
Athos: Efficient Authentication of

Outsourced File Systems�

Michael T. Goodrich1, Charalampos Papamanthou2, Roberto Tamassia2,
and Nikos Triandopoulos3

1 Dept. of Computer Science, U. California, Irvine, USA
goodrich@ics.uci.edu

2 Dept. of Computer Science, Brown University, USA
{cpap,rt}@cs.brown.edu

3 Dept. of Computer Science, University of Aarhus, Denmark
nikos@daimi.au.dk

Abstract. We study the problem of authenticated storage, where we
wish to construct protocols that allow to outsource any complex file sys-
tem to an untrusted server and yet ensure the file-system’s integrity. We
introduce Athos, a new, platform-independent and user-transparent ar-
chitecture for authenticated outsourced storage. Using light-weight cryp-
tographic primitives and efficient data-structuring techniques, we design
authentication schemes that allow a client to efficiently verify that the file
system is fully consistent with the exact history of updates and queries
requested by the client. In Athos, file-system operations are verified in
time that is logarithmic in the size of the file system using optimal storage
complexity—constant storage overhead at the client and asymptotically
no extra overhead at the server. We provide a prototype implementation
of Athos validating its performance and its authentication capabilities.

1 Introduction

Current trends in the design of data-storage systems are towards decentralized
and networked architectures where data resides “in the cloud”, outside any ad-
ministrative control, and is being manipulated in storage units of minimal trust
assumptions (e.g., NAS or SAN, storage providers, Internet-based computing).
Operating on remotely managed data inherently entails security risks: when the
storage provider is not trusted by the data source, verifying the integrity of the
stored data and the correctness of the computations performed on this data
is necessary to ensure the trustworthiness of the storage system; and verifying
complex operations over general file systems efficiently is rather challenging.
� Research supported in part by the U.S. National Science Foundation under grants

IIS–0713403, IIS-0713046, CNS-0312760 and OCI–0724806, the I3P Institute under
a U.S. DHS award, the Center for Algorithmic Game Theory at the University of
Aarhus under an award from the Carlsberg Foundation, the Center for Geometric
Computing and the Kanellakis Fellowship at Brown University, and IAM Technology,
Inc. The views in this paper do not necessarily reflect the views of the sponsors.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 80–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Athos: Efficient Authentication of Outsourced File Systems 81

In this paper, we study the problem of authenticating the integrity and oper-
ational correctness of a file system that is outsourced by a client to an untrusted
server. We assume that the remote server’s host machine and its storage units
can behave maliciously. We wish to design authentication protocols that allow
the client to efficiently verify the integrity of a dynamically evolving file system,
namely to verify that its status is consistent with the exact history of file-system
operations requested by the client, and to correctly detect any malicious data-
update or data-retrieval patterns produced by the server. To conform to the
outsourced data model, we require that the authentication protocols incur con-
stant storage overhead at the client and asymptotically no extra storage costs at
the server—otherwise, the client has no reason to outsource its data, at the first
place—and also that verification is achieved efficiently, in time that is sublinear
or logarithmic in the file system’s size—or else, the client could trivially down-
load the entire signed (and timestamped) file-system data on every operation.

Goals and Assumptions. Using cryptographic hashing is the state-of-the-art
solution for verifying the integrity of simple put-get operations over a collection
of files in the outsourced data model: the client locally keeps the hash of each file
against which file retrievals or updates can be verified in constant time. The use
of Merkle’s tree [18] can reduce the client’s space from linear to constant: the
client only stores the root hash and both file retrievals and file updates (e.g., using
existing techniques [3, 28]), can be verified in logarithmic time. Unfortunately,
applying this approach in our setting provides only a partial solution: file-system
integrity requires not only data integrity at the file or data-block level, but also
integrity of the directory hierarchy of the file system. Indeed, all file-system
operations are defined with respect to the directory path, and in many cases, the
integrity of a file depends not only on its content, but also on its location in the
file system. For example, the context of an .htaccess file depends on its location—
its contents identify access policies, but its location is critical to identify the
directories it protects. Our goal, therefore, is primarily to efficiently verify the
directory hierarchy of the file system, and through this, any file-system or meta-
data operation that depends on this hierarchy. Of course, applying hashing over
the directory tree (e.g., as in [7]), possibly augmented by the (balanced) hash
trees that correspond to large files lying in the directory tree, can provide a
space-optimal solution. However, this approach incurs linear verification and
update costs, for the directory tree is unlikely to be balanced! Our goal is to
design dynamic authentication schemes that overcome this problem.

Another solution is to have the client authenticate each file-system update it
makes in the outsourced file system (e.g., using a signature or HMAC based on
a private key), which has some major drawbacks, however. First, it allows for
replay attacks, since determining the freshness of signed statements is difficult
with such a scheme. Second, this solution requires the client to sign every possible
path in the directory hierarchy in order to be able to authenticate locations. This
can be especially inefficient, for example when the client performs a directory
operation that moves a large directory to a new location. Another possibility
is to assume that the outsourced file system is partially trustworthy (e.g., [21])

82 M.T. Goodrich et al.

or a part of its architecture uses some tamper-resistant trusted hardware (e.g.,
using trusted computing platforms [27]). This assumption postulates that the
networked file system is itself at least partially trusted, which is not that much
different than simply trusting the hosting server in the first place. As we show
in this paper, such trust is not necessary for the sake of efficiency or reliability.

