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ABSTRACT

Outsourced storage has become more and more practical in
recent years. Users can now store large amounts of data in
multiple servers at a relatively low price. An important is-
sue for outsourced storage systems is to design an efficient
scheme to assure users that their data stored at remote
servers has not been tampered with. This paper presents
a general method and a practical prototype application for
verifying the integrity of files in an untrusted network stor-
age service. The verification process is managed by an ap-
plication running in a trusted environment (typically on the
client) that stores just one cryptographic hash value of con-
stant size, corresponding to the “digest” of an authenticated
data structure. The proposed integrity verification service
can work with any storage service since it is transparent to
the storage technology used. Experimental results show that
our integrity verification method is efficient and practical for
network storage systems.

Categories and Subject Descriptors
E.2 [Data Storage Representations|: Data

General Terms

Algorithms, Experimentation, Security, Verification

1. INTRODUCTION

Integrity checking of data and data structures has grown
in importance recently due to the expansion of online ser-
vices, which have become reliable and scalable, and often
have a pay-per-use cost model with affordable rates. Corpo-
rations and consumers increasingly trust their data to out-
sourced resources and want to be assured that no one al-
ters or deletes it. Commercial network storage applications
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are rapidly growing, with services that range from general
file storage to web operating systems. Outsourced storage
systems sometimes also offer services to assure confidential-
ity (through encryption) and integrity of data transmission
(typically through checksum hashes). However, they do not
provide a solution to the storage integrity problem. Thus,
the client would have to develop its own authentication so-
lution, such as a cache of the hashes of the data items, in
order to verify that data returned by the storage server has
not been tampered with. In the remainder of this paper,
we use the term “authentication” to refer to the verification
of the authenticity, or integrity, of data, as opposed to user
identity authentication, which is a separate security issue.

It is sometimes assumed that symmetric encryption may
be a solution for multiple security problems, but in fact, in-
tegrity checking and encryption are orthogonal services (see,
e.g., [17]). For example, if we only encrypt files, an attacker
can remove some files without our knowledge since decryp-
tion will still work perfectly on the remaining files. Only an
integrity checking service can detect such an attack.

To deal with these problems, we propose a simple archi-
tecture that consists of three main parties:

e The storage server stores some outsourced data. The
storage server is untrusted and can be any storage ser-
vice available online.

e The authentication server stores and processes authen-
tication information of the outsourced data. The au-
thentication server is also untrusted and can be an
outsourced computational resource.

e The client queries and updates both the storage server
and the authentication server and verifies the results
returned by them. We assume that no one can interfere
with the state, computation and storage at the client.
Of course, it is possible in the real world for a client to
be compromised, but we are only interested in protect-
ing the client against errors and malicious behavior by
the storage server and authentication server.

In this paper, we propose an efficient and secure technique
that allows the client to verify the integrity and complete-
ness of network storage without having to trust the network
storage system.

1.1 Previous and Related Work

There has been a considerable amount of work done on
untrusted outsourced storage. Yumerefendi and Chase [30]
propose a solution for authenticated network storage, using



a Merkle tree [19] as the underlying data structure. PKI is
used, however, and the basis (a trusted hash value associated
with an authenticated data structure — see Section 2.2) is
outsourced to an external medium, raising communication
and security issues. Oprea and Reiter [23] present a solution
for authenticated storage of files that takes advantage of the
entropy of individual blocks. The client keeps hash values
only for high-entropy blocks that pass a randomness test.
A solution for authenticating an outsourced file system (hi-
erarchically organized) is presented by Jammalamadaka et
al. [11]. However their processing of updates is computation-
ally expensive. Fu et al. [6] describe and implement a method
for efficiently and securely accessing a read-only file system
that has been distributed to many providers. The Athos ar-
chitecture, developed by Goodrich et al. [9], is a solution
for efficiently authenticating operations on an outsourced
file system that is related to our approach. Our system and
Athos both leverage algorithms described by Papamanthou
and Tamassia [24] for querying and updating two-party au-
thenticated data structures.

Untrusted storage where one digital signature for each
object is kept is presented by Goh et al. [7]. The SUNDR
system, introduced by Maziéres et al. [15], protects data in-
tegrity in a fully distributed setting by digitally signing every
operation and maintaining hash trees. The system requires
off-line user collaboration for protection against replay at-
tacks. Goodrich et al. [8] explore data integrity for multi-
authored dictionaries, where clients can efficiently validate
a sequence of updates. A method for the authentication of
outsourced databases using a signature scheme appears in
papers by Mykletun et al. [21] and Narasimha and Tsudik
[22]. In this approach, the client’s computation is computa-
tionally expensive. Also, the client has to engage in a multi-
round protocol in order to perform an update. A number
of works focus on proving retrievability of outsourced data.
Schwarz and Miller [26] propose a scheme that makes use of
algebraic signatures to verify that data in a distributed sys-
tem, safeguarded using erasure coding, is stored correctly.
Shacham and Waters [27] give provably secure schemes for
verifying retrievability that use homomorphic authenticators
based on signatures. The model of provable data possession
(PDP) is proposed by Ateniese et al. [3]. The authors specifi-
cally target systems storing very large amounts of data. The
client keeps a constant-size digest of the data and the server
can demonstrate the possession of a file or a block by re-
turning a compact proof of possession. SafeStore, a system
devised by Kotla et al. [13], combines redundancy and hier-
archical erasure coding with auditing protocols for checking
retrievability.

