Abstraction, Abstraction, Abstraction

The title of this section is the answer to the question: “What are the three
most important ideas in programming?” Well, perhaps this is an overstate-
ment, but the hope is that it has gotten your attention, at least. Webster
defines the verb “abstract” as follows:
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abstract, vt (1) remove, separate (2) to consider apart from
application to a particular instance.

In programming we do this when we see a repeating pattern of some
sort, and wish to “separate” that pattern from the “particular instances”
in which it appears. Let’s refer to this process as the abstraction principle,
and see how it might manifest itself in problem solving.

1.4.1 Naming

One of the most basic ideas in programming—for that matter, in every day
life—is to name things. For example, we may wish to give a name to the
value of π, since it is inconvenient to retype (or remember) the value of π
beyond a small number of digits. In mathematics the greek letter π in fact
is the name for this value, but unfortunately we don’t have the luxury of
using greek letters on standard computer keyboards and text editors. So in
Haskell we write:

pi :: Float
pi = 3.1415927

to associate the name pi with the number 3.1415927. The type signature in
the first line declares pi to be a floating-point number, which mathematically—
and in Haskell—is distinct from an integer.5 Now we can use the name pi in
expressions whenever we want; it is an abstract representation, if you will,
of the number 3.1415927. Furthermore, if we ever have a need to change a
named value (which hopefully won’t ever happen for pi , but could certainly
happen for other values), we would only have to change it in one place,
instead of in the possibly large number of places where it is used.

Suppose now that we are working on a problem whose solution requires
writing some expression more than once. For example, we might find our-
selves computing something such as:

x :: Float
x = f (a − b + 2) + g y (a − b + 2)

The first line declares x to be a floating-point number, while the second is
an equation that defines the value of x . Note on the right-hand side of this
equation that the expression a − b + 2 is repeated—it has two instances—
and thus, applying the abstraction principle, we wish to separate it from

5We will have more to say about floating-point numbers later in this chapter.
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these instances. We already know how to do this—it’s called naming—so
we might choose to rewrite the single equation above as two:

c = a − b + 2
x = f c + g y c

If, however, the definition of c is not intended for use elsewhere in the
program, then it is advantageous to “hide” the definition of c within the
definition of x . This will avoid cluttering up the namespace, and prevents
c from clashing with some other value named c. To achieve this, we simply
use a let expression:

x = let c = a − b + 2
in f c + g y c

A let expression restricts the visibility of the names that it creates to the
internal workings of the let expression itself. For example, if we write:

c = 42
x = let c = a − b + 2

in f c + g y c

then there is no conflict of names—the “outer” c is completely different
from the “inner” one enclosed in the let expression. Think of the inner c as
analogous to the first name of someone in your household. If your brother’s
name is “John” he will not be confused with John Thompson who lives down
the street when you say, “John spilled the milk.”

Details: An equation such as c = 42 is called a binding. A simple rule
to remember when programming in Haskell is never to give more than one
binding for the same name in a context where the names can be confused,
whether at the top level of your program or nestled within a let expression.
For example, this is not allowed:

a = 42
a = 43

nor is this:

a = 42
b = 43
a = 44

So you can see that naming—using either top-level equations or equa-
tions within a let expression—is an example of the abstraction principle in
action.
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1.4.2 Functional Abstraction

[I should replace the following with something musical, but for now it will
have to do as is.]

Let’s now consider a more complex example. Suppose we are computing
the sum of the areas of three circles with radii r1 , r2 , and r3 , as expressed
by:

totalArea :: Float
totalArea = pi ∗ r1ˆ2 + pi ∗ r2ˆ2 + pi ∗ r3ˆ2

Details: (ˆ) is Haskell’s integer exponentiation operator. In mathematics

we would write π × r2 or just πr2 instead of pi ∗ rˆ2.

Although there isn’t an obvious repeating expression here as there was
in the last example, there is a repeating pattern of operations. Namely, the
operations that square some given quantity—in this case the radius—and
then multiply the result by π. To abstract a sequence of operations such
as this, we use a function—which we will give the name circleArea—that
takes the “given quantity”—the radius—as an argument. There are three
instances of the pattern, each of which we can expect to replace with a call
to circleArea. This leads to:

circleArea :: Float → Float
circleArea r = pi ∗ rˆ2

totalArea = circleArea r1 + circleArea r2 + circleArea r3

Using the idea of unfolding described earlier, it is easy to verify that this
definition is equivalent to the previous one.

This application of the abstraction principle is sometimes called func-
tional abstraction, since the sequence of operations is abstracted as a func-
tion, in this case circleArea. Actually, it can be seen as a generalization of
the previous kind of abstraction: naming. That is, circleArea r1 is just a
name for pi ∗r1ˆ2, circleArea r2 for pi ∗r2ˆ2, and circleArea r3 for pi ∗r3ˆ2.
Or in other words, a named quantity such as c or pi defined previously can
be thought of as a function with no arguments.

Note that circleArea takes a radius (a floating-point number) as an ar-
gument and returns the area (also a floating-point number) as a result, as
reflected in its type signature.

The definition of circleArea could also be hidden within totalArea using
a let expression as we did in the previous example:
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totalArea = let circleArea r = pi ∗ rˆ2
in circleArea r1 + circleArea r2 + circleArea r3

On the other hand, it is more likely that computing the area of a circle will
be useful elsewhere in the program, so leaving the definition at the top level
is probably preferable in this case.

1.4.3 Data Abstraction

The value of totalArea is the sum of the areas of three circles. But what if in
another situation we must add the areas of five circles, or in other situations
even more? In situations where the number of things is not certain, it is
useful to represent them in a list whose length is arbitrary. So imagine that
we are given an entire list of circle areas, whose length isn’t known at the
time we write the program. What now?

We will define a function listSum to add the elements of a list. Before
doing so, however, there is a bit more to say about lists.

Lists are an example of a data structure, and when their use is motivated
by the abstraction principle, we will say that we are applying data abstrac-
tion. Earlier we saw the example [1, 2, 3] as a list of integers, whose type
is thus [Integer ]. A list with no elements is—not surprisingly—written [],
and pronounced “nil.” To add a single element x to the front of a list xs ,
we write x : xs. (Note the naming convention used here; xs is the plural of
x , and should be read that way.) In fact, the list [1, 2, 3] is equivalent to
1 : (2 : (3 : [ ])), which can also be written 1 : 2 : 3 : [ ] since the infix operator
(:) is “right associative.”

Details: In mathematics we rarely worry about whether the notation
a + b + c stands for (a + b) + c (in which case + would be “left associa-
tive”) or a + (b + c) (in which case + would “right associative”). This is
because in situations where the parentheses are left out it’s usually the case
that the operator is mathematically associative, meaning that it doesn’t
matter which interpretation we choose. If the interpretation does matter,
mathemeticians will include parentheses to make it clear. Furthermore,
in mathematics there is an implicit assumption that some operators have
higher precedence than others; for example, 2 × a + b is interpreted as
(2× a) + b, not 2× (a + b).

In most programming languages, including Haskell, each operator is de-

fined as having some precedence level and to be either left or right as-

sociative. For arithmetic operators, mathematical convention is usually

followed; for example, 2∗a +b is interpreted as (2∗a)+b in Haskell. The

predefined list-forming operator (:) is defined to be right associative. Just
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as in mathematics, this associativey can be over-ridden by using paren-

theses: thus (a : b) : c is a valid Haskell expression (assuming that it is

well-typed), and is very different from a : b : c. We will see later how to

specify the associativity and precedence of new operators that we define.

Examples of pre-defined functions defined on lists in Haskell include
head and tail, which return the “head” and “tail” of a list, respectively.
That is, head (x : xs) ⇒ x and tail (x : xs) ⇒ xs (we will define these
two functions formally in Section 3.1). Another example is the function
(++) which concatenates, or appends, together its two list arguments. For
example, [1, 2, 3]++[4, 5, 6]⇒ [1, 2, 3, 4, 5, 6] ((++) will be defined in Section
3.3).

Returning to the problem of defining a function to add the elements of
a list, let’s first express what its type should be:

listSum :: [Float ]→ Float

Now we must define its behavior appropriately. Often in solving problems
such as this it is helpful to consider, one by one, all possible cases that could
arise. To compute the sum of the elements of a list, what might the list
look like? The list could be empty, in which case the sum is surely 0. So we
write:

listSum [ ] = 0

The other possibility is that the list isn’t empty—i.e. it contains at least
one element—in which case the sum is the first number plus the sum of the
remainder of the list. So we write:

listSum (x : xs) = x + listSum xs

Combining these two equations with the type signature brings us to the
complete definition of the function listSum:

listSum :: [Float ]→ Float
listSum [ ] = 0
listSum (x : xs) = x + listSum xs

Details: Although intuitive, this example highlights an important aspect
of Haskell: pattern matching. The left-hand sides of the equations contain
patterns such as [ ] and x : xs. When a function is applied, these patterns
are matched against the argument values in a fairly intuitive way ([ ] only
matches the empty list, and x : xs will successfully match any list with at
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least one element, while naming the first element x and the rest of the list
xs). If the match succeeds, the right-hand side is evaluated and returned
as the result of the application. If it fails, the next equation is tried, and
if all equations fail, an error results. All of the equations that define a
particular function must appear together, one after the other.

Defining functions by pattern matching is quite common in Haskell, and

you should eventually become familiar with the various kinds of patterns

that are allowed; see Appendix D for a concise summary.

This is called a recursive function definition since listSum “refers to
itself” on the right-hand side of the second equation. Recursion is a very
powerful technique that you will see used many times in this text. It is also
an example of a general problem-solving technique where a large problem is
broken down into many simpler but similar problems; solving these simpler
problems one-by-one leads to a solution to the larger problem.

Here is an example of listSum in action:

listSum [1, 2, 3]
⇒ listSum (1 : (2 : (3 : [ ])))
⇒ 1 + listSum (2 : (3 : [ ]))
⇒ 1 + (2 + listSum (3 : [ ]))
⇒ 1 + (2 + (3 + listSum [ ]))
⇒ 1 + (2 + (3 + 0))
⇒ 1 + (2 + 3)
⇒ 1 + 5
⇒ 6

The first step above is not really a calculation, but rather a rewriting of the
list syntax. The remaining calculations consist of four unfold steps followed
by three integer additions.

Given this definition of listSum we can rewrite the definition of totalArea
as:

totalArea = listSum [circleArea r1 , circleArea r2 , circleArea r3 ]

This may not seem like much of an improvement, but if we were adding
many such circle areas in some other context, it would be. Indeed, lists
are arguably the most commonly used structured data type in Haskell. In
the next chapter we will see a more convincing example of the use of lists;
namely, to represent the vertices that make up a polygon. Since a polygon
can have an arbitrary number of vertices, using a data structure such as a
list seems like just the right approach.
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In any case, how do we know that this version of totalArea behaves the
same as the original one? By calculation, of course:

listSum [circleArea r1 , circleArea r2 , circleArea r3 ]
=⇒ {unfold listSum (four succesive times)}
circleArea r1 + circleArea r2 + circleArea r3 + 0
=⇒ {unfold circleArea (three places)}
pi ∗ r1ˆ2 + pi ∗ r2ˆ2 + pi ∗ r3ˆ2 + 0
⇒ {simple arithmetic }
pi ∗ r1ˆ2 + pi ∗ r2ˆ2 + pi ∗ r3ˆ2

1.5 Code Reuse and Modularity

There doesn’t seem to be much repetition in our last definition for totalArea ,
so perhaps we’re done. In fact, let’s pause for a moment and consider how
much progress we’ve made. We started with the definition:

totalArea = pi ∗ r1ˆ2 + pi ∗ r2ˆ2 + pi ∗ r3ˆ2

and ended with:

totalArea = listSum [circleArea r1 , circleArea r2 , circleArea r3 ]

But additionally, we have introduced definitions for the auxiliary func-
tions circleArea and listSum. In terms of size, our final program is actually
larger than what we began with! So have we actually improved things?

From the standpoint of “removing repeating patterns,” we certainly
have, and we could argue that the resulting program is easier to under-
stand as a result. But there is more. Now that we have defined auxiliary
functions such as circleArea and listSum, we can reuse them in other con-
texts. Being able to reuse code is also called modularity, since the reused
components are like little modules, or bricks, that can form the foundation
of many applications.6 We’ve already talked about reusing circleArea; and
listSum is surely reusable: imagine a list of grocery item prices, or class
sizes, or city populations, for each of which we must compute the total.
In later chapters you will learn other concepts—most notably higher-order
functions and polymorphism—that will substantially increase your ability
to reuse code.

6“Code reuse” and “modularity” are important software engineering principles.
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1.6 Beware of Programming with Numbers

In mathematics there are many different kinds of number systems. For ex-
ample, there are integers, natural numbers (i.e. non-negative integers), real
numbers, rational numbers, and complex numbers. These number systems
possess many useful properties, such as the fact that multiplication and ad-
dition are commutative, and that multiplication distributes over addition.
You have undoubtedly learned many of these properties in your studies, and
have used them often in algebra, geometry, trigonometry, physics, etc.

Unfortunately, each of these number systems places great demands on
computer systems. In particular, a number can in general require an arbi-
trary amount of memory to represent it—even an infinite amount! Clearly,
for example, we cannot represent an irrational number such as π exactly; the
best we can do is approximate it, or possibly write a program that computes
it to whatever (finite) precision that we need in a given application. But
even integers (and therefore rational numbers) present problems, since any
given integer can be arbitrarily large.

Most programming languages do not deal with these problems very well.
In fact, most programming languages do not have exact forms of any of
these number systems. Haskell does slightly better than most, in that it has
exact forms of integers (the type Integer) as well as rational numbers (the
type Rational, defined in the Ratio Library). But in Haskell and most other
languages there is no exact form of real numbers, for example, which are
instead approximated by floating-point numbers with either single-word pre-
cision (Float in Haskell) or double-word precision (Double). What’s worse,
the behavior of arithmetic operations on floating-point numbers can vary
somewhat depending on what CPU is being used, although hardware stan-
dardization in recent years has reduced the degree of this problem.

The bottom line is that, as simple as they may seem, great care must be
taken when programming with numbers. Many computer errors, some quite
serious and renowned, were rooted in numerical incongruities. The field of
mathematics known as numerical analysis is concerned precisely with these
problems, and programming with floating-point numbers in sophisticated
applications often requires a good understanding of numerical analysis to
devise proper algorithms and write correct programs.

As a simple example of this problem, consider the distributive law, ex-
pressed here as a calculation in Haskell and used earlier in this chapter in
calculations involving the function simple :

a ∗ (b + c)⇒ a ∗ b + a ∗ c
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For most floating-point numbers, this law is perfectly valid. For example,
in the GHC implementation of Haskell, the expressions pi ∗ (3 + 4) :: Float
and pi ∗ 3 + pi ∗ 4 :: Float both yield the same result: 21.99115. But funny
things can happen when the magnitude of b +c differs significantly from the
magnitude of either b or c. For example, the following two calculations are
from GHC:

5 ∗ (−0.123456 + 0.123457) :: Float ⇒ 4.991889e − 6
5 ∗ (−0.123456) + 5 ∗ (0.123457) :: Float ⇒ 5.00679e − 6

Although the error here is small, its very existence is worrisome, and in
certain situations it could be disastrous. We will not discuss the nature of
floating-point numbers much further in this text, but just remember that
they are approximations to the real numbers. If real-number accuracy is
important to your application, further study of the nature of floating-point
numbers is probably warranted.

On the other hand, the distributive law (and many others) is valid in
Haskell for the exact data types Integer and Ratio Integer (i.e. rationals).
However, another problem arises: although the representation of an Integer
in Haskell is not normally something that we are concerned about, it should
be clear that the representation must be allowed to grow to an arbitrary
size. For example, Haskell has no problem with the following number:

veryBigNumber :: Integer
veryBigNumber = 43208345720348593219876512372134059

and such numbers can be added, multiplied, etc. without any loss of ac-
curacy. However, such numbers cannot fit into a single word of computer
memory, most of which are limited to 32 bits. Worse, since the computer
system does not know ahead of time exactly how many words will be re-
quired, it must devise a dynamic scheme to allow just the right number
of words to be used in each case. The overhead of implementing this idea
unfortunately causes programs to run slower.

For this reason, Haskell provides another integer data type called Int
which has maximum and minimum values that depend on the word-size of
the CPU being used. In other words, every value of type Int fits into one
word of memory, and the primitive machine instructions for integers can
be used to manipulate them very efficiently.7 Unfortunately, this means

7The Haskell Report requires that every implementation support Ints in the range
−229 to 229 − 1, inclusive. The GHC implementation running on a Pentium processor, for
example, supports the range −231 to 231 − 1.
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that overflow or underflow errors could occur when an Int value exceeds
either the maximum or minumum values. However, most implementations
of Haskell (as well as most other languages) do not even tell you when this
happens. For example, in GHC, the following Int value:

i :: Int
i = 1234567890

works just fine, but if you multiply it by two, GHC returns the value
−1825831516! This is because twice i exceeds the maximum allowed value,
so the resulting bits become nonsensical,8 and are interpreted in this case
as a negative number of the given magnitude.

This is alarming! Indeed, why should anyone ever use Int when Integer
is available? The answer, as mentioned earlier, is efficiency, but clearly
care should be taken when making this choice. If you are indexing into a
list, for example, and you are confident that you are not performing index
calculations that might result in the above kind of error, then Int should
work just fine, since a list longer than 231 will not fit into memory anyway!
But if you are calculating the number of microseconds in some large time
interval, or counting the number of people living on earth, then Integer
would most likely be a better choice. Choose your number data types wisely!

In this text we will use the data types Integer , Int , Float , Double and
Rational for a variety of different applications; for a discussion of the other
number types, consult the Haskell Report. As we use these data types,
we will do so without much discussion—this is not, after all, a book on
numerical analysis—but we will issue a warning whenever reasoning about
floating-point numbers, for example, in a way that might not be technically
sound.

8Actually, they are perfectly sensible in the following way: the 32-bit bi-
nary representation of i is 01001001100101100000001011010010, and twice that is
10010011001011000000010110100100. But the latter number is seen as negative be-
cause the 32nd bit (the highest-order bit on the CPU on which this was run) is a one,
which means it is a negative number in “twos-complement” representation. The twos-
complement of this number is in turn 01101100110100111111101001011100, whose decimal
representation is 1825831516.



Chapter 2

Simple Music

module Haskore .Music where
infixr 5:+:, :=:

In the previous chapter we introduced some of the fundamental ideas of
functional programming in Haskell. In this chapter we begin to develop
some musical ideas as well. As we do so, more Haskell features will be
introduced.

2.1 Preliminaries

Sometimes it is useful to use a built-in Haskell data type to directly represent
some concept of interest. For example, we may wish to use Int to represent
octaves, where by convention octave 4 corresponds to the octave containing
middle C on the piano. We can express this in Haskell using a type synonym:

type Octave = Int

A type synonym does not create a new data type—it just gives a new name
to an existing type. Type synonyms can be defined not just for atomic
types such as Int , but also for structured types such as pairs. For example,
in music theory a pitch is normally defined as a pair, a pitch class and an
octave. Assuming the existence of a data type called PitchClass , we can
write the following type synonym:

type Pitch = (PitchClass ,Octave)

For example, “concert A,” i.e. A above middle C (sometimes written A4)
corresponds to the pitch (A, 4). For convenience we could define a Haskell
variable with that value as follows:

20
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a4 :: Pitch
a4 = (A, 4) -- concert A

Details: This example also demonstrates the use of program comments.

Any text to the right of “ -- ” till the end of the line is considered

to be a comment, and is effectively ignored. Haskell also permits nested

comments that have the form {- this is a comment -} and can appear

anywhere in a program.

Another useful musical concept is duration. Rather than use either in-
tegers or floating-point numbers, we will use rational numbers to denote
duration:

type Dur = Rational

Rational is the data type of rational numbers expressed as ratios of Integers
in Haskell.

Rational numbers in Haskell are printed by GHCi in the form n % d ,
where n is the numerator, and d is the denominator. Even a whole number,
say the number 42, will print as 42 % 1 if it is a Rational number. To create
a Rational number in our program, however, all we have to do is use the
normal division operator, as in the following definition of a a quarter note:

qn :: Dur
qn = 1 / 4 -- quarter note

So far so good. But what about PitchClass? We might try to use integers
to represent pitch classes as well, but this is not very elegant—ideally we
would like to write something that looks more like the conventional pitch
class names C, C�, D�, D, etc. The solution is to use an algebraic data type
in Haskell:

data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Es | Ff | F | Gff | Ess | Fs
| Gf | Fss | G | Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss

deriving (Eq ,Ord ,Show ,Read ,Enum)

Ignoring the line beginning with “deriving” for the moment, this data type
declaration simply enumerates the 21 pitch class names (three for each of
the note names A through G). Note that enharmonics (such as G� and A�)
are listed separately, which may be important in certain applications.
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Details: All constructors in a data declaration must be capitalized. In

this way they are syntactically distinguished from ordinary values. This

distinction is useful since only constructors can be used in the pattern

matching that is part of a function definition, as will be described shortly.

Keep in mind that PitchClass is a completely new, user-defined data
type that is not equal to any other.

2.2 Notes and Music

We can of course define other data types for other purposes. For example,
we will want to define the notion of a note (the pairing of a pitch with a
duration), and a rest. Both of these can be thought of as primitive musical
values, and thus we write:

data Prim = Note Dur Pitch
| Rest Dur

deriving (Show ,Eq ,Ord)

For example, Note qn a4 is concert A played as a quarter note, and Rest 1
is a whole-note rest.

This definition is not completely satisfactory, however, because we may
wish to attach other information to a note, such as its loudness, or some
other annotation or articulation. Furthermore, the pitch itself may actually
be a percussive sound, having no true pitch at all. To fix this we will intro-
duce an important concept in Haskell, namely polymorphism—the ability to
parameterize over types. Instead of fixing the type of the pitch of a note,
we will leave it unspecified through the use of a type variable, as follows:

data Primitive a = Note Dur a
| Rest Dur

deriving (Show ,Eq ,Ord)

Note the type variable a, which is used as an argument to Primitive, and
then used in the body of the declaration—just like a variable in a function.
Primitive Pitch is now the same as (or, technically, is now isomorphic to)
the type Prim. Indeed, instead of defining Prim as above, we could now use
a type synonym instead:

type Prim = Primitive Pitch
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But Primitive is more flexible than Prim, since, for example, we could add
loudness by pairing loudness with pitch, as in Primitive (Pitch,Loudness).
We will see more concrete instances of this idea later.

So far we only have a way to express primitive notes and rests—how do
we combine many notes and rests into a larger composition? To achieve this
we will define another polymorphic data type, perhaps the most important
data type used in this book, which defines the fundamental structure of a
musical entity:

data Music a = Primitive (Primitive a) -- primitive value
| Music a :+: Music a -- sequential composition
| Music a :=: Music a -- parallel composition
| Modify Control (Music a) -- modifier

deriving (Show ,Eq ,Ord)

Details: The first line here looks odd: the name Primitive appears
twice. The first occurence, however, is the name of a new constructor
in the Music data type, whereas the second is the name of the existing
data type defined above. Haskell allows using the same name to define a
constructor and a data type, since they can never be confused: the context
in which they are used will always be sufficient to distinguish them.

Also note the use of infix constructors (:+:) and (:=:). Infix constructors

are just like infix operators in Haskell, but they must begin with a colon.

This distinction exists to make it easier to pattern match, and is analogous

to the distinction between ordinary names (which must begin with a lower-

case character) and constructor names (which must begin with an upper-

case character).

It is convenient to represent these musical ideas as a recursive datatype
because we wish to not only construct musical values, but also take them
apart, analyze their structure, print them in a structure-preserving way,
interpret them for performance purposes, etc. We will see many examples
of these kinds of processes shortly.

This data type declaration essentially says that a value of type Music a
has one of four possible forms:

• Primitive p, where p is a primitive value of type Primitive a, for some
type a. For example:

ma4 :: Music Pitch
ma4 = Primitive (Note qn a4 )
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is the musical value corresponding to a quarter-note rendition of con-
cert A.

• m1 :+: m2 is the sequential composition of m1 and m2 ; i.e. m1 and
m2 are played in sequence.

• m1 :=: m2 is the parallel composition of m1 and m2 ; i.e. m1 and m2
are played simultaneously.

• Modify cntrl m is an “annotated” version of m in which the control
parameter cntrl specifies some way in which m is to be modified.

Details: Note that Music a is defined in terms of Music a, and thus we

say that is a recursive data type. It is also often called an inductive data

type, since it is, in essence, an inductive definition of an infinite number

of values, each of which can be arbitrarily complex.

The Control data type is defined as follows:

data Control =
Tempo Rational -- scale the tempo

| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- intrument label
| Phrase [PhraseAttribute ] -- phrase attributes
| Player PlayerName -- player label

deriving (Show ,Eq ,Ord)

type PlayerName = String

It allows one to annotate a Music value with a tempo change, a transposition,
a phrase attribute, a player name, or an instrument. Instrument names are
borrowed from the General MIDI standard, and are captured as an algebraic
data type in Figure 2.1. Phrase attributes and the concept of a “player” are
closely related, but a full explanation is deferred until Chapter 6.

2.3 Convenient Auxiliary Functions

For convenient we define a number of functions to make it easier to write
certain kinds of musical values. For starters, we define:

note d p = Primitive (Note d p)
rest d = Primitive (Rest d)
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data InstrumentName
= AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano
| HonkyTonkPiano | RhodesPiano | ChorusedPiano
| Harpsichord | Clavinet | Celesta | Glockenspiel | MusicBox
| Vibraphone | Marimba | Xylophone | TubularBells
| Dulcimer | HammondOrgan | PercussiveOrgan
| RockOrgan | ChurchOrgan | ReedOrgan
| Accordion | Harmonica | TangoAccordion
| AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz
| ElectricGuitarClean | ElectricGuitarMuted | OverdrivenGuitar
| DistortionGuitar | GuitarHarmonics | AcousticBass
| ElectricBassFingered | ElectricBassPicked | FretlessBass
| SlapBass1 | SlapBass2 | SynthBass1 | SynthBass2
| Violin | Viola | Cello | Contrabass | TremoloStrings
| PizzicatoStrings | OrchestralHarp | Timpani
| StringEnsemble1 | StringEnsemble2 | SynthStrings1
| SynthStrings2 | ChoirAahs | VoiceOohs | SynthVoice
| OrchestraHit | Trumpet | Trombone | Tuba
| MutedTrumpet | FrenchHorn | BrassSection | SynthBrass1
| SynthBrass2 | SopranoSax | AltoSax | TenorSax
| BaritoneSax | Oboe | Bassoon | EnglishHorn | Clarinet
| Piccolo | Flute | Recorder | PanFlute | BlownBottle
| Shakuhachi |Whistle | Ocarina | Lead1Square
| Lead2Sawtooth | Lead3Calliope | Lead4Chiff
| Lead5Charang | Lead6Voice | Lead7Fifths
| Lead8BassLead | Pad1NewAge | Pad2Warm
| Pad3Polysynth | Pad4Choir | Pad5Bowed
| Pad6Metallic | Pad7Halo | Pad8Sweep
| FX1Train | FX2Soundtrack | FX3Crystal
| FX4Atmosphere | FX5Brightness | FX6Goblins
| FX7Echoes | FX8SciFi | Sitar | Banjo | Shamisen
| Koto | Kalimba | Bagpipe | Fiddle | Shanai
| TinkleBell | Agogo | SteelDrums |Woodblock | TaikoDrum
| MelodicDrum | SynthDrum | ReverseCymbal
| GuitarFretNoise | BreathNoise | Seashore
| BirdTweet | TelephoneRing | Helicopter
| Applause | Gunshot | Percussion
| Custom String
deriving (Show ,Eq,Ord)

Figure 2.1: General MIDI Instrument Names
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tempo r m = Modify (Tempo r) m
transpose i m = Modify (Transpose i) m
instrument i m = Modify (Instrument i) m
phrase pa m = Modify (Phrase pa) m
player pn m = Modify (Player pn) m

We can also create simple names for familiar notes, durations, and rests,
as shown in Figures 2.2 and 2.3. Despite the large number of them, these
names are sufficiently “unusual” that name clashes are unlikely.

As a simple example, here is a ii-V-I chord progression in C major:

t251 :: Music Pitch
t251 = let dMinor = d 3 wn :=: f 3 1 :=: a 3 wn

gMajor = g 3 wn :=: b 3 1 :=: d 4 wn
cMajor = c 3 bn :=: e 3 2 :=: g 3 bn

in dMinor :+: gMajor :+: cMajor

Details: Note that more than one equation is allowed in a let expression.
The first characters of each equation, however, must line up vertically, and
if an equation takes more than one line then the subsequent lines must be
to the right of the first characters. For example, this is legal:

let a = aLongName
+ anEvenLongerName

b = 56
in...

but neither of these are:

let a = aLongName
+anEvenLongerName

b = 56
in...

let a = aLongName
+ anEvenLongerName

b = 56
in...

(The second line of the first example is too far to the left, as is the third
line in the second example.)

Although this rule, called the layout rule, may seem a bit ad hoc, it avoids
having to use special syntax to denote the end of one equation and the
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cf , c, cs, df , d , ds , ef , e, es ,ff , f , fs , gf , g, gs , af , a, as , bf , b, bs ::
Octave → Dur → Music Pitch

cff o d = note d (Cff , o)
cf o d = note d (Cf , o)
c o d = note d (C , o)
cs o d = note d (Cs , o)
css o d = note d (Css , o)
dff o d = note d (Dff , o)
df o d = note d (Df , o)
d o d = note d (D , o)
ds o d = note d (Ds , o)
dss o d = note d (Dss , o)
eff o d = note d (Eff , o)
ef o d = note d (Ef , o)
e o d = note d (E , o)
es o d = note d (Es , o)
ess o d = note d (Ess , o)
fff o d = note d (Fff , o)
ff o d = note d (Ff , o)
f o d = note d (F , o)
fs o d = note d (Fs , o)
fss o d = note d (Fss , o)
gff o d = note d (Gff , o)
gf o d = note d (Gf , o)
g o d = note d (G, o)
gs o d = note d (Gs , o)
gss o d = note d (Gss , o)
aff o d = note d (Aff , o)
af o d = note d (Af , o)
a o d = note d (A, o)
as o d = note d (As , o)
ass o d = note d (Ass , o)
bff o d = note d (Bff , o)
bf o d = note d (Bf , o)
b o d = note d (B , o)
bs o d = note d (Bs , o)
bss o d = note d (Bss , o)

Figure 2.2: Convenient note names.
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bn ,wn, hn, qn, en, sn, tn, sfn, dwn , dhn,
dqn , den , dsn, dtn, ddhn , ddqn , dden :: Dur

bnr ,wnr , hnr , qnr , enr , snr , tnr , dwnr , dhnr ,
dqnr , denr , dsnr , dtnr , ddhnr , ddqnr , ddenr :: Music Pitch

bn = 2; bnr = rest bn -- brevis rest
wn = 1;wnr = rest wn -- whole note rest
hn = 1 / 2; hnr = rest hn -- half note rest
qn = 1 / 4; qnr = rest qn -- quarter note rest
en = 1 / 8; enr = rest en -- eight note rest
sn = 1 / 16; snr = rest sn -- sixteenth note rest
tn = 1 / 32; tnr = rest tn -- thirty-second note rest
sfn = 1 / 64; sfnr = rest sfn -- sixty-fourth note rest

dwn = 3 / 2; dwnr = rest dwn -- dotted whole note rest
dhn = 3 / 4; dhnr = rest dhn -- dotted half note rest
dqn = 3 / 8; dqnr = rest dqn -- dotted quarter note rest
den = 3 / 16; denr = rest den -- dotted eighth note rest
dsn = 3 / 32; dsnr = rest dsn -- dotted sixteenth note rest
dtn = 3 / 64; dtnr = rest dtn -- dotted thirty-second note rest

ddhn = 7 / 8; ddhnr = rest ddhn -- double-dotted half note rest
ddqn = 7 / 16; ddqnr = rest ddqn -- double-dotted quarter note rest
dden = 7 / 32; ddenr = rest dden -- double-dotted eighth note rest

Figure 2.3: Convenient rest names.
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beginning of the next (such as a semicolon), thus enhancing readability.
In practice, use of layout is rather intuitive. Just remember two things:

First, the first character following either where or let (and a few other
keywords that we will see later) is what determines the starting column
for the set of equations being written. Thus we can begin the equations
on the same line as the keyword, the next line, or whatever.

Second, just be sure that the starting column is further to the right than

the starting column associated with any immediately surrounding clause

(otherwise it would be ambiguous). The “termination” of an equation

happens when something appears at or to the left of the starting column

associated with that equation.

In order to play this simple example, we can import the play function
from Hasore’s MIDI library, and simply type:

play t251

at the GHC command line. Default instruments and tempos are used to
then play the resulting composition.

2.4 Absolute Pitches

Treating pitches simply as integers is useful in many settings, so let’s use a
type synonym to introduce a concept of “absolute pitch:”

type AbsPitch = Int

The absolute pitch of a (relative) pitch can be defined mathematically as 12
times the octave, plus the index of the pitch class. We can express this in
Haskell as follows:

absPitch :: Pitch → AbsPitch
absPitch (pc, oct) = 12 ∗ oct + pcToInt pc

Details: Note the use of pattern-matching to match the argument of

absPitch to a pair.

pcToInt is simply a function that converts a particular pitch class to an
index, easily expressed as:
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pcToInt :: PitchClass → Int
pcToInt Cff = −2
pcToInt Cf = −1
pcToInt C = 0
pcToInt Cs = 1
pcToInt Css = 2

pcToInt Dff = 0
pcToInt Df = 1
pcToInt D = 2
pcToInt Ds = 3
pcToInt Dss = 4

pcToInt Eff = 2
pcToInt Ef = 3
pcToInt E = 4
pcToInt Es = 5
pcToInt Ess = 6

pcToInt Fff = 3
pcToInt Ff = 4
pcToInt F = 5
pcToInt Fs = 6
pcToInt Fss = 7

pcToInt Gff = 5
pcToInt Gf = 6
pcToInt G = 7
pcToInt Gs = 8
pcToInt Gss = 9

pcToInt Aff = 7
pcToInt Af = 8
pcToInt A = 9
pcToInt As = 10
pcToInt Ass = 11

pcToInt Bff = 9
pcToInt Bf = 10
pcToInt B = 11
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pcToInt Bs = 12
pcToInt Bss = 13

Converting an absolute pitch to a pitch is a bit more tricky, because of
enharmonic equivalences. For example, the absolute pitch 15 might corre-
spond to either (Ds, 1) or (Ef , 1). We take the approach of always returning
a sharp in such ambiguous cases:

pitch :: AbsPitch → Pitch
pitch ap =

let (oct ,n) = divMod ap 12
in ([C ,Cs ,D ,Ds,E ,F ,Fs ,G ,Gs ,A,As ,B ] !! n, oct)

Details: (!!) is Haskell’s zero-based list-indexing function; list !!n returns

the (n + 1)th element in list . divMod x n returns a pair (q, r), where q
is the integer quotient of x divided by n, and r is the value of x modulo

n.

