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A FORMULATION DETAILS

A.1 Hair Geometry Textures
Unlike triangle meshes that share the same topology between differ-
ent bodies and faces, hair tends to have a different number of strands
for different hairstyles, making traditional PCA-based blend shapes
impossible on these data. Although we can force different hairstyles
to have the same number of strands by introducing a resampling
step, the computed blend shapes would still have a fixed number
of strands, which are less flexible in real applications. For flexibil-
ity, we store each hair model as a 2D texture map of strand PCA
coefficients. With the scalp parameterization proposed by Wang
et al. [2009], we are able to unwarp the 3D scalp surface to a 2D
𝑢𝑣 plane. However, naively storing strand PCA coefficients on the
projected 2D root positions will cause two problems: (1) different
strands may be projected to the same texel due to discreterization,
thus causing collision problems; (2) some texels may receive no
strands, thus leaving missing values in the projected textures.

To address these issues, we fit our geometry textures with two
steps: first, we find the nearest 2D hair root for each texel, and store
the corresponding strand PCA coefficients at that texel. For those
texels whose distance to its nearest hair root is above a threshold
𝜖 = 0.01, we store a special vector that will be decoded to strands
with zero length, and mark those texels as a baldness map M [Zhou
et al. 2023]. This step ensures no missing values in the texture,
which we denote as the initialized geometry texture Tinit. Both
M and Tinit have the resolution 256 × 256, which is empirically
set considering the trade-off between size and expressiveness. To
ensure that geometry textures can properly recover the original 3D
hairstyle, we optimize them directly in the second step:

T∗ B arg min
T

Lgeo
(
S
(
Sample(R;T)

) )
, (1)

where we use loss Lgeo to measure the reconstruction difference
on strand geometry.

We employ the Adam optimizer [Kingma and Ba 2014] with a
learning rate of 0.001. With Tinit as initialization, our experiments
show that the optimization process converges within 500 iterations,
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Fig. 1. Illustration of fitted hair geometry textures and the corresponding
3D hairstyle. Here baldness maps are visualized as the alpha channel in the
RGBA textures.

and in Fig. 1 we show an example of the original hairstyle, the fitted
geometry texture, and the recovered 3D hairstyles by sampling and
decoding from the texture with different numbers of roots. These
fitted geometry textures finally form a unified representation across
different hairstyles, which have the same size 256 × 256 × 64 and
allow for arbitrary sampling.

A.2 Network Architectures
StyleGAN2 Backbone. Our StyleGAN2 backbone follows the offi-

cial implementation of [Karras et al. 2020]1, with a mapping network
of 4 hidden layers. We modify the output convolutions such that
they produce a feature image of shape 32 × 32 × 10. Subsequently,
a small MLP decoder is employed to map the output features to
10-dimensional strand PCA coefficients and a single scalar for guide
mask. The MLP decoder consists of a single hidden layer of 64 hid-
den units and uses the softplus activation function. Note that we
1https://github.com/NVlabs/stylegan2-ada-pytorch

https://github.com/NVlabs/stylegan2-ada-pytorch
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do not utilize pre-trained StyleGAN2 checkpoints for our task, the
entire module is trained from scratch.

U-Net Super Resolution. Our U-Net module is implemented based
on an unofficial online implementation2, which translates the bilin-
early upsampled textures of shape 256 × 256 × 11 to weight maps of
shape 256 × 256 × 14. The convolution layers progressively down-
sample the input to a shape of 16 × 16 × 512, which is followed
by 4 bilinear upsampling and double convolution layers with skip
connections to produce the weight map.

VAE. In our VAE module, the encoder adopts a similar archi-
tecture to pSp [Richardson et al. 2021], which contains 4 IR-SE
blocks [Hu et al. 2018] to extract a feature image of shape 4×4×512.
This feature image is then flattened and processed through a fully-
connected layer to derive the mean and variance of ®𝛽 of 512 di-
mensions. The decoder mirrors the StyleGAN2 generator but omits
its mapping network. Its output size is modified to 256 × 256 × 54,
followed by the same MLP decoder that maps the output features
to 54-dimensional strand PCA coefficients and a single scalar for
baldness map.