Di Battista and Palazzi [5] present a method for outsourc-
ing a dictionary, where a skip list is stored by the server
into a table of a relational database management system
(DBMS) and the client issues SQL queries to the DBMS to
retrieve authentication information. Note that this method
is fully applicable to our framework since the update of the
basis is done at the client’s side, whenever an update occurs.
A related solution is presented by Miklau and Suciu [20].
Maheshwari et al. [16] take a different approach to the au-
thentication of a database, detailing a new trusted database
(TDB) system with built-in support for integrity checking
and encryption, and a performance advantage over architec-
tures that add a layer of cryptography on top of a typical
unsecured database. A survey for secure distributed storage

is presented by Kher and Kim [12]. The archival storage of
signed documents is studied by Maniatis and Baker [18].

Our work is related to authenticated data structures in
the three-party model, where the data owner outsources the
data to a server, which answers queries issued by clients on
behalf of the data owner. See [28] for a survey. A solution
for the authentication of outsourced databases in the three-
party model, using an authenticated B-tree for the indices,
is presented by Li et al. [14]. Lower bounds on the client
storage in the three-party model are given by Tamassia and
Triandopoulos [29]. A method for the authentication of XML
documents is provided by Devanbu et al. [4].

1.2  Our Contributions

The main contributions of this paper are the following:

1. We propose an architecture for verifying the integrity
of untrusted outsourced storage. For our method to
work, no trust is needed at either the storage server or
the authentication server (see the definitions above).
Our integrity verification service is independent from
the storage service and works with any existing storage
technology. Note that our solution addresses only the
problem of integrity checking. Other security services,
e.g., user authentication and data encryption, are or-
thogonal to and compatible with our service and are
not addressed in this paper.

2. We provide efficient algorithms and protocols (of loga-
rithmic complexity) for checking the integrity of data
stored at an untrusted storage server using only O(1)
space at the client. Namely, suppose that the storage
server keeps a file system with n files. The client can
verify the integrity of a file downloaded from the stor-
age server in O(logn) time. Also, the client can verify
the correctness and completeness of the list of & file
names matching a given path prefix returned by the
storage server in O(k + logn) time.

3. We implement a prototype of our integrity verification
system that works with Amazon’s Simple Storage Ser-
vice (93) [1].

4. We present the results of experiments on the perfor-
mance of our prototype, focusing on the communica-
tion and processing overhead incurred on top that of
Amazon S3. The experiments show that our system
provides integrity checking while adding minimal over-
head to the normal operations of Amazon S3.

Our architecture has several advantages over many pre-
vious methods. Our system requires only constant amount
of storage (a single cryptographic hash value) on the client
side, irrespective of the amount of outsourced data. Integrity
checking is achieved efficiently, with virtually no observable
overhead for file systems with hundreds of thousands of files.
We maintain authentication information using an authenti-
cated skip list (see Section 2.2), which supports simple and
fast updates. Unlike some of the previous approaches, the
security of our scheme is independent from probabilistic as-
sumptions about the extent of data corruption. Instead, our
system is as secure as the cryptographic hash function used.
We do not assume that any component of either the storage
server or the authentication server is trusted, therefore any



attack on either server will be detected, even if the two col-
lude in an attack. Thus, the authentication server itself can
be an outsourced computational resource.

Another major characteristic of our architecture is that it
operates in the single-client setting, unlike other approaches
such as SUNDR [15] which supports an authenticated file
system in a multi-client setting, but achieves a weaker no-
tion of consistency. This form of consistency is called fork-
consistency and disallows anything more than the forking
attack, where two clients can have a different view of the
file system. In our case, full consistency of the file system in
a multi-client setting can be provided either by serializing
operations from different clients through a common trusted
client (e.g., this can be the kernel of the file system), or by
requiring each client to communicate its fresh state to all
other clients after an update. The latter approach requires
additional ©(c) communication for ¢ clients.

Our model also differs from data retrievability models such
as PDP [3] in a number of ways. Our goal is not to detect
corruption of data stored on the server, but to verify that the
server’s responses to the client’s queries are consistent with
the updates that the client has performed in the past. Thus,
integrity checks are performed only when a file or list of files
is requested from the storage server. The full response can
then be used to verify integrity. Also, we do not require the
client to keep any secret information such as a private key,
an important distinction in situations where users would like
to collaborate without fully trusting each other. Addition-
ally, we are able to verify the completeness and correctness
of lists returned from the server as well as the data itself. Fi-
nally, no cooperation between the client and storage server
beyond the normal, unauthenticated case, is necessary. As
a consequence, our integrity checking system can sit on top
any existing storage service without the knowledge and co-
operation of the storage server.

2. OUR APPROACH

We present a method that allows the client to manage
and verify the integrity of content hosted on a remote stor-
age server. Our method uses only a small, constant amount
of storage on the client’s computer, while the rest of the data
needed for integrity checking is hosted on a separate authen-
tication server (see Figure 1). Our technique assumes that
both the storage server and the authentication server are un-
trusted. We can detect any data corruption on either server,
even if the two cooperate in an attack. Our authentication
server stores authentication information in an authenticated
skip list, a data structure described in Section 2.2 that sup-
ports efficient updates and queries.

2.1 Skip Lists

The skip list [25] is a probabilistic data structure that
maintains a set of elements, each a key-value pair, allowing
searches and updates in O(logn) time with high probability
(w.h.p), where n is the current number of elements. A skip
list for n elements has logn levels w.h.p.: the base level is a
sorted list of all of the elements; a subset of these elements
also appear on the second level; for each node in a given
level of the skip list, a coin flip determines whether or not it
will exist in the next higher level.

We call the set of nodes associated with an element a
tower. The height of the tower is the level of the highest node
in that tower. Each node in the structure contains pointers
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Figure 1: Reference model: The client stores only
one hash value (the basis) to verify the integrity of
all content on the network storage system.

to the node to its right (R) and to the node below it (B). A
search of the structure for a target node T is conducted in
the following way. We begin at the top left node. If R > T,
then we move to B. Otherwise, we move to R. We continue
this process until we are pointing to T (we have found the
target), or we are pointing to a node on the base level which
is greater than T (T is not contained).