In this work, we consider the outsourced data authentication problem in the
single-client setting. However, in a multi-client setting, the problem of outsourced
data authentication has drastically different characteristics. If communication
between the clients is not allowed, a malicious server can easily perform an at-
tack against data consistency: the server can effectively hide the most recent
update on the data from a client requesting to read the data, by unrolling its
state to the state the server had just before that update took place. Undetected
without communication, this attack can be used to “fork” the view that this
client has about the outsourced data, harming the consistency of the system.
In this scenario, the best one can hope for is fork-consistency [16], effectively
disallowing anything more than the forking attack, and various schemes securely
achieve this property (e.g., [16, 20, 15, 4]). However, in the single-client set-
ting the forking attack can be detected and prevented (e.g., by the hash-based
solution), therefore, the fork-consistency property is no longer relevant in this
setting. Although less general, the single-client model has its own merits. First,
it naturally captures the security problems for a wide application area, where
a single user outsources a personal file system to a storage provider. Second, in
certain applications the multi-user setting is easily reduced to the single-client
setting; for instance, in a networked file system, the client can simply abstract
the OS kernel or a designated filer machine through which all file-system oper-
ation requests coming from many users are serialized to the untrusted remote
storage devices. Third, in applications that can tolerate reasonable delays in
the response time, and under reasonable assumptions about the availability of
a constant-size shared trusted storage, the multi-client setting is also reduced
to the single-client setting, achieving a stronger property than fork-consistency:
conceptually the shared memory replaces the communication between parties.

Related Work. Previous work makes use of cryptographic hashing or signa-
tures for primarily protecting the integrity of individual files or the corresponding
data blocks that reside at storage units. Most of the systems (e.g., [5, 2, 9, 19])
provide file integrity using authentication information at the client that is pro-
portional to the size n of the file system (i.e., the number of files or correspond-
ing data blocks). More efficient constructions involve the use of Merkle trees [18]
over the data blocks of individual files (e.g., [6, 24, 14, 21, 15]) or over the
blocks or files of the entire file system (e.g., [8, 31]). Beyond hashing and sign-
ing, other space-efficient techniques have been proposed for file integrity, such as
an entropy-based integrity method for encrypted (only) files [22] and a scheme
based on the Galois counter mode [17], where however updates take linear time.
Some constructions do authenticate the directory hierarchy or related meta-data
of the file system, but, by hashing over the directory tree or signing each individ-
ual object, they result in linear update costs (e.g., [13, 7, 10]), or only support

Athos: Efficient Authentication of Outsourced File Systems 83

verification of a limited set of operations (e.g., [15, 7, 10, 14]). Other schemes, ad-
ditionally assume the existence of a trusted component at the untrusted server
(e.g., [21, 25, 30], or some external trusted party (e.g., [31]) to authenticate
file operations. Finally, SUNDR [15] and [16, 20, 4] use hashing and signatures
to provide file-system integrity and fork-consistency in the multi-client setting;
solving a harder problem, these schemes have increased performance costs.

Our Contributions. We present the design and a prototype implementation of
an authentication architecture, which we call Athos (AuTHenticated Outsourced
Storage), that supports an authenticated outsourced file system in the client-
server model. We construct protocols for authenticating a rich set of file-system
operations that are requested by the client and performed by the untrusted
server. Our protocols support verification of the file system’s full functionality
by efficiently providing not only integrity of the stored data, but also integrity of
the file-system directory structure. Security in our model corresponds to the nat-
ural notion of consistency in the single-client setting: at all times, the interaction
with the server over any series of file-system operations should give the client the
same view as the one obtained by a trusted server (as if the file system was never
outsourced), and any deviation should be immediately detected. To achieve this,
the client maintains only a hash digest of the file system, against which the valid-
ity of each operation performed by the server can be verified, using small proofs.
These proofs are generated by an authentication service module that uses an
authentication data structure stored in the server’s untrusted memory, and runs
in parallel with the file-system management module, and they consist of partial
file system meta-data and hashes stored in the authentication data structure.
This data structure defines the file-system digest, in a hash-tree fashion.

To achieve our efficiency goals, we use ideas from the domain of data authenti-
cation, employing efficient data structuring techniques for representing an entire
file system. The challenge is to efficiently authenticate the directory hierarchy,
which is typically highly unbalanced. We contribute two concrete authentication
structures: Our first construction is based on a novel mapping of the directory
hierarchy to a set of relations, and the authentication of put-get operations on
this set using a skip list as the underlying authentication data structure. This
approach achieves simplicity and low-cost authentication, and also leverages all
the benefits of the widely researched authenticated dictionaries (e.g., [11]). Our
second construction is of more theoretical interest, providing an optimal authen-
tication scheme based on dynamic trees, a classical data structuring technique
for operating on unbalanced trees in a balanced way. Overall, Athos achieves
optimal storage usage (constant for the client and linear for the server) and
efficient integrity verification (logarithmic or sublinear depending on the opera-
tion) and achieves generality by being agnostic of the specific implementation of
the networked file system and by being platform-independent. Finally, a proto-
type implementation of Athos and an experimental evaluation of its verification
capabilities for real-life file systems confirm our theoretical analysis.

Section 2 overviews our authentication model and Section 3 describes our au-
thentication schemes. Section 4 presents the experimental evaluation of Athos

84 M.T. Goodrich et al.

and discusses related issues. Section 5 presents our concluding remarks. Details
on our construction that is based on dynamic trees and our experimental eval-
uation can be found in the Appendix. This extended abstract omits complete
proofs and other details that will appear in the full version of the paper.