B EXPERIMENT DETAILS

B.1 Datasets
We train Perm on USC-HairSalon [Hu et al. 2015], which is a dataset
comprising 343 3D hair models collected from online game com-
munities. To increase diversity, we employ the data augmentation
method proposed in HairNet [Zhou et al. 2018], where different hair
models within the same style class are blended to produce novel
hairstyles. The blended hairstyles are further augmented by hori-
zontal flipping, resulting in a total of 21, 054 data samples used for
training.

To assess the performance of our model, we compiled a dataset of
3D hair models from various publicly available resources, including
CT2Hair [Shen et al. 2023] (10 hairstyles), StructureAwareHair [Luo
et al. 2013] (3 hairstyles), and Cem Yuksel’s website3 (4 hairstyles).
We preprocess these data to have the same number of points (𝐿 =

100) on each strand, and register them onto the same head mesh.
For a more comprehensive evaluation, we engaged artists to groom
a collection of 100 diverse hairstyles. While these artist-created data
will be used for evaluation, we are restricted in releasing them due
to regulatory considerations.

B.2 Training Details
We train our model and conduct all experiments on a desktop ma-
chine with an Intel® Core™ i9-10850K CPU @ 3.60GHz, 64GB mem-
ory, and an NVIDIA RTX 3090 GPU. Our code is implemented with
Python 3.9.18, PyTorch 1.11.0, and CUDA Toolkit 11.3.

In our model, each network module is trained separately using
the Adam optimizer [Kingma and Ba 2014]. The StyleGAN2 back-
bone has a learning rate of 0.002 for its generator and 0.001 for its
discriminator, leading to a stable training configuration in our case.
The StyleGAN2 backbone is trained for 3, 000K images with a batch
size of 4, which takes around 1 day on our machine. For both the
2https://github.com/milesial/Pytorch-UNet
3http://www.cemyuksel.com/research/hairmodels/

U-Net and VAE, we set their learning rates to 0.002 and train them
for 2, 000K images with a batch size of 4, each taking around 1 day
on our machine.

B.3 Quantitative Metrics
To quantitatively measure the reconstruction capability of our model,
we first report the mean position error (pos. err.), which is essentially
the average Euclidean distance between corresponding points on
the reconstructed strands and the ground truth. We further report
the mean curvature error (cur. err.) that measures the 𝐿1 norm be-
tween the curvatures of reconstructed and ground truth strands,
where the curvature is defined as the reciprocal of the circumradius
of 3 consecutive points p𝑖−1, p𝑖 , and p𝑖+1 on the strand, which can
be computed as:

cur(p𝑖 ) =
2∥(p𝑖−1 − p𝑖+1) × (p𝑖 − p𝑖+1)∥

∥p𝑖−1 − p𝑖+1∥ · ∥p𝑖 − p𝑖+1∥ · ∥p𝑖−1 − p𝑖 ∥
. (2)

B.4 PCA-based Strand Representation
In Fig. 2a, we illustrate the explained cumulative relative variance
against the number of principal components. Although 20 PCA
coefficients appear to capture nearly 100% of the variance in the
training set, increasing the number of coefficients improves the
generalizability of our representation to unseen data, as evidenced
by the reconstruction errors shown in Fig. 2b on the testing set.
Considering this issue, we opt for 64 principal components, a choice
consistent with most previous work on strand representation [Rosu
et al. 2022; Sklyarova et al. 2023; Zhou et al. 2023], while achieving
significantly lower reconstruction errors.

B.5 Baselines
GroomGen [Zhou et al. 2023]. As the authors of GroomGen have

not released their code, we implement GroomGen by ourselves with
Python 3.9.18 and Pytorch 1.11.0. The model is trained on the same
USC-HairSalon dataset as described in Sec. B.1.

HairStep [Zheng et al. 2023]. We use the pre-trained HairStep
model released by the authors4.

Strand VAEs. The architecture of different strand VAEs used in
our evaluation is adapted from GroomGen [Zhou et al. 2023], where
we only modify the output layer to generate either strand directions
(Pos. VAE) or frequency components (Freq. VAE).