2.2 Authenticated Skip Lists

The authenticated skip list structure [10] supports authen-
ticated versions of the dictionary operations. Namely, the
nodes on the base level correspond to data elements whose
integrity we would like to safeguard. These data elements
can be blocks of any kind: files, pieces of files, directories,
etc., as long as they have keys by which they can be sorted.
Each node in the structure contains a hash value which is
the commutative cryptographic hash (a cryptographic hash
of a pair of data, whose value is independent of the order-
ing of the pair) of the hash values of some pair of adjacent
nodes. In this way the authenticated skip list is similar to
the Merkle hash tree structure. The hash value of a partic-
ular node V in the structure is given as follows. We define
V.hash, B.hash, and R.hash to be the hash values of V, and
the nodes below and to the right of V, respectively, V.level
to be the level of V, and V.key and R.key to be the keys of
the data elements associated with V’s and R’s towers, re-
spectively. The notation h(A, B) indicates a commutative
cryptographic hash of the elements A and B. We have:

Case 1 (V.level = 0): If R.level = 0 (it has only a base level
node) then V.hash = h(V.key, R.hash), else V.hash =
h(V.key, R.key).

Case 2 (V.level > 0): If R.level = V.level then V.hash =
h(B.hash, R.hash), else V.hash = B.hash.

The above rules are indicated by the arrows in Figure 2. The
result is a directed map structure. The head of this graph is
the top left node of the skip list, and we refer to it’s hash
value as the basis of the structure. The basis is an accumula-
tion of all of the hashes in the whole structure, which means
that if any of the base level nodes corresponding to the data
are changed, we will be able to detect this change by recom-
puting the basis and seeing if it has changed. The authen-
ticated skip list includes minimum and maximum nodes on
either side, ensuring that a basis will exist even if our data
set is empty.



Figure 2: Diagram of an authenticated skip list. The rounded nodes describe the search path for any element
greater than ”C'B” and less than or equal to " DA.” The shaded nodes describe the search path for the element
?DZ.” The nodes with shadows are nodes whose information is included in the proof of integrity returned by
the authentication server in response to a LIST query for elements with prefix ”D”.

2.3 Problem Definition

The problem we address involves two parties: an untrusted
server component consisting of the storage and authentica-
tion servers, and a client. Even if the standard user identifi-
cation scheme (Kerberos, for example) used by the storage
server protects the client’s data from outside attackers, there
is still the possibility of a threat from an attacker within
the storage server, for example from someone that has un-
restricted access to the client’s authentication information
and account. How can the client be assured that his data
will not be tampered with? We need to be able to detect
such tampering in the following cases:

e The client requests a list of all of the objects with a
given prefix that have been stored in the server, and
the response is incomplete or incorrect.

e The client downloads an object from the untrusted

storage server, and the content of that object has changed

since the client uploaded it.

As an artifact of our architecture, we additionally must de-
tect the case where an operation requiring authentication
is performed (a list, download, upload, or deletion) and the
portion of the data stored on the authentication server that
is needed to authenticate the operation has been corrupted.

2.4 General Architecture

We have designed a general object-oriented software ar-
chitecture for authenticated network storage services and we
have implemented it in Java. A high-level view of the soft-
ware architecture is shown in Figure 1. In our architecture,
there are three entities, the first two of which reside on the
server side, and the last of which resides on the client side:

e The storage server, which can be any storage service
available online. The storage server is untrusted.

o The authentication server, which manages all of the
authentication information. We run software on this
server which is capable of building and maintaining
an authenticated skip list structure in response to up-
date requests received from the client, as well as re-
sponding to the client’s queries about the integrity of
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outsourced data with proofs of authenticity or corrup-
tion. A proof consists of an ordered collection of hashes
(a hash chain) and some information about the struc-
ture of the authenticated skip list. The authentication
server is also untrusted.

The client, who can query both the storage and au-
thentication servers remotely and verifies the answers
given to it. Verification is achieved through compar-
isons to a hash value stored by the client, the ba-
sis of the authenticated skip list on the authentica-
tion server. This hash (along with the software itself)
is the only data which must be stored on the client,
and it has constant size dependent only on the cryp-
tographic hash function used. We assume that data
stored, and operations performed on the client are en-
tirely trusted, and as this hash value is computed and
stored directly by the user when he performs an up-
date, it is trusted. In fact, it is the only trusted value
in the entire proposed solution. We run software on the
client that makes use of the authentication server to
authenticate the client’s queries to the storage server.
It is worth noting that in the most general case, this
authentication software will simply provide an inter-
face that any unauthenticated system can plug in to.
Such an API has not been implemented as of now, how-
ever, and the implementation presented in this paper
is more specific to the particular storage service used.

To illustrate how this architecture functions, we de-
scribe the sequences of actions triggered by some com-
mon user requests. Suppose that a user would like to
store a file in the storage server and wants to authenti-
cate the PUT operation (see Figure 3). The following
steps are performed:

1. The user selects the file to upload

2. Our client side software sends two different up-
date queries, one to the storage server and the
other to the authentication server.

— The storage server query adds the user’s file
to the server.



— The authentication server query, which con-
tains the hash of the file, updates the authen-
ticated skip list on the server and retrieves a
proof which allows the client to compute the
correct new basis.

At a later time, the user would like to retrieve the
file and wants to authenticate the GET operation (see
Figure 4). Then the following steps are performed:

1. The user selects the file to download.

2. Our client side software sends two different queries,
one to the storage server and the other to the au-
thentication server.

— The storage server query retrieves the user’s
file.

— The authentication server query retrieves the
proof of integrity

3. When the client receives both answers, it can ver-
ify the integrity of the file (see more details in the
next section).