2 Model and Definitions

We study storage authentication in the following model (see also Figure 1). A
client C owns and (incrementally) outsources a file system FS to an untrusted
server S. In additional to the file system, S hosts and controls an authentication
service module A that stores authentication information about FS. The file
system is generated and queried through a series of update and query operations
issued by the client C. At any time, C keeps some state information s that
encodes information about the current state of FS. If P is the set of operations
supported over the file system, then the communication protocol is as follows:

1. Client C keeps state information s and issues a query or update operation
o ∈ P to the server S.

2. Server S runs a certification algorithm, which performs operation o and
accordingly answers the query or updates FS to a new version FS′, and,
by using A, also generates a verification or respectively consistency proof π
which is returned to C, along with the result ρ of the operation; ρ is the
corresponding answer if o is a query operation or else the empty string ⊥.
We write π ← certify(o, FS, FS′, ρ).

3. Client C runs a verification algorithm, which takes as input the current state
s, the operation o along with its result ρ, and the corresponding (consistency
or verification) proof π and either accepts or rejects the input. If the input is
accepted the state s is appropriately updated to state s′, where s′ = s if o is a
query operation or else s′ �= s. We write {(yes, s′), (no,⊥)} ← verify(s, ρ, π).

We call the pair of algorithms (certify, verify) an authenticated storage scheme.1

The security property we wish such a scheme to satisfy expresses the intuitive
requirement that the verification performed at C must be a reliable test for
checking the file system’s integrity. Let operate(·, ·) be the algorithm that, given
the current file system FS and an operation o ∈ P , performs o and updates FS
to FS′. We write (FS′, ρ)← operate(o, FS) (ρ = ⊥ for updates and FS′ = FS
for queries). We say that state s is consistent with FSτ for a series τ of operations
on FS, if s and FSτ have been computed by running algorithms operate, certify
and verify sequentially for all operations in series τ starting from FS.

Definition 1 (Security of authenticated storage schemes.). We say that
an authenticated storage scheme (certify, verify) (with security parameter κ) is
secure, if for any series of operations τ and a state s that is consistent with file
system FSτ for τ on an initially empty file system, the following conditions hold:

1 Both algorithms take as input also a public key that is known by both C and S .

Athos: Efficient Authentication of Outsourced File Systems 85

answer verification

Client C
authentication

data structure

for FS

file system FSServer S auth. service A
operation o

o

π
ρ

answer ρ + proof π

FS digest s

answer certification

Fig. 1. The authenticated data storage model. Keeping only constant-size state s,
client C remotely manages a file system FS that resides at untrusted server S . Every
query or update operation o requested by C on FS is certified by S , using an authen-
tication service module A (that stores authentication information related to FS) to
produce a verification or consistency proof π; this proof is used by C, along with the
result ρ of the operation, to verify that the request was handled consistently, and finally
update s.

Correctness. For any o ∈ P, when (FS′
τ , ρ) ← operate(o, FSτ), it holds that

(yes, s′) ← verify(s, ρ, certify(o, FSτ , FS′
τ , ρ)). I.e., for any correctly per-

formed operation, certify generates a proof that is always accepted by verify,
which also computes a new, consistent with the new file system FS′

τ , state s′.
Consistency. For any series τ of operations and new operation o, such that

state s is consistent with file system FSτ for τ on an initially empty file
system and (FS′

τ , ρ) ← operate(o, FSτ), then for any polynomial-time ad-
versary, controlling S and having oracle-access to algorithm verify, that on
input the file system FSτ , series τ and operation o, produces proof π′ and
result ρ′, whenever (yes, s′)← verify(s, ρ′, π′), then the probability that either
ρ′ �= ρ or s′ is not consistent with FS′

τ for operation o on FSτ is negligible
(in the security parameter κ). I.e., assuming a polynomially bounded adver-
sary that observes polynomially many protocol invocations and then produces
a pair of proof π′ and result ρ′, if ρ′ and π′ for the new operation o are ac-
cepted by verify, then for all but negligible probability the operation has been
performed correctly and the new state is consistent with the new file system.

Starting from an initially empty set and using a secure authenticated storage
scheme and the appropriate series of updates, client C is able to “export” any
file system to server S, such that C has a consistent state with the current file
system. Therefore, the file system is consistent with the history of updates and
all future operations will be verified. With respect to efficiency, we say that an
authenticated storage scheme is time-efficient if the verification time at C is sub-
linear in the file-system size, and space-optimal if C stores state of constant size.
We next exhibit time-efficient, space-optimal and secure authenticated storage
schemes for a rich set of operations on an outsourced file system.