We can also define a function trans , which transposes pitches:

trans :: Int → Pitch → Pitch
trans i p = pitch (absPitch p + i)

Exercise 2.1 Show that abspitch (pitch ap) = ap, and, up to enharmonic
equivalences, pitch (abspitch p) = p.

Exercise 2.2 Show that trans i (trans j p) = trans (i + j ) p.



Chapter 3

Polymorphic and
Higher-Order Functions

In the last chapter we learned a little about polymorphic data types. In this
chapter we will also learn about polymorphic functions, which are essentially
functions defined over polymorphic data types. The already familiar list is
the most common example of a polymorphic data type, and we will study it
in depth in this chapter. Although lists have no direct musical connection,
they are perhaps the most commonly used data type in Haskell, and have
many applications in computer music programming.

We will also learn about higher-order functions, which are functions that
take one or more functions as arguments or return a function as a result
(functions can also be placed in data structures, making the data construc-
tors higher-order too). Together, polymorphic and higher-order functions
substantially increase our expressive power and our ability to reuse code.
We will see that both of these new ideas naturally follow the foundations
that we have already built.

(A more detailed discussion of pre-defined polymorphic functions that
operate on lists can be found in Chapter A.)

3.1 Polymorphic Types

In previous chapters we saw examples of lists containing several different
kinds of elements—integers, characters, pitch classes, and so on—and you
can well imagine situations requiring lists of other element types as well.
Sometimes, however, we don’t wish to be so particular about the precise
type of the elements. For example, suppose we want to define a function

32
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length that determines the number of elements in a list. We don’t really
care whether the list contains integers, pitch classes, or even other lists—we
imagine computing the length in exactly the same way in each case. The
obvious definition is:

length [ ] = 0
length (x : xs) = 1 + length xs

This recursive definition is self-explanatory. We can read the equations as
saying: “The length of the empty list is 0, and the length of a list whose
first element is x and remainder is xs is 1 plus the length of xs .”

But what should the type of length be? Intuitively, what we’d like to
say is that, for any type a, the type of length is [a ] → Integer . In Haskell
we write this simply as:

length :: [a ]→ Integer

Details: Generic names for types, such as a above, are called type vari-

ables, and are uncapitalized to distinguish them from specific types such

as Integer .

So length can be applied to a list containing elements of any type. For
example:

length [1, 2, 3] =⇒ 3
length [C ,Cs ,Df ] =⇒ 3
length [ [1], [ ], [2, 3, 4]] =⇒ 3

Note that the type of the argument to length in the last example is
[[Integer ] ]; that is, a list of lists of integers.

Here are two other examples of polymorphic list functions, which happen
to be pre-defined in Haskell:

head :: [a ]→ a
head (x : ) = x

tail :: [a ]→ [a ]
tail ( : xs) = xs

Details: The on the left-hand side of these equations is called a wild-

card pattern. It matches any value, and binds no variables. It is useful

as a way of documenting the fact that we do not care about the value in

that part of the pattern.
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These two functions take the “head” and “tail,” respectively, of any
non-empty list:

head [1, 2, 3]⇒ 1
head [’a’, ’b’, ’c’]⇒ ’a’
tail [1, 2, 3]⇒ [2, 3]
tail [’a’, ’b’, ’c’]⇒ [’b’, ’c’]

Functions such as length , head , and tail are said to be polymorphic (poly
means many and morphic refers to the structure, or form, of objects). Poly-
morphic functions arise naturally when defining functions on lists and other
polymorphic data types, including the Music data type defined in the last
chapter.

3.2 Abstraction Over Recursive Definitions

Suppose we have a list of pitches, and we wish to convert each of them to
an absolute pitch. We might write a function:

toAbsPitches :: [Pitch ]→ [AbsPitch ]
toAbsPitches [ ] = [ ]
toAbsPitches (p : ps) = absPitch p : toAbsPitches ps

We might also want to convert a list of absolute pitches to a list of pitches:

toPitches :: [AbsPitch ]→ [Pitch ]
toPitches [ ] = [ ]
toPitches (a : as) = pitch a : toPitches as

These two functions are different, but share something in common: there
is a repeating pattern of operations. But the pattern is not quite like any
of the examples that we studied earlier, and therefore it is unclear how to
apply the abstraction principle. What distinguishes this situation is that
there is a repeating pattern of recursion.

In discerning the nature of a repeating pattern it’s sometimes helpful
to identify those things that aren’t repeating—i.e. those things that are
changing—since these will be the sources of parameterization: those values
that must be passed as arguments to the abstracted function. In the case
above, these changing values are the functions absPitch and pitch; let’s
consider them instances of a new name, f . If we then simply rewrite either
of the above functions as a new function—let’s call it map—that takes an
extra argument f , we arrive at:
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map f [ ] = [ ]
map f (x : xs) = f x : map f xs

With this definition of map, we can now redefine toAbsPitches and toPitches
as:

toAbsPitches :: [Pitch ]→ [AbsPitch ]
toAbsPitches ps = map absPitch ps

toPitches :: [AbsPitch ]→ [Pitch ]
toPitches as = map pitch as

Note that these definitions are non-recursive; the common pattern of recur-
sion has been abstracted away and isolated in the definition of map. They
are also very succinct; so much so, that it seems unnecessary to create new
names for these functions at all! One of the powers of higher-order functions
is that they permit concise yet easy-to-understand definitions such as this,
and you will see many similar examples throughout the remainder of the
text.

A proof that the new versions of these two functions are equivalent to
the old ones can be done via calculation, but requires a proof technique
called induction, because of the recursive nature of the original function
definitions. We will discuss inductive proofs in detail, including these two
examples, in Chapter 8.

3.2.1 Map is Polymorphic

What should the type of map be? Let’s look first at its use in toAbsPitches :
it takes the function absPitch :: Pitch → AbsPitch as its first argument, a
list of Pitchs as its second argument, and it returns a list of AbsPitchs as
its result. So its type must be:

map :: (Pitch → AbsPitch)→ [Pitch ]→ [AbsPitch ]

Yet a similar analysis of its use in toPitches reveals that map’s type should
be:

map :: (AbsPitch → Pitch)→ [AbsPitch ]→ [Pitch ]

This apparent anomaly can be resolved by noting that map, like length ,
head and tail , does not really care what its list element types are, as long as
its functional argument can be applied to them. Indeed, map is polymorphic,
and its most general type is:
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map :: (a → b)→ [a ]→ [b ]

This can be read: “map is a function that takes a function from any type a
to any type b, and a list of a’s, and returns a list of b’s.” The correspon-
dence between the two a’s and between the two b’s is important: a function
that converts Int ’s to Char ’s, for example, cannot be mapped over a list of
Char ’s. It is easy to see that in the case of toAbsPitches, a is instantiated
as Pitch and b as AbsPitch, whereas in toPitches , a and b are instantiated
as AbsPitch and Pitch, respectively.

Details: In Chapter 1 we mentioned that every expression in Haskell has
an associated type. But with polymorphism, you might wonder if there is
just one type for every expression. For example, map could have any of
these types:

(a → b)→ [a ]→ [b ]
(Integer → b)→ [Integer ]→ [b ]
(a → Float)→ [a ]→ [Float ]
(Char → Char )→ [Char ]→ [Char ]

and so on, depending on how it will be used. However, notice that the

first of these types is in some fundamental sense more general than the

other three. In fact, every expression in Haskell has a unique type known

as its principal type: the least general type that captures all valid uses of

the expression. The first type above is the principal type of map, since

it captures all valid uses of map, yet is less general than, for example,

the type a → b → c. As another example, the principal type of head is

[a ] → a; the types [b ] → a, b → a, or even a are too general, whereas

something like [Integer ]→ Integer is too specific.1

3.2.2 Using map

Now that we can picture map as a polymorphic function, it is useful to look
back on some of the examples we have worked through to see if there are
any situations where map might have been useful. For example, recall from
Section 1.4.3 the definition of totalArea :

totalArea = listSum [circleArea r1 , circleArea r2 , circleArea r3 ]

It should be clear that this can be rewritten as:
1The existence of unique principal types is the hallmark feature of the Hindley-Milner

type system [Hin69, Mil78] that forms the basis of the type systems of Haskell, ML [MTH90]
and many other functional languages [Hud89].
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totalArea = listSum (map circleArea [r1 , r2 , r3 ])

A simple calculation is all that is needed to show that these are the same:

map circleArea [r1 , r2 , r3 ]
⇒ circleArea r1 : map circleArea [r2 , r3 ]
⇒ circleArea r1 : circleArea r2 : map circleArea [r3 ]
⇒ circleArea r1 : circleArea r2 : circleArea r3 : map circleArea [ ]
⇒ circleArea r1 : circleArea r2 : circleArea r3 : [ ]
⇒ [circleArea r1 , circleArea r2 , circleArea r3 ]

For an interesting musical example, let’s generate a whole-tone scale starting
at a given pitch:

wts :: Pitch → [Music Pitch ]
wts p = let ap = absPitch p

f ap = note qn (pitch ap)
in map f [mc,mc + 2 . . mc + 12]

Details: A list [a, b . . c ] is called an arithmetic sequence, and is special

syntax for the list [a, a + d , a + 2 ∗ d , ..., c ] where d = b − a.

3.3 Append

Let’s now consider the problem of concatenating or appending two lists to-
gether; that is, creating a third list that consists of all of the elements from
the first list followed by all of the elements of the second. Once again the
type of list elements does not matter, so we will define this as a polymorphic
infix operator (++):

(++) :: [a ]→ [a ]→ [a ]

For example, here are two uses of (++) on different types:

[1, 2, 3] ++ [4, 5, 6] =⇒ [1, 2, 3, 4, 5, 6]
[C ,E ,G ] ++ [D ,F ,A ] =⇒ [C ,E ,G ,D ,F ,A ]

As usual, we can approach this problem by considering the various possi-
bilities that could arise as input. But in the case of (++) we are given two
inputs—so which do we consider first? In general this is not an easy ques-
tion, but in the case of (++) we can get a hint about what to do by noting
that the result contains firstly all of the elements from the first list. So let’s
consider the first list first: it could be empty, or non-empty. If it is empty
the answer is easy:
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[ ] ++ ys = ys

and if it is not empty the answer is also straightforward:

(x : xs) ++ ys = x : (xs ++ ys)

Note the recursive use of (++). Our full definition is thus:

(++) :: [a ]→ [a ]→ [a ]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

The Efficiency and Fixity of Append In Chapter 8 we will prove the
following simple property about (++):

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

That is, (++) is associative.
But what about the efficiency of the left-hand and right-hand sides of

this equation? It is easy to see via calculation that appending two lists
together takes a number of steps proportional to the length of the first list
(indeed the second list is not evaluated at all). For example:

[1, 2, 3] ++ xs
⇒ 1 : ([2, 3] ++ xs)
⇒ 1 : 2 : ([3] ++ xs)
⇒ 1 : 2 : 3 : ([ ] ++ xs)
⇒ 1 : 2 : 3 : xs

Therefore the evaluation of xs ++ (ys ++ zs) takes a number of steps propor-
tional to the length of xs plus the length of ys. But what about (xs ++ys)++
zs? The leftmost append will take a number of steps proportional to the
length of xs , but then the rightmost append will require a number of steps
proportional to the length of xs plus the length of ys , for a total cost of:

2 ∗ length xs + length ys

Thus xs ++ (ys ++ zs) is more efficient than (xs ++ ys) ++ zs. This is why the
Standard Prelude defines the fixity of (++) as:

infixr 5++

In other words, if you just write xs ++ys ++ zs , you will get the most efficient
association, namely the right association xs ++(ys ++ zs). In the next section
we will see a more dramatic example of this property.
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3.4 Fold

Suppose we wish to take a list of notes (each of type Music) and convert
them into a line, or melody. We can define a recursive function to do this:

line :: [Music a ]→ Music a
line [ ] = rest 0
line (m : ms) = m :+: line ms

We might also wish to have a function chord that operates in an analogous
way, but using (:=:) instead of (:+:):

chord :: [Music a ]→ Music a
chord [ ] = rest 0
chord (m : ms) = m :=: chord ms

In a completely different context we might wish to compute the highest
pitch in a list of pitches:

maxPitch :: [Pitch ]→ Pitch
maxPitch [ ] = pitch 0
maxPitch (p : ps) = p !!! maxPitch ps

where !!! is defined as:

p1 !!! p2 = if absPitch p1 > absPitch p2 then p1 else p2

Details: An expression if pred then cons else alt is called a conditional

expression. If pred (called the predicate) is true, then cons (called the

consequence) is the result; if pred is false, then alt (called the alternative)

is the result.

Once again we have a situation where several definitions share something
in common—a repeating recursive pattern. Using the process that we used
to discover map, let’s first identify those things that are changing. There
are two pairs: the rest 0 and pitch 0 values (for which we’ll use the generic
name init , for “initial value”), and the (:+:) and (!!!) operators (for which
we’ll use the generic name op, for “operator”). If we now rewrite either of
the above functions as a new function—lets call it fold—that takes extra
arguments op and init , we arrive at:2

2The use of the name “fold” for this function is historical, and has little to do with the
use of “fold” and “unfold” to describe steps in a calculation.
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fold op init [ ] = init
fold op init (x : xs) = x ‘op‘ fold op init xs

Details: Any normal binary function name can be used as an infix oper-

ator by enclosing it in backquotes; x ‘f ‘ y is equivalent to f x y. Using

infix application here for op better reflects the structure of the repeating

pattern that we are abstracting.

With this definition of fold we can now rewrite the definitions of line,
chord, and maxPitch as:

line, chord :: [Music ]→ Music
line ms = fold (:+:) (rest 0) ms
chord ms = fold (:=:) (rest 0) ms

maxPitch :: [Pitch ]→ Pitch
maxPitch ps = fold (!!!) 0 ps

Details: Just as we can turn a function into an operator by enclosing

it in backquotes, we can turn an operator into a function by enclosing it

in parentheses. This is required in order to pass an operator as a value

to another function, as in the examples above. (If we wrote fold !!! 0 ps
instead of fold (!!!) 0 ps it would look like we were trying to compare fold
to 0 ps , which is nonsensical and ill-typed.)

In Chapter 8 we will use induction to prove that these new definitions
are equivalent to the old ones.

As another example, recall the definition of listSum from Section 1.4.3:

listSum :: [Float ]→ Float
listSum [ ] = 0
listSum (x : xs) = x + listSum xs

We can now rewrite this more succinctly using fold :

listSum :: [Float ]→ Float
listSum xs = fold (+) 0 xs

fold , like map, is a highly useful—reusable—function, as we will see through
several other examples later in the text. Indeed, it too is polymorphic, for
note that it does not depend on the type of the list elements. Its most
general type—somewhat trickier than that for map—is:

fold :: (a → b → b)→ b → [a ]→ b

This allows us to use fold whenever we need to “collapse” a list of elements
using a binary (i.e. two-argument) operator.
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3.4.1 Haskell’s Folds

Haskell actually defines two versions of fold in the Standard Prelude. The
first is called foldr (“fold-from-the-right”) which is defined the same as our
fold :

foldr :: (a → b → b)→ b → [a ]→ b
foldr op init [ ] = init
foldr op init (x : xs) = x ‘op‘ foldr op init xs

A good way to think about foldr is that it replaces all occurences of the
list operator (:) with its first argument (a function), and replaces [ ] with its
second argument. In other words:

foldr op init (x1 : x2 : ... : xn : [ ])
=⇒ x1 ‘op‘ (x2 ‘op‘ (...(xn ‘op‘ init)...))

This might help you to understand the type of foldr better, and also explains
its name: the list is “folded from the right.” Stated another way, for any
list xs , the following always holds:3

foldr (:) [ ] xs =⇒ xs

Haskell’s second version of fold is called foldl:

foldl :: (b → a → b)→ b → [a ]→ b
foldl op init [ ] = init
foldl op init (x : xs) = foldl op (init ‘op‘ x ) xs

A good way to think about foldl is to imagine “folding the list from the
left:”

foldl op init (x1 : x2 : ... : xn : [ ])
=⇒ (...((init ‘op‘ x1 ) ‘op‘ x2 )...) ‘op‘ xn

3.4.2 Why Two Folds?

Note that if we had used foldl instead of foldr in the definitions given earlier
then not much would change; foldr and foldl would give the same result.
Indeed, judging from their types, it looks like the only difference between
foldr and foldl is that the operator takes its arguments in a different order.

So why does Haskell define two versions of fold? It turns out that there
are situations where using one is more efficient, and possibly “more defined,”

3We will formally prove this in Chapter 8.
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than the other. (By more defined, we mean that the function terminates on
more values of its input domain.)

Probably the simplest example of this is a generalization of the associa-
tivity of (++) discussed in the last section. Suppose that we wish to collapse
a list of lists into one list. The Standard Prelude defines the polymorphic
function concat for this purpose:

concat :: [ [a ] ]→ [a ]
concat xss = foldr (++) [ ] xss

For example:

concat [ [1], [3, 4], [ ], [5, 6]]
⇒ [1, 2, 3, 4, 5, 6]

More importantly, from the earlier discussion it should be clear that this
property holds:

concat [xs1 , xs2 , ..., xsn ]
⇒ foldr (++) [ ] [xs1 , xs2 , ..., xsn ]
⇒ xs1 ++ (xs2 ++ (...(xn ++ [ ]))...)

The total cost of this computation is proportional to the sum of the lengths
of all of the lists. If each list has the same length len, then this cost is n ∗ len.

On the other hand, if we had defined concat this way:

slowConcat xss = foldl (++) [ ] xss

then we have:

slowConcat [xs1 , xs2 , ..., xsn ]
⇒ foldl (++) [ ] [xs1 , xs2 , ..., xsn ]
⇒ (...(([ ] ++ x1 ) ++ x2 )...) ++ xn

If each list has the same length len, then the cost of this computation will
be:

len + (len + len) + (len + len + len) + ... + (n − 1) ∗ len
⇒ n ∗ (n − 1) ∗ len

which is considerably worse than n ∗ len. Thus the choice of foldr in the
definition of concat is quite important.

Similar examples can be given to demonstrate that foldl is sometimes
more efficient than foldr . On the other hand, in many cases the choice does
not matter at all (consider, for example, (+)). The moral of all this is that
care must be taken in the choice between foldr and foldl if efficiency is a
concern.
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3.4.3 Fold for Non-empty Lists

One might argue that both line and maxPitch should not be well defined on
an empty list, and for that purpose the Standard Prelude provides functions
foldr1 and foldl1 , which return an error if applied to an empty list. In certain
contexts this may in fact be the preferred behavior for line and maxPitch,
as well as a function chord that is similar to line except that it does parallel
composition. So we could define:

line1 , chord1 :: [Music ]→ Music
line1 ms = foldr1 (:+:) ms
chord1 ms = foldr1 (:=:) ms

maxPitch1 :: [Pitch ]→ Pitch
maxPitch1 ps = foldr1 (!!!) ps

3.5 A Final Example: Reverse

As a final example of a useful list function, consider the problem of reversing
a list, which we will capture in a function called reverse. For example,
reverse [1, 2, 3] is [3, 2, 1]. Thus reverse takes a single list argument, whose
possibilities are the normal ones for a list: it is either empty, or it is not.
And so we write:

reverse :: [a ]→ [a ]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ]

This, in fact, is a perfectly good definition for reverse—it is certainly clear—
except for one small problem: it is terribly inefficient! To see why, first note
that the number of steps needed to compute xs ++ ys is proportional to the
length of xs . Now suppose that the list argument to reverse has length n.
The recursive call to reverse will return a list of length n − 1, which is the
first argument to (++). Thus the cost to reverse a list of length of n will be
proportional to n − 1 plus the cost to reverse a list of length n − 1. So the
total cost is proportional to (n− 1) + (n− 2) + · · ·+ 1 = n(n− 1)/2, which
in turn is proportional to the square of n.

Can we do better than this? Yes we can.
There is another algorithm for reversing a list, which goes something like

this: take the first element, and put it at the front of an empty auxiliary
list; then take the next element and add it to the front of the auxiliary list
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(thus the auxiliary list now consists of the first two elements in the original
list, but in reverse order); then do this again and again until you reach the
end of the original list. At that point the auxiliary list will be the reverse of
the original one.

This algorithm can be expressed recursively, but the auxiliary list implies
that we need a function that takes two arguments—the original list and the
auxiliary one—yet reverse only takes one. So we create an auxiliary function
rev :

reverse xs = rev [ ] xs
where rev acc [ ] = acc

rev acc (x : xs) = rev (x : acc) xs

The auxiliary list is the first argument to rev , and is called acc since it
behaves as an “accumulator” of the intermediate results. Note how it is
returned as the final result once the end of the original list is reached.

A little thought should convince the reader that this function does not
have the quadratic (n2) behavior of the first algorithm, and indeed can be
shown to execute a number of steps that is directly proportional to the
length of the list, which we can hardly expect to improve upon.

But now, compare the definition of rev with the definition of foldl :

foldl op init [ ] = init
foldl op init (x : xs) = foldl op (init ‘op‘ x ) xs

They are somewhat similar. In fact, suppose we were to slightly rewrite rev ,
yielding:

rev op acc [ ] = acc
rev op acc (x : xs) = rev op (acc ‘op‘ x ) xs

Now rev looks exactly like foldl , and the question becomes whether or not
there is a function that can be substituted for op that would make the latter
definition of rev equivalent to the former one. Indeed there is:

revOp a b = b : a

For note that:

acc ‘revOp‘ x ⇒ revOp acc x ⇒ x : acc

So reverse can be rewritten as:
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reverse xs = rev revOp [ ] xs
where rev op acc [ ] = acc

rev op acc (x : xs) = rev op (acc ‘op‘ x ) xs

which is the same as:

reverse xs = foldl revOp [ ] xs

If all of this seems like magic, well, you are starting to see the beauty of
functional programming!

3.6 Errors

In the last section we talked about the idea of “returning an error” when
the argument to foldr1 is the empty list. As you might imagine, there are
other situations where an error result is also warranted.

There are many ways to deal with such situations, depending on the
application, but sometimes we wish to literally stop the program, signalling
to the user that some kind of an error has occurred. In Haskell this is done
with the Standard Prelude function error :: String → a. Note that error is
polymorphic, meaning that it can be used with any data type. The value of
the expression error s is ⊥, the completely undefined, or “bottom” value.
As an example of its use, here is the definition of foldr1 from the Standard
Prelude:

foldr1 :: (a → a → a)→ [a ]→ a
foldr1 f [x ] = x
foldr1 f (x : xs) = f x (foldr1 f xs)
foldr1 f [ ] = error "Prelude.foldr1: empty list"

Thus if the anomalous situation arises, the program will terminate immedi-
ately, and the string "Prelude.foldr1: empty list" will be printed.

Details: Strings, i.e. sequences of characters, are written between double

quotes in Haskell, as in "Hello World". When typed on your computer,

however, it will look a little differently, as in "Hello World" (the double-

quote character is the same at both ends of the string). Strings have type

String. The "\n" at the end of the string above is a “newline” character;

that is, if another string were printed just after this one, it would appear

beginning on the next line, rather than just after “Hello World.”

Exercise 3.1 What is the principal type of each of the following expres-
sions:
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map map
map foldl

Exercise 3.2 Rewrite the definition of length non-recursively.

Exercise 3.3 Define a function that behaves as each of the following:

1. Doubles each number in a list. For example:

doubleEach [1, 2, 3] =⇒ [2, 4, 6]

2. Pairs each element in a list with that number and one plus that num-
ber. For example:

pairAndOne [1, 2, 3] =⇒ [(1, 2), (2, 3), (3, 4)]

3. Adds together each pair of numbers in a list. For example:

addEachPair [(1, 2), (3, 4), (5, 6)] =⇒ [3, 7, 11]

In this exercise and the two that follow, give both recursive and (if possible)
non-recursive definitions, and be sure to include type signatures.

Exercise 3.4 Define a function maxList that computes the maximum ele-
ment of a list. Define minList analogously.

Exercise 3.5 Define a function that adds “pointwise” the elements of a list
of pairs. For example:

addPairsPointwise [(1, 2), (3, 4), (5, 6)] =⇒ (9, 12)

Exercise 3.6 Freddie the Frog wants to communicate privately with his
girlfriend Francine by encrypting messages sent to her. Frog brains are
not that large, so they agree on this simple strategy: each character in
the text shall be converted to the character “one greater” than it, based
on the representation described below (with wrap-around from 255 to 0).
Define functions encrypt and decrypt that will allow Freddie and Francine
to communicate using this strategy.

Hint: Characters are often represented inside a computer as some kind
of an integer; in the case of Haskell, a 16-bit unicode representation is used.
For this exercise, you will want to use two Haskell functions, toEnum and
fromEnum . The first will convert an integer into a character, the second
will convert a character into an integer.
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Exercise 3.7 Suppose you are given a non-negative integer amt represent-
ing a sum of money, and a list of coin denominations [v1 , v2 , ..., vn ], each
being a positive integer. Your job is to make change for amt using the coins
in the coin supply. Define a function makeChange to solve this problem.
For example, your function may behave like this:

makeChange 99 [5, 1]⇒ [19, 4]

where 99 is the amount and [5, 1] represents the types of coins (say, nickels
and pennies in US currency) that we have. The answer [19, 4] means that
we can make the exact change with 19 5-unit coins and 4 single-unit coins;
this is the best (in terms of the total number of coins) possible solution.

To make things slightly easier, you may assume that the list representing
the coin denominations is given in descending order, and that the single-unit
coin is always one of the coin types.

[Need to add some musical exercises.]



Chapter 4

More About Higher-Order
Functions

You have now seen several examples where functions are passed as arguments
to other functions, such as with fold and map. In this chapter we will see
several examples where functions are also returned as values. This will lead
to several techniques for improving definitions that we have already written,
techniques that we will use often in the remainder of the text.

4.1 Currying

The first improvement relates to the notation we have used to write func-
tion applications, such as simple x y z . Although we have seen the simi-
larity of this to the mathematical notation simple(x, y, z), in fact there is
an important difference, namely that simple x y z is actually equivalent to
(((simple x ) y) z ). In other words, function application is left associative,
taking one argument at a time.

Let’s look at the expression (((simple x ) y) z ) a bit closer: there is an
application of simple to x , the result of which is applied to y ; so (simple x )
must be a function! The result of this application, ((simple x ) y), is then
applied to z , so ((simple x ) y) must also be a function!

Since each of these intermediate applications yields a function, it seems
perfectly reasonable to define a function such as:

multSumByFive = simple 5

What is simple 5? From the above argument we know that it must be a func-
tion. And from the definition of simple in Section 1.1 we might guess that

48
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this function takes two arguments, and returns 5 times their sum. Indeed,
we can calculate this result as follows:

multSumByFive a b
⇒ (simple 5) a b
⇒ simple 5 a b
⇒ 5 ∗ (a + b)

The intermediate step with parentheses is included just for clarity. This
method of applying functions to one argument at a time, yielding interme-
diate functions along the way, is called currying, after the logician Haskell
B. Curry who popularized the idea.1 It is helpful to look at the types of the
intermediate functions as arguments are applied:

simple :: Float → Float → Float → Float
simple 5 :: Float → Float → Float
simple 5 a :: Float → Float
simple 5 a b :: Float

We use currying to improve some of our previous examples as follows. Sup-
pose that I tell you that the expressions f x and g x are the same, for all
values of x . Then it seems clear that the functions f and g are equivalent.
So, if we want to define f in terms of g , instead of writing:

f x = g x

we can instead simply write:

f = g

Let’s apply this reasoning to the definition of line from Section 3.4:

line ms = fold (:+:) (Primitive (Rest 0)) ms

Since function application is left associative, we can rewrite this as:

line ms = (fold (:+:) (Primitive (Rest 0))) ms

But now applying the same reasoning here as we did for f and g means that
we can write this simply as:

line = fold (:+:) (Primitive (Rest 0))

1It was actually Schönfinkel who first called attention to this idea [Sch24], but the word
“schönfinkelling” is rather a mouthful!
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Similarly, the definitions of maxPitch and listSum

maxPitch ps = fold (!!!) 0 ps
listSum xs = foldl (+) 0 xs

can be rewritten as:

maxPitch = fold (!!!) 0
listSum = foldl (+) 0

We will refer to this kind of simplification as “currying simplification” or
just “currying,” even though it actually has a more technical name, “eta
contraction.”

Details: Some care should be taken when using this simplification idea.

In particular, note that an equation such as f x = g x y x cannot be

simplified to f = g x y, since then the x would become undefined!

Here is a more interesting example, in which currying simplification is
used three times. Recall from Section 3.5 the definition of reverse using
foldl :

reverse xs = foldl revOp [ ] xs
where revOp acc x = x : acc

Using the polymorphic function flip which is defined in the Standard Prelude
as:

flip :: (a → b → c)→ (b → a → c)
flip f x y = f y x

it should be clear that revOp can be rewritten as:

revOp acc x = flip (:) acc x

But now currying simplification can be used twice to reveal that:

revOp = flip (:)

This, along with a third use of currying, allows us to rewrite the definition
of reverse simply as:

reverse = foldl (flip (:)) [ ]

This is in fact the way reverse is defined in the Standard Prelude.
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Exercise 4.1 Show that flip (flip f ) is the same as f .

Exercise 4.2 What is the type of ys in:

xs = [1, 2, 3] :: [Float ]
ys = map (+) xs

Exercise 4.3 Define a function applyEach that, given a list of functions,
applies each to some given value. For example:

applyEach [simple 2 2, (+3)] 5 =⇒ [14, 8]

where simple is as defined in Section 1.1.

Exercise 4.4 Define a function applyAll that, given a list of functions
[f1 , f2 , ..., fn ] and a value v , returns the result f1 (f2 (...(fn v)...)). For
example:

applyAll [simple 2 2, (+3)] 5 =⇒ 20

Exercise 4.5 Recall the discussion about the efficiency of (++) and concat
in Chapter 3. Which of the following functions is more efficient, and why?

appendr , appendl :: [ [a ] ]→ [a ]
appendr = foldr (flip (++)) [ ]
appendl = foldl (flip (++)) [ ]

4.2 Sections

With a bit more syntax, we can also curry applications of infix operators
such as (+). This syntax is called a section, and the idea is that, in an
expression such as (x +y), you can omit either the x or the y , and the result
(with the parentheses still intact) is a function of that missing argument.
If both variables are omitted, it is a function of two arguments. In other
words, the expressions (x+), (+y) and (+) are equivalent, respectively, to
the functions:

f1 y = x + y
f2 x = x + y
f3 x y = x + y

For example, suppose that we need to determine whether each number in a
list is positive. Instead of writing:
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posInts :: [Integer ]→ [Bool ]
posInts xs = map test xs

where test x = x > 0

we can simply write:

posInts :: [Integer ]→ [Bool ]
posInts xs = map (>0) xs

which can be further simplified using currying:

posInts :: [Integer ]→ [Bool ]
posInts = map (>0)

This is an extremely concise definition.
As you gain experience with higher-order functions you will not only be

able to start writing definitions such as this directly, but you will also start
thinking in “higher-order” terms. We will see many examples of this kind of
reasoning throughout the text.

Exercise 4.6 Define a function twice that, given a function f , returns a
function that applies f twice to its argument. For example:

(twice (+1)) 2⇒ 4

What is the principal type of twice? Describe what twice twice does, and
give an example of its use. How about twice twice twice and twice (twice twice)?

Exercise 4.7 Generalize twice defined in the previous exercise by defining
a function power that takes a function f and an integer n, and returns a
function that applies the function f to its argument n times. For example:

power (+2) 5 1 =⇒ 11

Use power to define something (anything!) useful.

4.3 Anonymous Functions

The final way to define a function in Haskell is in some sense the most funda-
mental: it is called an anonymous function, or lambda expressions (since the
concept is drawn directly from Church’s lambda calculus [Chu41]). The idea
is that functions are values, just like numbers and characters and strings,
and therefore there should be a way to create them without having to give
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them a name. As a simple example, an anonymous function that incre-
ments its numeric argument by one can be written λx → x +1. Anonymous
functions are most useful in situations where you don’t wish to name them,
which is why they are called “anonymous.”

Details: The typesetting that we use in this book prints an actual Greek

lambda character, but in writing λx → x + 1 in your programs you will

have to write “\x -> x+1” instead.

As another example, to add one and then divide by two every element
of a list, we could write:

map (λx → (x + 1) / 2) xs

An even better example is an anonymous function that pattern-matches its
argument, as in:

map (λ(a, b)→ a + b) xs

Details: Anonymous functions can only perform one match against an

argument. That is, you cannot stack together several anonymous functions

to define one function, as you can with equations.

Anonymous functions are considered most fundamental because defini-
tions such as that for simple given in Chapter 1:

simple x y z = x ∗ (y + z )

can be written instead as:

simple = λx y z → x ∗ (y + z )

Details: λx y z → exp is shorthand for λx → λy → λz → exp.

We can also use anonymous functions to explain precisely the behavior
of sections. In particular, note that:

(x+)⇒ λy → x + y
(+y)⇒ λx → x + y
(+)⇒ λx y → x + y

Exercise 4.8 Suppose we define a function fix as:

fix f = f (fix f )
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g f

y = f (g x) = (f g) x

x y

Figure 4.1: Gluing Two Functions Together

What is the principal type of fix? (This is tricky!) Suppose further that we
have a recursive function:

remainder :: Integer → Integer → Integer
remainder a b = if a < b then a

else remainder (a − b) b

Rewrite this function using fix so that it is not recursive. (Also tricky!) Do
you think that this process can be applied to any recursive function?

4.4 Function Composition

An example of polymorphism that has nothing to do with data structures
arises from the desire to take two functions f and g and “glue them to-
gether,” yielding another function h that first applies g to its argument,
and then applies f to that result. This is called function composition, and
Haskell pre-defines a simple infix operator (◦) to achieve it, as follows:

(◦) :: (b → c)→ (a → b)→ a → c
(f ◦ g) x = f (g x )

Details: The symbol for function composition is typeset in this book

as ◦, which is the proper mathematical convention. When writing your

programs, however, you will have to use a “period” , as in “f . g”.

Note the type of the operator (◦); it is completely polymorphic. Note
also that the result of the first function to be applied—some type b—must be
the same as the type of the argument to the second function to be applied.
Pictorially, if you think of a function as a black box that takes input at
one end and returns some output at the other, function composition is like
connecting two boxes together, end to end, as shown in Figure 4.1.