2.5 Algorithms and Complexity

In this section we describe the technical details of our ar-
chitecture. Suppose a client stores n files (in fact, keyed data
blocks of any size can be used) in a storage server, and main-
tains a corresponding authenticated skip list structure (refer
to Section 2.2) at an authentication server. For each file in
the storage server (k;, fi), a tuple (k;, h(f:)) is stored in the
skip list, where k; is the key (name) of the file with content
fi, and h(f;) is a cryptographic hash of f;. The storage server
and the authentication server are synchronized so that they
contain the same elements. The basis of the authenticated
skip list is stored locally by the client. The client now can
issue four main operations which we describe and analyze
below. For each of these operations, the main measures of
complexity that we are interested in are the following;:

1. Query Complexity. The time needed for the authen-
tication server to construct the proof in response to a
query (either a GET or a LIST or a PUT or a DELETE

query).

2. Verification Complexity. The time needed for the
client to process the proof in order either to verify a
GET or LIST query or to update the basis after a PUT
or a DELETE query.

3. Update Complexity. The time needed for the au-
thentication server to perform an update (either an
authenticated PUT or an authenticated DELETE).

4. Communication Complexity. The size of the proof
(previously referred to as p or p’) that must be sent
over the network in response to a query.

5. Hashing Complexity. The number of hash compu-
tations executed during a verification or an update.

Authenticated PUT (k, f).

The client wants to upload to the storage server a file
f named k. He sends the request to both servers. The au-
thentication server adds a new entry k associated with the
element h(f). At that point it also sends a proof p’ back to
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the client (see Figure 3). In this case p’ contains information
that allows the client to compute the new basis. Referring
to Figure 2, one can see that if we insert a node with k =
”D”, the only nodes in the skip list whose hash values will
change are the rounded ones - the search path for k. To re-
compute the hash values of these nodes, we need only the
hash values of the nodes bordering this search path (nodes
whose arrows end at a shaded node), therefore, the proof will
contain those hash values. The length of the search path is
log n with high probability (w.h.p). It follows that the com-
plexity of this operation in all five of the above categories is
O(logn) w.h.p. Before computing the new basis, the client
validates the proof against the current basis. In this way the
client is assured that the new basis he computes is correct.

Authenticated DELETE(k).

The client wants to delete a file from the storage server
with name k. This procedure is similar to the procedure
PUT(k, f). The complexity of this operation is also O(logn)
w.h.p..

Authenticated GET (k).

The client wants to retrieve from the storage server the
file contents of the file with name k. The hash of the file
h(f) is stored at a leaf of the authenticated skip list on
the authentication server. The client makes a query to the
authentication server that returns h(f) along with a proof
of the integrity of h(f). Once again, this proof consists of
information from the nodes bordering the search path, so
the complexity of the operation in each of the applicable
categories is also O(logn) w.h.p.. The proof can be verified
against the client’s stored basis, and if the verification suc-
ceeds, the client can check to see that the hash of the file
received from the storage server equals h(f) (see Figure 4).

Authenticated LIST (prefix).

The client wants to retrieve the names (but not the con-
tents) of all the files whose name begins with prefix. We have
developed a method for efficiently authenticating a list of k
elements taken from a server containing n elements. We ob-
tain a proof from the authentication server that includes the
hashes of each of the k elements (the list body), and parts
of the proofs for GET operations performed on the prefix
and the last list body element (see Figure 2). Additionally,
the proof contains the heights of the towers associated with
each of the above nodes. We will show that the query and
communication, hashing, and verification complexity of this
operation is O(k + logn) w.h.p..

To determine the construction time, we assume that the
only time-relevant operation is a comparison, and that this
operation takes O(1) time. Referring to Figure 2, one can see
that the proof for a LIST operation includes elements from
the proofs for GET operations on the prefix and the last
element in the list. The number of comparisons performed
on the server for a GET operation is O(logn) (the height of
the skip list). Additionally, the proof contains information
about each of the k elements making up the body of the list.
The query we make for the list body portion of the proof has
two steps. First we search for the prefix - this is O(logn) as
well. Second, we move to the right until we reach the end of
the list - an additional O(k) comparisons. Summing all of the
portions of the proof construction process, we see that the
number of comparisons (the query time for LIST operation)
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Figure 3: Authenticated PUT for a file with key = z.

is O(k 4 logn). As a result, the size of the proof must also
be O(k+log n), since the size of the proof cannot exceed the
number of elements considered during its construction.

After the proof for a LIST query has been built and sent
to the client, the client has to run a verification algorithm
in order to recompute the basis (which he maintains locally)
from the proof. We start with a pointer to the rightmost
proof element and and maintain a stack S of proof elements
as we proceed to the left. While the height of the current
proof element is greater than or equal to that of the stack
top, we pop the stack top and absorb its hash value into
the current element using a commutative cryptographic hash
function. Otherwise, we push the current element onto S,
and move the pointer to the left. This verification algorithm
processes a proof of size O(k + logn), and one can see that
each element of the proof is passed in to the hash function
exactly once. Since the computation of the hash function
takes O(1) time, it follows that the verification algorithm
takes time O(k + logn).

2.6 Security

Our service provides protection against a wide range of
attacks. An attacker may gain access to our storage server
and damage or delete some of our files, or gain access to our
authentication server and alter some authentication data,
or do both simultaneously in order to try to deceive the
client. An attacker may also intercept network communica-
tion from the client to one or both servers and change the
message contents. The computations performed on the au-
thentication server to update the authenticated skip list may
also be controlled by an attacker, resulting in corrupted au-
thentication information. In this section we will show that as
long as the client itself is not compromised and the attacker
is computationally bounded, the probability that any attack
on the untrusted portion of the service will not be detected
is negligible (see definition of negligible function below).