C ADDITIONAL RESULTS

C.1 Strand Representation Comparison
In Fig. 3 we provide an additional comparison of different strand
representations. Their configurations are the same as described in
our main paper.

C.2 Random Hairstyle Synthesis
In Fig. 4, we showcase several random guide strands generated by
sampling the parameter space of ®𝜃 with Gaussian noise, highlighting
that the results from StyleGAN2 exhibit greater diversity compared
to those generated by the PCA alternative discussed in our main
4https://github.com/GAP-LAB-CUHK-SZ/HairStep

https://github.com/milesial/Pytorch-UNet
http://www.cemyuksel.com/research/hairmodels/
https://github.com/GAP-LAB-CUHK-SZ/HairStep
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(a) Cumulative relative variance as a function of the number of principal
components.
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(b) Strand reconstruction errors as a function of the number of principal
components.

Fig. 2. Performance of principal components in the training and testing sets.
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Fig. 3. Comparison of our PCA-based strand representation (Freq. PCA) with other VAE-based representations (Pos. VAE [Rosu et al. 2022; Sklyarova et al.
2023], Freq. VAE [Zhou et al. 2023]) and a simpler PCA-based formulation in the spatial domain (Pos. PCA). Reconstructed strands are color-coded by their
position error.

paper. Given that PCA lacks constraints on the distribution of its
subspace, obtaining reasonable guide strands by sampling its sub-
space with Gaussian noise is challenging, and our results indicate
that most of them are collapsed into similar outputs.

In Fig. 5, we illustrate several random full hair models generated
by sampling the parameter spaces of ®𝜃 and ®𝛽 with Gaussian noise,
and compare these results to GroomGen [Zhou et al. 2023]. Note that
we sample our parameter space and GroomGen’s latent space with
the same Gaussian noise for a fair comparison. From our observation,
GroomGen tends to generate hairstyles with weird curls and flyaway
strands, which do not exist in our results. Note that the quality
difference from GroomGen’s paper may be partially correlated with
the dataset difference, as GroomGen in its original paper was trained
on their private GroomHair dataset.

C.3 3D Hair Parameterization
To fit Perm parameters to target 3D hair models, we formulate it as
an optimization problem, where the objective is defined as:

®𝜃∗, ®𝛽∗ B arg min
®𝜃, ®𝛽

∥F (G( ®𝜃 )) ⊕ D( ®𝛽) − T∥1 + Lgeo . (3)
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Fig. 4. Guide Strands synthesized from different Gaussian noise (Top: PCA;
Bottom: StyleGAN2).

We employ the Adam optimizer [Kingma and Ba 2014] with an
initial learning rate of 0.1 and a cosine annealing schedule for the
learning rate. For better convergence, we first optimize ®𝜃 only for
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Fig. 5. Full hair models synthesized from different Gaussian noise, with comparison to GroomGen [Zhou et al. 2023] trained on the same dataset. Hair colors
are manually assigned for aesthetic purposes.

1, 000 iterations as a warm-up to match the global shape, and then
jointly optimize ®𝜃 and ®𝛽 for 4, 000 iterations.

With Perm, we fit parameters to hundreds of publicly available
3D hair models sourced from the Internet, with a subset of them
showcased in Fig. 6. Similar to AMASS [Mahmood et al. 2019], we

curated a dataset of 3D hair in a unified and parametric manner,
which we will release to facilitate future research.

C.4 Hairstyle Interpolation
In this section we compare our method with [Weng et al. 2013]
and [Zhou et al. 2018] on hairstyle interpolation. Since neither
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Fig. 6. A subset of 3D hair models fitted by Perm.
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Fig. 7. Interpolation comparison with [Weng et al. 2013] and [Zhou et al. 2018].