The ability to compose functions using (◦) is extremely useful. For ex-
ample, consider this function to compute the sum of the areas of circles with
various radii:
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totalCircleArea :: [Float ]→ Float
totalCircleArea radii = listSum (map circleArea radii )

We can first add parentheses to emphasize the application of interest:

totalCircleArea :: [Float ]→ Float
totalCircleArea radii = listSum ((map circleArea) radii )

then rewrite as a function composition:

totalCircleArea :: [Float ]→ Float
totalCircleArea radii = (listSum ◦ (map circleArea)) radii

and finally use currying to simplify:

totalCircleArea :: [Float ]→ Float
totalCircleArea = listSum ◦map circleArea

Similarly, this definition:

totalSquareArea :: [Float ]→ Float
totalSquareArea sides = listSum (map squareArea sides)

can be rewritten as:

totalSquareArea :: [Float ]→ Float
totalSquareArea = listSum ◦map squareArea

But let’s also create additional compositions. A function that determines
whether all of the elements in a list are greater than zero, and one that
determines if at least one is greater than zero, can be written:

allOverZero, oneOverZero :: [Integer ]→ Bool
allOverZero = and ◦ posInts
oneOverZero = or ◦ posInts

Note that the auxiliary function posInts is simple enough that we could
incorporate its definition directly, as in:

allOverZero, oneOverZero :: [Integer ]→ Bool
allOverZero = and ◦map (>0)
oneOverZero = or ◦map (>0)

Details: and :: [Bool ] → Bool and or :: [Bool ] → Bool are predefined
functions that “and” and “or” together all of the elements in a list, re-
turning a single Boolean result. The Bool type is predefined in Haskell
simply as:
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data Bool = False | True

In the remainder of this text we will not refrain from writing definitions
such as this directly, using a small set of rich polymorphic functions such
as fold and map, plus a few others drawn from the Prelude and Standard
Libraries.

Exercise 4.9 Rewrite this example:

map (λx → (x + 1) / 2) xs

using a composition of sections.

Exercise 4.10 Consider the expression:

map f (map g xs)

Rewrite this using function composition and a single call to map. Then
rewrite the earlier example:

map (λx → (x + 1) / 2) xs

as a “map of a map.”

Exercise 4.11 Go back to any exercises prior to this chapter, and simplify
your solutions using ideas learned here.

Exercise 4.12 Using higher-order functions that we have now defined, fill
in the two missing functions, f1 and f2 , in the evaluation below so that it
is valid:

f1 (f2 (∗) [1, 2, 3, 4]) 5⇒ [5, 10, 15, 20]



Chapter 5

More Music

module Haskore .MoreMusic where
import Haskore.Music

In this chapter we will explore a number of simple musical ideas, and con-
tribute to a growing collection of Haskell functions for expressing those ideas.

5.1 Delay and Repeat

Suppose that we wish to describe a melody m accompanied by an iden-
tical voice a perfect 5th higher. In Haskore we can simply write m :=:
transpose 7 m. Similarly, a canon-like structure involving m can be ex-
pressed as m :=: delay d m, where:

delay :: Dur → Music a → Music a
delay d m = rest d :+: m

More interestingly, Haskell’s non-strict semantics also allows us to define
infinite musical values. For example, a musical value may be repeated ad
nauseum using this simple function:

repeatM :: Music a → Music a
repeatM m = m :+: repeatM m

Thus, for example, an infinite ostinato can be expressed in this way, and
then used in different contexts that automatically extract only the portion
that is actually needed. We will see more examples of this shortly.

Exercise 5.1 Define a function repM :: Int → Music a → Music a such
that repM n m repeats m n times.

57
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5.2 Inversion and Retrograde

The notions of inversion, retrograde, retrograde inversion, etc. as used in
twelve-tone theory are also easily captured in Haskore. These terms are
usually applied only to “lines” of notes, i.e. a melody (in twelve-tone theory
it is called a “row”). The retrograde of a line is simply its reverse—i.e. the
notes played in the reverse order. The inversion of a line is with respect
to a given pitch (by convention usually the first pitch), where the intervals
between successive pitches are inverted, i.e. negated. If the absolute pitch
of the first note is ap, then each pich p is converted into an absolute pitch
(ap − absPitch p) + ap, in other words 2 ∗ ap − absPitch p.

To do all this in Haskell, let’s first define a transformation from a line
created by line to a list:

lineToList :: Music a → [Music a ]
lineToList n@(Primitive (Rest 0)) = [ ]
lineToList (n :+: ns) = n : lineToList ns
lineToList = error "lineToList: argument not created by line"

Using this function it is then straightforward to define invert , from which
the other functions are easily defined via composition:

retro, invert , retroInvert , invertRetro :: Music Pitch → Music Pitch
invert m = line (map inv l)

where l@(Primitive (Note r) : ) = lineToList m
inv (Primitive (Note d p)) =

note d (pitch (2 ∗ absPitch r − absPitch p))
inv (Primitive (Rest d)) = rest d

retro = line ◦ reverse ◦ lineToList
retroInvert = retro ◦ invert
invertRetro = invert ◦ retro

Exercise 5.2 Show that retro ◦ retro, invert ◦ invert , and retroInvert ◦
invertRetro are the identity on values created by line.

5.3 Polyrhythms

For some rhythmical ideas, first note that if m is a line of three eighth
notes, then tempo (3/2) m is a triplet of eighth notes. In fact tempo can be
used to create quite complex rhythmical patterns. For example, consider the
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3

5 : 6 

4 : 3 
3

5 3
5 5

7 : 6 

3 3

Figure 5.1: Nested Polyrhythms (top: pr1 ; bottom: pr2 )

“nested polyrhythms” shown in Figure 5.1. They can be expressed naturally
in Haskore as follows (note the use of the where clause in pr2 to capture
recurring phrases):

pr1 , pr2 :: Pitch → Music Pitch
pr1 p = tempo (5 / 6)

(tempo (4 / 3) (mkLn 1 p qn:+:
tempo (3 / 2) (mkLn 3 p en:+:

mkLn 2 p sn:+:
mkLn 1 p qn):+:

mkLn 1 p qn):+:
tempo (3 / 2) (mkLn 6 p en))

pr2 p = tempo (7 / 6) (m1 :+:
tempo (5 / 4) (mkLn 5 p en):+:
m1 :+:
tempo (3 / 2) m2 )

where m1 = tempo (5 / 4) (tempo (3 / 2) m2 :+: m2 )
m2 = mkLn 3 p en

mkLn n p d = line (take n (repeat (note d p)))

Details: take n lst is the first n elements of the list lst . For example,

take 3 [C ,Cs ,Df ,D ,Ds ] =⇒ [C ,Cs ,Df ]. repeat x is the infinite list of

the same value x . For example, take 3 (repeat 42) =⇒ [42, 42, 42].
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To play polyrhythms pr1 and pr2 in parallel using middle C and middle
G, respectively, we do the following:

pr12 :: Music Pitch
pr12 = pr1 (C , 4) :=: pr2 (G , 4)

5.4 Symbolic Meter Changes

We can implement the notion of “symbolic meter changes” of the form “old-
note = newnote” (quarter note = dotted eighth, for example) by defining
an infix function:

(=:=) :: Dur → Dur → Music a → Music a
old =:= new = tempo (new / old)

Of course, using the new function is not much longer than using Tempo
directly, but it may have nemonic value.

5.5 Computing Duration

It is often desirable to compute the duration, in whole notes, of a musical
value; we can do so as follows:

dur :: Music a → Dur
dur (Primitive (Note d )) = d
dur (Primitive (Rest d)) = d
dur (m1 :+: m2 ) = dur m1 + dur m2
dur (m1 :=: m2 ) = dur m1 ‘max ‘ dur m2
dur (Modify (Tempo r) m) = dur m / r
dur (Modify m) = dur m

The duration of a primitive value is obvious. The duration of m1 :+: m2
is the sum of the two, and the duration of m1 :=: m2 is the maximum
of the two. The only tricky part is the duration of a music value that is
modified by the Tempo atttribute—in this case the duration must be scaled
appropriately.

5.6 Super-retrograde

Using dur we can define a function revM that reverses any Music value (and
is thus considerably more useful than retro defined earlier). Note the tricky
treatment of (:=:).
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revM :: Music a → Music a
revM n@(Primitive ) = n
revM (Modify c m) = Modify c (revM m)
revM (m1 :+: m2 ) = revM m2 :+: revM m1
revM (m1 :=: m2 ) =

let d1 = dur m1
d2 = dur m2

in if d1 > d2 then revM m1 :=: (rest (d1 − d2 ) :+: revM m2 )
else (rest (d2 − d1 ) :+: revM m1 ) :=: revM m2

5.7 Truncating Parallel Composition

Note that the duration of m1 :=:m2 is the maximum of the durations of m1
and m2 (and thus if one is infinite, so is the result). Sometimes we would
rather have the result be of duration equal to the shorter of the two. This
is not as easy as it sounds, since it may require interrupting the longer one
in the middle of a note (or notes).

We will define a “truncating parallel composition” operator (/=:), but
first we will define an auxiliary function cut such that cut d m is the musical
value m “cut short” to have at most duration d :

cut :: Dur → Music a → Music a
cut newDur m | newDur � 0 = rest 0
cut newDur (Primitive (Note oldDur x )) = note (min oldDur newDur) x
cut newDur (Primitive (Rest oldDur )) = rest (min oldDur newDur)
cut newDur (m1 :=: m2 ) = cut newDur m1 :=: cut newDur m2
cut newDur (m1 :+: m2 ) = let m1 ′ = cut newDur m1

m2 ′ = cut (newDur − dur m1 ′) m2
in m1 ′ :+: m2 ′

cut newDur (Modify (Tempo r) m) = tempo r (cut (newDur ∗ r) m)
cut newDur (Modify c m) = Modify c (cut newDur m)

Note that cut is equipped to handle a Music value of infinite length.
With cut , the definition of (/=:) is now straightforward:

(/=:) :: Music a → Music a → Music a
m1 /=: m2 = cut (min (dur m1 ) (dur m2 )) (m1 :=: m2 )

Unfortunately, whereas cut can handle infinite-duration music values, (/=:)
cannot.
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Exercise 5.3 Define a version of (/=:) that shortens correctly when either
or both of its arguments are infinite in duration.

5.8 Trills

A trill is an ornament that alternates rapidly between two (usually adjacent)
pitches. We will define two versions of a trill function, both of which take
the starting note and an interval for the trill note as arguments (the interval
is usually one or two, but can actually be anything). One version will
additionally have an argument that specifies how long each trill note should
be, whereas the other will have an argument that specifies how many trills
should occur. In both cases the total duration will be the same as the
duration of the original note.

Here is the first trill function:

trill :: Int → Dur → Music Pitch → Music Pitch
trill i sDur (Primitive (Note tDur p)) =

if sDur � tDur then note tDur p
else note sDur p

:+: trill (negate i) sDur (note (tDur − sDur) (trans i p))
trill i d (Modify (Tempo r) m) = tempo r (trill i (d ∗ r) m)
trill i d (Modify c m) = Modify c (trill i d m)
trill = error "trill: input must be a single note."

It is simple to define a version of this function that starts on the trill note
rather than the start note:

trill ′ :: Int → Dur → Music Pitch → Music Pitch
trill ′ i sDur m = trill (negate i) sDur (transpose i m)

The second way to define a trill is in terms of the number of subdivided
notes to be included in the trill. We can use the first trill function to define
this new one:

trilln :: Int → Int → Music Pitch → Music Pitch
trilln i nTimes m = trill i (dur m / fromIntegral nTimes) m

This, too, can be made to start on the other note.

trilln ′ :: Int → Int → Music Pitch → Music Pitch
trilln ′ i nTimes m = trilln (negate i) nTimes (transpose i m)
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Finally, a roll can be implemented as a trill whose interval is zero. This
feature is particularly useful for percussion.

roll :: Dur → Music Pitch → Music Pitch
rolln :: Int → Music Pitch → Music Pitch

roll dur m = trill 0 dur m
rolln nTimes m = trilln 0 nTimes m

5.9 Percussion

Percussion is a difficult notion to represent in the abstract. On one hand,
a percussion instrument is just another instrument, so why should it be
treated differently? On the other hand, even common practice notation
treats it specially, even though it has much in common with non-percussive
notation. The MIDI standard is equally ambiguous about the treatment
of percussion: on one hand, percussion sounds are chosen by specifying an
octave and pitch, just like any other instrument; on the other hand these
pitches have no tonal meaning whatsoever: they are just a convenient way to
select from a large number of percussion sounds. Indeed, part of the General
MIDI Standard is a set of names for commonly used percussion sounds.

Since MIDI is such a popular platform, we can at least define some handy
functions for using the General MIDI Standard. We start by defining the
data type shown in Figure 5.2, which borrows its constructor names from
the General MIDI standard. The comments reflecting the “MIDI Key”
numbers will be explained later, but basically a MIDI Key is the equivalent
of an absolute pitch in Haskore terminology. So all we need is a way to
convert these percussion sound names into a Music value; i.e. a Note:

perc :: PercussionSound → Dur → Music Pitch
perc ps dur = note dur (pitch (fromEnum ps + 35))

Details: fromEnum is a method in the Enum class, which is all about

enumerations. A data type that is a member of this class can be enumer-

ated—i.e. the elements of the data type can be listed in order. fromEnum
maps each value to its index in this enumeration. Thus fromEnum AcousticBassDrum
is 0, fromEnum BassDrum1 is 1, and so on.

For example, here are eight bars of a simple rock or “funk groove” that
uses perc and roll :
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data PercussionSound =
AcousticBassDrum -- MIDI Key 35
| BassDrum1 -- MIDI Key 36
| SideStick -- ...
| AcousticSnare | HandClap | ElectricSnare | LowFloorTom
| ClosedHiHat | HighFloorTom | PedalHiHat | LowTom
| OpenHiHat | LowMidTom | HiMidTom | CrashCymbal1
| HighTom | RideCymbal1 | ChineseCymbal | RideBell
| Tambourine | SplashCymbal | Cowbell | CrashCymbal2
| Vibraslap | RideCymbal2 | HiBongo | LowBongo
| MuteHiConga | OpenHiConga | LowConga | HighTimbale
| LowTimbale | HighAgogo | LowAgogo | Cabasa
| Maracas | ShortWhistle | LongWhistle | ShortGuiro
| LongGuiro | Claves | HiWoodBlock | LowWoodBlock
| MuteCuica | OpenCuica | MuteTriangle
| OpenTriangle -- MIDI Key 82

deriving (Show ,Eq,Ord ,Enum)

Figure 5.2: General MIDI Percussion Names

funkGroove
= let p1 = perc LowTom qn

p2 = perc AcousticSnare en
in tempo 3 (instrument Percussion (cut 8 (repeatM

((p1 :+: qnr :+: p2 :+: qnr :+: p2 :+:
p1 :+: p1 :+: qnr :+: p2 :+: enr)
:=: roll en (perc ClosedHiHat 2))

)))

Exercise 5.4 Define a function chrom ::Pitch → Pitch → Music Pitch such
that chrom p1 p2 is a chromatic scale of quarter-notes whose first pitch is
p1 and last pitch is p2 . If p1 >p2 , the scale should be descending, otherwise
it should be ascending. If p1 == p2 , then the scale should contain just one
note. (A chromatic scale is one whose successive pitches are separated by
one absolute pitch, i.e. one semitone).

Exercise 5.5 Abstractly, a scale can be described by the intervals between
successive notes. For example, the 8-note major scale can be defined as
the sequence of 7 intervals [2, 2, 1, 2, 2, 2, 1], and the 12-note chromatic scale
by the 11 intervals [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Define a function mkScale ::
Pitch → [Int ]→ Music Pitch such that mkScale p ints is the scale beginning
at pitch p and having the intervallic structure ints .
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Exercise 5.6 Write the melody of ”Frere Jacques” (or, ”Are You Sleeping”)
in Haskore. Try to make it as succinct as possible. Then, using functions
already defined, generate a four-part round, i.e. four identical voices, each
delayed successively by two measures. Use a different instrument to realize
each voice.

5.10 A Map for Music

Recall from Chapter 3 the definition of map:

map :: (a → b)→ [a ]→ [b ]
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

This function is defined on the list data type. Is there something analogous
for Music? I.e. a function:

mMap :: (a → b)→ Music a → Music b

Such a function is indeed straightforward to define, but it helps to first define
a map-like function for the Primitive type:

pMap :: (a → b)→ Primitive a → Primitive b
pMap f (Note d x ) = Note d (f x )
pMap f (Rest d) = Rest d

With pMap in hand we can now define mMap:

mMap :: (a → b)→ Music a → Music b
mMap f (Primitive x ) = Primitive (pMap f x )
mMap f (x :+: y) = mMap f x :+: mMap f y
mMap f (x :=: y) = mMap f x :=: mMap f y
mMap f (Modify c x ) = Modify c (mMap f x )

Just as map f xs for lists replaces each polymorphic element x in xs with
f x , mMap f m for Music replaces each polymorphic element p in m with
f p.

As an example of how mMap can be used, suppose that we introduce a
Volume type for a note simply as:

type Volume = Integer
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and then wish to convert a value of type Music Pitch to a value of type
Music (Pitch,Volume) – that is, we wish to pair each pitch with a volume
attribute. We can define a function to do so as follows:

addVolume :: Volume → Music Pitch → Music (Pitch,Volume)
addVolume v = mMap (λp → (p, v))

Exercise 5.7 Using mMap, define a function:

scaleVolume :: Rational → Music (Pitch,Volume)→ Music (Pitch,Volume)

such that scaleVolume s m scales the volume of each note in m by a factor
of s.

5.11 A Fold for Music

We can also define a fold-like operator for Music. But whereas the list data
type has only two constructors (the nullary constructor [ ] and the binary
constructor (:)), Music has four constructors, and thus we define:

mFold :: (b → b → b)→ (b → b → b)→ (Primitive a → b)
→ (Control → b → b)→ Music a → b

mFold (+ :) (=:) f g m =
let rec = mFold (+ :) (=:) f g
in case m of

Primitive p → f p
m1 :+: m2 → rec m1 + : rec m2
m1 :=: m2 → rec m1 =: rec m2
Modify c m → g c (rec m)

This somewhat unwieldy function basically takes apart a Music value and
puts it back together with different constructors. Indeed, note that:

mFold (:+:) (:=:) Primitive Modify == id

Exercise 5.8 Prove the above property.

To see how mFold might be used, note first of all that it is more general
than mMap—indeed, mMap can be defined in terms of mFold like this:

mMap′ :: (a → b)→ Music a → Music b
mMap′ f = mFold (:+:) (:=:) g Modify where

g (Note d x ) = Primitive (Note d (f x ))
g (Rest d) = Primitive (Rest d)
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More interestingly, we can use mFold to redefine things like the dur function
from Section 5.5:

dur ′ :: Music a → Dur
dur ′ = mFold (+) max getDur modDur where

getDur (Note d ) = d
getDur (Rest d) = d
modDur (Tempo r) d = d / r
modDur d = d

Exercise 5.9 Redefine revM from Section 5.6 using mFold .

Exercise 5.10 Define a function insideOut that inverts the role of serial
and parallel composition in a Music value. Using insideOut , see if you can,
(a) find a non-trivial value m :: Music Pitch such that m == insideOut m,
(b) find a value m :: Music Pitch such that:

m :+: insideOut m :+: m

sounds interesting. (You are free to define what “sounds interesting” means.)

Exercise 5.11 Find a simple piece of music written by your favorite com-
poser, and transcribe it into Haskore. In doing so, look for repeating pat-
terns, transposed phrases, etc. and reflect this in your code, thus revealing
deeper structural aspects of the music than that found in common practice
notation.

5.12 Crazy Recursion

With all the functions and data types that we have defined, and the power
of recursion and higher-order functions at our finger tips, we can start to do
some wild and crazy things. Here is just one such idea.

Let’s define a function to recursively apply transformations f (to ele-
ments in a sequence) and g (to accumulated phrases) some specified number
of times:

rep :: (Music a → Music a)→ (Music a → Music a)→ Int
→ Music a → Music a

rep f g 0 m = rest 0
rep f g n m = m :=: g (rep f g (n − 1) (f m))
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With this simple function we can create some interesting phrases of music
with very little code. For example, let’s use rep three times, nested together,
to create a “cascade” of sounds.

run = rep (transpose 5) (delay tn) 8 (c 4 tn)
cascade = rep (transpose 4) (delay en) 8 run
cascades = rep id (delay sn) 2 cascade

and then make the cascade run up, and then down:

final = cascades :+: revM cascades

What happens if we reverse the f and g arguments?

run ′ = rep (delay tn) (transpose 5) 8 (c 4 tn)
cascade ′ = rep (delay en) (transpose 4) 8 run ′

cascades ′ = rep (delay sn) id 2 cascade ′

final ′ = cascades ′ :+: revM cascades ′

Exercise 5.12 Do something wild and crazy with Haskore.
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Interpretation and
Performance

module Haskore .Performance
where

import Haskore.Music
import Haskore.MoreMusic

instance Show (a → b) where
showsPrec p f = showString "<<function>>"

6.1 Abstract Performance

So far, our presentation of musical values in Haskell has been entirely struc-
tural, i.e. syntactic. But what do these musical values actually mean, i.e.
what is their semantics, or interpretation? The formal process of giving a
semantic interpretation to syntactic constructs is very common in computer
science, especially in programming language theory. But it is obviously also
common in music: the interpretation of music is the very essence of musical
performance. However, in conventional music this process is usually infor-
mal, appealing to aesthetic judgments and values. What we would like to
do is make the process formal in Haskore—but still flexible, so that more
than one interpretation is possible, just as in music.

To begin, we need to say exactly what an abstract performance is. Our
approach is to consider a performance to be a time-ordered sequence of
musical events, where each event captures the playing of one individual

69
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note. In Haskellese:

type Performance = [Event ]

data Event = Event{eTime :: Time, eInst :: InstrumentName , ePitch :: AbsPitch,
eDur :: DurT , eVol :: Volume , pFields :: [Float ]}

deriving (Eq ,Ord ,Show )

type Time = Rational
type DurT = Rational
type Volume = Integer

An event Event{eTime = s, eInst = i , ePitch = p, eDur = d , eVol = v }
captures the fact that at start time s, instrument i sounds pitch p with
volume v for a duration d (where now duration is measured in seconds,
rather than beats). (The pField of an event is for special instruments that
require extra parameters, and will not be discussed much further in this
chapter.)

An abstract performance is the lowest of our music representations not
yet committed to MIDI, csound, or some other low-level computer music
representation. In Chapter ?? we will discuss how to map a performance
into MIDI.

Details: The data declaration for Event uses Haskell’s field label syntax,
also called record syntax, and is equivalent to:

data Event = Event Time InstrumentName AbsPitch DurT Volume [Float ]
deriving (Eq ,Ord ,Show)

except that the former also defines “field labels” eTime, eInst , ePitch ,
eDur , eVol , and pFields , which can be used both to create and select
from Event values. For example, this equation:

e = Event 0 Cello 27 (1 / 4) 50 [ ]

is equivalent to:

e = Event{eTime = 0, ePitch = 27, eDur = 1 / 4,
eInst = Cello, eVol = 50, pFields = [ ]}

The latter is more descriptive, however, and the order of the fields does
not matter (indeed the order here is not the same as above).

Field labels can be used to select fields from an Event value; for example,
eInst e ⇒ Cello, eDur e ⇒ 1 / 4, and so on. They can also be used to
selectively update fields of an existing Event value. For example:
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e{eInst = Flute } ⇒ Event 0 Flute 27 (1 / 4) 50 [ ]

Finally, they can be used selectively in pattern matching:

f (Event{eDur = d , ePitch = p}) = ...d ... p...

Field labels do not change the basic nature of a data type; they are simply

a convenient syntax for referring to the components of a data type by

name rather than by position.

To generate a complete performance of, i.e. give an interpretation to, a
musical value, we must know the time to begin the performance, and the
proper instrument, volume, key and tempo. In addition, to give flexibility to
our interpretations, we must also know what player to use; that is, we need
a mapping from the PlayerNames in a Music value to the actual players
to be used.1 We capture these ideas in Haskell as a “context” and “player
map,” respectively:

data Context a = Context{cTime :: Time, cPlayer :: Player a,
cInst :: InstrumentName , cDur :: DurT ,
cKey :: Key , cVol :: Volume }

deriving Show
type PMap a = PlayerName → Player a
type Key = AbsPitch

Finally, we are ready to give an interpretation to a piece of music, which we
do by defining a function perform , which is conceptually perhaps the most
important function defined in this book, and is shown in Figure 6.1.

Some things to note about perform :

1. The Context is the running “state” of the performance, and gets up-
dated in several different ways. For example, the interpretation of the
Tempo constructor involves scaling dt appropriately and updating the
DurT field of the context.

2. The interpretation of notes and phrases is player dependent. Ulti-
mately a single note is played by the playNote function, which takes
the player as an argument. Similarly, phrase interpretation is also
player dependent, reflected in the use of interpPhrase . Precisely how
these two functions work is described in Section 6.2.

1We don’t need a mapping from InstrumentNames to instruments, since this is handled
in the translation from a performance into MIDI, which is discussed in Chapter ??.
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perform :: PMap a → Context a → Music a → Performance
perform pmap

c@Context{cTime = t , cPlayer = pl , cDur = dt , cKey = k }m =
case m of

Primitive (Note d p)→ playNote pl c d p
Primitive (Rest d)→ [ ]
m1 :+: m2 → perform pmap c m1++

perform pmap (c{cTime = t + dur m1 ∗ dt }) m2
m1 :=: m2 → merge (perform pmap c m1 ) (perform pmap c m2 )
Modify (Tempo r) m → perform pmap (c{cDur = dt / r }) m
Modify (Transpose p) m → perform pmap (c{cKey = k + p}) m
Modify (Instrument i) m → perform pmap (c{cInst = i }) m
Modify (Player pn) m → perform pmap (c{cPlayer = pmap pn }) m
Modify (Phrase pa) m → interpPhrase pl pmap c pa m

Figure 6.1: An abstract perform function

3. The DurT component of the context is the duration, in seconds,
of one whole note. To make it easier to compute, we can define a
“metronome” function that, given a standard metronome marking (in
beats per minute) and the note type associated with one beat (quarter
note, eighth note, etc.) generates the duration of one whole note:

metro :: Int → Dur → DurT
metro setting dur = 60 / (fromIntegral setting ∗ dur)

Thus, for example, metro 96 qn creates a tempo of 96 quarter notes
per minute.

4. In the treatment of (:+:), note that the sub-sequences are appended
together, with the start time of the second argument delayed by the
duration of the first. The function dur (defined in Section 5.5) is used
to compute this duration. However, this results in a quadratic time
complexity for perform . A more efficient solution is to have perform
compute the duration directly, returning it as part of its result. This
version of perform is shown in Figure 6.2.

5. The sub-sequences derived from the arguments to (:=:) are merged
into a time-ordered stream. The definition of merge is given below.
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merge :: Performance → Performance → Performance

merge a@(e1 : es1 ) b@(e2 : es2 ) =
if e1 < e2 then e1 : merge es1 b

else e2 : merge a es2
merge [ ] es2 = es2
merge es1 [ ] = es1

Note that merge compares entire events rather than just start times. This
is to ensure that it is commutative, a desirable condition for some of the
proofs used later in the text. Here is a more efficient version that will work
just as well in practice:

merge a@(e1 : es1 ) b@(e2 : es2 ) =
if eTime e1 < eTime e2 then e1 : merge es1 b

else e2 : merge a es2
merge [ ] es2 = es2
merge es1 [ ] = es1

6.2 Players

Recall from Section 2.2 the definition of the Control data type:

data Control =
Tempo Rational -- scale the tempo

| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- intrument label
| Phrase [PhraseAttribute ] -- phrase attributes
| Player PlayerName -- player label

deriving (Show ,Eq ,Ord)

type PlayerName = String

We mentioned, but did not define, the PhraseAttribute data type, shown
now fully in Figure 6.3. These attributes give us great flexibility in the in-
terpretation process, because they can be interpreted by different players in
different ways. For example, how should “legato” be interpreted in a per-
formance? Or “diminuendo?” Different players interpret things in different
ways, of course, but even more fundamental is the fact that a pianist, for
example, realizes legato in a way fundamentally different from the way a
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perform :: PMap a → Context a → Music a → Performance
perform pmap c m = fst (perf pmap c m)

perf :: PMap a → Context a → Music a → (Performance ,DurT )
perf pmap

c@Context{cTime = t , cPlayer = pl , cDur = dt , cKey = k }m =
case m of

Primitive (Note d p)→ (playNote pl c d p, d ∗ dt)
Primitive (Rest d)→ ([ ], d ∗ dt)
m1 :+: m2 → let (pf1 , d1 ) = perf pmap c m1

(pf2 , d2 ) = perf pmap (c{cTime = t + d1 }) m2
in (pf1 ++ pf2 , d1 + d2 )

m1 :=: m2 → let (pf1 , d1 ) = perf pmap c m1
(pf2 , d2 ) = perf pmap c m2

in (merge pf1 pf2 ,max d1 d2 )
Modify (Tempo r) m → perf pmap (c{cDur = dt / r }) m
Modify (Transpose p) m → perf pmap (c{cKey = k + p}) m
Modify (Instrument i) m → perf pmap (c{cInst = i }) m
Modify (Player pn) m → perf pmap (c{cPlayer = pmap pn }) m
Modify (Phrase pas) m → interpPhrase pl pmap c pas m

Figure 6.2: The “real” perform function
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data PhraseAttribute = Dyn Dynamic
| Tmp Tempo
| Art Articulation
| Orn Ornament

deriving (Eq ,Ord ,Show)

data Dynamic = Accent Rational | Crescendo Rational | Diminuendo Rational
| StdLoudness StdLoudness | Loudness Rational

deriving (Eq ,Ord ,Show)

data StdLoudness = PPP | PP | P | MP | SF | MF | NF | FF | FFF
deriving (Eq ,Ord ,Show ,Enum)

data Tempo = Ritardando Rational | Accelerando Rational
deriving (Eq ,Ord ,Show)

data Articulation = Staccato Rational | Legato Rational | Slurred Rational
| Tenuto | Marcato | Pedal | Fermata | FermataDown | Breath
| DownBow | UpBow | Harmonic | Pizzicato | LeftPizz
| BartokPizz | Swell |Wedge | Thumb | Stopped

deriving (Eq ,Ord ,Show)

data Ornament = Trill | Mordent | InvMordent | DoubleMordent
| Turn | TrilledTurn | ShortTrill
| Arpeggio | ArpeggioUp | ArpeggioDown
| Instruction String | Head NoteHead

deriving (Eq ,Ord ,Show)

data NoteHead = DiamondHead | SquareHead | XHead | TriangleHead
| TremoloHead | SlashHead | ArtHarmonic | NoHead

deriving (Eq ,Ord ,Show)

Figure 6.3: Phrase Attributes
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violinist does, because of differences in their instruments. Similarly, dimin-
uendo on a piano and diminuendo on a harpsichord are different concepts.

With a slight stretch of the imagination, we can even consider a “notator”
of a score as a kind of player: exactly how the music is rendered on the
written page may be a personal, stylized process. For example, how many,
and which staves should be used to notate a particular instrument?

In any case, to handle these issues, Haskore has a notion of a player
that “knows” about differences with respect to performance and notation.
A Haskore player is a 4-tuple consisting of a name and three functions: one
for interpreting notes, one for phrases, and one for producing a properly
notated score.

data Player a = MkPlayer{pName :: PlayerName ,
playNote :: NoteFun a,
interpPhrase :: PhraseFun a,
notatePlayer :: NotateFun a }

deriving Show

type NoteFun a = Context a → Dur → a → Performance
type PhraseFun a = PMap a → Context a → [PhraseAttribute ]

→ Music a → (Performance ,DurT )
type NotateFun a = ()

The last line above is because notation is currently not implemented.

6.2.1 Examples of Player Construction

In order to provide the most flexibility, we define attributes for individual
notes:

data NoteAttribute = Volume Integer -- by MIDI convention: 0=min, 127=max
| Fingering Integer
| Dynamics String
| PFields [Float ]

deriving (Eq ,Show )

Our goal then is to define a player for music values of type:

type Note1 = (Pitch, [NoteAttribute ])
type Music1 = Music Note1

A “default player” called defPlayer (not to be confused with a “deaf player”!)
is defined for use when none other is specified in the score; it also functions
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defPlayer :: Player (Pitch, [NoteAttribute ])
defPlayer = MkPlayer{pName = "Default",

playNote = defPlayNote defNasHandler ,
interpPhrase = defInterpPhrase defPasHandler ,
notatePlayer = defNotatePlayer ()}

defPlayNote :: (Context (Pitch, [a ])→ a → Event → Event)
→ NoteFun (Pitch, [a ])

defPlayNote nasHandler
c@(Context cTime cPlayer cInst cDur cKey cVol) d (p,nas) =

[foldr (nasHandler c)
(Event{eTime = cTime, eInst = cInst ,

ePitch = absPitch p + cKey ,
eDur = d ∗ cDur , eVol = cVol ,
pFields = [ ]})

nas ]

defNasHandler :: Context a → NoteAttribute → Event → Event
defNasHandler c (Volume v) ev = ev{eVol = v }
defNasHandler c (PFields pfs) ev = ev{pFields = pfs }
defNasHandler ev = ev

defInterpPhrase :: (PhraseAttribute → Performance → Performance)
→ PhraseFun a

defInterpPhrase pasHandler pmap context pas m =
let (pf , dur ) = perf pmap context m
in (foldr pasHandler pf pas , dur )

defPasHandler :: PhraseAttribute → Performance → Performance
defPasHandler (Dyn (Accent x )) =

map (λe → e{eVol = round (x ∗ fromIntegral (eVol e))})
defPasHandler (Art (Staccato x )) = map (λe → e{eDur = x ∗ eDur e })
defPasHandler (Art (Legato x )) = map (λe → e{eDur = x ∗ eDur e })
defPasHandler = id

defNotatePlayer :: a → ()
defNotatePlayer = ()

Figure 6.4: Definition of default Player defPlayer .
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as a base from which other players can be derived. defPlayer responds only
to the Volume note attribute and to the Accent , Staccato , and Legato phrase
attributes. It is defined in Figure 6.4. Before reading this code, recall how
players are invoked by the perform function defined in the last section; in
particular, note the calls to playNote and interpPhrase . Then note:

1. defPlayNote is the only function (even in the definition of perform)
that actually generates an event. It also modifies that event based on
an interpretation of each note attribute by the function defHasHandler .

2. defNasHandler only recognizes the Volume attribute, which it uses to
set the event volume accordingly.

3. defInterpPhrase calls (mutually recursively) perform to interpret a
phrase, and then modifies the result based on an interpretation of
each phrase attribute by the function defPasHandler .

4. defPasHandler only recognizes the Accent , Staccato , and Legato phrase
attributes. For each of these it uses the numeric argument as a “scal-
ing” factor of the volume (for Accent) and duration (for Staccato and
Lagato). Thus Modify (Phrase [Legato (5/4)]) m effectively increases
the duration of each note in m by 25% (without changing the tempo).