3 Efficient Authenticated Storage

To give some intuition of our general approach, let us consider the special case
where we want to implement an authenticated map in the client-server outsourced

86 M.T. Goodrich et al.

storage model; actually, this authentication functionality on the map data struc-
ture will also be our core authentication tool for verifying file system operations.
Each entry of the map is a tuple (k, v), where v is a value corresponding to a key
k (v can be a collection of objects). The entries of the map are sorted according
to their keys (using some comparator). The authenticated map data structure
resides at the server. Using a hashing scheme for skip lists, i.e., a hierarchical
way to produce a hash digest by recursively applying a cryptographic hash func-
tion h over some data (see, e.g., [11]), we can define a digest of the authenticated
map, computed according to the skip-list tree structure (Figure 2(a)).

v5

+∞−∞

−∞

−∞

−∞ +∞
d1 d2 x v2 y

v3

v1

y′′

y′

v4

5

5

12 13

13

13 14

14 15

15

v7

v6

v2

5

−∞

−∞

−∞

v7

v6

v5

f(d1) f(d2)

v4

f(r2)

f(r1)

v3

13

13 15

v1

Fig. 2. (a) The skip list hashing scheme for verifying operations on a map data struc-
ture and insertion of key 14. (b) The consistency proof P returned by S , containing all
the hashing and structural information needed to verify the consistency of P subject
to the current digest and to locally perform the update.

Let d0 be the initial digest stored at the client C which is consistent with the
current state of the skip list. Suppose now that C wants to insert a new key x.
The server S returns to C a consistency proof that consists of the search path
P in the unsuccessful search for x before the update (Figure 2(b)). Path P is
related with the key insertion, satisfying the following properties, which in turn
imply the security of the scheme. First, P contains the two keys, say succ(x)
and pred(x), that are the successor and predecessor of x in the ordering of the
keys, and also contains all the necessary hashing information (hash values) that
allows C to recompute the current digest d0 starting from succ(x) and pred(x)
and hashing according to the hashing scheme that is used. Due to the collision-
resistance property of the hash function, C can check if the received path is the
correct one, and if P is verified, C verifies that key x is not in the directory. Also,
C knows the position at which this file should be added. Second, P contains all
the necessary structural information that allows C to locally perform the update
in the hashing scheme that corresponds after the file insertion, by placing x
between succ(x) and pred(x) and computing the new hash values for only those
nodes of the skip list that need a new hash. Knowing the new hash values, C can
compute the new digest d′0, which is consistent with the update. Thus, the key
insertion (performed by S) can be verified in two steps: first, path P is verified
and then it is used to locally perform the update and compute the new digest.
Using results on authenticated skip lists (e.g., [23, 11]) we have the following:

Lemma 1. There exists an authenticated storage scheme for operations on n
key-value pairs in a map that is based on an authenticated skip list, with the

Athos: Efficient Authentication of Outsourced File Systems 87

following expected complexity bounds: (i) The expected update (insertion and
removal), query and verification time is O(log n) w.h.p.; (ii) The expected size
of the consistency and verification proof (communication cost) is O(log n) w.h.p.

Here, update time is the time required by S to do the actual update, query time is
the time S needs to compute the (consistency or verification) proof, verification
time is the time that C needs in order to process the proof and validate or
reject the query or the update. Note that for set-membership queries and updates
(through which we are going to implement all file system operations) the size
of a proof is always asymptotically equal to the verification time; therefore, the
verification time bounds will indirectly imply the size of the proof.

We next use the authenticated-map functionality to verify more complex oper-
ations on general file systems. Let T be the tree that corresponds to the hierarchy
induced by the structure of the directories and files of a file system, where the
left-right ordering of sibling nodes coincides with the chronological order of the
node creations. The idea is to carefully map T ’s structural information to a set
of special entries and store this set in an authenticated map, in a way that allows
to authenticate the integrity of the entire file system. Node v in T (a directory
or file) defines an authenticated-map entry that stores, under key key(v) that is
the corresponding i-node in the file-system, the following fields:

– name: the actual name of the node of the file system;
– file: a hash (e.g., SHA-1) of the file represented by v (null for a directory);
– key(parent): the key of the entry corresponding to the parent node of v;
– key(sibling): the key of the entry corresponding to the successor sibling of v

in T (null if v is the last created node of the children list);
– key(backsibling): the key of the entry corresponding to the predecessor sibling

of v in T (null if v is the first created node of the children list);
– key(child): the key of the entry corresponding to the first created child of v.

We next map each file-system query or update to a small set of (regular) query
or update operations in the authenticated map, effectively reducing file-system
operations to set-membership operations. We have the following:

Theorem 1. Assuming the existence of collision-resistant hash functions, there
exists a secure and space-optimal authenticated storage scheme that is imple-
mented with skip lists, achieving the following performance, where n is the size
of the file-system tree T , Tv is the subtree rooted on node v, �v is the number of
children of node v and Π = π1π2 . . . πk is a path in T : (1) The authentication
of any path Π takes t(Π) = O (k log n) query and verification time; (2) Query
operations cd(Π), read(Π) and update operations, write(Π), rm(Π), mkdir(Π),
touch(Π) take t(Π) query, verification and update, query, verification time re-
spectively; (3) Query operation ls(Π) takes t(Π) + O(�πk

log n) query and verifi-
cation time; (4) Update operation rmdir(Π) takes t(Π) + O (|Tπk

| log n) update,
query and verification time; (5) Update operation mv(Π, Π ′) takes t(Π) + t(Π ′)
update, query and verification time.