Here we give a definition of security for our protocol. We
recall that a negligible function v(k) is a function that de-
creases faster than any inverse polynomial p(k) as k increases
(k is the security parameter, in our case the length of the out-
put of the collision-resistance/cryptographic hash function
we use). We also recall that for the specific cryptographic
primitive we use, i.e., the collision-resistant hash function,
the probability that a computationally bounded adversary
can find a collision is v(k).

DEFINITION 1 (SECURITY). Given a storage server S,
an authentication server A and a client C' that stores n files
on S, we say that an integrity checking protocol is secure if:
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e For a file f' named x stored in S, the probability is neg-
ligible that after a GET (z) query, A computes a proof p
and S sends f' such that (p, f') passes the verification
test, when in fact, the data in f is corrupted.

e For alistY' of names with prefiz y of files stored in S,
the probability is negligible that after a LIST (y) query,
A computes a proof p and S sends Y’ such that (p,Y")
passes the verification test, when in fact, Y' is either
incorrect or incomplete.

We can now prove that our protocol is secure according
to Definition 1. Suppose in the beginning (when the data
structure contains one element, for example) the client pos-
sesses the correct basis. Suppose he issues a GET(z) query.
The server needs to hide the fact that it has tampered with
the data of the file named z. In order for the server to do
that, it must either find another file f’ that has the same
hash as the original file and send the correct hash and the
incorrect file, or find another hash (for the incorrect file f')
that will produce the same basis if included in the hashing
scheme of the skip list. Neither task can be accomplished
with non-negligible probability since both require finding a
collision in a collision resistant hash function - in the former
case, the function used to store the files in the leaves of the
skip list, and in the latter case, the function used for the
hashing scheme within the skip list. This argument can be
applied for the LIST query as well.

However, the above is true only if the client always main-
tains the correct basis, even after updates take place. In-
deed, for every update (either PUT or DELETE) the client
runs an algorithm that takes as input the proof p’ created
by the authentication server, some necessary structural in-
formation which is included in the hashing scheme, and the
existing basis, and outputs the new basis corresponding to
the correct authenticated data structure after the update
has taken place (See Figure 3). This technique ensures that
the basis stored by the client is equal to the hash of the head
node of the correct authenticated skip list at all times. One
important result is that if an attack is made on the authen-
tication server, altering the skip list stored there, the client
will know, because the client’s basis corresponds to the cor-
rect skip list, and the one on the server is now incorrect.
This and other practical examples of attacks are discussed
below.

Unlike some other security schemes that detect data cor-
ruption with some variable uncertainty [3], which basically
solve a different problem, our approach guarantees that such
corruption will always be detected (negligible uncertainty).



We accomplish this high level of security by maintaining the
correct basis on the only trusted component of the system,
the client. When an update is made and the basis needs
to be changed, all of the relevant computations are also per-
formed on the client, and their correctness is verified against
the old basis. In this way, we ensure that the basis will be
updated correctly on the client, even if update operation on
the server is compromised by an attacker. The possession
of this basis allows us to protect against all of the types of
attacks mentioned earlier. Even if there is some malicious
cooperation between the authentication and storage servers,
the attack will be detected - either the proof provided by
the authentication server will not agree with the data from
the storage server, or it will not agree with the trusted basis
on the client, and in either case the client will know there
is a problem. Also, note that from the client’s perspective
the cases for which an attacker intercepts and alters net-
work traffic between client and server are identical to those
for which the actual data stored on the servers is altered,
therefore our security model is equally adept at detecting
them. It is worth pointing out that once we detect an at-
tack, we will not always be able to determine which portion
of the system was attacked. If an attacker manages to alter
some data on the authentication server, the server may not
be able to provide a correct proof of integrity to the client,
and the client will be unable to determine whether or not
an attack on the storage server has occurred as well. For
clarity, we summarize these concepts by distinguishing the
following cases:

1. No attack is made on either the authentication or stor-
age servers. Result: The client can verify that integrity
is preserved.

2. An attack is made on the storage server, but not the
authentication server. Result: the attack is detected,
and the client determines that the integrity of the data
on the storage server has been compromised.

3. An attack is made on the authentication server. Result:
the attack is detected, but it may not be possible for
the client to determine whether or not the data on the
storage server has been corrupted as well.

From a practical perspective, we view the authentication
server and the storage server as a single untrusted entity,
and although it would be useful to be able to determine the
status of the data on the storage server even if the authen-
tication server has been attacked, the only crucial point is
that the probability that any attack on the untrusted por-
tion of the service will not be detected is negligible. The only
practical disadvantage of separating the untrusted authenti-
cation and storage components is two servers instead of one
are exposed to attacks. The security of the servers them-
selves, however, is a topic outside the scope of this paper.

Based on the efficiency of the skip list data structure (main
operations run in expected time O(logn) with high proba-
bility (w.h.p)), the results for the LIST implementation we
derived before, and the proof of security above, we can sum-
marize the main complexity and security results of this sec-
tion:

THEOREM 1. Assume the existence of a collision-resistant
hash function. The presented protocol for checking the in-
tegrity of n files that reside on the storage server supports
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authenticated updates PUT() and DELETE() and authenti-
cated queries GET() and LIST() and has the following prop-
erties:

1. The protocol is secure according to Definition 1;

2. The expected running time, communication complez-
ity and hashing complezity of PUT(), DELETE() and
GET() is O(log n) at the server and at the client w.h.p.;

8. The expected running time, communication complexity
and hashing complezity of LIST() is O(k+logn) at the
server and at the client w.h.p., where k is the size of
the returned list;

4. The client uses space O(1); and

5. The server uses expected space O(n) w.h.p.

Taking into account constant factors (see the definitions
in [29]), the communication and hashing complexity can be
shown to have an upper bound w.h.p. of 1.5logn.