It should be clear that much of the code in Figure 6.4 can be re-used in
defining a new player. For example, to define a player weird that interprets
note attributes just like defPlayer but behaves differently with respect to
phrase attributes, we could write:

weird :: Player (Pitch, [NoteAttribute ])
weird = MkPlayer{pName = "newPlayer",

playNote = defPlayNote defNasHandler ,
interpPhrase = defInterpPhrase myPasHandler ,
notatePlayer = defNotatePlayer ()}

and then supply a suitable definition of myPasHandler . That definition
could also re-use code, in the following sense: suppose we wish to add an
interpretation for Crescendo, but otherwise have myPasHandler behave just
like defPasHandler .

myPasHandler :: PhraseAttribute → Performance → Performance
myPasHandler (Dyn (Crescendo x )) pf = ...
myPasHandler pa pf = defPasHandler pa pf
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Exercise 6.1 Fill in the ... in the definition of myPasHandler according
to the following strategy: Gradually scale the volume of each event in the
performance by a factor of 1 through 1 + x , using linear interpolation.

Exercise 6.2 Choose some of the other phrase attributes and provide in-
terpretations of them, such as Diminuendo, Slurred , Trill , etc. (The trill
functions from section 5.8 may be useful here.)

Figure 6.5 defines a relatively sophisticated player called fancyPlayer
that knows all that defPlayer knows, and much more. Note that Slurred
is different from Legato in that it doesn’t extend the duration of the last
note(s). The behavior of Ritardando x can be explained as follows. We’d
like to “stretch” the time of each event by a factor from 0 to x, linearly
interpolated based on how far along the musical phrase the event occurs.
I.e., given a start time t0 for the first event in the phrase, total phrase
duration D, and event time t, the new event time t′ is given by:

t′ = (1 +
t− t0

D
x)(t− t0) + t0

Further, if d is the duration of the event, then the end of the event t+d gets
stretched to a new time t′d given by:

t′d = (1 +
t + d− t0

D
x)(t + d− t0) + t0

The difference t′d − t′ gives us the new, stretched duration d′, which after
simplification is:

d′ = (1 +
2(t− t0) + d

D
x)d

Accelerando behaves in exactly the same way, except that it shortens event
times rather than lengthening them. And, a similar but simpler strategy
explains the behaviors of Crescendo and Diminuendo.
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fancyPlayer :: Player (Pitch , [NoteAttribute ])
fancyPlayer = MkPlayer{pName = "Fancy",

playNote = defPlayNote defNasHandler ,
interpPhrase = fancyInterpPhrase ,
notatePlayer = defNotatePlayer ()}

fancyInterpPhrase :: PhraseFun a
fancyInterpPhrase pmap c [ ] m = perf pmap c m
fancyInterpPhrase pmap c@Context{cTime = t , cPlayer = pl , cInst = i ,

cDur = dt , cKey = k , cVol = v }
(pa : pas) m =

let pfd@(pf , dur) = fancyInterpPhrase pmap c pas m
loud x = fancyInterpPhrase pmap c (Dyn (Loudness x ) : pas) m
stretch x = let t0 = eTime (head pf ); r = x / dur

upd (e@Event{eTime = t , eDur = d }) =
let dt = t − t0

t ′ = (1 + dt ∗ r) ∗ dt + t0
d ′ = (1 + (2 ∗ dt + d) ∗ r) ∗ d

in e{eTime = t ′, eDur = d ′}
in (map upd pf , (1 + x ) ∗ dur)

inflate x = let t0 = eTime (head pf ); r = x / dur
upd (e@Event{eTime = t , eVol = v }) =

e{eVol = (round ◦ fromRational) (1 + (t − t0 ) ∗ r) ∗ v }
in (map upd pf , dur)

in case pa of
Dyn (Accent x )→ (map (λe → e{eVol = round (x ∗ fromIntegral (eVol e))}) pf , dur)
Dyn (StdLoudness l)→

case l of
PPP → loud 40;PP → loud 50;P → loud 60
MP → loud 70;SF → loud 80;MF → loud 90
NF → loud 100;FF → loud 110;FFF → loud 120

Dyn (Loudness x )→ fancyInterpPhrase pmap c{cVol = (round ◦ fromRational ) x }pas m
Dyn (Crescendo x )→ inflate x ;Dyn (Diminuendo x )→ inflate (−x )
Tmp (Ritardando x )→ stretch x ;Tmp (Accelerando x )→ stretch (−x )
Art (Staccato x )→ (map (λe → e{eDur = x ∗ eDur e }) pf , dur)
Art (Legato x )→ (map (λe → e{eDur = x ∗ eDur e }) pf , dur)
Art (Slurred x )→

let lastStartTime = foldr (λe t → max (eTime e) t) 0 pf
setDur e = if eTime e < lastStartTime

then e{eDur = x ∗ eDur e }
else e

in (map setDur pf , dur)
Art → pfd
Orn → pfd

-- Design Bug: To do these right we need to keep the KEY SIGNATURE
-- around so that we can determine, for example, what the trill note is.
-- Alternatively, provide an argument to Trill to carry this info.

Figure 6.5: Definition of Player fancyPlayer .



Chapter 7

Self-Similar Music

module Haskore .SelfSimilar where
import Haskore

In this chapter we will explore the notion of self-similar music—i.e. mu-
sical structures that have patterns that repeat themselves recursively in in-
teresting ways. There are many approaches to generating self-similar struc-
tures, the most general being fractals, which have been used to generate not
just music, but also graphical images. We will delay a general treatment
of fractals, however, and will instead focus on more specialized notions of
self-similarity, notions that we conceive of musically, and then manifest as
Haskell programs.

7.1 Self-Similar Melody

Here is the first notion of self-similar music that we will consider: Begin
with a very simple melody of n notes. Now duplicate this melody n times,
playing each in succession, but first perform the following transformations:
transpose the ith melody by an amount proportional to the pitch of the ith
note in the original melody, and scale its tempo by a factor proportional to
the duration of the ith note. For example, Figure 7.1 shows the result of
applying this process once to a four-note melody. Now imagine that this
process is repeated infinitely often. For a melody whose notes are all shorter
than a whole note, it yields an infinitely dense melody of infinitesimally
shorter notes. To make the result playable, however, we will stop the process
at some pre-determined level.

How can this be represented in Haskell? A tree seems like it would be a
logical choice; let’s call it a Cluster :

81
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Figure 7.1: An Example of Self-Similar Music

data Cluster = Cluster SNote [Cluster ]
type SNote = (Dur ,AbsPitch)

This particular kind of tree happens to be called a rose tree []. An SNote is
just a “simple note,” a duration paired with an absolute pitch. We prefer
to stick with absolute pitches in creating the self-similar structure, and will
convert the result into a normal Music value only after we are done.

The sequence of SNotes at each level of the cluster is the melodic frag-
ment for that level. The very top cluster will contain a “dummy” note,
whereas the next level will contain the original melody, the next level will
contain one iteration of the process described above (e.g. the melody in
Figure 7.1), and so forth.

To achieve this we will define a function selfSim that takes the initial
melody as argument and generates an infinitely deep cluster:

selfSim :: [SNote ]→ Cluster
selfSim pat = Cluster (0, 0) (map mkCluster pat)

where mkCluster note
= Cluster note (map (mkCluster ◦ addMult note) pat)

addMult :: SNote → SNote → SNote
addMult (d0 , p0 ) (d1 , p1 ) = (d0 ∗ d1 , p0 + p1 )

Note that selfSim itself is not recursive, but mkCluster is.
Next, we define a function to skim off the notes at the nth level, or nth

“fringe,” of a cluster:

fringe :: Int → Cluster → [SNote ]
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fringe 0 (Cluster note cls) = [note ]
fringe n (Cluster note cls) = concatMap (fringe (n − 1)) cls

Details: concatMap is defined in the Standard Prelude as:

concatMap :: (a → [b ])→ [a ]→ [b ]
concatMap f = concat ◦map f

Also recall that concat appends together a list of lists, and is defined in
the Prelude as:

concat :: [ [a ] ]→ [a ]
concat = foldr (++) [ ]

All that is left to do is convert this into a Music value that we can play:

simToMusic :: [SNote ]→ Music Pitch
simToMusic ss = let mkNote (d , ap) = note d (pitch ap)

in line (map mkNote ss)

We can define this with a bit more elegance as follows:

simToMusic :: [SNote ]→ Music Pitch
simToMusic = line ◦map mkNote

mkNote :: (Dur ,AbsPitch)→ Music Pitch
mkNote (d , ap) = note d (pitch ap)

The increased modularity will allow us to reuse mkNote later in the chapter.
Putting it all together, we can define a function that takes an initial

pattern, a level, a number of pitches to transpose the result, and a tempo
scaling factor, to yield a final result:

ss pat n tr te = transpose tr (tempo te (simToMusic (fringe n (selfSim pat))))

Here are some example compositions:

p1 :: [SNote ]
p1 = [(hn, 3), (qn , 4), (qn , 0), (wn , 6)]

ss1 = ss p1 4 50 (3 / 2)

ss1a = let l1 = instrument Flute ss1
l2 = instrument AcousticBass (transpose (−12) (revM ss1 ))
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in l1 :=: l2

-- Note that the flute and bass lines are the reverse of one another.

p2 = [(dqn, 0), (qn , 4)]
p3 = [(6 / 10, 2), (13 / 10, 5), (wn , 0), (9 / 10, 7)]
p4 = [(hn, 3), (hn , 8), (hn , 22), (qn , 4), (qn , 7), (qn , 21),

(qn , 0), (qn , 5), (qn , 15), (wn , 6), (wn , 9), (wn , 19)]

ss2 = ss p2 6 50 (1 / 30)
ss3 = ss p3 4 50 20
ss4 = ss p4 3 50 8

Exercise 7.1 Experiment with this idea futher, using other melodic seeds,
exploring different depths of the clusters, and so on.

Exercise 7.2 Note that concat is defined as foldr (++) [ ], which means that
it takes a number of steps proportional to the sum of the lengths of the lists
being concatenated; we cannot do any better than this. (If foldl were used
instead, the number of steps would be proportional to the number of lists
times their average length.)

However, fringe is not very efficient, for the following reason: concat is
being used over and over again, like this:

concat [concat [ ... ], concat [ ... ], concat [ ... ] ]

This causes a number of steps proportional to the depth of the tree times
the length of the sub-lists; clearly not optimal.

Define a version of fringe that is linear in the total length of the final
list.

7.2 Self-Similar Harmony

In the last section we used a melody as a seed, and created longer melodies
from it. Another idea is to stack the melodies vertically. Specifically, suppose
we redefine fringe in such a way that it does not concatenate the sub-clusters
together:

fringe ′ :: Int → Cluster → [ [SNote ] ]
fringe ′ 0 (Cluster note cls) = [[note ] ]
fringe ′ n (Cluster note cls) = map (fringe (n − 1)) cls
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Note that this strategy is only applied to the top level—below that we use
fringe. Thus the type of the result is [[SNote ] ], i.e. a list of lists of notes.

We can convert the individual lists into melodies, and play the melodies
all together, like this:

simToMusic′ :: [ [SNote ] ]→ Music Pitch
simToMusic′ = chord ◦map (line ◦map mkNote)

Finally, we can define a function akin to ss defined earlier:

ss ′ pat n tr te = transpose tr (tempo te (simToMusic′ (fringe ′ n (selfSim pat))))

Using the same patterns as used earlier, here are some sample compositions:

ss1 ′ = ss ′ p1 4 50 (3 / 2)
ss2 ′ = ss ′ p2 4 50 4
ss3 ′ = ss ′ p3 4 50 20
ss4 ′ = ss ′ p4 3 50 8

And a new one, based on a major triad:

ss5 = ss p5 4 45 (1 / 500)
ss5 ′ = ss ′ p5 4 45 (1 / 500)
p5 = [(en, 4), (sn , 7), (en , 0)]

Note the need to scale the tempo back drastically, due to the short durations
of the starting notes.

7.3 Other Self-Similar Structures

The reader will observe that our notion of “self-similar harmony” did not
involve changing the structure of the Cluster data type, nor the algorithm
for computing the sub-structures (as captured in selfSim). All that we
did was interpret the result differently. This is a common characteristic of
algorithmic music compisition—the same mathematical or computational
structure is interpreted in different ways to yield musically different results.

For example, instead of the above strategy for playing melodies in paral-
lel, we could play entire levels of the Cluster in parallel, where the number
of levels that we choose is given as a parameter. We leave this idea and
others as exercises for the reader.

Exercise 7.3 Devise a version of simToMusic that constructs a Music value
as outlined above. Specifically, given a parameter n, simToMusic n pat plays
the first n levels of the cluster generated by pat in parallel.
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Exercise 7.4 Devise some other variant of self-similar music, and encode
it in Haskell. In particular, consider structures that are different from those
generated by the selfSim function.



Chapter 8

Proof by Induction

In this chapter we will study a powerful proof technique based on mathemat-
ical induction. With it we will be able to prove complex and important prop-
erties of programs that cannot be accomplished with proof-by-calculation
alone. The inductive proof method is one of the most powerful and common
methods for proving program properties.

8.1 Induction and Recursion

Induction is very closely related to recursion. In fact, in certain contexts
the terms are used interchangeably; in others, one is preferred over the other
primarily for historical reasons. Think of them as being duals of one another:
induction is used to describe the process of starting with something small and
simple, and building up from there, whereas recursion describes the process
of starting with something large and complex, and working backward to the
simplest case.

For example, although we have previously used the phrase recursive data
type, in fact data types are often described inductively, such as a list:

A list is either empty, or it is a pair consisting of a value and
another list.

On the other hand, we usually describe functions that manipulate lists,
such as map and foldr , as being recursive. This is because when you apply
a function such as map, you apply it initially to the whole list, and work
backwards toward [ ].

But these differences between induction and recursion run no deeper:
they are really just two sides of the same coin.

87



CHAPTER 8. PROOF BY INDUCTION 88

This chapter is about inductive properties of programs (but based on
the above argument could just as rightly be called recursive properties) that
are not usually proven via calculation alone. Proving inductive properties
usually involves the inductive nature of data types and the recursive nature
of functions defined on the data types.

As an example, suppose that p is an inductive property of a list. In
other words, p (l) for some list l is either true or false (no middle ground!).
To prove this property inductively, we do so based on the length of the list:
starting with length 0, we first prove p ([ ]) (using our standard method of
proof-by-calculation).

Now for the key step: assume for the moment that p (xs) is true for any
list xs whose length is less than or equal to n. Then if we can prove (via
calculation) that p (x : xs) is true for any x—i.e. that p is true for lists of
length n + 1—then the claim is that p is true for lists of any (finite) length.

Why is this so? Well, from the first step above we know that p is true
for length 0, so the second step tells us that it’s also true for length 1. But
if it’s true for length 1 then it must also be true for length 2; similarly for
lengths 3, 4, etc. So p is true for lists of any length!

(It it important to realize, however, that a property being true for every
finite list does not necessarily imply that it is true for every infinite list. The
property “the list is finite” is a perfect example of this! We will see how to
prove properties of infinite lists in Chapter ??.)

To summarize, to prove a property p by induction on the length of a list,
we proceed in two steps:

1. Prove p ([ ]) (this is called the base step).

2. Assume that p (xs) is true (this is called the induction hypothesis, and
prove that p (x : xs) is true (this is called the induction step).

8.2 Examples of List Induction

Ok, enough talk, let’s see this idea in action. Recall in Section 3.1 the
following property about foldr:

(∀xs) foldr (:) [ ] xs =⇒ xs

We will prove this by induction on the length of xs . Following the ideas
above, we begin with the base step by proving the property for length 0; i.e.
for xs = [ ]:
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foldr (:) [ ] [ ]⇒ [ ]

This step is immediate from the definition of foldr . Now for the induction
step: we first assume that the property is true for all lists xs of length n,
and then prove the property for list x : xs . Again proceeding by calculation:

foldr (:) [ ] (x : xs)
⇒ x : foldr (:) [ ] xs
⇒ x : xs

And we are done; the induction hypothesis is what justifies the second step.
Now let’s do something a bit harder. Suppose we are interested in prov-

ing the following property:

(∀xs, ys) length (xs ++ ys) = length xs + length ys

Our first problem is to decide which list to perform the induction over.
A little thought (in particular, a look at how the definitions of length and
(++) are structured) should convince you that xs is the right choice. (If you
do not see this, you are encouraged to try the proof by induction over the
length of ys!) Again following the ideas above, we begin with the base step
by proving the property for length 0; i.e. for xs = [ ]:

length ([ ] ++ ys)
⇒ length ys
⇒ 0 + length ys
⇒ length [ ] + length ys

For the induction step, we first assume that the property is true for all lists
xs of length n, and then prove the property for list x : xs . Again proceeding
by calculation:

length ((x : xs) ++ ys)
⇒ length (x : (xs ++ ys))
⇒ 1 + length (xs ++ ys)
⇒ 1 + (length xs + length ys)
⇒ (1 + length xs) + length ys
⇒ length (x : xs) + length ys

And we are done. The transition from the 3rd line to the 4th is where we
used the induction hypothesis.
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8.3 Proving Function Equivalences

At this point it is a simple matter to return to Chapter 3 and supply the
proofs that functions defined using map and fold are equivalent to the re-
cursive versions. In particular, let’s prove first that:

toAbsPitches ps = map absPitch ps

for any finite list ps , where:

toAbsPitches [ ] = [ ]
toAbsPitches (p : ps) = absPitch p : toAbsPitches ps

We proceed by induction, starting with the base case ps = [ ]:

toAbsPitches [ ]
⇒ [ ]
⇒ map absPitch [ ]

Next we assume that toAbsPitches ps = map absPitch ps holds, and try to
prove that toAbsPitches (p :ps) = map absPitch (p :ps) (note the use of the
induction hypothesis in the second step):

toAbsPitches (p : ps)
⇒ absPitch p : toAbsPitches ps
⇒ absPitch p : map absPitch ps
⇒ map absPitch (p : ps)

The proof that toPitches aps = map pitch aps is very similar, and is left as
an exercise.

For a proof involving foldr , recall from Section 3.4 this recursive defini-
tion of line:

line [ ] = rest 0
line (m : ms) = m :+: line ms

and this non-recursive version:

line = foldr (:+:) (rest 0)

We can prove that these definitions are equivalent by induction. First the
base case:

line [ ]
⇒ rest 0
⇒ foldr (:+:) (rest 0) [ ]
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Then the induction step:

line (m : ms)
⇒ m :+: line ms
⇒ m :+: foldr (:+:) (rest 0) ms
⇒ foldr (:+:) (rest 0) (m : ms)

The proofs of equivalence of the definitions of chord , maxPitch, and listSum
from Section 3.4 are similar, and left as exercises.

These proofs were in fact quite easy. For something more challenging,
consider the definition of reverse given in Section 3.5:

reverse1 [ ] = [ ]
reverse1 (x : xs) = reverse1 xs ++ [x ]

and the version given in Section 4.1:

reverse2 xs = foldl (flip (:)) [ ] xs

We would like to show that these are the same; i.e. that reverse1 xs =
reverse2 xs for any finite list xs . In carrying out this proof two new ideas
will be demonstrated, the first being that induction can be used to prove
the equivalence of two programs. The second is the need for an auxiliary
property which is proved independently of the main result.

The base case is easy, as it often is:

reverse1 [ ]
⇒ [ ]
⇒ foldl (flip (:)) [ ] [ ]
⇒ reverse2 [ ]

Assume now that reverse1 xs = reverse2 xs . The induction step proceeds
as follows:

reverse1 (x : xs)
⇒ reverse1 xs ++ [x ]
⇒ reverse2 xs ++ [x ]
⇒ foldl (flip (:)) [ ] xs ++ [x ]
⇒ ???

But now what do we do? Intuitively, it seems that the following property,
which we will call property (1), should hold:

foldl (flip (:)) [ ] xs ++ [x ]
⇒ foldl (flip (:)) [ ] (x : xs)
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in which case we could complete the proof as follows:

...
⇒ foldl (flip (:)) [ ] xs ++ [x ]
⇒ foldl (flip (:)) [ ] (x : xs)
⇒ reverse2 (x : xs)

The ability to see that if we could just prove one thing, then perhaps we
could prove another, is a useful skill in conducting proofs. In this case
we have reduced the overall problem to one of proving property (1), which
simplifies the structure of the proof, although not necessarily the difficulty.
These auxiliary properties are often called lemmas in mathematics, and in
many cases their proofs become the most important contributions, since
they are often at the heart of a problem.

In fact if you try to prove property (1) directly, you will run into a
problem, namely that it is not general enough. So first let’s generalize
property (1) (while renaming x to y), as follows:

foldl (flip (:)) ys xs ++ [y ]
⇒ foldl (flip (:)) (ys ++ [y ]) xs

Let’s call this property (2). If (2) is true for any finite xs and ys , then
property (1) is also true, because:

foldl (flip (:)) [ ] xs ++ [x ]
⇒ {property (2)}
foldl (flip (:)) ([ ] ++ [x ]) xs
⇒ {unfold (++)}
foldl (flip (:)) [x ] xs
⇒ {fold (flip (:))}
foldl (flip (:)) (flip (:) [ ] x ) xs
⇒ {fold foldl }
foldl (flip (:)) [ ] (x : xs)

You are encouraged to try proving property (1) directly, in which case you
will likely come to the same conclusion, namely that the property needs
to be generalized. This is not always easy to see, but is sometimes an
important step is constructing a proof, because, despite being somewhat
counterintuitive, it is often the case that making a property more general
(and therefore more powerful) makes it easier to prove.

In any case, how do we prove property (2)? Using induction, of course!
Setting xs to [ ], the base case is easy:
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foldl (flip (:)) ys [ ] ++ [y ]
⇒ {unfold foldl }
ys ++ [y ]
⇒ {fold foldl }
foldl (flip (:)) (ys ++ [y ]) [ ]

and the induction step proceeds as follows:

foldl (flip (:)) ys (x : xs) ++ [y ]
⇒ {unfold foldl }
foldl (flip (:)) (flip (:) ys x ) xs ++ [y ]
⇒ {unfold flip}
foldl (flip (:)) (x : ys) xs ++ [y ]
⇒ {induction hypothesis }
foldl (flip (:)) ((x : ys) ++ [y ]) xs
⇒ {unfold (++)}
foldl (flip (:)) (x : (ys ++ [y ])) xs
⇒ {fold foldl }
foldl (flip (:)) (ys ++ [y ]) (x : xs)

8.4 Useful Properties on Lists

There are many useful properties of functions on lists that require inductive
proofs. Tables 8.1 and 8.2 list a number of them involving functions used in
this text, but their proofs are left as exercises (except for one; see below).
You may assume that these properties are true, and use them freely in
proving other properties of your programs. In fact, some of these properties
can be used to simplify the proof that reverse1 and reverse2 are the same;
see if you can find them!1

(Note, by the way, that in the first rule for map in Figure 8.1, the type
of λx → x on the left-hand side is a → b, whereas on the right-hand side it
is [a ]→ [b ]; i.e. these are really two different functions.)

8.4.1 Function Strictness

Note that the last rule for map in Figure 8.1 is only valid for strict functions.
A function f is said to be strict if f ⊥ = ⊥. Recall from Section 1.2 that
⊥ is the value associated with a non-terminating computation. So another

1More thorough discussions of these properties and their proofs may be found in [BW88,
Bir98].
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Properties of map:

map (λx → x ) = λx → x
map (f ◦ g) = map f ◦map g
map f ◦ tail = tail ◦map f
map f ◦ reverse = reverse ◦map f
map f ◦ concat = concat ◦map (map f )
map f (xs ++ ys) = map f xs ++ map f ys

For all strict f :

f ◦ head = head ◦map f

Properties of the fold functions:

1. If op is associative, and e ‘op‘ x = x and x ‘op‘ e = x for all x , then
for all finite xs :

foldr op e xs = foldl op e xs

2. If the following are true:

x ‘op1 ‘ (y ‘op2 ‘ z ) = (x ‘op1 ‘ y) ‘op2 ‘ z
x ‘op1 ‘ e = e ‘op2 ‘ x

then for all finite xs :

foldr op1 e xs = foldl op2 e xs

3. For all finite xs :

foldr op e xs = foldl (flip op) e (reverse xs)

Table 8.1: Some Useful Properties of map and fold .
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Properties of (++):

For all xs , ys, and zs :

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
xs ++ [ ] = [ ] ++ xs = xs

Properties of take and drop:

For all finite non-negative m and n, and finite xs :

take n xs ++ drop n xs = xs
take m ◦ take n = take (min m n)
drop m ◦ drop n = drop (m + n)
take m ◦ drop n = drop n ◦ take (m + n)

For all finite non-negative m and n such that n � m:

drop m ◦ take n = take (n −m) ◦ drop m

Properties of reverse:

For all finite xs:

reverse (reverse xs) = xs
head (reverse xs) = last xs
last (reverse xs) = head xs

Table 8.2: Useful Properties of Other Functions Over Lists
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way to think about a strict function is that it is one that, when applied to
a non-terminating computation, results in a non-terminating computation.
For example, the successor function (+1) is strict, because (+1) ⊥ = ⊥+ 1
= ⊥. In other words, if you apply (+1) to a non-terminating computation,
you end up with a non-terminating computation.

Not all functions in Haskell are strict, and we have to be careful to say
on which argument a function is strict. For example, (+) is strict on both
of its arguments, which is why the section (+1) is also strict. On the other
hand, the constant function:

const x y = x

is strict on its first argument (why?), but not its second, because const x ⊥
= x , for any x .

Details: Understanding strictness requires a careful understanding of
Haskell’s pattern-matching rules. For example, consider the definition of
(∧) from the Standard Prelude:

(∧) :: Bool → Bool → Bool
True ∧ x = x
False ∧ = False

When choosing a pattern to match, Haskell starts with the top, left-most
pattern, and works to the right and downward. So in the above, (∧)
first evaluates its left argument. If that value is True, then the first
equation succeeds, and the second argument gets evaluated because that
is the value that is returned. But if the first argument is False, the second
equation succeeds. In particular, it does not bother to evaluate the second
argument at all, and simply returns False as the answer. This means that
(∧) is strict in its first argument, but not its second.

A more detailed discussion of pattern matching is found in Appendix D.

Let’s now look more closely at the last law for map, which says that for
all strict f :

f ◦ head = head ◦map f

Let’s try to prove this property, starting with the base case, but ignoring
for now the strictness constraint on f :

f (head [ ])
⇒ f ⊥
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head [ ] is an error, which you will recall has value ⊥. So you can see imme-
diately that the issue of strictness might play a role in the proof, because
without knowing anything about f , there is no further calculation to be done
here. Similarly, if we start with the right-hand side:

head (map f [ ])
⇒ head [ ]
⇒ ⊥

It should be clear that for the base case to be true, it must be that f ⊥ = ⊥;
i.e., f must be strict. Thus we have essentially “discovered” the constraint
on the theorem through the process of trying to prove it! (This is not an
uncommon phenomenon.)

The induction step is less problematic:

f (head (x : xs))
⇒ f x
⇒ head (f x : map f xs)
⇒ head (map f (x : xs))

and we are done.

Exercise 8.1 From Chapter 3, prove that:

• toPitches = map pitch

• chord = fold (:=:) (rest 0)

• maxPitch = fold (!!!) 0

• listSum xs = fold (+) 0

Exercise 8.2 Prove as many of the properties in Tables 8.1 and 8.2 as you
can.

Exercise 8.3 Which of the following functions are strict (if the function
takes more than one argument, specify on which arguments it is strict):
reverse , simple , map, tail , area, (∧), (True ∧), (False ∧), and the following
function:

ifFun :: Bool → a → a → a
ifFun pred cons alt = if pred then cons else alt
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[ Replace the following section with properties about musical functions.
In particular:

revM (revM m) = m
...

Also prove or leave as exercise the fact that the two version of perform are
the same. ]

8.5 Induction on Other Data Types

Proof by induction is not limited to lists. For example, we can use it to rea-
son about natural numbers.2 Suppose we define an exponentiation function
as follows:

(ˆ) :: Integer → Integer → Integer
xˆ0 = 1
xˆn = x ∗ xˆ(n − 1)

Details: (∗) is defined in the Standard Prelude to have precedence level

7, and recall that if no infix declaration is given for an operator it de-

faults to precedence level 9, which means that (ˆ) has precedence level

9, which is higher than that for (∗). Therefore no parentheses are needed

to disambiguate the last line in the definition above, which corresponds

nicely to mathematical convention.

Now suppose that we want to prove that:

(∀x, n � 0,m � 0) xˆ(n + m) = xˆn ∗ xˆm

We proceed by induction on n, beginning with n = 0:

xˆ(0 + m)
⇒ xˆm
⇒ 1 ∗ (xˆm)
⇒ xˆ0 ∗ xˆm

Next we assume that the property is true for numbers less than or equal to
n, and prove it for n + 1:

2Indeed, one could argue that a proof by induction over finite lists is really an induction
over natural numbers, since it is an induction over the length of the list, which is a natural
number.
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xˆ((n + 1) + m)
⇒ x ∗ xˆ(n + m)
⇒ x ∗ (xˆn ∗ xˆm)
⇒ (x ∗ xˆn) ∗ xˆm
⇒ xˆ(n + 1) ∗ xˆm

and we are done.
Or are we? What if, in the definition of (ˆ), x or n is negative? Since a

negative integer is not a natural number, we could dispense with the problem
by saying that these situations fall beyond the bounds of the property we are
trying to prove. But let’s look a little closer. If x is negative, the property
we are trying to prove still holds (why?). But if n is negative, xˆn will not
terminate (why?). As diligent programmers we may wish to defend against
the latter situation by writing:

(ˆ) :: Integer → Integer → Integer
xˆ0 = 1
xˆn | n < 0 = error "negative exponent"

| otherwise = x ∗ xˆ(n − 1)

If we consider non-terminating computations and ones that produce an error
to both have the same value, namely botom , then these two versions of (ˆ)
are equivalent. Pragmatically, however, the latter is clearly superior.

Note that the above definition will test for n < 0 on every recursive call,
when actually the only call in which it could happen is the first. Therefore
a slightly more efficient version of this program would be:

(ˆ) :: Integer → Integer → Integer
xˆn | n < 0 = error "negative exponent"

| otherwise = f x n
where f x 0 = 1

f x n = x ∗ f x (n − 1)

Proving the property stated earlier for this version of the program is straight-
forward, with one minor distinction: what we really need to prove is that
the property is true for f ; that is:

(∀x, n � 0,m � 0) f x (n + m) = f x n ∗ f x m

from which the proof for the whole function follows trivially.
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8.5.1 A More Efficient Exponentiation Function

But in fact there is a more serious inefficiency in our exponentiation func-
tion: we are not taking advantage of the fact that, for any even number n,
xn = (x ∗ x)n/2. Using this fact, here is a more clever way to accomplish
the exponentiation task, using the names (ˆ!) and ff for our functions to
distinguish them from the previous versions:

(ˆ!) :: Integer → Integer → Integer
x ˆ! n | n < 0 = error "negative exponent"

| otherwise = ff x n
where ff x n | n == 0 = 1

| even n = ff (x ∗ x ) (n ‘quot ‘ 2)
| otherwise = x ∗ ff x (n − 1)

Details: quot is Haskell’s quotient operator, which returns the integer

quotient of the first argument divided by the second, rounded toward zero.

You should convince yourself that, intuitively at least, this version of
exponentiation is not only correct, but also more efficient. More precisely,
(ˆ) executes a number of steps proportional to n, whereas (ˆ!) executes a
number of steps proportional to the log2 of n. The Standard Prelude defines
(ˆ) similarly to the way in which (ˆ!) is defined here.

Since intuition is not always reliable, let’s prove that this version is
equivalent to the old. That is, we wish to prove that xˆn = x ˆ! n for all x
and n.

A quick look at the two definitions reveals that what we really need
to prove is that f x n = ff x n, from which it follows immediately that
xˆn = x ˆ! n. We do this by induction on n, beginning with the base case
n = 0:

f x 0⇒ 1⇒ ff x 0

so the base step holds trivially. The induction step, however, is considerably
more complicated. We must consider two cases: n + 1 is either even, or it
is odd. If it is odd, we can show that:

f x (n + 1)
⇒ x ∗ f x n
⇒ x ∗ ff x n
⇒ ff x (n + 1)
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and we are done (note the use of the induction hypothesis in the second
step).

If n + 1 is even, we might try proceeding in a similar way:

f x (n + 1)
⇒ x ∗ f x n
⇒ x ∗ ff x n

But now what shall we do? Since n is odd, we might try unfolding the call
to ff :

x ∗ ff x n
⇒ x ∗ (x ∗ ff x (n − 1))

but this doesn’t seem to be getting us anywhere. Furthermore, folding the
call to ff (as we did in the odd case) would involve doubling n and taking
the square root of x , neither of which seems like a good idea!

We could also try going in the other direction:

ff x (n + 1)
⇒ ff (x ∗ x ) ((n + 1) ‘quot ‘ 2)
⇒ f (x ∗ x ) ((n + 1) ‘quot ‘ 2)

The use of the induction hypothesis in the second step needs to be justified,
because the first argument to f has changed from x to x ∗ x . But recall
that the induction hypothesis states that for all values x , and all natural
numbers up to n, f x n is the same as ff x n. So this is OK.

But even allowing this, we seem to be stuck again!
Instead of pushing this line of reasoning further, let’s pursue a different

tact based on the (valid) assumption that if m is even, then:

m = m ‘quot ‘ 2 + m ‘quot ‘ 2

Let’s use this fact together with the property that we proved in the last
section:

f x (n + 1)
⇒ f x ((n + 1) ‘quot ‘ 2 + (n + 1) ‘quot ‘ 2)
⇒ f x ((n + 1) ‘quot ‘ 2) ∗ f x ((n + 1) ‘quot ‘ 2)

Next, as with the proof in the last section involving reverse, let’s make an
assumption about a property that will help us along. Specifically, what if
we could prove that f x n ∗ f x n is equal to f (x ∗ x ) n? If so, we could
proceed as follows:
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Base case (n = 0):

f x 0 ∗ f x 0
⇒ 1 ∗ 1
⇒ 1
⇒ f (x ∗ x ) 0

Induction step (n + 1):

f x (n + 1) ∗ f x (n + 1)
⇒ (x ∗ f x n) ∗ (x ∗ f x n)
⇒ (x ∗ x ) ∗ (f x n ∗ f x n)
⇒ (x ∗ x ) ∗ f (x ∗ x ) n
⇒ f (x ∗ x ) (n + 1)

Figure 8.1: Proof that f x n ∗ f x n = f (x ∗ x ) n.

f x ((n + 1) ‘quot ‘ 2) ∗ f x ((n + 1) ‘quot ‘ 2)
⇒ f (x ∗ x ) ((n + 1) ‘quot ‘ 2)
⇒ ff (x ∗ x ) ((n + 1) ‘quot ‘ 2)
⇒ ff x (n + 1)

and we are finally done. Note the use of the induction hypothesis in the
second step, as justified earlier. The proof of the auxiliary property is not
difficult, but also requires induction; it is shown in Figure 8.1.