We now discuss another possible method of representing the file system using a
skip list. Instead of setting the i-node number as node’s v key, we can set as key(v)

88 M.T. Goodrich et al.

Table 1. Efficiency comparison of our authenticated storage schemes w.r.t. the query,
update and verification times, using skip lists (local and global approaches) and dy-
namic trees. Here, n is the size of the file system, Π = π1π2 . . . πk is the directory
argument, � is the size of the children list and T is the subtree rooted on πk.

operation skip list (local) skip list (global) dynamic tree

cd(Π), touch(Π), read(Π)
write(Π), rm(Π), mkdir(Π)

O(k log n) O(log n + k) O(log n + k)

ls(Π) O((k + �) log n) O(�(log n + k)) O(k + � + log n)
rmdir(Π) O((k + |T |) log n) O(|T | log n + k) O(k + log n)
mv(Π,Π ′) O((k + k′) log n) O(|T | log n + k + k′) O(k + k′ + log n)

the name of the path from the file-system root to node v (e.g., the key for file
pub.txt lying in path /users/user/ is now the string “/users/user/pub.txt”). Thus,
in the previous representation we stored “local” information, whereas now we
rather store “global” information. This solution yields better complexity bounds
for the path authentication (which is now t(Π) = O(log n + |Π |)). However, up-
date operation mv(Π, Π ′) takes O (t(Π) + t(Π ′) + |T | logn) update, query, and
verification time, where T is the subtree rooted at π|Π|. This representation is
suitable for cases where the majority of the operations are file system naviga-
tions and move operations are less frequent. Finally, by using authenticated path
operations [12] implemented with dynamic trees [26], we get the following:

Theorem 2. Assuming the existence of collision-resistant hash functions, there
exists a secure, time-efficient and space-optimal authenticated storage scheme
that is implemented with dynamic trees, achieving the following performance,
where n is the size of the file system tree and �v is the number of children of
v: (1) The authentication of any path Π takes t(Π) = O(k + log n) query and
verification time; (2) Query operations cd(Π), read(Π) and update operations
write(Π), rm(Π), mkdir(Π), touch(Π) take t(Π) query, verification and update,
query, verification time respectively; (3) Query operation ls(Π) takes t(Π) +
O(�πk

+ log n) query and verification time; (4) Update operation rmdir(Π) takes
t(Π) update, query and verification time; (5) Update operation mv(Π, Π ′) takes
t(Π) + t(Π ′) + O(log n) update, query and verification time.

A more detailed description of this scheme appears in the Appendix. Table 1
presents a comparison between the efficiency levels achieved by our schemes.
Security. Our authenticated storage schemes are based on the following general
approach. Given a secure hashing scheme H for a specific query type Q, that is, a
directed acyclic graph that defines how a hash digest is computed from a data set
and a corresponding authentication structure,2 we augment H to a new hashing
scheme H′ that additionally encodes (in its produced digest) the entire struc-
tural and balancing information that is defined in the underlying authentication

2 Against this (authentic) digest answers to queries in Q can be efficiently verified;
this is the general verification technique used by authenticated data structures.

Athos: Efficient Authentication of Outsourced File Systems 89

structure. In particular, if the hash value hv of node v in the data structure is
computed as hv = h(hu1 , . . . , huk

) in H, we define hv = h(hu1 , . . . , huk
, h(bv, sv))

in H′, where bv, sv describe the balancing and respectively structural informa-
tion about node v. In our constructions, we make use of the hashing schemes
corresponding to the skip list and the dynamic-tree data structure for efficiently
verifying set-membership [11] and respectively path property [12] queries.

Given the augmented hashing trees, security is proved as follows. Starting
from the state corresponding to the empty file system, we inductively show
that after any update on the file system the client C updates its state s con-
sistently for the new update on the currently existing file system FS. For both
data structures used in our schemes, the consistency proof by the definition of
the corresponding augmented hashing scheme H′ contains all the balancing and
structural information that completely characterizes the changes in FS due to
the update. Assuming that the state is consistent, the consistency proof coming
from an honest server S will be verified, thus also the balancing and structural
information related to the update. Thus, C is able to locally perform the cor-
rect update as if C had direct access to the entire file system FS, thus is able
to correctly and consistently update his state s to s′, which is simply the new
digest according to H′. Given this invariant, any query is securely verified since
the underlying hashing scheme is secure: assuming that finding hash collisions is
computationally hard, any malicious behavior by S will be rejected by the verifi-
cation algorithm, since any undetected inconsistency corresponds to a collision.

4 Analysis, Experiments and Discussion

We have developed a prototype implementation of Athos using skip lists. Our
implementation uses a flat representation of the file system tree since this rep-
resentation outperforms dynamic trees when the depth of the tree is less than
200 [29], which typically occurs in file systems. We have implemented the au-
thentication service (both the server and the client) in Java. The experiments
were conducted on a 64-bit, 2.8GHz Intel based, dual-core, dual processor ma-
chine with 2GB main memory and 2MB cache, running Debian Linux 3.1 with
Linux kernel 2.6.15 and using the Sun Java JDK 1.5. The time consumed by the
garbage collector is excluded from the presented times. We have implemented
authenticated versions of all the major commands of a file system (all the com-
mands described in Theorem 1) and the basic functionality of a skip list. We
executed the experiments on a remote file system (that lies however in close
proximity to the terminal machine), the tree of which consists of roughly 77,779
nodes, of which 61,241 are files and the rest are directories. The average size of
the files is 1.22 MB. The total size of the file system is 6.92 GB. However, the
distribution of the files is not uniform (certain subtrees are very “heavy“).