3. IMPLEMENTATION

To validate our software architecture for online storage au-
thentication, we have implemented a prototype of an authen-
ticated network storage service. Our prototype utilizes three
pre-existing services/applications: Amazon Simple Storage
Service is the untrusted data storage server, Amazon Elas-
tic Compute Cloud provides our untrusted authentication
server, and the prototype is built on top of an existing
open source project called Jets3t Cockpit. In this section,
we present some details about these three components, and
then proceed to discuss the architecture of our implementa-
tion.

3.1 Amazon S3 and EC2

Amazon Simple Storage Service (S3) is a scalable, pay-
per-use online storage service. Clients can store a virtually
unlimited amount of data, paying for only the storage space
and bandwidth that they use, with no initial start-up fee.
The basic data unit in S3 is an object. Objects contain both
data and meta-data. Only the meta-data portion is used by
S3. The basic container for objects in S3 is called a bucket.
Buckets are flat, as opposed to hierarchical; they cannot con-
tain other buckets, only data in the form of objects. Each
bucket in S3 has a unique name, and each object has a key
that identifies the object within its bucket. A single object
has a size limit of 5 GB, but there is no limit on the number
of objects per bucket. Each client is limited to 100 buck-
ets. Despite the flat storage scheme, it is possible to simu-
late hierarchical relationships through either special naming
conventions (use of ”/” or ”.” to denote directories) or use
of customized object meta-data (pointers to associated files,
for example). S3 supports both SOAP and REST requests.

Amazon Elastic Compute Cloud (EC2) is a pay-per-use
service that provides online computing resources. A client
can start a virtual machine (instance) on EC2 using any
complete image of a machine. EC2 makes a number of public
images available for running servers, database management
systems, development environments, and so on. Clients can
also run customized images.



3.2 Jets3t Cockpit

Cockpit is a subset of the open source project Jets3t. It is
written in Java. It provides a graphical front-end for manag-
ing content stored on S3. The original functionality of Cock-
pit included support for LIST (with the option of specifying
a prefix and/or delimiter) and download (GET) queries, as
well as upload (PUT) and delete (DELETE) operations. Ad-
ditionally, the software provides optional encryption of up-
loaded data and more advanced features such as generation
of public URLs that allow general access to a bucket in S3
for a limited time [2].

3.3 Software Architecture

We have added integrity checking to the four basic oper-
ations of Amazon S3: the LIST, GET, PUT and DELETE.
Note that these four operations form the core of any storage
service. When the client triggers one of these operations,
a new call is made in parallel with the original call to S3
(which is left unchanged), to an integrity checker that talks
to EC2, where our authentication server resides (see Figure
5). The GUI of Cockpit has been modified to accommodate
the additional authentication information.

EF User
Request
Cockpit Integrity
App. Checker
A A
| |
- o= I | |
HTTP | |
| JavaRMI |
Request
Client-Side | |
————————————————————————————————————————————————————— L L LR |
Server-Side \|/

Amazon Elastic
Compute Cloud

Amazon Simple
Storage Server

Figure 5: Software interaction architecture.

An abstract class IntegrityChecker (see Figure 6) provides
the template for any integrity-checking service. It specifies
four abstract methods, corresponding to the authentication
of LIST, GET, PUT and DELETE operations, which must be
implemented by any child class. Currently, the only imple-
menting class is STMSIntegrityService, which delegates the
authentication tasks to a service that stores and retrieves
authentication data in main memory on an EC2 instance
through Java Remote Method Invocation (RMI). Another
service based on a database management system (DBMS)
is in development and will provide identical functionality,
though performance will undoubtedly differ. In fact, any
integrity-checking service that can authenticate those four
basic operations can easily plug-in to our prototype sim-
ply by extending Integrity Checker. Information is passed be-
tween the GUI application and the integrity checker through
objects implementing the Authenticatable (see Figure 6) in-
terface. Implementing classes must be able to store and pro-
vide information about the authentication state of their ob-
jects’ contents, as well as their objects’ presence in a list.

While the authentication times for the four main oper-
ations are not insignificant compared to the time to com-
plete the unauthenticated versions of these operations, the
practical authentication time overhead depends to a large
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extent on the level of parallelism utilized in the implemen-
tation. To this effect, the authentication algorithms used in
this prototype allow the network queries and computational
operations for authentication to be conducted at the same
time that data is being retrieved from S3. The approach to
parallelization differs for each of the four operations:

The PUT and DELETE operations.

An important distinction to make with respect to opera-
tions that update, rather than retrieve information, is that
a positive authentication result does not guarantee that the
state of the relevant files on the storage server is correct.
Rather, the only guarantee is that the updated basis stored
on the client corresponds to the authenticated data struc-
ture in the correct updated state. In other words, to actually
authenticate the contents or presence of files on the storage
server, the client must make either a GET or a LIST query,
respectively. The function of the authenticated update op-
erations is simply to be sure that the stored basis is correct.
The update of the storage server and the update of the au-
thentication server are entirely separate. This fact means
that it is easy to conduct both updates in parallel, simply
by sending the two network requests at the same time. No
comparison of results is necessary in this case.

The GET operation.