Aside from improving efficiency, one of the pleasant outcomes of proving
that (ˆ) and (ˆ!) are equivalent is that anything that we prove about one
function will be true for the other. For example, the validity of the property
that we proved earlier:

xˆ(n + m) = xˆn ∗ xˆm

immediately implies the validity of:

x ˆ! (n + m) = x ˆ! n ∗ x ˆ! m

Although (ˆ!) is more efficient than (ˆ), it is also more complicated, so
it makes sense to try proving new properties for (ˆ), since the proofs will
likely be easier.

The moral of this story is that you shouldn’t throw away old code that
is simpler but less efficient than a newer version. That old code can serve
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at least two good purposes: First, if it is simpler, it is likely to be easier
to understand, and thus serves a useful role in documenting your effort.
Second, as we have just discussed, if it is provably equivalent to the new
code, then it can be used to simplify the task of proving properties about
the new code.

Exercise 8.4 The function (ˆ!) can be made more efficient by noting that
in the last line of the definition of ff , n is odd, and therefore n − 1 must
be even, so the test for n being even on the next recursive call could be
avoided. Redefine (ˆ!) so that it avoids this (minor) inefficiency.

Exercise 8.5 Consider this definition of the factorial function:3

fac1 :: Integer → Integer
fac1 0 = 1
fac1 n = n ∗ fac1 (n − 1)

and this alternative definition:

fac2 :: Integer → Integer
fac2 n = fac′ n 1
where fac′ 0 x = x

fac′ n x = fac′ (n − 1) (n ∗ x )

Prove that fac1 n = fac2 n for all non-negative integers n.

3The factorial function is defined mathematically as:

factorial(n) =

{
1 if n = 0
n ∗ factorial(n − 1) otherwise



Chapter 9

An Algebra of Music

In this chapter we will explore a number of properties of the Music data
type and functions defined on it, properties that collectively form an algebra
of music. With this algebra we can reason about, transform, and optimize
computer music programs in a meaning preserving way.

9.1 Musical Equivalance

Suppose we have two values m1 :: Music Pitch and m2 :: Music Pitch, and
we want to know if they are equal. If we treat them simply as Haskell values,
we could easily write a function that compares their structures recursively
to see if they are the same at every level, all the way down to the Primitive
rests and notes. This is in fact what the Haskell function (==) does. For
example, if:

m = c 4 en :+: c 5 en
m1 = m :+: m
m2 = revM (revM m :+: revM m)

Then m1 == m2 is True.
Unfortunately, this is not always good enough from a musical point of

view. For example, we would expect the following two musical values to
sound the same, regardless of the actual values of m1 , m2 , and m3 :

(m1 :+: m2 ) :+: m3
m1 :+: (m2 :+: m3 )

In other words, we expect the operator (:+:) to be associative.

104
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The problem is that, as data structures, these two values are not equal
in general, in fact there are no finite values that can be assigned to m1 , m2 ,
and m3 to make them equal.1

The obvious way out of this dilemma is to define a new notion of equality
that captures the fact that the performances are the same—i.e. if two things
sound the same, they must be musically equivalent. And thus we define a
formal notion of musical equivalence:

Definition: Two musical values m1 and m2 are equivalent, written
m1 ≡ m2 , if and only if:

(∀pmap, c) perf pmap c m1 = perf pmap c m2

We will study a number of properties in this chapter that capture musi-
cal equivalences, similar in spirit to the associativity of (:+:) above. Each of
them can be thought of as an axiom, and the set of valid axioms collectively
forms an algebra of music. By proving the validity of each axiom we not
only confirm our intuitions about how music is interpreted, but also gain
confidence that our perform function actually does the right thing. Fur-
thermore, with these axioms in hand, we can transform musical values in
meaning-preserving ways.

Speaking of the perform function, recall from Chapter 6 that we defined
two versions of perform , and the definition above uses the function perf ,
which includes the duration of a musical value in its result. The following
Lemma captures the connection between these functions:

Lemma 9.1.1 For all pmap, c, and m2 :

perf pmap c m2 = (perform pmap c m2 , dur m2 )

where perform is the function defined in Figure 6.1.

To see the importance of including duration in the definition of equiv-
alence, we first note that if two musical values are equivalent, we should
be able to substitute one for the other in any valid musical context. But
if duration is not taken into account, then all rests are equivalent (because
their performances are just the empty list). This means that, for example,
m1 :+: rest 1 :+:m2 is equivalent to m1 :+: rest 2 :+: m2 , which is surely not
what we want.

1If m1 = m1 :+:m2 and m3 = m2 :+:m3 then the two expressions are equal, but these
are infinite values that cannot even be performed.
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Note that we could have defined perf as above, i.e. in terms of perform
and dur , but as mentioned in Section 6.1 it would have been computationally
inefficient to do so. On the other hand, if the Lemma above is true, then
our proofs might be simpler if we first proved the property using perform ,
and then using dur . That is, to prove m1 ≡ m2 we need to prove:

perf pmap c m1 = perf pmap c m2

Instead of doing this directly using the definition of perf , we could instead
prove both of the following:

perform pmap c m1 = perform pmap c m2
dur m1 = dur m2

9.2 Some Simple Axioms

Let’s look at a few simpler axioms, and see how we can prove each of them
using the proof techniques that we have developed so far.

Axiom 9.2.1 For any r1 , r2 , and m:

Modify (Tempo r1 ) (Modify (Tempo r2 ) m) ≡ Modify (Tempo (r1 ∗ r2 )) m

In other words, tempo scaling is multiplicative.
We can prove this by calculation, starting with the definition of musical

equivalence. For clarity we will first prove the property for perform , and
then for dur , as suggested in the last section:

let dt = cDur c

perform pmap c (Modify (Tempo r1 ) (Modify (Tempo r2 ) m))
⇒ {unfold perform }
perform pmap (c{cDur = dt / r1 }) (Modify (Tempo r2 ) m)
⇒ {unfold perform }
perform pmap (c{cDur = (dt / r1 ) / r2 }) m
⇒ {arithmetic }
perform pmap (c{cDur = dt / (r1 ∗ r2 )}) m
⇒ {fold perform }
perform pmap c (Modify (Tempo (r1 ∗ r2 )) m)

dur (Modify (Tempo r1 ) (Modify (Tempo r2 ) m))
⇒ {unfold dur }
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dur (Modify (Tempo r2 ) m) / r1
⇒ {unfold dur }
(dur m / r2 ) / r1
⇒ {arithmetic }
dur m / (r1 ∗ r2 )
⇒ {fold dur }
dur (Modify (Tempo (r1 ∗ r2 )) m)

Here is another useful axiom and its proof:

Axiom 9.2.2 For any r , m1 , and m2 :

Modify (Tempo r) (m1 :+: m2 ) ≡ Modiy (Tempo r) m1 :+: Modify (Tempo r) m2

In other words, tempo scaling distributes over sequential composition.

Proof:

let t = cTime c; dt = cDur c
t1 = t + dur m1 ∗ (dt / r)
t2 = t + (dur m1 / r) ∗ dt
t3 = t + dur (Modify (Tempo r) m1 ) ∗ dt

perform pmap c (Modify (Tempo r) (m1 :+: m2 ))
⇒ {unfold perform }
perform pmap (c{cDur = dt / r }) (m1 :+: m2 )
⇒ {unfold perform }
perform pmap (c{cDur = dt / r }) m1

++perform pmap (c{cTime = t1 , cDur = dt / r }) m2
⇒ {fold perform }
perform pmap c (Modify (Tempo r) m1 )

++perform pmap (c{cTime = t1 }) (Modify (Tempo r) m2 )
⇒ {arithmetic }
perform pmap c (Modify (Tempo r) m1 )

++perform pmap (c{cTime = t2 }) (Modify (Tempo r) m2 )
⇒ {fold dur }
perform pmap c (Modify (Tempo r) m1 )

++perform pmap (c{cTime = t3 }) (Modify (Tempo r) m2 )
⇒ {fold perform }
perform pmap c (Modify (Tempo r) m1 :+: Modify (Tempo r) m2 )

dur (Modify (Tempo r) (m1 :+: m2 ))
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⇒ dur (m1 :+: m2 ) / r
⇒ (dur m1 + dur m2 ) / r
⇒ dur m1 / r + dur m2 / r
⇒ dur (Modify (Tempo r) m1 ) + dur (Modify (Tempo r) m2 )
⇒ dur (Modify (Tempo r) m1 :+: Modify (Tempo r) m2 )

An even simpler axiom is given by:

Axiom 9.2.3 For any m, Modify (Tempo 1) m ≡ m.

In other words, unit tempo scaling is the identity function for type Music.

Proof:

let dt = cDur c

perform pmap c (Modify (Tempo 1) m)
⇒ {unfold perform }
perform pmap (c{cDur = dt / 1}) m
⇒ {arithmetic }
perform pmap c m

dur (Modify (Tempo 1) m)
⇒ dur m / 1
⇒ dur m

Note that the above three proofs, being used to establish axioms, all involve
the definition of perform . In contrast, we can also establish theorems whose
proofs involve only the axioms. For example, Axioms 1, 2, and 3 are all
needed to prove the following:

Theorem 9.2.1 For any r , m1 , and m2 :

Modify (Tempo r) m1 :+: m2 ≡ Modify (Tempo r) (m1 :+: Modify (Tempo (1 / r)) m2 )

Proof:

Modify (Tempo r) m1 :+: m2
⇒ {Axiom 3}
Modify (Tempo r) m1 :+: Modify (Tempo 1) m2
⇒ {arithmetic }
Modify (Tempo r) m1 :+: Modify (Tempo (r ∗ (1 / r))) m2
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⇒ {Axiom 1}
Modify (Tempo r) m1 :+: Modify (Tempo r) (Modify (Tempo (1 / r)) m2 )
⇒ {Axiom 2}
Modify (Tempo r) (m1 :+: Modify (Tempo (1 / r)) m2 )

9.3 The Axiom Set

There are many other useful axioms, but we do not have room to include all
of their proofs here. They are listed below, which include the axioms from
the previous section as special cases, and the proofs are left as exercises.

Axiom 9.3.1 Tempo is multiplicative and Transpose is additive. That is,
for any r1 , r2 , p1 , p2 , and m:

Modify (Tempo r1 ) (Modify (Tempo r2 ) m) ≡ Modify (Tempo (r1 ∗ r2 )) m
Modify (Trans p1 ) (Modify (Trans p2 ) m) ≡ Modify (Trans (p1 + p2 )) m

Axiom 9.3.2 Function composition is commutative with respect to both
tempo scaling and transposition. That is, for any r1 , r2 , p1 and p2 :

Modify (Tempo r1 ) ◦Modify (Tempo r2 ) ≡ Modify (Tempo r2 ) ◦Modify (Tempo r1 )
Modify (Trans p1 ) ◦Modify (Trans p2 ) ≡ Modify (Trans p2 ) ◦Modify (Trans p1 )
Modify (Tempo r1 ) ◦Modify (Trans p1 ) ≡ Modify (Trans p1 ) ◦Modify (Tempo r1 )

Axiom 9.3.3 Tempo scaling and transposition are distributive over both
sequential and parallel composition. That is, for any r , p, m1 , and m2 :

Modify (Tempo r) (m1 :+: m2 ) ≡ Modify (Tempo r) m1 :+: Modify (Tempo r) m2
Modify (Tempo r) (m1 :=: m2 ) ≡ Modify (Tempo r) m1 :=: Modify (Tempo r) m2
Modify (Trans p) (m1 :+: m2 ) ≡ Modify (Trans p) m1 :+: Modify (Trans p) m2
Modify (Trans p) (m1 :=: m2 ) ≡ Modify (Trans p) m1 :=: Modify (Trans p) m2

Axiom 9.3.4 Sequential and parallel composition are associative. That is,
for any m0 , m1 , and m2 :

m0 :+: (m1 :+: m2 ) ≡ (m0 :+: m1 ) :+: m2
m0 :=: (m1 :=: m2 ) ≡ (m0 :=: m1 ) :=: m2

Axiom 9.3.5 Parallel composition is commutative. That is, for any m0
and m1 :

m0 :=: m1 ≡ m1 :=: m0
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Axiom 9.3.6 Rest 0 is a unit for Tempo and Trans , and a zero for sequen-
tial and parallel composition. That is, for any r , p, and m:

Tempo r (Rest 0) ≡ Rest 0
Trans p (Rest 0) ≡ Rest 0
m :+: Rest 0 ≡ m ≡ Rest 0 :+: m
m :=: Rest 0 ≡ m ≡ Rest 0 :=: m

Axiom 9.3.7 There is a duality between (:+:) and (:+:), namely that, for
any m0 , m1 , m2 , and m3 such that dur m0 = dur m2 :

(m0 :+: m1 ) :=: (m2 :+: m3 ) ≡ (m0 :=: m2 ) :+: (m1 :=: m3 )

Exercise 9.1 Establish the validity of each of the above axioms.

Exercise 9.2 Recall the function revM defined in Chapter 2, and note that,
in general, revM (revM m) is not equal to m. However, the following is true:

revM (revM m) ≡ m

Prove this fact by calculation.

9.4 Soundness and Completeness

TBD



Chapter 10

Musical L-Systems

module Haskore .LSystems where
import Data.List
import System.Random
import Haskore

10.1 Generative Grammars

A grammar describes a formal language. One can either design a recognizer
(or parser) for that language, or design a generator that generates sentences
in that language. We are interested in using grammars to generate music,
and thus we are only interested in generative grammars.

A generative grammar is a four-tuple (N,T, n, P ), where:

• N is the set of non-terminal symbols.

• T is the set of terminal symbols.

• n is the initial symbol.

• P is a set of production rules, where each production rule is a pair
(X,Y ), often written X → Y , where X and Y are words over the
alphabet N ∪ T , and X contains at least one non-terminal.

A Lindenmayer system, or L-system, is an example of a generative gram-
mer, but is different in two ways:

1. The sequence of sentences is as important as the individual sentences,
and

111



CHAPTER 10. MUSICAL L-SYSTEMS 112

2. A new sentence is generated from the previous one by applying as many
productions as possible on each step—a kind of “parallel production.”

Lindenmayer was a biologist and mathematician, and he used L-systems
to describe the growth of certain biological organisms (such as plants, and
in particular algae).

We will limit our discussion to L-systems that have the following addi-
tional characteristics:

1. They are context-free: the left-hand side of each production (i.e. X
above) is a single non-terminal.

2. No distinction is made between terminals and non-terminals (with no
loss of expressive power—why?).

We will consider both deterministic and non-deterministic grammars.
A deterministic grammar has exactly one production corresponding to each
terminal symbol in the alphabet, whereas a non-deterministic grammar may
have more than one, and thus we will need some way to choose between them.

10.2 A Simple Implementation

A very simple context-free, deterministic grammar can be designed as fol-
lows. We represent the set of productions as a list of symbol/list-of-symbol
pairs:

data DetGrammar a = DetGrammar a -- start symbol
[(a, [a ])] -- productions

deriving Show

To generate a succession of “sentential forms,” we need to define a function
that, given a grammar, returns a list of lists of symbols:

detGenerate :: Eq a ⇒ DetGrammar a → [ [a ] ]
detGenerate (DetGrammar st ps) = iterate (concatMap f ) [st ]

where f a = maybe [a ] id (lookup a ps)

Note that we will each symbol “in parallel” at each step, using concatMap.
The repetition of this process at each step is achieved using iterate . Note
also that a list of productions is essentially an association list, and thus
the library function lookup works quite well in finding the production rule
that we seek. Finally, note once again how the use of higher-order functions
makes this definition concise yet efficient.
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As an example of the use of this simple program, a Lindenmayer grammer
for red algae (taken from []) is given by:

redAlgae = DetGrammar ’a’
[(’a’, "b|c"),
(’b’, "b"),
(’c’, "b|d"),
(’d’, "e\\d"),
(’e’, "f"),
(’f’, "g"),
(’g’, "h(a)"),
(’h’, "h"),
(’|’, "|"),
(’(’, "("),
(’)’, ")"),
(’/’, "\\"),
(’\\’, "/")
]

Then detGenerate redAlgae gives us the result that we want—or, to make
it look nicer, we could do:

t n g = sequence (map putStrLn (take n (detGenerate g)))

For example, the 10th element of t 10 redAlgae is:

"b|b|h(b|b|e\d)\h(b|b|d)/h(b|c)\h(a)/g\f/e\d"

Exercise 10.1 Design a function testDet :: Grammar a → Bool such that
testDet g is True if g has exactly one rule for each of its symbols; i.e. it is
deterministic. Then modify the generate function above so that it returns
an error if a grammer not satisfying this constraint is given as argument.

10.3 Grammars in Haskell

The design given in the last section only captures deterministic context-
free grammars. We would also like to consider non-deterministic grammars,
where a user can specify the probability that a particular rule is selected, as
well as possibly non-context free (i.e. context sensitive) grammars. Thus we
will represent a generative grammar a bit more abstractly, as a data structure
that has a starting sentence in an (implicit, polymorphic) alphabet, and a
list of production rules:
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data Grammar a = Grammar a -- start sentence
(Rules a) -- production rules

deriving Show

The production rules are instructions for converting sentences in the alpha-
bet to other sentences in the alphabet. A rule set is either a set of uniformly
distributed rules (meaning that those with the same left-hand side have an
equal probability of being chosen), or a set of stochastic rules (each of which
is paired with a probabilty). A specific rule consists of a left-hand side and
a right-hand side.

data Rules a = Uni [Rule a ]
| Sto [(Rule a,Prob)]

deriving (Eq ,Ord ,Show )

data Rule a = Rule{ lhs :: a, rhs :: a }
deriving (Eq ,Ord ,Show )

type Prob = Float

One of the key sub-problems that we will have to solve is how to proba-
bilistically select a rule from a set of rules, and use that rule to expand a
non-terminal. We define the following type to capture this process:

type ReplFun a = [[(Rule a,Prob)]]→ (a, [Rand ])→ (a, [Rand ])
type Rand = Float

The idea is that a function f :: ReplFun a is such that f rules (s, rands )
will return a new sentence s ′ in which each symbol in s has been replaced
according to some rule in rules (which are grouped by common left-hand
side). Each rule is chosen probabilitically based on the random numbers in
rands , and thus the result also includes a new list of random numbers to
account for those “consumed” by the replacement process.

With such a function in hand, we can now define a function that, given
a grammar, generates an infinite list of the sentences produced by this re-
placement process. Because the process is non-deterministic, we also pass a
seed (an integer) to generate the initial pseudo-random number sequence to
give us repeatable results.

gen :: Ord a ⇒ ReplFun a → Grammar a → Int → [a ]
gen f (Grammar s rules) seed =

let Sto newRules = toStoRules rules
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rands = randomRs (0.0, 1.0) (mkStdGen seed)
in if checkProbs newRules

then generate f newRules (s, rands)
else (error "Stochastic rule-set is malformed.")

toStoRules converts a list of uniformly distributed rules to an equivalent list
of stochastic rules. Each set of uniform rules with the same LHS is converted
to a set of stochastic rules in which the probability of each rule is one over
the number of uniform rules.

toStoRules :: (Ord a,Eq a)⇒ Rules a → Rules a
toStoRules (Sto rs) = Sto rs
toStoRules (Uni rs) =

let rs ′ = groupBy (λr1 r2 → lhs r1 == lhs r2 ) (sort rs)
in Sto (concatMap insertProb rs ′)

insertProb :: [a ]→ [(a,Prob)]
insertProb rules = let prb = 1.0 / fromIntegral (length rules)

in zip rules (repeat prb)

checkProbs takes a list of production rules and checks whether, for every
rule with the same LHS, the probabilities sum to one (plus or minus some
epsilon, currenty set to 0.001).

checkProbs :: (Ord a,Eq a)⇒ [(Rule a,Prob)]→ Bool
checkProbs rs = and (map checkSum (groupBy sameLHS (sort rs)))

eps = 0.001

checkSum :: [(Rule a,Prob)]→ Bool
checkSum rules = let mySum = sum (map snd rules)

in abs (1.0 −mySum) � eps

sameLHS :: Eq a ⇒ (Rule a,Prob)→ (Rule a,Prob)→ Bool
sameLHS (r1 , f1 ) (r2 , f2 ) = lhs r1 == lhs r2

generate takes a list of rules, a replacement function, a starting sentence,
and a source of random numbers. It returns an infinite list of sentences.

generate :: Eq a ⇒ ReplFun a → [(Rule a,Prob)]→ (a, [Rand ])→ [a ]
generate f rules xs =

let newRules = map probDist (groupBy sameLHS rules)
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probDist rrs = let (rs , ps) = unzip rrs
in zip rs (tail (scanl (+) 0 ps))

in map fst (iterate (f newRules) xs)

10.4 An L-System Grammar for Music

The above is all for a generic grammar. For a musical L-system we will
define a specific grammar, whose sentences are defined as follows. A musical
L-system sentence is either:

• A non-terminal symbol (N a).

• A sequential composition s1 :+ s2 .

• A functional composition s1 :. s2 .

• The symbol Id , which will eventually interpeted as the identity func-
tion.

We capture this in the LSys data type:

data LSys a = N a
| LSys a :+ LSys a
| LSys a :. LSys a
| Id

deriving (Eq ,Ord ,Show )

We also need to define a replacement function for this grammar. We treat
(:+) and (:.) as binary branches, and recursively traverse each of their ar-
guments. We treat Id as a constant that never gets replaced. Most impor-
tantly, each non-terminal of the form N x could each be the left-hand side
of a rule, so we call the function getNewRHS to generate the replace term
for it.

replFun :: Eq a ⇒ ReplFun (LSys a)
replFun rules (s, rands ) =

case s of
a :+ b → let (a ′, rands ′) = replFun rules (a, rands )

(b ′, rands ′′) = replFun rules (b, rands ′)
in (a ′ :+ b ′, rands ′′)

a :. b → let (a ′, rands ′) = replFun rules (a, rands)
(b ′, rands ′′) = replFun rules (b, rands ′)
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in (a ′ :. b ′, rands ′′)
Id → (Id , rands)
N x → (getNewRHS rules (N x ) (head rands), tail rands)

Note the use of filter to select only the rules whose left-hand side matches
the non-terminal. A key aspect of the algorithm is to then generate the
probability density of the successive rules, which is basically the sum of its
probability plus the probabilities of all rules that precede it. This modified
rule-set is then given to getNewRHS as an argument. getNewRHS is defined
as:

getNewRHS :: Eq a ⇒ [ [(Rule a,Prob)]]→ a → Rand → a
getNewRHS rrs ls rand =

let loop ((r , p) : rs) = if rand � p then rhs r else loop rs
loop [ ] = error "getNewRHS anomaly"

in case (find (λ((r , p) : )→ lhs r == ls) rrs) of
Just rs → loop rs
Nothing → error "No rule match"

10.5 Examples

The final step is to interpret the resulting sentence (i.e. a value of type
LSys a) as music. The intent of the LSys design is that a value is interpreted
as a function that is applied to a single note (or, more generally, a single
Music value). The specific constructors are interpreted as follows:

type IR a b = [(a,Music b → Music b)] -- IR stands for interpetation rules

interpret :: (Eq a)⇒ LSys a → IR a b → Music b → Music b
interpret (a :. b) r m = interpret a r (interpret b r m)
interpret (a :+ b) r m = interpret a r m :+: interpret b r m
interpret Id r m = m
interpret (N x ) r m = case (lookup x r) of

Just f → f m
Nothing → error "No interpetation rule"

For example, we could define the following interpretation rules:

data LFun = Inc | Dec | Same
deriving (Eq ,Ord ,Show )
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ir :: IR LFun Pitch
ir = [(Inc,Haskore .transpose 1),

(Dec,Haskore .transpose (−1)),
(Same , id)]

inc, dec, same :: LSys LFun
inc = N Inc
dec = N Dec
same = N Same

In other words, inc transposes the music up by one semitone, dec transposes
it down by a semitone, and same does nothing.

Now let’s build an actual grammar. sc increments a note followed by its
decrement – the two notes are one whole tone apart:

sc = inc :+ dec

Now let’s define a bunch of rules as follows:

r1a = Rule inc (sc :. sc)
r1b = Rule inc sc
r2a = Rule dec (sc :. sc)
r2b = Rule dec sc
r3a = Rule same inc
r3b = Rule same dec
r3c = Rule same same

and the corresponding grammar:

g1 = Grammar same (Uni [r1b, r1a , r2b, r2a, r3a , r3b ])

Finally, we generate a sentence at some particular level, and interpret it as
music:

t1 n = instrument Vibraphone$
interpret (gen replFun g1 42 !! n) ir (c 5 tn)

Try “play t1 3” or “play t1 4” to hear the result.

Exercise 10.2 Play with the L-System grammar defined above. Change
the production rules. Add probabilities to the rules, i.e. change it into a Sto
grammar. Change the random number seed. Change the depth of recursion.
And also try changing the “musical seed” (i.e. the note c 5 tn).



CHAPTER 10. MUSICAL L-SYSTEMS 119

Exercise 10.3 Define a new L-System structure. In particular, (a) define
a new version of LSys (for example, add a parallel constructor) and its asso-
ciated interpretation, and/or (b) define a new version of LFun (perhaps add
something to control the volume) and its associated interpretation. Then
define some grammars with the new design to generate interesting music.
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Qualified Types

Recall that a polymorphic type such as (a → a) is really shorthand for
∀(a)a → a, which can be read “for all types a, functions mapping elements
of type a to elements of type a.” Note the emphasis on for all.

In practice, however, there are times when we would prefer to limit a
polymorphic type to a smaller number of possibilities. A good example is
a function such as (+). It’s probably not a good idea to limit (+) to a
single (that is, monomorphic) type such as Integer → Integer → Integer ,
since there are other kinds of numbers—such as rational and floating-point
numbers—that we would like to perform addition on. Nor is it a very
good idea to have a different addition function for each type of number
we wish to add, since that would require giving each a different name, such
as addInteger , addRational , addFloat , etc. And, unfortunately, we can’t
give (+) a type such as a → a → a since this would imply that we could
add things other than numbers, such as characters, lists, tuples, and any
type that you might define on your own!

Haskell provides a solution to this problem through the use of qualified
types. Conceptually, you can think of a qualified type just as a polymorphic
type, except that in place of “for all types a” we will be able to say “for all
types a that are members of class C ,” where the class C can be thought of
as a set of types. For example, suppose there is a class Num with members
Integer , Rational , and Float . Then we could give an accurate type for
(+), namely: ∀(a ∈ Num)a → a → a. But in Haskell, instead of writing
∀(a ∈ Num) · · · we will write Num a ⇒ · · ·. So the proper type signature
for (+) is:

(+) :: Num a ⇒ a → a → a

which should be read: “for all types a that are members of the class Num,
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(+) has type a → a → a.” Members of a class are also called instances of
the class, and we will use these two terms interchangeably in the remainder
of the text. The Num a ⇒ · · · part of the type signature is often called a
context, or constraint.

Details: It is important not to confuse Num with a data type or a

constructor within a data type, even though the same syntax (“Num a”)

is used. Num is a type class, and the context of its use (namely, to the

left of a ⇒) is always sufficient to determine this fact.

The ability to qualify polymorphic types is a unique feature of Haskell,
and, as you will soon see, provides great expressiveness. In particular, you
will see that it is possible to define your own type class and its members.
But first, let’s look at another example of a pre-defined qualified type in
Haskell.

11.1 Equality

Equality between two expressions e1 and e2 in Haskell means that the value
of e1 is the same as the value of e2 . Another way to view equality is that you
should be able to substitute e1 for e2 wherever they appear in a program,
without affecting the result of that program.

In general, however, it is not possible for a program to determine the
equality of two expressions—consider, for example, determining the equal-
ity of two infinite lists, or the equality of two functions of type Integer →
Integer . The ability to compute the equality of two values is called com-
putational equality. Even though by the above simple examples it is clear
that computational equality is strictly weaker than full equality, it is still an
operation that we would like to use in many ordinary programs.

Haskell’s operator for computational equality is (==). Partly because of
the problem mentioned above, there are many types for which we would like
equality defined, but some for which we might not. For example, we often
want to compare two characters, two integers, two floating-point numbers,
etc. On the other hand, comparing the equality of functions is difficult, and
in general not possible. Thus Haskell has a type class called Eq, so that the
equality operator (==) can be given the qualified type:

(==) :: Eq a ⇒ a → a → Bool

In other words, (==) is a function that, for any type a in the class Eq ,
tests two values of type a for equality, returning a Boolean (Bool ) value as



CHAPTER 11. QUALIFIED TYPES 122

a result. Amongst Eq’s instances are the types Char and Integer, so that
the following calculations hold:

42 == 42⇒ True
42 == 43⇒ False
’a’ == ’a’⇒ True
’a’ == ’b’⇒ False

Furthermore, the expression 42 == ’a’ is ill-typed; Haskell is clever enough
to know when qualified types are ill-formed.

One of the nice things about qualified types is that they work in the
presence of ordinary polymorphism. In particular, the type constraints can
be made to propagate through polymorphic data types. For example, be-
cause Integer and Float are members of Eq , so are the types (Integer ,Char ),
[Integer ], [Float ], etc. Thus:

[42, 43] == [42, 43]⇒ True
[4.2, 4.3] == [4.3, 4.2]⇒ False
(42, ’a’) == (42, ’a’)⇒ True

We will see how this is done is a later section.
Type constraints also propagate through function definitions. For exam-

ple, consider this definition of the function elem which tests for membership
in a list:

x ∈ [ ] = False
x ∈ (y : ys) = x == y ∨ x ∈ ys

Note the use of (==) on the right-hand side of the second equation. The
principal type for elem is thus:

elem :: Eq a ⇒ a → [a ]→ Bool

This should be read, “For every type a that is an instance of the class Eq ,
elem has type a → [a ]→ Bool .” This is just what we want—it expresses the
fact that elem is not defined on all types, just those for which computational
equality is defined.

The above type for elem is also its principal type, and Haskell will infer
this type if no signature is given. Indeed, if you were to write the type
signature:

elem :: a → [a ]→ Bool
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you would encounter a type error, because this type is fundamentally too
general, and the Haskell type system will complain.

Details: On the other hand, you could write:

elem :: Integer → [Integer ]→ Bool

if you expect to use elem only on lists of integers. In other words, using

a type signature to constrain a value to be less general than its principal

type is Ok.

As another example of this idea, a function that squares its argument:

square x = x ∗ x

has principal type Num a ⇒ a → a, since (∗), like (+), has type
Num a ⇒ a → a → a. Thus:

square 42⇒ 1764
square 4.2⇒ 17.64

We will study the Num class in greater detail shortly.

11.2 Defining Your Own Type Classes

Haskell provides a mechanism whereby you can create your own qualified
types, by defining a new type class and specifying which types are members,
or “instances” of it. Indeed, the type classes Num and Eq are not built-in
as primitives in Haskell, but rather are simply predefined in the Standard
Prelude.

To see how this is done, let’s take the Eq class as an example. It is
created by the following type class declaration:

class Eq a where
(==) :: a → a → Bool

The connection between (==) and Eq is important: the above declaration
should be read “a type a is an instance of the class Eq only if there is an
operation (==) :: a → a → Bool defined on it.”

Details: (==) is called an operation in the class Eq , and in general

more than one operation is allowed in a class. We will see examples of

this shortly.
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So far so good. But how do we specify which types are instances of the
class Eq, and the actual behavior of (==) on each of those types? This is
done with an instance declaration. For example:

instance Eq Integer where
x == y = integereq x y

The definition of (==) is called a method. The function integerEq happens to
be the primitive function that compares integers for equality, but in general
any valid expression is allowed on the right-hand side, just as for any other
function definition. The overall instance declaration is essentially saying:
“The type Integer is an instance of the class Eq , and here is the method
corresponding to the operation (==).” Given this declaration, we can now
compare fixed-precision integers for equality using (==). Similarly:

instance Eq Float where
x == y = floatEq x y

allows us to compare floating-point numbers using (==).
More importantly, datatypes that you have defined on your own can also

be made instances of the class Eq . Consider, for example, the PitchClass
data type defined in Chapter 2:

data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Es | Ff | F | Gff | Ess | Fs
| Gf | Fss | G | Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss

We can declare PitchClass to be an instance of Eq as follows:

instance Eq PitchClass where
Cff == Cff = True
Cf == Cf = True
C == C = True
...
Bs == Bs = True
Bss == Bss = True

== = False

where ... refers to the other 30 equations to make this definition of (==)
complete. Indeed, this is rather tedious! It is not only tedious, it is also
dead obvious how (==) should be defined. Therefore Haskell provides a
convenient way to automatically derive such instance declarations from data
type declarations, for certain type classes. In the case of PitchClass , all we
have to do is add a deriving clause:
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data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Es | Ff | F | Gff | Ess | Fs
| Gf | Fss | G | Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss

deriving Eq

With this declaration, Haskell will automatically derive the instance decla-
ration that we defined above, so that (==) behaves in the way we would
expect it to.

Let’s now consider a polymorphic type, such as the Primitive type from
Chapter 2:

data Primitive a = Note Dur a
| Rest Dur

What should an instance for this type in the class Eq look like? Here’s a
first attempt:

instance Eq (Primitive a) where
Note d1 x1 == Note d2 x2 = (d1 == d2 ) ∧ (x1 == x2 )
Rest d1 == Rest d2 = d1 == d2

== = False

Note the use of (==) on the right-hand side, in several places. Two of those
places involve Dur , which a type synonym for Rational . The Rational type
is in fact a pre-defined instance of Eq, so all is well there. (If it were not an
instance of Eq, a type error would result.)

But what about the term x1 == x2? x1 and x2 are values of the
polymorphic type a, but how do we know that equality is defined on a, i.e.
that the type a is an instance of Eq? In fact we don’t. The simple fix is to
add a constraint to the instance declaration, as follows:

instance Eq a ⇒ Eq (Primitive a) where
Note d1 x1 == Note d2 x2 = (d1 == d2 ) ∧ (x1 == x2 )
Rest d1 == Rest d2 = d1 == d2

== = False

This can be read, “For any type a in the class Eq , the type Primitive a
is also in the class Eq, and here is the definition of (==) for that type.”
Indeed, it we had written the original type declaration like this:

data Primitive a = Note Dur a
| Rest Dur

deriving Eq
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then Haskell would have derived the above correct instance declaration for
us automatically.