In Figures 3(a)/3(b) we plot the time taken to write/read our test file system
as a function of the size of the portion of the file system processed. Note that
our authentication service does not add much overhead to the non-authenticated
write/read. Also note that the overhead of the authentication service is more

90 M.T. Goodrich et al.

0 1 2 3 4 5 6 7
10

100

1,000

10,000

file system size (GB)

tim
e

(s
ec

on
ds

)

create operation

authenticated
non−authenticated

(a) Writing the file system

0 1 2 3 4 5 6 7
1

100

1,000

10,000

file system size (GB)

tim
e

(s
ec

on
ds

)

read operation

authenticated
non−authenticated

(b) Reading the file system

Fig. 3. Times to write and to read our test file system, using standard and authen-
ticated operations. The cumulative time elapsed is plotted as a function of the size of
the portion of file system processed. Each point corresponds to a new batch of 1,000
files processed. Since files have different sizes, the points on the plot are not uniformly
spaced in the horizontal direction.

noticeable in the read experiment, with an average overhead per node (directory
or file) of 17.61 ms. This is due to the fact that, when we read a file x, that
lies in a path Π , we have to authenticate both the contents of the file and the
existence of the path (by Theorem 1, this task takes O(|Π | log n) time). Also,
for a directory d, we have to issue |children(d)| queries to the skip list in order to
authenticate completeness. Due to space limitations, more experimental results
can be found in the Appendix.

Discussion. Our protocols are designed in the client-server model. However,
certain applications that require file-system integrity may involve a large num-
ber of users, and therefore, to achieve full consistency user interaction is neces-
sary,3 which results in impractical protocols (since, without other assumptions,
n users need to exchange Ω(n) messages after any update). Unless one resorts
to fork-consistency [16, 4], some communication assumptions must be made. For
instance, when different users access a remote file system through the same net-
work infrastructure, our protocols are applicable if we assume a single designated
trusted client that serializes all users’ operations and verifies them locally.4

An additional issue is related to failure recovery and persistent in a real-life
usage of our authentication protocols. In the case of an unsuccessful verification

3 To see why, assume any secure protocol for verifying the integrity of outsourced
storage, and consider an update on the data performed and verified by user A.
Consider the next operation on the data issued by user B. Without interaction,
even if users locally keep unbounded state, replay attacks are impossible to defeat,
since a malicious server can ignore A’s updates on the data without being noticed
by B.

4 That is, Athos’ verification client can serve as an add-on module of the hosting
operating-system kernel that runs in parallel with the system’s filer.

Athos: Efficient Authentication of Outsourced File Systems 91

of a file system operation, Athos can provide to the higher (or hosting) appli-
cation complete information about the problematic operation and the current
state of the file system in terms of its integrity. In particular, Athos function-
ality can characterize the exact location in the file system where integrity was
not verified and thus pinpoint which file or directory was maliciously (or acci-
dentally) modified by the untrusted server or by the remote storage devices. By
keeping appropriate additional information, the higher application is thus able
to infer useful information for failure recovery and a complete view of the prob-
lem. For instance, one can find which concrete user and with which concrete
operation most recently, correctly accessed the (currently problematic) file or
directory. Additionally, by using our skip list based authentication approach in
combination with existing techniques [1] for authenticating membership queries
in the past (i.e., queries that span through previous states of a data set), Athos
can offer persistent authentication capabilities, where file-system operations or
queries about past views of the file system can be issued and authenticated. In
this way, we can support secure audit of the entire outsourced file system.

Finally, Athos can also support authentication of files at the block level. To
do that, we introduce one more level of authentication using a skip list on
top of a file. The digest of this skip list is now what is stored in the original
skip list. The client can update individual blocks of the file and also query for
certain blocks of the file. The length of the proof depends on the granularity
we use to partition the file into blocks. Obviously there is a trade-off between
the size of the verification proof and the data someone needs to download for
authentication.

5 Conclusions

In this paper we present efficient protocols for verifying the integrity of a file
system that is outsourced to an untrusted storage facility. We use cryptographic
hashing and efficient data structures to produce and incrementally update, af-
ter file system operations, a short and secure digest of the entire file system.
This digest is used by a client to efficiently verify that the file system is fully
consistent with the history of query and update operations requested by the
client to the host server. Our protocols authenticate both the contents of the
files and the directory hierarchy of the file system, thus verifying a rich set of file
system operations. The authentication of operations uses a short verification or
consistency proof that is computed by the server and involves communication
and computation overheads that are sublinear in file system size. This makes
our authentication schemes applicable in settings where low-computing power
and/or low-storage devices need to access a remote file system in a secure way.
We authenticate common and important file system operations such as cd, ls in
logarithmic time and, through a prototype implementation, we experimentally
confirm the efficiency and practicality of our authentication methods.

92 M.T. Goodrich et al.

References

[1] Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dic-
tionaries and their applications. In: Proc. Information Security Conference, pp.
379–393 (2001)

[2] Blaze, M.: A cryptographic file system for Unix. In: Proc. Conference on Computer
and Communications Security, pp. 9–16 (1993)

[3] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: Proc. Foundations of Comp. Science, pp. 90–99 (1991)

[4] Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted
shared memory. In: Proc. Principles of Distr. Computing, pp. 129–138 (2007)

[5] Cattaneo, G., Catuogno, L., Sorbo, A.D., Persiano, P.: The design and imple-
mentation of a transparent cryptographic file system for Unix. In: Proc. USENIX
Annual Technical Conference, pp. 199–212 (2001)

[6] Fu, K.: Group sharing and random access in cryptographic storage file systems.
Master’s thesis, Massachusetts Institute of Technology (May 1999)