There are two components of the authenticated GET oper-
ation that could potentially introduce a noticeable overhead.
Our first concern is that the client requests a download of
a very large file (1+ GB), in which case simply computing
the hash of the file’s contents after the download is com-
plete will take a considerable amount of time. To overcome
this difficulty we do not wait for the entire file to be down-
loaded. The hash of the file is computed in pieces while the
file is being downloaded, a process which effectively does
not add any authentication overhead. Our second concern is
that retrieving a proof for a GET operation from the authen-
tication server may, again, take a significant amount of time.
Therefore, rather than waiting for a file downloaded from S3
to be available, and subsequently computing its hash value
and proving its correctness, we retrieve the correct hash of
the given file from the integrity checker while the file is be-
ing downloaded from S3. When this approach is combined
with the hashing scheme described above, the only work left
to do after the download is complete (and theoretically the
only operation contributing to the time overhead) is a sim-
ple comparison of the calculated hash and the one retrieved
from the integrity checker.

The LIST operation.

For the LIST operation, rather than waiting for the results
to be returned from the storage server and then authenti-
cating them with the integrity checker, we request from the
integrity checker the list that is guaranteed to be correct, and
make a parallel request for the unauthenticated list. Once
again, all that is left to do is compare the two lists and keep
track of any discrepancies.

In this case, however, there is the additional difficulty that
lists may be very large. If we attempt to download authen-
ticated and unauthenticated lists tens of thousands of el-
ements long, we must wait a considerable amount of time
before we can even begin the comparison. In the interest
of giving the client more immediate feedback, we retrieve



public abstract class IntegrityChecker

{

/** gets the authenticated hash of the contents of the object with the given key.
* return a String, the correct hash, or null, if the proof returned from EC2 is incorrect. */
protected abstract String getAuthenticatedFileHash(String key);

/** retrieves from EC2 the correct results of a list operation with the given prefiz,
* starting point priorLastKey, and ending point lastKey.
* return the correct listing. */
protected abstract String[] getAuthenticatedList(String prefix, String priorLastKey, String lastKey); 10

/** checks the integrity of the elements adjacent to the object with the given key
* and digest, updates EC2 to include that object’s information, and stores the new basis.
* return true if the the correctness of the new basis is assured, false otherwise. */
protected abstract boolean performPutUpdate(String key, String fileDigest);

/** checks the integrity of the elements adjacent to the object with the given key

*  wupdates EC2 to remove that object’s information, and stores the new basis.

* return true if the the correctness of the new basis is assured, false otherwise. */
protected abstract boolean performDeleteUpdate(String key); 20

public interface Authenticatable extends Comparable<Authenticatable>

{

/** return an integer which should indicate the authentication state of this object’s content,
* namely whether its integrity is intact, corrupted, or unchecked. */
public int getContentAuthenticationStatus();

/** sets the authentication state of this object’s content.*/ 30
public void setContentAuthenticationStatus(int status);

/** return an integer which should indicate the authentication state of this object’s presence

* an a list. If the object is present in the list, this state should indicate whether or

* not its presence is authorized, and if it is not present, should indicate whether or not it should be. */
public int getPresenceAuthenticationStatus();

/** sets the authentication state of this object’s presence. */
public void setPresenceAuthenticationStatus(int status);
40

/** return the string that is the name of the file or object that will be/has been authenticated. */

public String getKey();

/** sets the string that is the name of the file or object that will be/has been authenticated. */

public void setKey(String key);

Figure 6: The IntegrityChecker abstract class and the Authenticatable interface.

both the authenticated and unauthenticated lists in smaller
blocks of 1,000 elements. This approach slightly increases
the total time to perform large LIST operations, but gives
more regular feedback, and eliminates the possibility that
we run out of memory maintaining information on tens of
thousands of files.

4. EXPERIMENTS

In this section, we present preliminary experiments con-
ducted with Amazon S3 and EC2. We show that the time
overhead that is added due to the authentication service is
negligible. We also demonstrate the scalability of our service.

4.1 Setup

We have implemented the authentication service in Java
1.5. Since we were not able to run the client on the same ma-
chine for all of the tests, two different machines were used.

Machine 1 runs Linux, has 2G RAM, and an AMD Athlon
X2 Dual Core 3800+ Processor. Machine 2 runs Windows
XP, has 2G RAM and 2.16 GH Intel Core Duo processor.
The authentication server runs on a virtual machine (hosted
by EC2) equivalent to a computer with a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor, 1.7 GB of RAM, 160 GB
of disk space, and 250 MB/sec of network bandwidth. The
ping time from the client to the server on EC2 is roughly
13.72 ms for machine 1, and 40.25 ms for machine 2 (av-
erage of 10 trials). We denote with n the number of ele-
ments in the authentication and storage servers. We define
the workload of the experiments to be the number of files
whose content and/or authentication data is requested by
the client, denoted with k, together with the size of the files
when their content is requested. When reviewing these re-
sults, we must keep in mind that the vast majority of the
run time is attributed to network communication, making
them highly susceptible to variations in network speed.
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Figure 7: Comparison of non-authenticated and au-
thenticated GET, LIST, PUT, and DELETE operations
performed on a workload of 1,000 1K files, and with
n = 0, 40,000, and 80,000, averaging over 50 trials.
Our new, efficient LIST implementation is used.
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Figure 8: Comparison of non-authenticated and au-
thenticated GET, LIST, PUT, and DELETE operations
performed on a workload of 1,000 1K files, and with
n = 0, 50,000, and 90,000, averaging over 50 trials.
An old, LIST implementation is used.