So, for example, (==) is defined on the type Primitive Pitch, because
Pitch is a type synonym for (PitchClass ,Octave), and (a) PitchClass is an
instance of Eq by our effort above, (b) Octave is a synonym for Int , which
is an instance of Eq , and (c) we mentioned earlier that the pair type is an
instance of Eq . Indeed, now that we have seen an instance for a polymorphic
type, we can understand what the pre-defined instance for polymorphic pairs
must look like, namely:

instance (Eq a,Eq b)⇒ Eq (a, b) where
(x1 , y1 ) == (x2 , y2 ) = (x1 == x2 ) ∧ (y1 == y2 )

About the only thing we haven’t considered is a recursive type. So let’s look
at Music, also from Chapter 2:

data Music a = Primitive (Primitive a)
| Music a :+: Music a
| Music a :=: Music a
| Modify Control (Music a)

Its instance declaration for Eq seems obvious:

instance Eq a ⇒ Eq (Music a) where
Primitive p1 == Primitive p2 = p1 == p2
(ma1 :+: mb1 ) == (ma2 :+: mb2 ) = (ma1 == ma2 ) ∧ (mb1 == mb2 )
(ma1 :=: mb1 ) == (ma2 :=: mb2 ) = (ma1 == ma2 ) ∧ (mb1 == mb2 )
Modify c1 m1 == Modify c2 m2 = (c1 == c2 ) ∧ (m1 == m2 )

Indeed, assuming that we also declare Control to be an instance of Eq , this is
just what we want, and can be automatically derived by adding a deriving
clause to the data type declaration for Music.

In reality, the class Eq as defined in Haskell’s Standard Prelude is slightly
richer than what we defined above. Here is its exact form:

class Eq a where
(==), (�=) :: a → a → Bool
x �= y = ¬ (x == y)
x == y = ¬ (x �= y)

This is an example of a class with two operations, one for equality, the other
for inequality. It also demonstrates the use of a default method, one for each
operator. If a method for a particular operation is omitted in an instance
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declaration, then the default one defined in the class declaration, if it exists,
is used instead. For example, all of the instances of Eq defined earlier will
work perfectly well with the above class declaration, yielding just the right
definition of inequality that we want: the logical negation of equality.

Details: Both the inequality and the logical negation operators are shown

here using the mathematical notation, �= and ¬, respectively. When writ-

ing your Haskell programs, you will have to use the operator /= and the

name “not,” respectively.

11.3 Inheritance

Haskell also supports a notion called inheritance. For example, we may
wish to define a class Ord which “inherits” all of the operations in Eq, but
in addition has a set of comparison operations and minimum and maximum
functions (a fuller definition of Ord , as taken from the Standard Prelude, is
given in Chapter B):

class Eq a ⇒ Ord a where
(<), (�), (�), (>) :: a → a → Bool
max ,min :: a → a → a

Note the constraint Eq a ⇒ in the class declaration. We say that Eq is a
superclass of Ord (conversely, Ord is a subclass of Eq), and any type that
is an instance of Ord must also be an instance of Eq . The reason that this
extra constraint makes sense is that to perform comparisons such as a � b
and a � b implies that we know how to compute a == b.

For example, following the strategy we used for Eq, we could declare
Music an instance of Ord as follows (note the constraint Ord a ⇒ ...):

instance Ord a ⇒ Ord (Music a) where
Primitive p1 < Primitive p2 = p1 < p2
(ma1 :+: mb1 ) < (ma2 :+: mb2 ) = (ma1 < ma2 ) ∧ (mb1 < mb2 )
(ma1 :=: mb1 ) < (ma2 :=: mb2 ) = (ma1 < ma2 ) ∧ (mb1 < mb2 )
Modify c1 m1 == Modify c2 m2 = (c1 < c2 ) ∧ (m1 < m2 )
...

Although this is a perfectly well-defined definition for <, it is not clear that
it is the behavior that we want, an issue that we will return to in Section
11.6.

Another benefit of inheritance is shorter constraints. For example, the
type of a function that uses operations from both the Eq and Ord classes can
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use the constraint (Ord a) rather than (Eq a,Ord a), since Ord “implies”
Eq .

As an example of the use of Ord , a generic sort function should be able
to sort lists of any type that is an instance of Ord , and thus its most general
type should be:

sort :: (Ord a)⇒ [a ]→ [a ]

This typing for sort would naturally arise through the use of comparison
operators such as < and � in its definition.

Details: Haskell also permits multiple inheritance, since classes may have
more than one superclass. Name conflicts are avoided by the constraint
that a particular operation can be a member of at most one class in any
given scope. For example, the declaration

class (Eq a,Show a)⇒ C a where...

creates a class C which inherits operations from both Eq and Show .

Finally, class methods may have additional class constraints on any type
variable except the one defining the current class. For example, in this
class:

class C a where
m :: Eq b ⇒ a → b

the method m requires that type b is in class Eq . However, additional

class constraints on type a are not allowed in the method m; these would

instead have to be part of the constraint in the class declaration.

11.4 Haskell’s Standard Type Classes

The Standard Prelude defines many useful type classes, including Eq and
Ord . They are described in detail in Chapter B. In addition, the Haskell
Report and the Library Report contain useful examples and discussions of
type classes; you should feel encouraged to read through them.

The Num class, which we have been using implicitly throughout much
of the text, is described in more detail below. With this explanation a few
more of Haskell’s secrets will be revealed.
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11.4.1 The Num Class

As you know, Haskell provides several kinds of numbers, some of which we
have used already: Int , Integer , Rational , and Float . These numbers are
instances of various type classes arranged in a rather complicated hierarchy.
The reason for this is that there are many operations, such as (+), abs , and
sin, that are common amongst some of these number types. For example,
we would expect (+) to be defined on every kind of number, whereas sin
might only be applicable to either single precision (Float ) or double-precision
(Double) floating-point numbers.

Control over which numerical operations are allowed and which aren’t is
the purpose of the numeric type class hierarchy. At the top of the hierarchy,
and therefore containing operations that are valid for all numbers, is the
class Num. It is defined as:

class (Eq a,Show a)⇒ Num a where
(+), (−), (∗) :: a → a → a
negate :: a → a
abs , signum :: a → a
fromInteger :: Integer → a

Note that (/) is not an operation in this class. negate is the negation func-
tion; abs is the absolute value function; and signum is the sign function,
which returns −1 if its argument is negative, 0 if it is 0, and 1 if it is pos-
itive. fromInteger converts an Integer into a value of type Num a ⇒ a,
which is useful for certain coercion tasks.

Details: Haskell also has a negation operator, which is Haskell’s only
prefix operator. However, it is just shorthand for negate. That is, −e in
Haskell is shorthand for negate e.

The operation fromInteger also has a special purpose. You might have
wondered how it is that we can write the number 42, say, both in a context
requiring an Int and in one requiring a Float (say). Somehow Haskell
“knows” that the 42 is the one that is required in a given context. But,
what is the type of 42 itself? The answer is that it has type Num a ⇒
a, for some a to be determined by its context. (If this seems strange,
remember that [ ] by itself is also somewhat ambiguous; it is a list, but a
list of what? The best we can say about its type is that it is [a ] for some
a yet to be determined.)

The way this is achieved in Haskell is that 42 is actually shorthand for

fromInteger 42. Since fromInteger has type Num a ⇒ Integer → a,

then fromInteger 42 has type Num a ⇒ a.
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The complete hierarchy of numeric classes is shown in Figure 11.1; note
that some of the classes are subclasses of certain non-numeric classes, such
as Eq and Show . The comments below each class name refer to the Standard
Prelude types that are instances of that class. See Chapter B for more detail.

The Standard Prelude actually defines only the most basic numeric types:
Int , Integer , Float and Double. Other numeric types such as rational num-
bers (Ratio a) and complex numbers (Complex a) are defined in libraries.
The connection between these types and the numeric classes is given in Fig-
ure 11.2. The instance declarations implied by this table can be found in
the Haskell Report.

11.4.2 The Show Class

It is very common to want to convert a data type value into a string. In
fact, it happens all the time when we interact with GHCi at the command
prompt, and GHCi will complain if it does not “know” how to “show” a
value. The type of anything that GHCi prints must be an instance of the
Show class.

We will not detail all of the methods in the Show class, in fact we will
only discuss one of them:

class Show a where
show :: a → String

Instances of Show can be derived, so we normally don’t have to worry about
the details of the definition of show . For example, the actual definition of
the Primitive type that we gave in Chapter 2 is:

data Prim = Note Dur Pitch
| Rest Dur

deriving (Show ,Eq ,Ord)

Details: When instances of more than one class are derived for the same

data type, they appear grouped in parentheses as above. In this case Eq
must appear if Ord does (unless an explicit instance for Eq is given), since

Eq is a superclass of Ord .

Lists also have a Show instance, but it is not derived, since, after all, lists
have special syntax. Also, when show is applied to a string such as "Hello",
it should generate a string that, when printed, will look like "Hello". This
means that it must include characters for the quotation marks themselves,
which in Haskell is achieved by prefixing the quotation mark with the “es-
cape” character \. Given the following data declaration:
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Figure 11.1: Numeric Class Hierarchy
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Numeric Type Type Class Description

Int Integral Fixed-precision integers
Integer Integral Arbitrary-precision integers
Integral a ⇒ Ratio a RealFrac Rational numbers
Float RealFloat Real floating-point, single precision
Double RealFloat Real floating-point, double precision
RealFloat a ⇒ Complex a Floating Complex floating-point

Figure 11.2: Standard Numeric Types

data Hello = Hello
deriving Show

it is then instructive to ponder over the following calculations:

show Hello =⇒ "Hello"
show (show Hello) =⇒ show "Hello" =⇒ "\"Hello\""
show (show (show Hello)) =⇒ "\"\\\"Hello\\\"\""

Details: To refer to the escape character itself, it must also be escaped;

thus "\\" prints as \.

For further pondering, consider the following program. See if you can
figure out what it does, and why!1

main = putStr (quine q)
quine s = s ++ show s
q = "main = putStr (quine q)\nquine s = s ++ show s\nq = "

Derived Show instances are possible for all types whose component types
also have Show instances. Show instances for most of the standard types
are provided in the Standard Prelude.

11.5 Derived Instances

In addition to Eq and Ord , instances of Enum, Bounded, Ix, Read, and
Show (see Chapter B) can also be generated by the deriving clause. These

1The essence of this idea is due to Willard Van Orman Quine [Qui66], and its use in a
computer program is discussed by Hofstadter [Hof79]. It was adapted to Haskell by Jón
Fairbairn.
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type classes are widely used in Haskell programming, making the deriving
mechanism very useful.

The textual representation defined by a derived Show instance is con-
sistent with the appearance of constant Haskell expressions of the type in
question. For example, from:

data Color = Red | Orange | Yellow | Green | Blue | Indigo | Violet
deriving (Eq ,Enum,Show )

we can expect that:

show [Red . . ]
=⇒ "[Red,Orange,Yellow,Green,Blue,Indigo,Violet]"

Further details about derived instances can be found in the Haskell Report.
Many of the pre-defined data types in Haskell have deriving clauses,

even ones with special syntax. For example, if we could write a data type
declaration for lists it would look something like this:

data [a ] = [ ]
| a : [a ]

deriving (Eq ,Ord)

The derived Eq and Ord instances for lists are the usual ones; in particular,
character strings, as lists of characters, are ordered as determined by the
underlying Char type, with an initial sub-string being less than a longer
string; for example, "cat"< "catalog" is True.

In practice, Eq and Ord instances are almost always derived, rather than
user-defined. In fact, you should provide your own definitions of equality and
ordering predicates only with some trepidation, being careful to maintain
the expected algebraic properties of equivalence relations and total orders
(more on this later). An intransitive (==) predicate, for example, could
be disastrous, confusing readers of the program who may expect (==) to
be transitive. Nevertheless, it is sometimes necessary to provide Eq or Ord
instances different from those that would be derived.

11.6 Reasoning With Type Classes

Type classes often imply a set of laws which govern the use of the operators
in the class. For example, for the Eq class, we can expect the following laws
to apply for every instance of the class:
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(x �= y) = ¬ (x == y)
(x == y) ∧ (y == z ) ⊇ (x == z )

where ⊇ should be read “implies that.”
However, there is no way to guarantee these laws. A user may create

an instance of Eq that violates them, and in general Haskell has no way to
enforce them. Nevertheless, it is useful to state the laws that interest us for
a certain class, and to state the expectation that all instances of the class be
“law-abiding.” Then as diligent functional programmers, we should ensure
that every instance that we write, whether for our own class or someone
else’s, is in fact law-abiding.

As another example, consider the Ord class, whose instances are intended
to be totally ordered, which means that the following laws should hold, for
all a, b, and c:

a � a
(a � b) ∧ (b � c) ⊇ (a � c)
(a � b) ∧ (b � a) ⊇ (a == b)
(a �= b) ⊇ (a < b) ∨ (b < a)

Similar laws should hold for (>).
But alas, our instance of Music in the class Ord given in Section 11.3

does not satisfy all of these laws! To see why, suppose we have two Primitive
values p1 and p2 such that p1 < p2 . Now consider these two Music values:

m1 = Primitive p1 :+: Primitive p2
m2 = Primitive p2 :+: Primitive p1

Clearly m1 == m2 is false, but the problem is, so are m1<m2 and m2<m1 ,
thus violating the last law above.

To fix the problem, we need to use a lexicographic ordering on the Music
type, such as used in a dictionary. For example, “polygon” comes before
“polymorphic,” using a left-to-right comparison of the letters. The new
instance declaration looks like this:

instance Ord a ⇒ Ord (Music a) where
Primitive p1 < Primitive p2 = p1 < p2
Primitive p1 < = True
(ma1 :+: mb1 ) < Primitive = False
(ma1 :+: mb1 ) < (ma2 :+: mb2 ) = (ma1 < ma2 ) ∨ (ma1 == ma2 ) ∧ (mb1 < mb2 )
(ma1 :+: mb1 ) < = True
(ma1 :=: mb1 ) < Primitive = False
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(ma1 :=: mb1 ) < (ma2 :+: mb2 ) = False
(ma1 :=: mb1 ) < (ma2 :=: mb2 ) = (ma1 < ma2 ) ∨ (ma1 == ma2 ) ∧ (mb1 < mb2 )
(ma1 :=: mb1 ) < = True
Modify c1 m1 < Modify c2 m2 = (c1 < c2 ) ∨ (c1 == c2 ) ∧ (m1 < m2 )
Modify c1 m1 < = False

This example shows the value of checking to be sure that each of your
instances obeys the laws of its class. Of course, that check should come
in the way of a proof. This example also highlights the utility of derived
instances, since the derived instance of Music for the class Ord is equivalent
to that above, yet is done automatically.

Exercise 11.1 Prove that the instance of Music in the class Eq satisfies
the laws of its class. Also prove that the modified instance of Music in the
class Ord satisfies the laws of its class.

Exercise 11.2 Write out appropriate instance declarations for the Color
type in the classes Eq, Ord , and Enum.



Chapter 12

Random Numbers,
Probability Distributions,
and Markov Chains

module Haskore .RandomMusic where

import Haskore
import System.Random
import System.Random .Distributions
import qualified Data.MarkovChain as M

The use of randomness in composition can be justified by the somewhat
random, exploratory nature of the creative mind, and indeed it has been
used in computer music composition for many years. In this chapter we
will explore several sources of random numbers and how to use them in
generating simple melodies. With this foundation you will hopefully be able
to use randomness in more sophisticated ways in your compositions. Music
relying at least to some degree on randomness is said to be stochastic, or
aleatoric.

12.1 Random Numbers

This section describes the basic functionality of Haskell’s System.Random
module, which is a library for random numbers. The library presents a
fairly abstract interface that is structured in two layers of type classes: one

136
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that captures the notion of a random generator, and one for using a random
generator to create random sequences.

We can create a random number generator using the built-in mkStdGen
function:

mkStdGen :: Int → StdGen

which takes an Int seed as argument, and returns a “standard generator” of
type StdGen . For example, we can define:

sGen :: StdGen
sGen = mkStdGen 42

We will use this single random generator quite extensively in the remainder
of this chapter.

StdGen is an instance of Show , and thus its values can be printed—but
they appear in a rather strange way, basically as two integers. Try typing
sGen to the GHCi prompt.

More importantly, StdGen is an instance of the RandomGen class:

class RandomGen g where
genRange :: g → (Int , Int)
next :: g → (Int , g)
split :: g → (g , g)

The reason that Ints are used here is that essentially all pseudo-random
number generator algorithms are based on a fixed-precision binary number,
such as Int . We will see later how this can be coerced into other number
types.

For now, try applying the operators in the above class to the sGen value
above. The next function is particularly important, as it generates the next
random number in a sequence as well as a new random number generator,
which in turn can be used to generate the next number, and so on. It should
be clear that we can then create an infinite list of random Ints like this:

randInts :: StdGen → [Int ]
randInts g = let (x , g ′) = next g

in x : randInts g ′

Look at the value take 10 (randInts sGen) to see a sample output.
To support other number types, the Random library defines this type

class:
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class Random a where
randomR :: RandomGen g ⇒ (a, a)→ g → (a, g)
random :: RandomGen g ⇒ g → (a, g)

randomRs :: RandomGen g ⇒ (a, a)→ g → [a ]
randoms :: RandomGen g ⇒ g → [a ]

randomRIO :: (a, a)→ IO a
randomIO :: IO a

Built-in instances of Random are provided for Int , Integer , Float , Double,
Bool , and Char .

The set of operators in the Random class is rather daunting, so let’s
focus on just one of them for now, namely the third one, RandomRs , which
is also perhaps the most useful one. This function takes a random number
generator (such as sGen), along with a range of values, and generates an
infinite list of random numbers within the given range (the pair representing
the range is treated as a closed interval). Here are several examples of this
idea:

randFloats :: [Float ]
randFloats = randomRs (−1, 1) sGen

randIntegers :: [Integer ]
randIntegers = randomRs (0, 100) sGen

randString :: String
randString = randomRs (’a’, ’z’) sGen

Recall that a string is a list of characters, so we choose here to use the name
randString for our infinite list of characters. If you believe the story about
a monkey typing a novel, then you might believe that randString contains
something interesting to read.

So far we have used a seed to initialize our random number generators,
and this is good in the sense that it allows us to generate repeatable, and
therefore more easily testable, results. If instead you prefer a non-repeatable
result, in which you can think of the seed as being the time of day when
the program is executed, then you need to use a function that is in the IO
monad. The last two operators in the Random class server this purpose.
For example, consider:

randIO :: IO Float
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randIO = randomRIO (0, 1)

If you repeatedly type randIO at the GHCi prompt, it will return a different
random number every time. This is clearly not purely “functional,” and is
why it is in the IO monad. As another example:

randIO ′ :: IO ()
randIO ′ = do r1 ← randomRIO (0, 1) :: IO Float

r2 ← randomRIO (0, 1) :: IO Float
print (r1 == r2 )

will essentially always return False. (The type signature is needed to ensure
that the value generated has an unambigous type.)

12.2 Probability Distributions

The random number generators described in the previous section are as-
sumed to be uniform, meaning that the probability of generating a number
within a given interval is the same everywhere in the range of the generator.
For example, in the case of Float (that purportedly represents continuous
real numbers), suppose we are generating numbers in the range 0 to 10.
Then we would expect the probability of a number appearing in the range
2.3-2.4 to be the same as the probability of a number appearing in the range
7.6-7.7, namely 0.01, or 1% (i.e. 0.1/10). In the case of Int (a discrete or
integral number type), we would expect the probability of generating a 5
to be the same as generating an 8. In both cases, we say that we have a
uniform distribution.

But we don’t always want a uniform distribution. In generating music, in
fact, it’s often the case that we want some kind of a non-uniform distribution.
Mathematically, the best way to describe a distribution is by plotting how
the probability changes over the range of values that it produces. In the
case of continuous numbers, this is called the probability density function,
which has the property that its integral over the full range of values is equal
to 1.

The System.Random .Distributions library provides a number of different
probability distributions, which are described below. Figure 12.1 shows the
probability density functions for each of othem.

Here is a list and brief description of each random number generator:

linear Generates a linearly distributed random variable between 0 and 1.
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Figure 12.1: Various Probability Density Functions



CHAPTER 12. RANDOM NUMBERS ... AND MARKOV CHAINS 141

The probability density function is given by:

f(x) =
{

2(1− x) if 0 � x � 1
0 otherwise

The type signature is:

linear :: (RandomGen g ,Floating a,Random a,Ord a)⇒
g → (a, g)

The mean value of the linear distribution is 1/3.

exponential Generates an exponentially distributed random variable given
a spread parameter λ. A larger spread increases the probability of
generating a small number. The mean of the distribution is 1/λ. The
range of the generated number is conceptually 0 to ∞, although the
chance of getting a very large number is very small. The probability
density function is given by:

f(x) = λe−λx

The type signature is:

exponential :: (RandomGen g ,Floating a,Random a)⇒
a → g → (a, g)

The first argument is the parameter λ.

bilateral exponential Generates a random number with a bilateral ex-
ponential distribution. Similar to exponential, but the mean of the
distribution is 0 and 50% of the results fall between −1/λ and 1/λ.
The probability density function is given by:

f(x) =
1
2
λe−λ|x|

The type signature is:

bilExp :: (Floating a,Ord a,Random a,RandomGen g)⇒
a → g → (a, g)
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Gaussian Generates a random number with a Gaussian, also called normal,
distribution, given mathematically by:

f(x) =
1

σ
√

2π
e−

(x−μ)2

2σ2

where σ is the standard deviation, and μ is the mean. The type signa-
ture is:

gaussian :: (Floating a,Random a,RandomGen g)⇒
a → a → g → (a, g)

The first argument is the standard deviation σ and the second is the
mean μ. Probabilistically, about 68.27% of the numbers in a Gaussian
distribution fall within ±σ of the mean; about 95.45% are within ±2σ,
and 99.73% are within ±3σ.

Cauchy Generates a Cauchy-distributed random variable. The distribu-
tion is symmetric with a mean of 0. The density function is given
by:

f(x) =
α

π(α2 + x2)

As with the Gaussian distribution, it is unbounded both above and
below the mean, but at its extremes it approaches 0 more slowly than
the Gaussian. The type signature is:

cauchy :: (Floating a,Random a,RandomGen g)⇒
a → g → (a, g)

The first argument corresponds to α above, and is called the density.

Poisson Generates a Poisson-distributed random variable. The Poisson
distribution is discrete, and generates only non-negative numbers. λ
is the mean of the distribution. If λ is an integer, the probability that
the result is j = λ− 1 is the same as that of j = λ. The probability of
generating the number j is given by:

P{X = j} =
λj

j!
e−λ

The type signature is:
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poisson :: (Num t ,Ord a,Floating a,RandomGen g ,Random a)⇒
a → g → (t , g)

Custom Sometimes it is useful to define one’s own discrete probability dis-
tribution function, and to generate random numbers based on it. The
function frequency does this—given a list of weight-value pairs, it gen-
erates a value randomly picked from the list, weighting the probability
of choosing each value by the given weight.

frequency :: (Floating w ,Ord w ,Random w ,RandomGen g)⇒
[(w , a)]→ g → (a, g)

12.2.1 Random Melodies and Random Walks

Note that each of the non-uniform distribution random number generators
described in the last section takes zero or more parameters as arguments,
along with a uniform random number generator, and returns a pair consist-
ing of the next random number and a new generator. In other words, the
tail end of each type signature has the form:

...→ g → (a, g)

where g is the type of the random number generator, and a is the type of
the next value generated.

Given such a function, we can generate an infinite sequence of random
numbers with the given distribution in a way similar to what we did earlier
for randInts . In fact the following function is defined in the Distributions
library to make this easy:

rands :: (RandomGen g ,Random a)⇒ (g → (a, g))→ g → [a ]
rands f g = x : rands f g ′ where (x , g ′) = f g

Let’s work through a few musical examples. One thing we will need to do
is convert a floating point number to an absolute pitch:

toAbsP1 :: Float → AbsPitch
toAbsP1 x = round (40 ∗ x + 30)

This function converts a number in the range 0 to 1 into an absolute pitch
in the range 30 to 70.

And as we have often done, we will also need to convert an absolute
pitch into a note, and a sequence of absolute pitches into a melody:
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mkNote1 :: AbsPitch → Music Pitch
mkNote1 = note tn ◦ pitch

mkLine1 :: [AbsPitch ]→ Music Pitch
mkLine1 rands = line (take 32 (map mkNote1 rands))

With these functions in hand, we can now generate sequences of random
numbers with a variety of distributions, and convert each of them into a
melody. For example:

-- uniform distribution
m1 :: Music Pitch
m1 = mkLine1 (randomRs (30, 70) sGen)

-- linear distribution
m2 :: Music Pitch
m2 = let rs1 = rands linear sGen

in mkLine1 (map toAbsP1 rs1 )

-- exponential distribution
m3 :: Float → Music Pitch
m3 lam = let rs1 = rands (exponential lam) sGen

in mkLine1 (map toAbsP1 rs1 )

-- Gaussian distribution
m4 :: Float → Float → Music Pitch
m4 sig mu = let rs1 = rands (gaussian sig mu) sGen

in mkLine1 (map toAbsP1 rs1 )

Exercise 12.1 Try playing each of the above melodies, and listen to the
musical differences. For lam , try values of 0.1, 1, 5, and 10. For mu, a value
of 0.5 will put the melody in the central part of the scale range—then try
values of 0.01, 0.05, and 0.1 for sig .

Exercise 12.2 Do the following:

• Try using some of the other probability distributions to generate a
melody.

• Instead of using a chromatic scale, try using a diatonic or pentatonic
scale.
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• Try using randomness to control parameters other than pitch—in par-
ticular, duration and/or volume.

Another approach to generating a melody is sometimes called a random
walk. The idea is to start on a particular note, and treat the sequence of
random numbers as intervals, rather than as pitches. To prevent the melody
from wandering too far from the starting pitch, one should use a probability
distribution whose mean is zero. This comes for free with something like the
bilateral exponential, and is easily obtained with a distribution that takes
the mean as a parameter (such as the Gaussian), but is also easily achieved
for other distributions by simply subtracting the mean. To see these two
situations, here are random melodic walks using first a Gaussian and then
an exponential distribution:

-- Gaussian distribution with mean set to 0
m5 :: Float → Music Pitch
m5 sig = let rs1 = rands (gaussian sig 0) sGen

in mkLine2 50 (map toAbsP2 rs1 )

-- exponential distribution with mean adjusted to 0
m6 :: Float → Music Pitch
m6 lam = let rs1 = rands (exponential lam) sGen

in mkLine2 50 (map (toAbsP2 ◦ subtract (1 / lam)) rs1 )

toAbsP2 :: Float → AbsPitch
toAbsP2 x = round (5 ∗ x )

mkLine2 :: AbsPitch → [AbsPitch ]→ Music Pitch
mkLine2 start rands = line (take 64 (map mkNote1 (scanl (+) start rands)))

Note that toAbsP2 does something reasonable to interpret a floating-point
number as an interval, and mkLine2 uses scanl to generate a “running sum”
that represents the melody line.

12.3 Markov Chains

Each number in the random number sequences that we have described thus
far is independent of any previous values in the sequence. This is like flip-
ping a coin—each flip has a 50% chance of being heads or tails, i.e. it is
independent of any previous flips, even if the last ten flips were all heads.
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C D E F
C 0.4 0.2 0.2 0.2
D 0.3 0.2 0.0 0.5
E 0.1 0.6 0.1 0.2
F 0.2 0.3 0.3 0.2

Table 12.1: Second-Order Markov Chain

Sometimes, however, we would like the probability of a new choice to
depend upon some number of previous choices. This is called a conditional
probability. In a discrete system, if we look only at the previous value to help
determine the next value, then these conditional probabilities can be con-
veniently represented in a matrix. For example, if we are choosing between
the pitches C, D, E, and F , then Table 12.1 might represent the conditional
probabilities of each possible outcome. The previous pitch is found in the
left column—thus note that the sum of each row is 1.0. So, for example, the
probability of choosing a D given that the previous pitch was an E is 0.6,
and the probability of an F occurring twice in succession is 0.2.

This idea can of course be generalized to arbitrary numbers of previous
events, and in general an (n + 1)-dimensional array can be used to store the
various conditional probabilities. The number of previous values observed
is called the order of the Markov Chain.

[TO DO: write the Haskell code to implement this]

12.3.1 Training Data

Instead of generating the conditional probability table ourselves, another
approach is to use training data from which the conditional probabilities
can be inferred. This is handy for music, because it means that we can
feed in a bunch of melodies that we like, including melodies written by the
masters, and use that as a stochastic basis for generating new melodies.

[TO DO: Give some pointers to the literatue, in particular David Cope’s
work.]

The Data .MarkovChain library provides this functionality through a
function called run, whose type signature is:

run :: (Ord a,RandomGen g)⇒
Int -- order of Markov Chain

→ [a ] -- training sequence (treated as circular list)
→ Int -- index to start within the training sequence
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→ g -- random number generator
→ [a ]

The runMulti function is similar, except that it takes a list of training se-
quences as input, and returns a list of lists as its result, each being an in-
dependent random walk whose probabilities are based on the training data.
The following examples demonstrate how to use these functions.

-- some sample training sequences
ps0 , ps1 , ps2 :: [Pitch ]
ps0 = [(C , 4), (D , 4), (E , 4)]
ps1 = [(C , 4), (D , 4), (E , 4), (F , 4), (G , 4), (A, 4), (B , 4)]
ps2 = [(C , 4), (E , 4), (G , 4), (E , 4), (F , 4), (A, 4), (G , 4), (E , 4),

(C , 4), (E , 4), (G , 4), (E , 4), (F , 4), (D , 4), (C , 4)]

-- functions to package up run and runMulti
mc ps n = mkLine3 (M .run n ps 0 (mkStdGen 42))
mcm pss n = mkLine3 (concat (M .runMulti n pss 0 (mkStdGen 42)))

-- music-making functions
mkNote3 :: Pitch → Music Pitch
mkNote3 = note tn

mkLine3 :: [Pitch ]→ Music Pitch
mkLine3 ps = line (take 64 (map mkNote3 ps))

Here are some things to try with the above definitions:

• mc ps0 0 will generate a completely random sequence, since it is a
“zeroth-order” Markov Chain that does not look at any previous out-
put.

• mc ps0 1 looks back one value, which is enough in the case of this
simple training sequence to generate an endless sequence of notes that
sounds just like the training data. Using any order higher than 1
generates the same result.

• mc ps1 1 also generates a result that sounds just like its training data.

• mc ps2 1, on the other hand, has some (random) variety to it, because
the training data has more than one occurrence of most of the notes. If
we increase the order, however, the output will sound more and more
like the training data.
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• mcm [ps0 , ps2 ] 1 and mcm [ps1 , ps2 ] 1 generate perhaps the most
interesting results yet, in which you can hear aspects of both the as-
cending melodic nature of ps0 and ps1 , and the harmonic structure of
ps2 .

• mcm [ps1 , reverse ps1 ] 1 has, not suprisingly, both ascending and
descending lines in it, as reflected in the training data.

Exercise 12.3 Play with Markov Chains. Use them to generate more
melodies, or to control other aspects of the music, such as rhythm. Also
consider other kinds of training data rather than simply sequences of pitches.



Chapter 13

From Performance to Midi

module Haskore .ToMidi (toMidi ,UserPatchMap, defST )
where

import Haskore.Music
import Haskore.Performance
import Haskore.GeneralMidi
import Data.List (partition)
import Data.Char (toLower , toUpper )
import Codec.Midi

Midi is shorthand for “Musical Instrument Digital Interface,” and is a stan-
dard protocol for controlling electronic musical instruments. This chapter
describes how to convert an abstract performance as defined in Chapter 6
into a standard Midi file that can be played on any modern PC with a
standard sound card.

13.1 An Introduction to Midi

Midi is a standard adopted by most, if not all, manufacturers of electronic
instruments and personal computers. At its core is a protocol for commu-
nicating musical events (note on, note off, etc.) and so-called meta events
(select synthesizer patch, change tempo, etc.). Beyond the logical protocol,
the Midi standard also specifies electrical signal characteristics and cabling
details, as well as a standard Midi file which any Midi-compatible software
package should be able to recognize.

Most “sound-blaster”-like sound cards on conventional PC’s know about
Midi. However, the sound generated by such modules, and the sound pro-
duced from the typically-scrawny speakers on most PC’s, is often quite poor.

149
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Family Program # Family Program #
Piano 1-8 Reed 65-72
Chromatic Percussion 9-16 Pipe 73-80
Organ 17-24 Synth Lead 81-88
Guitar 25-32 Synth Pad 89-96
Bass 33-40 Synth Effects 97-104
Strings 41-48 Ethnic 105-112
Ensemble 49-56 Percussive 113-120
Brass 57-64 Sound Effects 121-128

Table 13.1: General Midi Instrument Families

It is best to use an outboard keyboard or tone generator, which are attached
to a computer via a Midi interface and cables. It is possible to connect sev-
eral Midi instruments to the same computer, with each assigned to a different
channel. Modern keyboards and tone generators are quite good. Not only
is the sound excellent (when played on a good stereo system), but they are
also multi-timbral, which means they are able to generate many different
sounds simultaneously, as well as polyphonic, meaning that simultaneous
instantiations of the same sound are possible.

13.1.1 General Midi

Over the years musicians and manufacturers decided that they also wanted a
standard way to refer to commonly used instrument sounds, such as “acous-
tic grand piano,” “electric piano,” “violin,” and “acoustic bass,” as well as
more exotic sounds such as “chorus aahs,” “voice oohs,” “bird tweet,” and
“helicopter.” A simple standard known as General Midi was developed to
fill this role. The General Midi standard establishes standard names for 128
common instrument sounds (also called “patches”) and assigns an integer
called the program number (also called “program change number”), to each
of them. The instrument names and their program numbers are grouped
into “familes” of instrument sounds, as shown in Table 13.1.

Now recall that in Chapter 2 we defined a set of instruments via the
InstrumentName data type (see Figure 2.1). All of the names chosen for
that data type come directly from the General Midi standard, except for two,
Percussion and Custom , which were added for convenience and extensibil-
ity. By listing the constructors in the order that reflects this assignment, we
can derive an Enum instance for InstrumentName that defines the method
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toEnum that essentially does the conversion from instrument name to pro-
gram number for us. We can then define a function:

toGM :: InstrumentName → ProgNum
toGM Percussion = 0
toGM (Custom name) = 0
toGM in = fromEnum in

type ProgNum = Int

that takes care of the two extra cases, which are simply assigned to program
number 0.

The derived Enum instance also defines a function fromEnum that con-
verts program numbers to instrument names. We can then define:

fromGM :: ProgNum → InstrumentName
fromGM pn | pn � 0 ∧ pn � 127 = fromEnum pn
fromGM pn = error ("fromGM: " ++ show pn++

" is not a valid General Midi program number")

Details: Design bug: Because the IntrumentName data type contains

a non-nullary constructor, namely Custom, the Enum instance cannot be

derived. For now it is defined in the module GeneralMidi , but a better

solution is to redefine InstrumentName in such a way as to avoid this.