[7] Fu, K., Kaashoek, M.F., Mazières, D.: Fast and secure distributed read-only file
system. ACM Trans. Comput. Syst. 20(1), 1–24 (2002)

[8] Fujita, T., Ogawara, M.: Arbre: A file system for untrusted remote block-level
storage. IPSJ Digital Courier 1, 381–393 (2005)

[9] Gobioff, H., Nagle, D., Gibson, G.A.: Integrity and performance in network at-
tached storage. In: Proc. International Symposium on High Performance Com-
puting, pp. 244–256 (1999)

[10] Goh, E.-J., Shacham, H., Modadugu, N., Boneh, D.: SiRiUS: Securing Remote
Untrusted Storage. In: Proc. Network and Distr. Sys. Security, pp. 131–145 (2003)

[11] Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: Proc. DARPA Information
Survivability Conference and Exposition, pp. 68–82 (2001)

[12] Goodrich, M.T., Tamassia, R., Triandopoulos, N., Cohen, R.: Authenticated
data structures for graph and geometric searching. In: Proc. RSA Conference—
Cryptographers’ Track, pp. 295–313 (2003)

[13] Jammalamadaka, R.C., Gamboni, R., Mehrotra, S., Seamons, K.E., Venkatasub-
ramanian, N.: gVault: A gmail based cryptographic network file system. In: Proc.
Conf. on Data and Applications Security, pp. 161–176 (2007)

[14] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable
secure file sharing on untrusted storage. In: Proc. USENIX Conference on File
and Storage Technologies, pp. 29–42 (2003)

[15] Li, J., Krohn, M.N., Mazières, D., Shasha, D.: Secure untrusted data repository
(SUNDR. In: Proc. Operating Systems Design and Impl., pp. 121–136 (2004)

[16] Mazières, D., Shasha, D.: Building secure file systems out of byantine storage. In:
Proc. Principles of Distributed Computing, pp. 108–117 (2002)

[17] McGrew, D.: Efficient authentication of large, dynamic data sets using ga-
lois/counter mode. In: Proc. Security in Storage Workshop, pp. 89–94 (2005)

[18] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

[19] Miller, E.L., Long, D.D.E., Freeman, W.E., Reed, B.: Strong security for network-
attached storage. In: Proc. File and Storage Tech., pp. 1–13 (2002)

[20] Oprea, A., Reiter, M.K.: On consistency of encrypted files. In: Dolev, S. (ed.)
Proc. International Symposium on Distributed Computing, pp. 254–268 (2006)

Athos: Efficient Authentication of Outsourced File Systems 93

[21] Oprea, A., Reiter, M.K.: Integrity checking in cryprographic file systems with
constant trusted storage. In: Proc. USENIX Security, pp. 183–198 (2007)

[22] Oprea, A., Reiter, M.K., Yang, K.: Space-efficient block storage integrity. In: Proc.
Network and Distributed System Security Symposium, pp. 17–28 (2005)

[23] Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-
party authenticated data structures. In: Proc. Information and Communications
Security, pp. 1–15 (2007)

[24] Pletka, R., Cachin, C.: Cryptographic security for a high-performance distributed
file system. In: Proc. Mass Storage Systems Tech., pp. 227–232 (2007)

[25] Sarmenta, L.F.G., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
monotonic counters and count-limited objects using a TPM without a trusted OS.
In: Proc. Workshop on Scalable Trusted Computing, pp. 27–41 (2006)

[26] Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–381 (1983)

[27] Smith, S.W.: Trusted Computing Platforms: Design and Applications. Springer,
Heidelberg (2005)

[28] Tamassia, R., Triandopoulos, N.: Efficient content authentication in P2P net-
works. In: Proc. Applied Cryptography and Network Security, pp. 354–372 (2007)

[29] Tarjan, R., Werneck, R.: Dynamic trees in practice. In: Proc. Workshop on Ex-
perimental Algorithms, pp. 80–93 (2007)

[30] van Dijk, M., Rhodes, J., Sarmenta, L.F.G., Devadas, S.: Offline untrusted storage
with immediate detection of forking and replay attacks. In: Proc. Workshop on
Scalable Trusted Computing, pp. 41–48 (2007)

[31] Yumerefendi, A.Y., Chase, J.S.: Strong accountability for network storage. In:
Proc. Conference on File and Storage Tech., pp. 77–92 (2007)

Appendix

Dynamic Trees Implementation. Let T be the tree that represents our file
system. The leaves of T are either files or empty directories. We transform T
to a new data structure which is essentially a tree T of paths (Figure 4(b)).
Our data structure is based on dynamic trees [26]. On the tree T , we make use
of the hashing scheme for authentication of path properties in trees from [12].
This hashing scheme is defined over trees of the form of our final tree T and
allows authentication of path properties that satisfy the concatenation criterion:
Let p = p′‖p′′ be a path in T that is the concatenation of paths p′ and p′′. A

1

2 3 12 16

4

6

7

15

1413

5

11

10

9

(a) (b)

8

1 3 4 6

2 12 16

1514 16

13

122

5 11

5 1011 9

7 8

7 8

Fig. 4. (a) File system tree. (b) The tree of paths T .

94 M.T. Goodrich et al.

path property P satisfies the concatenation criterion if P(p) = F(P(p′),P(p′′)),
where F is a function that can be computed in O(1) time; e.g., a path property
that satisfies this property is the length of the path, where F is “addition”.