4.2 Overhead Experiments

Figures 7 and 8 show the overhead added to the GET,
LIST, PUT, and DELETE operations by our authentication
service. We compare the completion times of the four unau-
thenticated operations with with those of the four authenti-
cated operations as we vary n. The workload is 1,000 1K files.
Figure 7 displays the results of the test when run on machine
1. To demonstrate the efficiency of our LIST algorithm, we
ran the same test on machine 2 using an older LIST imple-
mentation, the results of which are displayed in Figure 8.
The procedure used to obtain the data in these figures was
as follows: beginning with the original, unauthenticated ver-
sion of Cockpit, a few lines of code were added to log the
system time at the beginning and the end of each operation.
A workload of 1,000 files of size 1K was uploaded to S3, a list
of those elements was requested, the files were downloaded,
and finally, the files were deleted. These PUT, LIST, GET and
DELETE operations leave our S3 space in its original state,
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and we obtain the unauthenticated times for each operation.
We repeat until we have the desired number of trials. Next,
we run through the same procedure using our authenticated
Cockpit, beginning with an empty authentication and stor-
age servers. To show some degree of scalability, we repeat
again with different values of n. The results in shown in Fig-
ures 7 and 8 indicate that the time to execute the authen-
ticated operations PUT, GET and DELETE differs by less
than two seconds in each case from the time to execute the
non-authenticated operations. Because of the uncertainty in-
troduced by varying network conditions, it is difficult to say
how much the authentication process contributes to the to-
tal operation time. As evidence, the authenticated time for
many of the operations is actually smaller than the unau-
thenticated time, a result which can only be explained by
variations in communication speeds. We can therefore say
that within the precision range of our experiments, there is
no time overhead for these operations. These results are a
first indication that our service scales well (a topic that we
will discuss further in Section 4.3). We would also like to
highlight the improved efficiency of the LIST operation. The
differences in the run conditions of the tests yielding the
two graphs mean that they are not directly comparable. We
can, however, compare the LIST times to the GET, PUT, and
DELETE times in each individual figure. There are two main
points of difference. Firstly, the new LIST completes drasti-
cally faster than the old compared to the other operations,
even in the unauthenticated case. The primary cause of this
change is that the new implementation has allowed us to in-
crease the size of the list blocks from 100 to 1,000. Secondly,
the older implementation of the LIST operation introduced
significant authentication overhead, while our implementa-
tion appears to add no overhead at all. This result is not
surprising, because as we discussed in Section 2.5, the com-
putational and communication time for the new operation
are both O(k + logn), a significant improvement over the
O(klogn) bound on the older operation.

4.3 Scalability Experiments

Figures 9, 10, 11, and 12, show how varying n affects the
performance of our authentication service for the LIST, PUT,
and DELETE operations. Figure 9 was obtained through
tests on machine 1 with a workload of 1,000 1K files, vary-
ing n from 20,000 through 400,000 at increments of 20,000,
while Figures 10, 11, and 12 are results of tests run machine
2, with a workload of 100 1K files, varying n from 10,000
through 200,000, at increments of 10,000. Figures 9 and 10
describe the scalability of the new and old LIST implemen-
tations respectively.

The procedure used to obtain these figures was as follows:
We began with an empty authentication and storage servers.
We wanted to time the operation varying n at intervals of 7.
For a workload k, we first uploaded k elements, then i — k
elements. This step increases n by i. Next, we listed and
then downloaded k elements. We repeated this operation
for the desired range of n. We then deleted k elements, and
then ¢ — k elements, repeating until the authentication and
storage servers are empty again. We separated each of the
operations (LIST, PUT, and DELETE) into four parts: reg-
ular network (retrieval of the data from S3), authentication
network (retrieval of the proof from EC2), query response
(processing of query on EC2), and verification (processing
of the proof on the client side). While the prototype is de-
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Figure 9: Authentication and regular network com-
munication times for our new, efficiently authenti-
cated LIST operation, varying n with a workload of
1,000 elements.
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Figure 11: Times for the authentication and regular
network components of an authenticated PUT opera-
tion, varying the number of elements. The workload
in these experiments is 100 1K elements.
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Figure 10: Authentication and regular network com-
munication times for an old authenticated LIST op-
eration, varying n, with a workload of 100 elements.

signed to maximize parallelism, performing the regular and
authentication network queries concurrently, for these tests
we separated the two components so that they run sequen-
tially, allowing us to time them individually. During the op-
erations, the Java garbage collector (GC) runs periodically.
We have collected the GC run times and subtracted them
from the times displayed in Figures 10, 11, and 12; Figure 9
is preliminary and does not take the GC into account.

We display only the regular and authentication network
times for the LIST, PUT, and DELETE operations. We were
unable to obtain reliable results for the GET operation be-
cause of the complicated interaction of threads during au-
thentication, and the query and verification times account
for only around one percent of the total time of each oper-
ation, making them somewhat irrelevant when considering
the performance of the service. Ignoring the few outliers, and
assuming that the odd peak in Figure 12 is caused by a spike
in network traffic, one can see that the overall indication of
these plots is that neither the regular or the authentication
network operation time for LIST, PUT, or DELETE oper-
ations is affected significantly by the number of elements
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Figure 12: Times for the authentication and regular
network components of an authenticated DELETE op-
eration, varying the number of elements. The work-
load in these experiments is 100 elements.

stored with our service. In other words, the service seems
to scale extremely well. We can compare these plots to Fig-
ures 7 and 8 and see that the total times for each operation
are very close to the larger of the authenticated and regular
network operation times (the workloads vary, so we are actu-
ally comparing the time per element in k). For the PUT and
DELETE, and new LIST operations (Figures 9, 11, and 12),
the regular network time is larger than the authentication
network time, so we expect that when the regular and au-
thentication network queries are performed in parallel, there
will be no authentication overhead. In contrast, for the old
LIST operation (Figure 10) the authentication network time
is larger, so we expect some authentication overhead — once
again the improved efficiency of the new LIST implementa-
tion is evident.

5. CONCLUSIONS

This paper presents the architecture and implementation
of an integrity checking service that extends any existing on-
line storage service. Our architecture is both space-efficient




(the user stores only a single hash value) and time efficient
(a very small overhead is added to the operations of the stor-
age service). Our implementation is built on top of Amazon’s
S3 and EC2 services. The experimental results confirm the
negligible time overhead and scalability of our service.
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