13.1.2 Channels and Patch Maps

A Midi channel is in essence a programmable instrument. You can have
up to 16 channels, numbered 0 through 15, each assigned a different pro-
gram number (corresponding to an instrument sound, see above). All of
the dynamic “Note On” and “Note Off” messages (to be defined shortly)
are tagged with a channel number, so up to 16 different instruments can be
controlled independently and simultaneously.

The assignment of Midi channels to instrument names is called a patch
map, and we define a simple association list to capture its structure:

type UserPatchMap = [(InstrumentName ,Channel )]

type Channel = Int

The only thing odd about Midi Channels is that General Midi specifies that
Channel 10 (9 in Haskore’s 0-based numbering) is dedicated to percussion
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(which is different from the “percussive instruments” described in Table
13.1). When Channel 10 is used, any program number to which it is assigned
is ignored, and instead each note corresponds to a different percussion sound.
In particular, General Midi specifies that the notes corresponding to Midi
Keys 35 through 82 correspond to specific percussive sounds. Indeed, recall
that in Chapter 5 we in fact captured these percussion sounds through the
PercussionSound data type, and we defined a way to convert such a sound
into an absolute pitch (i.e. AbsPitch). Haskore’s absolute pitches, by the
way, are in one-to-one correspondence with Midi Key nunmbers.

Except for percussion, the Midi Channel used to represent a particular
instrument is completely arbitrary. Indeed, it is tedious to explicitly define
a new patch map every time the instrumentation of a piece of music is
changed. Therefore it is convenient to define a function that automatically
creates a UserPatchMap from a list of instrument names:

makeGMMap :: [InstrumentName ]→ UserPatchMap
makeGMMap ins = mkGMMap 0 ins

where mkGMMap [ ] = [ ]
mkGMMap n | n � 15 =

error "Too many instruments; not enough Midi channels."
mkGMMap n (Percussion : ins) =

(Percussion, 9) : mkGMMap n ins
mkGMMap n (i : ins) =

(i , chanList !! n) : mkGMMap (n + 1) ins
chanList = [0 . . 8] ++ [10 . . 15] -- channel 9 is for percussion

Note that, since there are only 15 Midi channels plus percussion, we can
handle only 15 different instruments, and an error is signaled if this limit is
exceeded.1

Finally, we define a function to look up an InstrumentName in a UserPatchMap,
and return the associated channel as well as its program number:

upmLookup :: UserPatchMap → InstrumentName → (Channel ,ProgNum)
upmLookup upm iName = (channel , toGM iName)

where channel = maybe (error ("instrument "++ show iName++
" not in patch map"))

id (lookup iName upm)

1It is conceivable to define a function to test whether or not two tracks can be combined
with a Program Change (tracks can be combined if they don’t overlap), but this remains
for future work.
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13.1.3 Standard Midi Files

The Midi standard defines the precise format of a standard Midi file. At the
time when the Midi standard was first created, disk space was at a premium,
and thus a compact file structure was important. Standard Midi files are
thus defined at the bit and byte level, and are quite compact. We are not
interested in this low-level representation (any more than we are interested
in the signals that run on Midi cables), and thus in Haskore we take a more
abstract approach: We define an algebraic data type called Midi to capture
the abstract structure of a standard Midi file, and then define functions to
convert values of this data type to and from actual Midi files. This separation
of concerns makes the structure of the Midi file clearer, makes debugging
easier, and provides a natural path for extending Haskore’s functionality
with direct Midi capability (discussed further in Chapter ??).

We will not discuss the details of the functions that read and write
the actual Midi files; the interested reader may find them in the modules
ReadMidi and OutputMidi , respectively. Instead, we will focus on the Midi
data type, which is defined in the module Codec.Midi . We do not need all
of its functionality, and thus we show in Figure ?? only those parts of the
module that we need for this chapter. Here are the salient points about this
data type and the structure of Midi files:

1. There are three types of Midi files:

• A Format 0, or SingleTrack , Midi file stores its information in
a single track of events, and is best used only for monophonic
music.

• A Format 1, or MultiTrack , Midi file stores its information in
multiple tracks that are played simultaneously, where each track
normally corresponds to a single Midi Channel.

• A Format 2, or MultiPattern, Midi file also has multiple tracks,
but they are temporally independent.

In this chapter we only use SingleTrack and MultiTrack Midi files,
depending on how many Channels we need.

2. The TimeDiv field refers to the time-code division used by the Midi
file. We will always use 96 time divisions, or “ticks,” per quarternote,
and thus this field will always be TicksPerBeat 96.

3. The main body of a Midi file is a list of Tracks, each of which in turn
is a list of time-stamped (in number of ticks) Messages (or “events”).
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-- From the Codec.Midi module

data Midi = Midi{fileType :: FileType ,
timeDiv :: TimeDiv
tracks :: [Track Ticks ]}

deriving (Eq ,Show )

data FileType = SingleTrack | MultiTrack | MultiPattern
deriving (Eq ,Show )

type Track a = [(a,Message)]

data TimeDiv = TicksPerBeat Int -- 1 through (215 - 1)
| ...

deriving (Show ,Eq)

type Ticks = Int -- 0 through (228 - 1)
type Time = Double
type Channel = Int -- 0 through 15
type Key = Int -- 0 through 127
type Velocity = Int -- 0 through 127
type Pressure = Int -- 0 through 127
type Preset = Int -- 0 through 127
type Tempo = Int -- microseconds per beat, 1 through (224 - 1)

data Message =
-- Channel Messages

NoteOff {channel :: !Channel , key :: !Key , velocity :: !Velocity }
| NoteOn{channel :: !Channel , key :: !Key , velocity :: !Velocity }
| ProgramChange{channel :: !Channel , preset :: !Preset }
| ...

-- Meta Messages
| TempoChange ! Tempo |
| ...

deriving (Show ,Eq)

fromAbsTime :: (Num a)⇒ Track a → Track a
fromAbsTime trk = zip ts ′ ms

where (ts ,ms) = unzip trk
( , ts ′) = mapAccumL (λacc t → (t , t − acc)) 0 ts

Figure 13.1: Partial Definition of the Midi Data Type
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4. There are two kinds of Messages: channel messages and meta messages .
Figure 13.1 shows just those messages that we are interested in:

(a) NoteOn ch k v turns on key (pitch) k with velocity (volume) v
on Midi channel ch. The velocity is an integer in the range 0 to
127.

(b) NoteOff ch k v performs a similar function in turning the note
off.

(c) ProgChange ch pr sets the program number for channel ch to pr .
This is how an instrument is selected.

(d) TempoChange t sets the tempo to t , which is the time, in mi-
croseconds, of one whole note. Using 120 beats per minute as the
norm, or 2 beats per second, that works out to 500,000 microsec-
onds per beat, which is the default value that we will use.

13.2 Converting a Performance into Midi

Our goal is to convert a value of type Performance into a value of type Midi .
We can summarize the situation pictorially as follows ...

Given a UserPatchMap, a Performance is converted into a Midi value
by the toMidi function. If the given UserPatchMap is invalid, it creates a
new one using makeGMMap described earlier.

toMidi :: Performance → UserPatchMap → Midi
toMidi pf upm =

let splitList = splitByInst pf
insts = map fst splitList
rightMap = if (allValid upm insts) then upm

else (makeGMMap insts)
in Midi (if length splitList == 1 then SingleTrack else MultiTrack)

(TicksPerBeat division)
(map (fromAbsTime ◦ performToMEvs rightMap) splitList)

division = 96 :: Int

The following function is used to test whether or not every instrument in a
list is found in a UserPatchMap:

allValid :: UserPatchMap → [InstrumentName ]→ Bool
allValid upm = and ◦map (lookupB upm)
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lookupB :: UserPatchMap → InstrumentName → Bool
lookupB upm x = or (map ((== x ) ◦ fst) upm)

The strategy is to associate each channel with a separate track. Thus
we first partition the event list into separate lists for each instrument, and
signal an error if there are more than 16:

splitByInst :: Performance → [(InstrumentName ,Performance)]
splitByInst [ ] = [ ]
splitByInst pf = (i , pf1 ) : splitByInst pf2

where i = eInst (head pf )
(pf1 , pf2 ) = partition (λe → eInst e == i) pf

Note how partition is used to group into pf1 those events that use the same
instrument as the first event in the performance. The rest of the events are
collected into pf2 , which is passed recursively to splitByInst .

Details: partition takes a predicate and a list and returns a pair of
lists: those elements that satisfy the predicate, and those that do not,
respectively. partition is defined in the List Library as:

partition :: (a → Bool )→ [a ]→ ([a ], [a ])
partition p xs =

foldr select ([ ], [ ]) xs
where select x (ts, fs) | p x = (x : ts, fs)

| otherwise = (ts , x : fs)

The crux of the conversion process is in performToMEvs , which converts
a Performance into a stream of time-stamped messages, i.e. a stream of
(Tick ,Message) pairs:

type MEvent = (Ticks ,Message)

defST = 500000

performToMEvs :: UserPatchMap → (InstrumentName ,Performance)→ [MEvent ]
performToMEvs upm (inm , pf ) =

let (midiChan , progNum) = upmLookup upm inm
setupInst = (0,ProgramChange midiChan progNum)
setTempo = (0,TempoChange defST )
loop [ ] = [ ]
loop (e : es) = let (mev1 ,mev2 ) = mkMEvents midiChan e
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in mev1 : insertMEvent mev2 (loop es)
in setupInst : setTempo : loop pf

A source of incompatibilty between Haskore and Midi is that Haskore rep-
resents notes with an onset and a duration, while Midi represents them as
two separate events, a note-on event and a note-off event. Thus MkMEvents
turns a Haskore Event into two MEvents, a NoteOn and a NoteOff .

mkMEvents :: Channel → Event → (MEvent ,MEvent)
mkMEvents mChan (Event{eTime = t , ePitch = p, eDur = d , eVol = v })

= ((toDelta t ,NoteOn mChan p v ′),
(toDelta (t + d),NoteOff mChan p v ′))

where v ′ = max 0 (min 127 (fromIntegral v))

toDelta t = round (t ∗ 4.0 ∗ fromIntegral division)

The time-stamp associated with an event in Midi is called a delta-time,
and is the time at which the event should occur expressed in time-code
divisions since the beginning of the performance. Since there are 96 time-
code divisions per quarter note, there are 4 times that many in a whole note;
multiplying that by the time-stamp on one of our Events gives us the proper
delta-time.

In the code for performToMEvs , note that the location of the first event
returned from mkMEvents is obvious; it belongs just where it was created.
However, the second event must be inserted into the proper place in the rest
of the stream of events; there is no way to know of its proper position ahead
of time. The function insertMEvent is thus used to insert an MEvent into
an already time-ordered sequence of MEvents.

insertMEvent :: MEvent → [MEvent ]→ [MEvent ]
insertMEvent mev1 [ ] = [mev1 ]
insertMEvent mev1@(t1 , ) mevs@(mev2@(t2 , ) : mevs ′) =

if t1 � t2 then mev1 : mevs
else mev2 : insertMEvent mev1 mevs ′

13.3 Putting It All Together

[TODO: Move the code from haskore.lhs to this section – i.e. the PerformanceDefault
type class, the family of play functions, and so on.]



Chapter 14

Basic Input/Output

So far the only input/output (IO) that we have seen in Haskore is the use
of the play function to generate the Midi output corresponding to a Music
value. But we’ve said very little about the play function itself. What is its
type? How does it work? How does one do IO in a purely functional language
such as Haskell? Our goal in this chapter is to answer these questions. Then
in the next chapter we will describe an elegant way to do IO involving a
“graphical musical interface.”

14.1 IO in Haskell

The Haskell Report defines the result of a program to be the value of the
variable main in the module Main. On the other hand, as you know, the
GHCi implementation of Haskell allows you to type whatever expression you
wish to the command prompt, and it will evaluate it for you. In both cases,
the Haskell system “executes a program” by evaluating an expression, which
(for a well-behaved program) eventually yields a value. The system must
then display that value on your computer screen in some way that makes
sense to you. Most systems will try to display the result in the same way
that you would type it as part of a program. So an integer is printed as
an integer, a string as a string, a list as a list, and so on. We will refer to
the area of the computer screen where this result is printed as the standard
output area, which may vary from one implementation to another.

But what if a program is intended to write to a file? Or print a file on
a printer? Or, the main topic of this book, to play some music through the
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computer’s sound card? These are examples of output, and there are related
questions about input: for example, how does a program receive input from
the keyboard or mouse, or receive input from a Midi keyboard?

In general, how does Haskell’s “expression-oriented” notion of “computa-
tion by calculation” accommodate these various kinds of input and output?

The answer is fairly simple: in Haskell there is a special kind of value
called an action. When a Haskell system evaluates an expression that yields
an action, it knows not to try to display the result in the standard out-
put area, but rather to “take the appropriate action.” There are primitive
actions—such as writing a single character to a file or receiving a single
character from the keyboard—as well as compound actions—such as print-
ing an entire string to a file. Haskell expressions that evaluate to actions are
commonly called commands.

Commands are still just expressions, of course, and some commands
return a value for subsequent use by the program: keyboard input, for
instance. A command that returns a value of type T has type IO T ; if no
useful value is returned the command has type IO (). The simplest example
of a command is return x , which for a value x :: T immediately returns x
and has type IO T .

Details: The type () is called the unit type, and has exactly one value,

which is also written (). Thus return () has type IO (), and is often

called a “noop” because it is an operation that does nothing and returns

no useful result. Despite the negative connotation, it is used quite often!

Remember that all expressions in Haskell must be well-typed before a
program is run, so a Haskell implementation knows ahead of time, by looking
at the type, that it is evaluating a command, and is thus ready to “take
action.”

To make these ideas clearer, let’s consider a few examples. One useful IO
command is putStr, which prints a string argument to the standard output
area, and has type String → IO (). The () simply indicates that there is
no useful result returned from this action; its sole purpose is to print its
argument to the standard output area. So the program:

module Main where
main = putStr "Hello World\n"

is the canonical “Hello World” program that is often the first program that
people write in a new language.
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Suppose now that we want to perform two actions, such as first writing
to a file named "testFile.txt", then printing to the standard output area.
Haskell has a special keyword, do, to denote the beginning of a sequence of
commands such as this, and so we can write:

do writeFile "testFile.txt" "Hello File System"
putStr "Hello World\n"

where the file-writing function writeFile has type:

writeFile :: FilePath → String → IO ()
type FilePath = String

Details: A do expression allows us to sequence an arbitrary number of

commands, each of type IO (), using layout to distinguish them (just as

in a let or where expression). When used in this way, the result of a do
expression also has type IO ().

So far we have only used actions having type IO (); i.e. output actions.
But what about input? As above, we will consider input from both the user
and the file system.

To receive a line of input from the user (which will be typed in the
standard input area of the computer screen, usually the same as the standard
output area) we can use the function:

getLine :: IO String

Suppose, for example, that we wish to read a line of input using this function,
and then write that line (a string) to a file. To do this we write the compound
command:

do s ← getLine
writeFile "testFile.txt" s

Note the syntax for binding s to the result of executing the getLine com-
mand; since the type of getLine is IO String , the type of s is String . Its
value is then used in the next line as an argument to the writeFile command.

Similarly, we can read the entire contents of a file using the command
readFile :: FilePath → IO String . For example:

do s ← readFile "testFile.txt"
putStr s
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There are many other commands available for file, system, and user IO,
some in the Standard Prelude, and some in various libararies (such as IO ,
Directory , System, and Time). We will not discuss any of these here; rather,
in the next chapter will concentrate on Midi input as well as a collection
of graphical input widgets (such as sliders and pushbuttons) that we collec-
tively refer to as Haskore’s graphical musical interface.

Before that, however, we wish to emphasize that, despite the special do
syntax, Haskell’s IO commands are no different in status from any other
Haskell function or value. For example, it is possible to create a list of
actions, such as:

actionList = [putStr "Hello World\n",
writeFile "testFile.txt" "Hello File System",
putStr "File successfully written."]

However, a list of actions is just a list of values: they actually don’t do
anything until they are sequenced appropriately using a do expression, and
then returned as the value main of the overall program. Still, it is often
convenient to place actions into a list as above, and the Haskell Report and
Libraries have some useful functions for turning them into commands. In
particular, the function sequence in the Standard Prelude, when used with
IO, has type:

sequence :: [IO a ]→ IO ()

and can thus be applied to the actionList above to yield the single command:

main = sequence actionList

For a more interesting example of this idea, recall that Haskell’s strings are
really just lists of characters. Indeed, String is a type synonym for a list of
characters:

type String = [Char ]

Because strings are used so often, Haskell allows you to write "Hello" in-
stead of [’H’, ’e’, ’l’, ’l’, ’o’]. But keep in mind that this is just syntax—
strings really are just lists of characters, and these two ways of writing them
are identical from Haskell’s perspective.

(Earlier the type synonym FilePath was defined for String . This shows
that type synonyms can be made for other type synonyms.)

Now back to the example. From the function putChar :: Char → IO (),
which prints a single character to the standard output area, we can define
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the function putStr used earlier, which prints an entire string. To do this,
let’s first define a function that converts a list of characters (i.e. a string)
into a list of IO actions:

putCharList :: String → [IO ()]
putCharList [ ] = [ ]
putCharList (c : cs) = putChar c : putCharList cs

With this, putStr is easily defined:

putStr :: String → IO ()
putStr s = sequence (putCharList s)

Note that the expression putCharList s is a list of actions, and sequence is
used to turn them into a single (compound) command, just as we did earlier.

(putStr can also be defined directly as a recursive function, but we leave
that as an exercise.)

IO processing in Haskell is consistent with everything we have learned
about programming with expressions and reasoning through calculation, al-
though that may not be completely obvious yet. Indeed, it turns out that a
do expression is just syntax for a more primitive way of combining actions
using functions, namely a monad. be revealed in full in Chapter ??.

14.2 Reading and Writing Midi Files

[TODO: Explain Midi-file IO functions defined in Codec.Midi , as well as the
Haskore functions for writing Midi files.]



Chapter 15

Graphical Music Interface

Most music software packages have graphical user interfaces that provide
varying degrees of functionality to the user. In Haskore a basic set of widgets
is provided that are collectively referred to as the graphical music interface,
or GMI. This interface has two levels of abstraction: At the user interface
(UI) level, basic IO-like commands are provided for creating graphical slid-
ers, pushbuttons, virtual piano keyboards, and so on for input, and simple
textual displays for output (in the future, other kinds of graphic output,
including images, plots, and so on, will be provided). In addition to these
graphical widgets, the UI level also provides an interface to standard Midi
input and output devices.

The second level of abstraction of the GMI is the signal level. A signal
is a time-varying quantity that nicely captures the behavior of many UI
widgets. A special case of a signal is an event, and a special case of an event
is a Midi event, such as a Note-On or Note-Off message.

We begin our discussion with a description of signals and events.

15.1 Signals

A value of type Signal T is a time-varying value of type T . For example,
Signal Float is a time-varying floating-point number, Signal AbsPitch is a
time-varing absolute pitch, and so on. Abstractly, one can think of it as a
function:

Signal a = Time → a
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where Time is some suitable representation of time (currently Double in
Haskore). This is not how signals are actually implemented, indeed the
above is not valid Haskell syntax, but it is helpful to think of signals in this
way. For pedagogical purposes, we can write the above as a data declaration:

data Signal a = Sig (Time → a)

and then describe in more detail how signals are manipulated once we have
them.

For starters, one of the more common set of operations that we desire for
signals is arithmetic. For example, we’d like to add, subtract, and multiply
signals, as well as apply transcendental functions such as sine, cosine, and
exponentiation. Haskell’s Num class provides a delightfully convenient way
to do this:

instance Num a ⇒ Num (Signal a) where
Sig f1 + Sig f2 = Sig (λt → f1 t + f2 t)
Sig f1 ∗ Sig f2 = Sig (λt → f1 t ∗ f2 t)
...

Keep in mind that signals aren’t actually implemented in this way, but
conceptually this should give you an idea of the desired behavior. More
abstractly, the following functions can be used to “lift” static functions to
the time-varying domain of signals:

constant , lift0 :: a → Signal a
lift , lift1 , fmap :: (a → b)→ Signal a → Signal b
lift2 :: (a → b → c)→ Signal a → Signal b → Signal c
lift3 :: (a → b → c → d)→ Signal a → Signal b → Signal c → Signal d

So, for example, we could have written the above instance declaration like
this:

instance Num a ⇒ Num (Signal a) where
(+) = lift2 (+)
(∗) = lift2 (∗)
...

Haskore also defines instances of Signal for the classes Fractional and Floating .
For example:

instance Floating a ⇒ Floating (Signal a) where
pi = lift0 pi
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sin = lift sin
exp = lift exp
...

See the Haskell Report for the full list of operations in these classes.
Here are a few more functions that make creating new signals from old

easier:

zipS , join :: Signal a → Signal b → Signal (a, b)
unzipS , split :: Signal (a, b)→ (Signal a,Signal b)
fstS :: Signal (a, b)→ Signal a
sndS :: Signal (a, b)→ Singal b

We would also like to compare signals, but it is not as easy to overload
the relational operators, since they do not have a uniform type structure.
Therefore the following special operators are defined:

(> ∗), (< ∗) :: Ord a ⇒ Signal a → Signal b → Signal Bool
(&&∗), (||∗) :: Signal Bool → Signal Bool → Signal Bool

A particularly important operation on signals in certain applications is in-
tegration:

integral :: Signal Time → Signal Double → Signal Double

The first argument to integral is a signal that represents the current time.
We will say more about this in the next section.

[TODO: Put in a couple of examples here.]
[Also need to explain:]

initS , delay :: a → Signal a → Signal a

15.2 Events and Reactivity

Although signals are a nice abstraction of time-varying entities, and the
world is arguably full of such entities, there are some things that happen at
discrete points in time, like a mouse click, or a Midi keyboard press, and so
on. We call these events. To represent events, and have them coexist with
signals, recall the Maybe type defined in the Standard Prelude:

data Maybe a = Nothing | Just a
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We define an event simply as a value of type Signal (Maybe a), and in this
sense events in Haskore are really event streams, since more than one may
occur over time. We say that the value associated with an event is “attached
to” that event.

There are lots of things that we’d like to do with events. For example,
to map a function over the values attached to an event stream, we can use:

(=>>) :: Signal (Event a)→ (a → b)→ Signal (Event b)

For convenience we also define a version of (=>>) that ignores its input
value:

(− >>) :: Signal (Event a)→ b → Signal (Event b)
s1 − >> v = s =>> (λ → v)

We can merge two event streams with:

(.|.) :: Signal (Event a)→ Signal (Event a)→ Signal (Event a)

[TODO: say what happens with simultaneous events]
Another useful operation is turning a Boolean signal into an event stream,

which can be done in two different ways:

edge,when :: Signal Bool → Signal (Event ())

edge s generates an event whenever the signal s changes from False to
True—in signal processing this is called an “edge detector,” thus the name
here. when s is also an edge detector, but it generates an event whenever s
changes either from False to True or from True to False .

A timer can be created using:

timer :: Signal Time → Signal Double → Signal (Event ())

timer t i takes a time source t and a signal i that represents the timer
interval (in seconds), and generates a stream of events separated by the
timer interval. Note that the timer interval is itself a signal, so the timer
output can have varying frequency.

Perhaps the most important set of operations are the ones that introduce
reactivity : the ability to change a signal’s behavior based on an event. There
are two operations for this purpose:

switch, untilS :: Signal a → Signal (Event (Signal a))→ Signal a



CHAPTER 15. GRAPHICAL MUSIC INTERFACE 167

The signal s0 ‘untilS ‘ e initially behaves just like s0 , until the first event in
e occurs. It then behaves forever after like the behavior attached to that
event. s0 ‘switch‘ e behaves similarly, except that each subsequent event
after the first will change the behavior to the event’s new attached signal.

More stuff:

snapshot :: Signal (Event a)→ Signal b → Signal (Event (a, b))
snapshot :: Signal (Event a)→ Signal b → Signal (Event b)
step, hold :: a → Signal (Event a)→ Signal a
stepAccum, accum :: a → Signal (Event (a → a))→ Signal a

[TODO: Explain these.]

15.3 Putting it all Together

We now need to combine the signal operations with those at the UI level.
The UI types are:

data UI a -- fully abstract

instance Monad UI where ... -- UI is a monad

type IWidget a = UI (Signal a) -- input widget (signal source)
type OWidget a = Signal a → UI () -- output widget (signal sink)

At the very top level of a program there can be only one value of type UI ,
and it must be “run” by turning it into an IO value. We do this using one
of the following two functions:

runUI :: String → UI a → IO ()
runUIEx :: (Int , Int)→ String → UI a → IO ()

Both of these functions take a string argument that will be displayed in the
title bar of the graphical window that is generated. runUIEx additionally
takes the horizontal and vertical window size (in pixels) as an argument
pair.

The graphical input widgets are:

button , radio :: String → IWidget Bool -- button and radio button
slider :: RealFrac a ⇒ (a, a)→ a → IWidget a -- slider w/range
iSlider :: Integral a ⇒ (a, a)→ a → a → IWidget a -- stepped slider

An input widget that generates the current time can be created using:
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time :: IWidget Time

A simple text string can be displayed, or a title can be attached to a widget,
using, respectively:

label :: String → UI () -- text label
title :: String → UI a → UI a -- frame widget with subtitle

The only graphical output widget that takes a signal as input is currently:

display :: Show a ⇒ OWidget a

This function displays the time-varying output of any showable signal in a
display box.

The arrangement of the widgets in the graphical window can be con-
trolled by these functions (widget transformers):

topDown , bottomUp , leftRight , rightLeft :: UI a → UI a

Finally, here are the widgets for Midi input and output:

midiIn :: DeviceID → IWidget (Event MidiMessage)
midiOut :: DeviceID → OWidget (Event MidiMessage)

[TODO: explain DeviceId ]
The MidiMessage type used above is defined by:

data MidiMessage = Note{channel :: !Channel , key :: !Key ,
velocity :: !Velocity , dur :: !Time }

| Std Message

The Message data type was described in Chapter 13, and is defined in
the Codec.Midi module. The additional Note message above allows one to
specify a note with duration. Such a message is conveniently transformed
behind-the-scenes into a Note-On and Note-Off message sequence.

15.4 Examples

Here is a simple GUI that displays the sum of its two sliders (that represent
the prices of apples and bananas) in a display box:

ui1 = runUI "Shopping List"$
do a ← title "apples" $ iSlider (0, 10) 3 1

b ← title "bananas" $ iSlider (0, 10) 7 1
title "total" $ display (a + b)
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Here is an example of Midi output. A slider is used to control the rate at
which a note is played:

tick = runUI "tick" $ title "frequency" $ do
t ← time
f ← slider (1, 10) 1
let ticks = timer t (1000 / f )
midiOut 0 (ticks − >> (Note 0 55 64 0.1))



Appendix A

The PreludeList Module

The use of lists is particularly common when programming in Haskell, and
thus, not surprisingly, there are many pre-defined polymorphic functions for
lists. The list data type itself, plus some of the most useful functions on it,
are contained in the Standard Prelude’s PreludeList module, which we will
look at in detail in this chapter. There is also a Standard Library module
called List that has additional useful functions. It is a good idea to become
familiar with both modules.

Although this chapter may feel like a long list of “Haskell features,” the
functions described here capture many common patterns of list usage that
have been discovered by functional programmers over many years of tri-
als and tribulations. In many ways higher-order declarative programming
with lists takes the place of lower-level imperative control structures in more
conventional languages. By becoming familiar with these list functions you
will be able to more quickly and confidently develop your own applications
using lists. Furthermore, if all of us do this, we will have a common vocab-
ulary with which to understand each others’ programs. Finally, by reading
through the code in this module you will develop a good feel for how to
write proper function definitions in Haskell.

It is not necessary for you to understand the details of every function, but
you should try to get a sense for what is available so that you can return
later when your programming needs demand it. In the long run you are
well-advised to read the rest of the Standard Prelude as well as the various
Standard Libraries, to discover a host of other functions and data types that
you might someday find useful in your own work.
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A.1 The PreludeList Module

To get a feel for the PreludeList module, let’s first look at its module dec-
laration:

module PreludeList (
map, (++),filter , concat ,
head , last , tail , init ,null , length , (!!),
foldl , foldl1 , scanl , scanl1 , foldr , foldr1 , scanr , scanr1 ,
iterate , repeat , replicate , cycle,
take, drop, splitAt , takeWhile, dropWhile , span , break ,
lines ,words , unlines , unwords , reverse, and , or ,
any , all , elem,notElem , lookup,
sum, product ,maximum ,minimum , concatMap ,
zip, zip3 , zipWith, zipWith3 , unzip, unzip3 )

where

import qualified Char (isSpace)

infixl 9!!
infixr 5++
infix 4 ∈, /∈

We will not discuss all of the functions listed above, but will cover most of
them (and some were discussed in previous chapters).

A.2 Simple List Selector Functions

head and tail extract the first element and remaining elements, respectively,
from a list, which must be non-empty. last and init are the dual functions
that work from the end of a list, rather than from the beginning.

head :: [a ]→ a
head (x : ) = x
head [ ] = error "PreludeList.head: empty list"

last :: [a ]→ a
last [x ] = x
last ( : xs) = last xs
last [ ] = error "PreludeList.last: empty list"
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tail :: [a ]→ [a ]
tail ( : xs) = xs
tail [ ] = error "PreludeList.tail: empty list"

init :: [a ]→ [a ]
init [x ] = [ ]
init (x : xs) = x : init xs
init [ ] = error "PreludeList.init: empty list"

Although head and tail were previously discussed in Section 3.1, the defi-
nitions here include an equation describing their behaviors under erroneous
situations—such as selecting the head of an empty list—in which case the
error function is called. It is a good idea to include such an equation for
any definition in which you have not covered every possible case in pattern-
matching; i.e. if it is possible that the pattern-matching could “run off the
end” of the set of equations. The string argument that you supply to the
error function should be detailed enough that you can easily track down the
precise location of the error in your program.

Details: If such an error equation is omitted, and then during pattern-

matching all equations fail, most Haskell systems will invoke the error

function anyway, but most likely with a string that will be less informative

than one you can supply on your own.

The null function tests to see if a list is empty.

null :: [a ]→ Bool
null [ ] = True
null ( : ) = False

A.3 Index-Based Selector Functions

To select the nth element from a list, with the first element being the 0th
element, we can use the indexing function (!!):

(!!) :: [a ]→ Int → a
(x : ) !! 0 = x
( : xs) !! n | n > 0 = xs !! (n − 1)
( : ) !! = error "PreludeList.!!: negative index"
[ ] !! = error "PreludeList.!!: index too large"
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Details: Note the definition of two error conditions; be sure that you

understand under what conditions these two equations would succeed. In

particular, recall that equations are matched in top-down order: the first

to match is the one that is chosen.

take n xs returns the prefix of xs of length n, or xs itself if n > length xs .
Similarly, drop n xs returns the suffix of xs after the first n elements, or [ ]
if n > length xs. Finally, splitAt n xs is equivalent to (take n xs , drop n xs).

take :: Int → [a ]→ [a ]
take 0 = [ ]
take [ ] = [ ]
take n (x : xs) | n > 0 = x : take (n − 1) xs
take = error "PreludeList.take: negative argument"

drop :: Int → [a ]→ [a ]
drop 0 xs = xs
drop [ ] = [ ]
drop n ( : xs) | n > 0 = drop (n − 1) xs
drop = error "PreludeList.drop: negative argument"

splitAt :: Int → [a ]→ ([a ], [a ])
splitAt 0 xs = ([ ], xs)
splitAt [ ] = ([ ], [ ])
splitAt n (x : xs) | n > 0 = (x : xs ′, xs ′′)

where (xs ′, xs ′′) = splitAt (n − 1) xs
splitAt = error "PreludeList.splitAt: negative argument"

length :: [a ]→ Int
length [ ] = 0
length ( : l) = 1 + length l

For example:

take 3 [0, 1 . . 5]⇒ [0, 1, 2]
drop 3 [0, 1 . . 5]⇒ [3, 4, 5]
splitAt 3 [0, 1 . . 5]⇒ ([0, 1, 2], [3, 4, 5])

A.4 Predicate-Based Selector Functions

takeWhile p xs returns the longest (possibly empty) prefix of xs , all of whose
elements satisfy the predicate p. dropWhile p xs returns the remaining
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suffix. Finally, span p xs is equivalent to (takeWhile p xs , dropWhile p xs),
while break p uses the negation of p.

takeWhile :: (a → Bool)→ [a ]→ [a ]
takeWhile p [ ] = [ ]
takeWhile p (x : xs)

| p x = x : takeWhile p xs
| otherwise = [ ]

dropWhile :: (a → Bool )→ [a ]→ [a ]
dropWhile p [ ] = [ ]
dropWhile p xs@(x : xs ′)

| p x = dropWhile p xs ′

| otherwise = xs

span , break :: (a → Bool )→ [a ]→ ([a ], [a ])
span p [ ] = ([ ], [ ])
span p xs@(x : xs ′)

| p x = (x : xs ′, xs ′′) where (xs ′, xs ′′) = span p xs
| otherwise = (xs , [ ])

break p = span (¬ ◦ p)

filter removes all elements not satisfying a predicate:

filter :: (a → Bool )→ [a ]→ [a ]
filter p [ ] = [ ]
filter p (x : xs) | p x = x : filter p xs

| otherwise = filter p xs

A.5 Fold-like Functions

foldl1 and foldr1 are variants of foldl and foldr that have no starting value
argument, and thus must be applied to non-empty lists.

foldl :: (a → b → a)→ a → [b ]→ a
foldl f z [ ] = z
foldl f z (x : xs) = foldl f (f z x ) xs

foldl1 :: (a → a → a)→ [a ]→ a
foldl1 f (x : xs) = foldl f x xs
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foldl1 [ ] = error "PreludeList.foldl1: empty list"

foldr :: (a → b → b)→ b → [a ]→ b
foldr f z [ ] = z
foldr f z (x : xs) = f x (foldr f z xs)

foldr1 :: (a → a → a)→ [a ]→ a
foldr1 f [x ] = x
foldr1 f (x : xs) = f x (foldr1 f xs)
foldr1 [ ] = error "PreludeList.foldr1: empty list"

foldl1 and foldr1 are best used in cases where an empty list makes no sense
for the application. For example, computing the maximum or mimimum
element of a list does not make sense if the list is empty. Thus foldl1 max
is a proper function to compute the maximum element of a list.

scanl is similar to foldl , but returns a list of successive reduced values
from the left:

scanl f z [x1 , x2 , ... ] == [z , z ‘f ‘ x1 , (z ‘f ‘ x1 ) ‘f ‘ x2 , ... ]

For example:

scanl (+) 0 [1, 2, 3]⇒ [0, 1, 3, 6]

Note that last (scanl f z xs) = foldl f z xs . scanl1 is similar, but without
the starting element:

scanl1 f [x1 , x2 , ... ] == [x1 , x1 ‘f ‘ x2 , ... ]

Here are the full definitions:

scanl :: (a → b → a)→ a → [b ]→ [a ]
scanl f q xs = q : (case xs of

[ ]→ [ ]
x : xs → scanl f (f q x ) xs)

scanl1 :: (a → a → a)→ [a ]→ [a ]
scanl1 f (x : xs) = scanl f x xs
scanl1 [ ] = error "PreludeList.scanl1: empty list"

scanr :: (a → b → b)→ b → [a ]→ [b ]
scanr f q0 [ ] = [q0 ]
scanr f q0 (x : xs) = f x q : qs

where qs@(q : ) = scanr f q0 xs
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scanr1 :: (a → a → a)→ [a ]→ [a ]
scanr1 f [x ] = [x ]
scanr1 f (x : xs) = f x q : qs

where qs@(q : ) = scanr1 f xs
scanr1 [ ] = error "PreludeList.scanr1: empty list"

A.6 List Generators

There are some functions which are very useful for generating lists from
scratch in interesting ways. To start, iterate f x returns an infinite list of
repeated applications of f to x . That is:

iterate f x ⇒ [x , f x , f (f x ), ... ]

The “infinite” nature of this list may at first seem alarming, but in fact is
one of the more powerful and useful features of Haskell.