We extend this hashing scheme to authenticate path properties not only for
paths in the original tree T but also for dashed paths in the intermediate tree
T (i.e., properties of paths related to siblings). This extension is performed
by including in the hashing scheme information associated with the files and
subdirectories of any directory. Also, we include in the dashed path d(v) related
to v, the node in T (file or subdirectory) that corresponds to the solid child of
v in T (so that no file is missed). Finally, we augment the hashing scheme to
include structural and balancing information related to T : now the hash value
of any node in T includes its sibling rank and weight.

We now relate operations of the file system with certain path properties in T or
dashed-path properties. In order to do this, we define the appropriate path prop-
erties of interest: every node v of the tree is related with a constant-size set of node
attributes {N1(v), . . . , Nk(v)}. These for example can be the weight of v or other
variables that we want to relate with this node. We call the set of these node at-
tributes the node property N (v) of this node. For the case of the file system, we
define the node property N (v) of a node v to contain two attributes: S(v) and
C(v). S(v) is the name of the file or directory and C(v) is the hash of the certain
file or directory. If node v represents a directory, we define C(v) = {Ø}, other-
wise C(v) is a hash of the corresponding to v file. Similarly, every path p is related
with a set of path attributes {P1(p), . . . , Pk(p)}. These can be the length of a path
or other variables that we want to relate with this path. We call the set of these
path attributes the path property P(p) of this path. The path attributes can be
defined as a function of the corresponding node attributes. In our case, we de-
fine the first path attribute S(p) of a path p = u1, . . . , u� as S(p) =

⊗�
i=1 S(ui).

This is actually the name of the path (⊗ denotes “string concatenation”). The sec-
ond path attribute is similarly defined to be the content of the path C(p). Hence,
C(p) =

⊕�
i=1 C(ui), where ⊕ is simply the union operator. Note that the con-

tent of a path that consists only of directories is empty. Also the path property
P(p) = (S(p), C(p)) for any path p = p′|p′′ of the file system satisfies the concate-
nation criterion since S(p) = S(p′)⊗ S(p′′) and C(p) = C(p′)⊕C(p′′). Hence, in
the file system context, we can authenticate the major file system operations (see
Theorem 2), by reducing them to an appropriately path property query, where we
also use complexity analysis in [12]. We finally note that the consistency proof used
by the client to do the updates has logarithmic size: since all the update operations
described above take logarithmic time, they cannot visit more than O(log n+ |Π |)
nodes of the tree. Hence, the server can send structural and hashing information
of size O(log n + |Π |) that allows the client to update the digest.

Additional Experimental Results. In Figure 5, we further analyze the
time to read and write the test file system with authentication by account-
ing separately for the time taken to perform hashing (these experiments are a
more fine-grained analysis of the experiments we presented before). We can see
that for both the read and write experiments, the hashing time dominates the

Athos: Efficient Authentication of Outsourced File Systems 95

0 1 2 3 4 5 6 7
1

10

100

1,000

10,000
authenticated create operation

tim
e
 (

se
co

n
d
s)

file system size (GB)

total time
hashing time
(total time) − (hashing time)

(a) Authenticated create operation

0 1 2 3 4 5 6 7
1

10

100

1,000

10,000

file system size (GB)

tim
e

(s
ec

on
ds

)

authenticated read operation

total time
hashing time
(total time) − (hashing time)

(b) Authenticated read operation

Fig. 5. Cumulative times for separate parts of the authenticated operations cre-
ate/read. The most expensive part of either an authenticated create or an authen-
ticated read is the hashing time, as indicated in the above figures. The remaining time
is the time needed to send over data to the skip list.

computation. When writing the file system, we need to hash each file and then
store the hash in the skip list, whereas to read the file system, we need to hash
what we are reading in order to compare it with the authenticated hash that is
returned by the skip list and was stored there during creation. We also note that
the interaction with the authentication service ((total time)− (hashing time)) in-
creases when our program parses a “light” region of the file system (e.g., the
region around 2GB in Figure 5(b)). This is due to the fact that more files are
being processed in less amount of time (the “light” region does not contain large
files) and therefore the communication with the authenticated skip list increases.
Finally, we observe that on average, hashing accounts for 73% of the write time
and for 53% of the read time. This overhead is necessary in any authentication
method based on cryptographic hashing.

0 20,000 40,000 60,000 80,000

10

100

number of files

tim
e

(m
s)

authenticated read operation (100KB)

total time
hashing time
(total time) − (hashing time)

(a) Authenticated read (100KB file)

0 20,000 40,000 60,000 80,000

10

100

number of files

tim
e

(m
s)

authenticated read operation (10MB)

total time
hashing time
(total time) − (hashing time)

(b) Authenticated read (10MB file)

Fig. 6. Average time of an authenticated read operation. Every point is the average
time (over 100 executions) for reading a file of certain size in a file system of varying
size. The larger the file, the smaller is the difference (total time) − (hashing time).

96 M.T. Goodrich et al.

In Figures 6(a) and 6(b), we plot the average time for reading a file with
authentication, as a function of the number of nodes in the file system. Each
point p(x) is the average of 100 authenticated reads on a file system that contains
x files. Note that these plots are not cumulative. For a 100KB file, the hashing
time is about half the total time, whereas for a 10MB file, the hashing time is
almost equal to the total time.

	Athos: Efficient Authentication of Outsourced File Systems
	Introduction
	Model and Definitions
	Efficient Authenticated Storage
	Analysis, Experiments and Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