[say more]

iterate :: (a → a)→ a → [a ]
iterate f x = x : iterate f (f x )

repeat x is an infinite list, with x the value of every element. replicate n x is
a list of length n with x the value of every element. And cycle ties a finite
list into a circular one, or equivalently, the infinite repetition of the original
list.

repeat :: a → [a ]
repeat x = xs where xs = x : xs

replicate :: Int → a → [a ]
replicate n x = take n (repeat x )

cycle :: [a ]→ [a ]
cycle [ ] = error "Prelude.cycle: empty list"
cycle xs = xs ′ where xs ′ = xs ++ xs ′

A.7 String-Based Functions

Recall that strings in Haskell are just lists of characters. Manipulating
strings (i.e. text) is a very common practice, so it makes sense that Haskell
would have a few pre-defined functions to make this easier for you.
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lines breaks a string at every newline character (written as ’\n’ in
Haskell), thus yielding a list of strings, each of which contains no newline
characters. Similary, words breaks a string up into a list of words, which
were delimited by white space. Finally, unlines and unwords are the in-
verse operations: unlines joins lines with terminating newline characters,
and unwords joins words with separating spaces. (Because of the potential
presence of multiple spaces and newline characters, however, these pairs of
functions are not true inverses of each other.)

lines :: String → [String ]
lines "" = [ ]
lines s = let (l , s ′) = break (== ’\n’) s

in l : case s ′ of
[ ]→ [ ]
( : s ′′)→ lines s ′′

words :: String → [String ]
words s = case dropWhile Char .isSpace s of

""→ [ ]
s ′ → w : words s ′′

where (w , s ′′) = break Char .isSpace s ′

unlines :: [String ]→ String
unlines = concatMap (++"\n")

unwords :: [String ]→ String
unwords [ ] = ""
unwords ws = foldr1 (λw s → w ++ ’ ’ : s) ws

reverse reverses the elements in a finite list.

reverse :: [a ]− [a ]
reverse = foldl (flip (:)) [ ]

A.8 Boolean List Functions

and and or compute the logical “and” and “or,” respectively, of all of the
elements in a list of Boolean values.

and , or :: [Bool ]→ Bool
and = foldr (∧) True
or = foldr (∨) False
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Applied to a predicate and a list, any determines if any element of the list
satisfies the predicate. An analogous behavior holds for all.

any , all :: (a → Bool )→ [a ]→ Bool
any p = or ◦map p
all p = and ◦map p

A.9 List Membership Functions

elem is the list membership predicate, usually written in infix form, e.g.,
x ∈ xs (which is why it was given a fixity declaration at the beginning of
the module). notElem is the negation of this function.

elem,notElem :: (Eq a)⇒ a → [a ]→ Bool
elem x = any (== x )
notElem x = all (�= x )

It is common to store “key/value” pairs in a list, and to access the list
by finding the value associated with a given key (for this reason the list is
often called an association list). The function lookup looks up a key in an
association list, returning Nothing if it is not found, or Just y if y is the
value associated with the key.

lookup :: (Eq a)⇒ a → [(a, b)]→ Maybe b
lookup key [ ] = Nothing
lookup key ((x , y) : xys)

| key == x = Just y
| otherwise = lookup key xys

A.10 Arithmetic on Lists

sum and product compute the sum and product, respectively, of a finite list
of numbers.

sum, product :: (Num a)⇒ [a ]→ a
sum = foldl (+) 0
product = foldl (∗) 1

maximum and minimum return the maximum and minimum value, respec-
tively from a non-empty, finite list whose element type is ordered.
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maximum ,minimum :: (Ord a)⇒ [a ]→ a
maximum [ ] = error "Prelude.maximum: empty list"
maximum xs = foldl1 max xs

minimum [ ] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs

Note that even though foldl1 is used in the definition, a test is made for the
empty list to give an error message that more accurately reflects the source
of the problem.

A.11 List Combining Functions

map and (++) were defined in previous chapters, but are repeated here for
completeness:

map :: (a → b)→ [a ]→ [a ]
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

(++) :: [a ]→ [a ]→ [a ]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

concat appends together a list of lists:

concat :: [ [a ] ]→ [a ]
concat xss = foldr (++) [ ] xss

concatMap does what it says: it concatenates the result of mapping a func-
tion down a list.

concatMap :: (a → [b ])→ [a ]→ [b ]
concatMap f = concat ◦map f

zip takes two lists and returns a list of corresponding pairs. If one input list
is short, excess elements of the longer list are discarded. zip3 takes three
lists and returns a list of triples. (“Zips” for larger tuples are contained in
the List Library.)

zip :: [a ]→ [b ]→ [(a, b)]
zip = zipWith (, )
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zip3 :: [a ]→ [b ]→ [c ]→ [(a, b, c)]
zip3 = zipWith3 (, , )

Details: The functions (,) and (,,) are the pairing and tripling functions,
respectively:

(, )⇒ λx y → (x , y)
(, , )⇒ λx y z → (x , y, z )

The zipWith family generalises the zip and map families (or, in a sense,
combines them) by applying a function (given as the first argument) to each
pair (or triple, etc.) of values. For example, zipWith (+) is applied to two
lists to produce the list of corresponding sums.

zipWith :: (a → b → c)→ [a ]→ [b ]→ [c ]
zipWith z (a : as) (b : bs)

= z a b : zipWith z as bs
zipWith = [ ]

zipWith3 :: (a → b → c → d)→ [a ]→ [b ]→ [c ]→ [d ]
zipWith3 z (a : as) (b : bs) (c : cs)

= z a b c : zipWith3 z as bs cs
zipWith3 = [ ]

The following two functions perform the inverse operations of zip and zip3 ,
respectively.

unzip :: [(a, b)]→ ([a ], [b ])
unzip = foldr (λ(a, b)∼(as , bs)→ (a : as , b : bs)) ([ ], [ ])

unzip3 :: [(a, b, c)]→ ([a ], [b ], [c ])
unzip3 = foldr (λ(a, b, c)∼(as , bs , cs)→ (a : as , b : bs, c : cs))

([ ], [ ], [ ])



Appendix B

Haskell’s Standard Type
Classes

This provides a “tour” through the predefined standard type classes in
Haskell, as was done for lists in Chapter A. We have simplified these classes
somewhat by omitting some of the less interesting methods; the Haskell
Report and Standard Library Report contain more complete descriptions.

B.1 The Ordered Class

The equality class Eq was defined precisely in Chapter 11, along with a
simplified version of the class Ord. Here is its full specification of class Ord ;
note the many default methods.

class (Eq a)⇒ Ord a where
compare :: a → a → Ordering
(<), (�), (�), (>) :: a → a → Bool
max ,min :: a → a → a

compare x y
| x == y = EQ
| x � y = LT
| otherwise = GT

x � y = compare x y �= GT
x < y = compare x y == LT
x � y = compare x y �= LT

181
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x > y = compare x y == GT

max x y
| x � y = x
| otherwise = y

min x y
| x < y = x
| otherwise = y

data Ordering = LT | EQ | GT
deriving (Eq ,Ord ,Enum,Read ,Show ,Bounded)

Note that the default method for compare is defined in terms of (�), and
that the default method for (�) is defined in terms of compare . This means
that an instance of Ord should contain a method for at least one of these
for everything to be well defined. (Using compare can be more efficient for
complex types.) This is a common idea in designing a type class.

B.2 The Enumeration Class

Class Enum has a set of operations that underlie the syntactic sugar of
arithmetic sequences; for example, the arithmetic sequence [1, 3 . . ] is actu-
ally shorthand for enumFromThen 1 3. If this is true, then we should be
able to generate arithmetic sequences for any type that is an instance of
Enum. This includes not only most numeric types, but also Char , so that,
for instance, [’a’ . . ’z’] denotes the list of lower-case letters in alphabetical
order. Furthermore, a user-defined enumerated type such as Color :

data Color = Red | Orange | Yellow | Green | Blue | Indigo | Violet

can easily be given an Enum instance declaration, after which we can cal-
culate the following results:

[Red . . Violet ] =⇒ [Red ,Orange ,Yellow ,Green ,Blue, Indigo,Violet ]
[Red ,Yellow . . ] =⇒ [Red ,Yellow ,Blue,Violet ]
fromEnum Green =⇒ 3
toEnum 5 :: Color =⇒ Indigo

Indeed, the derived instance will give this result. Note that the sequences are
still arithmetic in the sense that the increment between values is constant,
even though the values are not numbers.

The complete definition of the Enum class is given below:
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class Enum a where
succ, pred :: a → a
toEnum :: Int → a
fromEnum :: a → Int
enumFrom :: a → [a ] -- [n..]
enumFromThen :: a → a → [a ] -- [n,n’..]
enumFromTo :: a → a → [a ] -- [n..m]
enumFromThenTo :: a → a → a → [a ] -- [n,n’..m]

-- Minimal complete definition: toEnum, fromEnum
succ = toEnum ◦ (+1) ◦ fromEnum
pred = toEnum ◦ (subtract 1) ◦ fromEnum
enumFrom x = map toEnum [fromEnum x . . ]
enumFromThen x y = map toEnum [fromEnum x , fromEnum y . . ]
enumFromTo x y = map toEnum [fromEnum x . . fromEnum y ]
enumFromThenTo x y z =

map toEnum [fromEnum x , fromEnum y . . fromEnum z ]

The six default methods are sufficient for most applications, so when writing
your own instance declaration it is usually sufficient to only provide methods
for the remaining two operations: toEnum and fromEnum.

In terms of arithmetic sequences, the expressions on the left below are
equivalent to those on the right:

enumFrom n [n . . ]
enumFromThen n n ′ [n,n ′ . . ]

enumFromTo n m [n . . m ]
enumFromThenTo n n ′ m [n,n ′ . . m ]

B.3 The Bounded Class

The class Bounded captures data types that are linearly bounded in some
way; i.e. they have both a minimum value and a maximum value.

class Bounded a where
minBound :: a
maxBound :: a

B.4 The Show Class

Instances of the class Show are those types that can be converted to character
strings. This is useful, for example, when writing a representation of a value
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to the standard output area or to a file. The class Read works in the other
direction: it provides operations for parsing character strings to obtain the
values that they represent. In this section we will look at the Show class; in
the next we will look at Read .

For efficiency reasons the primitive operations in these classes are some-
what esoteric, but they provide good lessons in both algorithm and software
design, so we will look at them in some detail.

First, let’s look at one of the higher-level functions that is defined in
terms of the lower-level primitives:

show :: (Show a)⇒ a → String

Naturally enough, show takes a value of any type that is a member of Show ,
and returns its representation as a string. For example, show (2 + 2) yields
the string "4", as does show (6−2) and show applied to any other expression
whose value is 4.

Furthermore, we can construct strings such as:

"The sum of " ++ show x ++ " and " ++ show y ++ " is "
++show (x + y) ++ "."

with no difficulty. In particular, because (++) is right associative, the number
of steps to construct this string is directly proportional to its total length,
and we can’t expect to do any better than that. (Since (++) needs to recon-
struct its left argument, if it were left associative the above expression would
repeatedly reconstruct the same sub-string on each application of (++). If
the total string length were n, then in the worst case the number of steps
needed to do this would be proportional to n2, instead of proportional to n
in the case where (++) is right associative.)

Unfortunately, this strategy breaks down when construction of the list
is nested. A particularly nasty version of this problem arises for tree-shaped
data structures. Consider a function showTree that converts a value of type
Tree into a string, as in:

showTree (Branch (Branch (Leaf 2) (Leaf 3)) (Leaf 4))
=⇒ "< <2|3>|4>"

We can define this behavior straightforwardly as follows:

showTree :: (Show a)⇒ Tree a → String
showTree (Leaf x )

= show x
showTree (Branch l r)

= "<"++ showTree l ++ "|"++ showTree r ++ ">"



APPENDIX B. HASKELL’S STANDARD TYPE CLASSES 185

Each of the recursive calls to showTree introduces more applications of (++),
but since they are nested, a large amount of list reconstruction takes place
(similar to the problem that would arise if (++) were left associative). If the
tree being converted has size n, then in the worst case the number of steps
needed to perform this conversion is proportional to n2. This is no good!

To restore linear complexity, suppose we had a function shows:

shows :: (Show a)⇒ a → String → String

which takes a showable value and a string and returns that string with the
value’s representation concatenated at the front. For example, we would
expect shows (2 + 2) "hello" to return the string "4hello". The string
argument should be thought of as an “accumulator” for the final result.

Using shows we can define a more efficient version of showTree which,
like shows , has a string accumulator argument. Let’s call this function
showsTree :

showsTree :: (Show a)⇒ Tree a → String → String
showsTree (Leaf x ) s

= shows x s
showsTree (Branch l r) s

= "<" ++ showsTree l ("|" ++ showsTree r (">" ++ s))

This function requires a number of steps directly proportional to the size of
the tree, thus solving our efficiency problem. To see why this is so, note that
the accumulator argument s is never reconstructed. It is simply passed as an
argument in one recursive call to shows or showsTree , and is incrementally
extended to its left using (++).

showTree can now be re-defined in terms of showsTree using an empty
accumulator:

showTree t = showsTree t ""

Exercise B.1 Prove that this version of showTree is equivalent to the old.

Although this solves our efficiency problem, the presentation of this func-
tion (and others like it) can be improved somewhat. First, let’s create a type
synonym (part of the Standard Prelude):

type ShowS = String → String

Second, we can avoid carrying accumulators around, and also avoid
amassing parentheses at the right end of long sequences of concatenations,
by using functional composition:
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showsTree :: (Show a)⇒ Tree a → ShowS
showsTree (Leaf x )

= shows x
showsTree (Branch l r)

= ("<"++) ◦ showsTree l ◦ ("|"++) ◦ showsTree r ◦ (">"++)

Details: This can be simplified slightly more by noting that ("c"++) is

equivalent to (’c’:) for any character c.

Something more important than just tidying up the code has come about
by this transformation: We have raised the presentation from an object level
(in this case, strings) to a function level. You can read the type signature
of showsTree as saying that showsTree maps a tree into a showing function.
Functions like ("<"++) and ("a string"++) are primitive showing functions,
and we build up more complex ones by function composition.

The actual Show class in Haskell has two additional levels of complexity
(and functionality): (1) the ability to specify the precedence of a string
being generated, which is important when show ing a data type that has
infix constructors, since it determines when parentheses are needed, and (2)
a function for show ing a list of values of the type under consideration, since
lists have special syntax in Haskell and are so commonly used that they
deserve special treatment. The full definition of the Show class is given by:

class Show a where
showsPrec :: Int → a → ShowS
showList :: [a ]→ ShowS

showList [ ]
= showString "[]"

showList (x : xs)
= showChar ’[’ ◦ shows x ◦ showl xs

where showl [ ] = showChar ’]’
showl (x : xs) = showString ", " ◦ shows x ◦ showl xs

Note the default method for showList , and its “function level” style of defi-
nition.

In addition to this class declaration the Standard Prelude defines the
following functions, which return us to where we started our journey in this
section:

shows :: (Show a)⇒ a → ShowS
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shows = showsPrec 0

show :: (Show a)⇒ a → String
show x = shows x ""

Some details about showsPrec can be found in the Haskell Report, but if
you are not displaying constructors in infix notation, the precedence can be
ignored. Furthermore, the default method for showList is perfectly good for
most uses of lists that you will encounter. Thus, for example, we can finish
our Tree example by declaring it to be an instance of the class Show very
simply as:

instance (Show a)⇒ Show (Tree a) where
showsPrec n = showsTree

B.5 The Read Class

Now that we can convert trees into strings, let’s turn to the inverse problem:
converting strings into trees. The basic idea is to define a parser for a type a,
which at first glance seems as if it should be a function of type String → a.
This simple approach has two problems, however: (1) it’s possible that the
string is ambiguous, leading to more than one way to interpret it as a value
of type a, and (2) it’s possible that only a prefix of the string will parse
correctly. Thus we choose instead to return a list of (a,String) pairs as the
result of a parse. If all goes well we will always get a singleton list such
as [(v , "")] as the result of a parse, but we cannot count on it (in fact,
when recursively parsing sub-strings, we will expect a singleton list with a
non-empty trailing string).

The Standard Prelude provides a type synonym for parsers of the kind
just described:

type ReadS a = String → [(a,String)]

and also defines a function reads that by analogy is similar to shows :

reads :: (Read a)⇒ ReadS a

We will return later to the precise definition of this function, but for now
let’s use it to define a parser for the Tree data type, whose string represen-
tation is as described in the previous section. List comprehensions give us
a convenient idiom for constructing such parsers:1

1An even more elegant approach to parsing uses monads and parser combinators. These
are part of a standard parsing library distributed with most Haskell systems.



APPENDIX B. HASKELL’S STANDARD TYPE CLASSES 188

readsTree :: (Read a)⇒ ReadS (Tree a)
readsTree (’<’ : s) = [(Branch l r , u) | (l , ’|’ : t)← readsTree s,

(r , ’>’ : u)← readsTree t ]
readsTree s = [(Leaf x , t) | (x , t)← reads s ]

Let’s take a moment to examine this function definition in detail. There
are two main cases to consider: If the string has the form ’<’ : s we should
have the representation of a branch, in which case parsing s as a tree should
yield a left branch l followed by a string of the form ’|’ : t ; parsing t as a
tree should then yield the right branch r followed by a string of the form
’>’ : u. The resulting tree Branch l r is then returned, along with the
trailing string u. Note the expressive power we get from the combination of
pattern matching and list comprehension.

If the initial string is not of the form ’<’ : s, then we must have a leaf,
in which case the string is parsed using the generic reads function, and the
result is directly returned.

If we accept on faith for the moment that there is a Read instance for
Int that behaves as one would expect, e.g.:

(reads "5 golden rings") :: [(Int ,String)]
=⇒ [(5, " golden rings")]

then you should be able to verify the following calculations:

readsTree "< <1|2>|3>"
=⇒

There are a couple of shortcomings, however, in our definition of readsTree .
One is that the parser is quite rigid in that it allows no “white space” (such
as extra spaces, tabs, or line feeds) before or between the elements of the
tree representation. The other is that the way we parse our punctuation
symbols (’<’, ’|’, and ’>’) is quite different from the way we parse leaf
values and sub-trees. This lack of uniformity makes the function definition
harder to read.

We can address both of these problems by using a lexical analyzer, which
parses a string into primitive “lexemes” defined by some rules about the
string construction. The Standard Prelude defines a lexical analyzer:

lex :: ReadS String

whose lexical rules are those of the Haskell language, which can be found in
the Haskell Report. For our purposes, an informal explanation is sufficient:
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lex normally returns a singleton list containing a pair of strings: the
first string is the first lexeme in the input string, and the second string is
the remainder of the input. White space – including Haskell comments – is
completely ignored. If the input string is empty or contains only white-space
and comments, lex returns [("", "")]; if the input is not empty in this sense,
but also does not begin with a valid lexeme after any leading white-space,
lex returns [ ].

Using this lexical analyzer, our tree parser can be rewritten as:

readsTree :: (Read a)⇒ ReadS (Tree a)
readsTree s = [(Branch l r , x ) | ("<", t)← lex s,

(l , u)← readsTree t ,
("|", v)← lex u,
(r ,w)← readsTree v ,
(">", x )← lex w ]

++
[(Leaf x , t) | (x , t)← reads s ]

This definition solves both problems mentioned earlier: white-space is suit-
ably ignored, and parsing of sub-strings has a more uniform structure.

To tie all of this together, let’s first look at the definition of the class
Read in the Standard Prelude:

class Read a where
readsPrec :: Int → ReadS a
readList :: ReadS [a ]

readList = readParen False (λr → [pr | ("[", s)← lex r ,
pr ← readl s ])

where readl s = [([ ], t) | ("]", t)← lex s ]++
[(x : xs, u) | (x , t)← reads s,

(xs , u)← readl ′ t ]
readl ′ s = [([ ], t) | ("]", t)← lex s ]++

[(x : xs , v) | (",", t)← lex s,
(x , u)← reads t ,
(xs , v)← readl ′ u ]

readParen :: Bool → ReadS a → ReadS a
readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r
mandatory r = [(x , u) | ("(", s)← lex r ,
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(x , t)← optional s,
(")", u)← lex t ]

The default method for readList is rather tedious, but otherwise straight-
forward.

reads can now be defined, along with an even higher-level function, read :

reads :: (Read a)⇒ ReadS a
reads = readsPrec 0

read :: (Read a)⇒ String → a
read s = case [x | (x , t)← reads s, ("", "")← lex t ] of

[x ]→ x
[ ]→ error "PreludeText.read: no parse"
→ error "PreludeText.read: ambiguous parse"

The definition of reads (like shows) should not be surprising. The definition
of read assumes that exactly one parse is expected, and thus causes a run-
time error if there is no unique parse or if the input contains anything more
than a representation of exactly one value of type a (and possibly comments
and white-space).

You can test that the Read and Show instances for a particular type are
working correctly by applying (read ◦ show ) to a value in that type, which
in most situations should be the identity function.

B.6 The Index Class

The Standard Prelude defines a type class of array indices:

class (Ord a)⇒ Ix a where
range :: (a, a)→ [a ]
index :: (a, a)→ a → Int
inRange :: (a, a)→ a → Bool

Arrays are defined elsewhere, but the index class is useful for other things
besides arrays, so I will describe it here.

Instance declarations are provided for Int , Integer , Char , Bool , and
tuples of Ix types; in addition, instances may be automatically derived for
enumerated and tuple types. You should think of the primitive types as
vector indices, and tuple types as indices of multidimensional rectangular
arrays. Note that the first argument of each of the operations of class Ix is
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a pair of indices; these are typically the bounds (first and last indices) of an
array. For example, the bounds of a 10-element, zero-origin vector with Int
indices would be (0, 9), while a 100 by 100 1-origin matrix might have the
bounds ((1, 1), (100, 100)). (In many other languages, such bounds would
be written in a form like 1 : 100, 1 : 100, but the present form fits the type
system better, since each bound is of the same type as a general index.)

The range operation takes a bounds pair and produces the list of indices
lying between those bounds, in index order. For example,

range (0, 4) =⇒ [0, 1, 2, 3, 4]
range ((0, 0), (1, 2)) =⇒ [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

The inRange predicate determines whether an index lies between a given
pair of bounds. (For a tuple type, this test is performed componentwise,
and then combined with (∧).) Finally, the index operation determines the
(zero-based) position of an index within a bounded range; for example:

index (1, 9) 2 =⇒ 1
index ((0, 0), (1, 2)) (1, 1) =⇒ 4

B.7 The Numeric Classes

The Num class and the numeric class hierarchy were briefly described in
Section 11.4. Figure B.1 gives the full class declarations.
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class (Eq a,Show a)⇒ Num a where
(+), (−), (∗) :: a → a → a
negate :: a → a
abs , signum :: a → a
fromInteger :: Integer → a

class (Num a,Ord a)⇒ Real a where
toRational :: a → Rational

class (Real a,Enum a)⇒ Integral a where
quot , rem , div ,mod :: a → a → a
quotRem , divMod :: a → a → (a, a)
toInteger :: a → Integer

class (Num a)⇒ Fractional a where
(/) :: a → a → a
recip :: a → a
fromRational :: Rational → a

class (Fractional a)⇒ Floating a where
pi :: a
exp, log , sqrt :: a → a
(∗∗), logBase :: a → a → a
sin, cos , tan :: a → a
asin , acos , atan :: a → a
sinh , cosh, tanh :: a → a
asinh, acosh , atanh :: a → a

class (Real a,Fractional a)⇒ RealFrac a where
properFraction :: (Integral b)⇒ a → (b, a)
truncate , round :: (Integral b)⇒ a → b
ceiling ,floor :: (Integral b)⇒ a → b

class (RealFrac a,Floating a)⇒ RealFloat a where
floatRadix :: a → Integer
floatDigits :: a → Int
floatRange :: a → (Int , Int)
decodeFloat :: a → (Integer , Int)
encodeFloat :: Integer → Int → a
exponent :: a → Int
significand :: a → a
scaleFloat :: Int → a → a
isNaN , isInfinite, isDenormalized , isNegativeZero, isIEEE

::a → Bool

Figure B.1: Standard Numeric Classes



Appendix C

Built-in Types Are Not
Special

Throughout this text we have introduced many “built-in” types such as lists,
tuples, integers, and characters. We have also shown how new user-defined
types can be defined. Aside from special syntax, you might be wondering if
the built-in types are in any way more special than the user-defined ones.
The answer is no. The special syntax is for convenience and for consistency
with historical convention, but has no semantic consequence.

We can emphasize this point by considering what the type declarations
would look like for these built-in types if in fact we were allowed to use
the special syntax in defining them. For example, the Char type might be
written as:

data Char = ’a’ | ’b’ | ’c’ | ... -- This is not valid
| ’A’ | ’B’ | ’C’ | ... -- Haskell code!
| ’1’ | ’2’ | ’3’ | ...

These constructor names are not syntactically valid; to fix them we would
have to write something like:

data Char = Ca | Cb | Cc | ...
| CA | CB | CC | ...
| C1 | C2 | C3 | ...

Even though these constructors are actually more concise, they are quite
unconventional for representing characters, and thus the special syntax is
used instead.
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In any case, writing “pseudo-Haskell” code in this way helps us to see
through the special syntax. We see now that Char is just a data type
consisting of a large number of nullary (meaning they take no arguments)
constructors. Thinking of Char in this way makes it clear why, for example,
we can pattern-match against characters; i.e., we would expect to be able
to do so for any of a data type’s constructors.

Similarly, using pseudo-Haskell, we could define Int and Integer by:

-- more pseudo-code:
data Int = (−2ˆ29) | ... | −1 | 0 | 1 | ... | (2ˆ29 − 1)
data Integer = ...− 2 | −1 | 0 | 1 | 2...

(Recall that −229 to 229−1 is the minimum range for the Int data type.)
Int is clearly a much larger enumeration than Char , but it’s still finite!
In contrast, the pseudo-code for Integer (the type of arbitrary precision
integers) is intended to convey an infinite enumeration (and in that sense
only, the Integer data type is somewhat special).

Haskell has a data type called unit which has exactly one value: ().
The name of this data type is also written (). This is trivially expressed in
Haskell pseudo-code:

data () = () -- more pseudo-code

Tuples are also easy to define playing this game:

data (a, b) = (a, b) -- more pseudo-code
data (a, b, c) = (a, b, c)
data (a, b, c, d) = (a, b, c, d)

and so on. Each declaration above defines a tuple type of a particular
length, with parentheses playing a role in both the expression syntax (as
data constructor) and type-expression syntax (as type constructor). By
“and so on” we mean that there are an infinite number of such declarations,
reflecting the fact that tuples of all finite lengths are allowed in Haskell.

The list data type is also easily handled in pseudo-Haskell, and more
interestingly, it is recursive:

data [a ] = [ ] | a : [a ] -- more pseudo-code
infixr 5:

We can now see clearly what we described about lists earlier: [ ] is the empty
list, and (:) is the infix list constructor; thus [1, 2, 3] must be equivalent to
the list 1 : 2 : 3 : [ ]. (Note that (:) is right associative.) The type of [ ] is [a ],
and the type of (:) is a → [a ]→ [a ].
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Details: The way (:) is defined here is actually legal syntax—infix con-

structors are permitted in data declarations, and are distinguished from

infix operators (for pattern-matching purposes) by the fact that they must

begin with a colon (a property trivially satisfied by “:”).

At this point the reader should note carefully the differences between
tuples and lists, which the above definitions make abundantly clear. In
particular, note the recursive nature of the list type whose elements are
homogeneous and of arbitrary length, and the non-recursive nature of a
(particular) tuple type whose elements are heterogeneous and of fixed length.
The typing rules for tuples and lists should now also be clear:

For (e1 , e2 , ..., en), n � 2, if Ti is the type of ei , then the type of the
tuple is (T1 ,T2 , ...,Tn).

For [e1 , e2 , ..., en ],n � 0, each ei must have the same type T , and the
type of the list is [T ].



Appendix D

Pattern-Matching Details

In this chapter we will look at Haskell’s pattern-matching process in greater
detail.

Haskell defines a fixed set of patterns for use in case expressions and
function definitions. Pattern matching is permitted using the constructors
of any type, whether user-defined or pre-defined in Haskell. This includes
tuples, strings, numbers, characters, etc. For example, here’s a contrived
function that matches against a tuple of “constants:”

contrived :: ([a ],Char , (Int ,Float ),String ,Bool )→ Bool
contrived ([ ], ’b’, (1, 2.0), "hi",True) = False

This example also demonstrates that nesting of patterns is permitted (to
arbitrary depth).

Technically speaking, formal parameters to functions are also patterns—
it’s just that they never fail to match a value. As a “side effect” of a
successful match, the formal parameter is bound to the value it is being
matched against. For this reason patterns in any one equation are not
allowed to have more than one occurrence of the same formal parameter.

A pattern that may fail to match is said to be refutable; for example, the
empty list [ ] is refutable. Patterns such as formal parameters that never fail
to match are said to be irrefutable. There are three other kinds of irrefutable
patterns, which are summarized below.

As-Patterns Sometimes it is convenient to name a pattern for use on the
right-hand side of an equation. For example, a function that duplicates the
first element in a list might be written as:

f (x : xs) = x : x : xs
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Note that x : xs appears both as a pattern on the left-hand side, and as an
expression on the right-hand side. To improve readability, we might prefer
to write x :xs just once, which we can achieve using an as-pattern as follows:1

f s@(x : xs) = x : s

Technically speaking, as-patterns always result in a successful match, al-
though the sub-pattern (in this case x : xs) could, of course, fail.

Wildcards Another common situation is matching against a value we
really care nothing about. For example, the functions head and tail can be
written as:

head (x : ) = x
tail ( : xs) = xs

in which we have “advertised” the fact that we don’t care what a certain
part of the input is. Each wildcard will independently match anything, but
in contrast to a formal parameter, each will bind nothing; for this reason
more than one are allowed in an equation.

Lazy Patterns There is one other kind of pattern allowed in Haskell.
It is called a lazy pattern, and has the form ∼pat . Lazy patterns are ir-
refutable: matching a value v against ∼pat always succeeds, regardless of
pat . Operationally speaking, if an identifier in pat is later “used” on the
right-hand-side, it will be bound to that portion of the value that would
result if v were to successfully match pat , and ⊥ otherwise.

Lazy patterns are useful in contexts where infinite data structures are
being defined recursively. For example, infinite lists are an excellent vehicle
for writing simulation programs, and in this context the infinite lists are
often called streams.

Pattern-Matching Semantics

So far we have discussed how individual patterns are matched, how some are
refutable, some are irrefutable, etc. But what drives the overall process? In
what order are the matches attempted? What if none succeed? This section
addresses these questions.

1Another advantage to doing this is that a naive implementation might otherwise com-
pletely reconstruct x : xs rather than re-use the value being matched against.
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Pattern matching can either fail, succeed or diverge. A successful match
binds the formal parameters in the pattern. Divergence occurs when a value
needed by the pattern diverges (i.e. is non-terminating) or results in an error
(⊥). The matching process itself occurs “top-down, left-to-right.” Failure of
a pattern anywhere in one equation results in failure of the whole equation,
and the next equation is then tried. If all equations fail, the value of the
function application is ⊥, and results in a run-time error.

For example, if bot is a divergent or erroneous computation, and if [1, 2]
is matched against [0, bot ], then 1 fails to match 0, so the result is a failed
match. But if [1, 2] is matched against [bot , 0], then matching 1 against bot
causes divergence (i.e. ⊥).

The only other twist to this set of rules is that top-level patterns may
also have a boolean guard, as in this definition of a function that forms an
abstract version of a number’s sign:

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = −1

Note here that a sequence of guards is given for a single pattern; as with
patterns, these guards are evaluated top-down, and the first that evaluates
to True results in a successful match.

An Example The pattern-matching rules can have subtle effects on the
meaning of functions. For example, consider this definition of take:

take 0 = [ ]
take [ ] = [ ]
take n (x : xs) = x : take (n − 1) xs

and this slightly different version (the first 2 equations have been reversed):

take1 [ ] = [ ]
take1 0 = [ ]
take1 n (x : xs) = x : take1 (n − 1) xs

Now note the following:

take 0 bot =⇒ [ ]
take1 0 bot =⇒ ⊥
take bot [ ] =⇒ ⊥
take1 bot [ ] =⇒ [ ]
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We see that take is “more defined” with respect to its second argument,
whereas take1 is more defined with respect to its first. It is difficult to
say in this case which definition is better. Just remember that in certain
applications, it may make a difference. (The Standard Prelude includes a
definition corresponding to take.)

Case Expressions

Pattern matching provides a way to “dispatch control” based on structural
properties of a value. However, in many circumstances we don’t wish to
define a function every time we need to do this. Haskell’s case expression
provides a way to solve this problem. Indeed, the meaning of pattern match-
ing in function definitions is specified in the Haskell Report in terms of case
expressions, which are considered more primitive. In particular, a function
definition of the form:

f p11...p1k = e1

...
f pn1...pnk = en

where each pij is a pattern, is semantically equivalent to:

f x1 x2 ... xk = case (x1 , ..., xk ) of (p11, ..., p1k)→ e1

...
(pn1, ..., pnk)→ en

where the xi are new identifiers. For example, the definition of take given
earlier is equivalent to:

take m ys = case (m, ys) of
(0, )→ [ ]
( , [ ])→ [ ]
(n, x : xs)→ x : take (n − 1) xs

For type correctness, the types of the right-hand sides of a case expression
or set of equations comprising a function definition must all be the same;
more precisely, they must all share a common principal type.

The pattern-matching rules for case expressions are the same as we have
given for function definitions.
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