[Weng et al. 2013] nor [Zhou et al. 2018] are publicly available,
we embed the 2 hairstyles selected by [Zhou et al. 2018] into our
parameter space and jointly interpolate the projected ®𝜃 and ®𝛽 to
obtain our results. Qualitative comparisons are provided in Fig. 7,
demonstrating that our method achieves performance comparable to

[Zhou et al. 2018], with both outperforming the results from [Weng
et al. 2013]. Note that in the middle column of interpolation, our
method generates strands naturally covering the forehead, rather
than severely intersecting with the head mesh like [Weng et al.
2013]. Our starting and ending hairstyles are a bit different from
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others, which are caused by the parameterization process, as some
details cannot be fully reconstructed.

C.5 Single-view Hair Reconstruction

M( ®𝜃, ®𝛽, R) T
(
M( ®𝜃, ®𝛽, R)

)
Hair Mask Mrender

Strand Map Orender GT Strand Map Ogt Input Image

Fig. 8. Illustration of our differentiable rendering pipeline for single-view
hair reconstruction.

Given RGB images as input, we first run DELTA [Feng et al. 2023]
to estimate the SMPL-X [Pavlakos et al. 2019] face and shoulder
geometry with the projecting camera parameters. We then segment
hair from the image and compute its strand map as described in
HairStep [Zheng et al. 2023], which depicts the 2D pixel-wise hair
orientations. To fit 3D hair to 2D orientations, we design a differen-
tiable rendering pipeline, as illustrated in Fig. 8. In the pipeline, we
pre-compute the transformation between our in-house head mesh
and the SMPL-X model, denoted as the function T , thus placing
strand polylines generated from Perm onto SMPL-X. We then attach
a cylinder mesh onto each strand segment, as well as computing the
3D orientation of each vertex as the per-vertex feature. These fea-
tures are projected and rendered using Nvdiffrast [Laine et al. 2020]
with the estimated camera parameters, thereby obtaining the ren-
dered hair mask Mrender and strand map Orender. By computing the
pixel-wise mask loss and strand map loss similar to HairStep [Zheng
et al. 2023], gradients are back-propagated to optimize ®𝜃 and ®𝛽 with
decoupled weight decay regularization [Loshchilov and Hutter 2017].
A penetration loss is applied as well to penalize hair intersecting
the body geometry.

To accommodate the computation in affordable GPU memory, we
generate hair with randomly picked sparse roots for each iteration.
To initialize ®𝜃 and ®𝛽 , we search in the original USC-HairSalon dataset
for the hair that has the lowest mask and strand map loss, and
compute its Perm parameters as described in Sec. C.3.

In Fig. 9 we show our single-view hair reconstruction results on
various input images with curly hairstyles and tilted head poses,
and compare our results to HairStep [Zheng et al. 2023]. To test
reconstruction for hair under dynamics, we run our algorithm on
image sequences sampled from a video in [Yang et al. 2019], and

compare our results to both [Yang et al. 2019] and HairStep [Zheng
et al. 2023] in Fig. 10. Since Yang et al. [2019] have not released the
training data or pre-trained model of their method, we can only
use their provided videos for comparison. Among these methods,
ours method achieves the best reconstruction quality regarding both
the global hair shape and local strand details, while also avoiding
artifacts such as bald areas observed in HairStep. Despite being
trained solely on static data, our model demonstrates the ability to
generalize and capture the dynamic effects of hair in the images. We
conjecture that it is because our disentangled guide strand parame-
ters are flexible enough to capture large hair deformation variations.
Additionally, since our reconstructed hairstyles are represented as
parameters, we can substitute their ®𝛽 parameters with that of a wavy
hairstyle (shown as reference in the last row), thereby transferring
the wavy style to the reconstructed results while preserving their
overall shapes.

C.6 Hair-conditioned Image Generation
In Fig. 11 we present a comparison of image generation results with
and without our input hair conditions. Note that we use the pre-
visualization from MeshLab [Cignoni et al. 2008] as the structural
image condition, which we found to perform better than the final
renderings. Without our hair conditions, images generated with
rough text prompts like “wavy and short hair” cannot guarantee the
production of the desired hairstyle, and their hairstyles often vary
with pose, resulting in a loss of multi-view consistency. Leveraging
the rich information encoded in the 3D hair geometry, our hair
conditions effectively address these issues, producing high-quality
portrait images with a more consistent hairstyle. In Fig. 12 we fur-
ther showcase some generated images conditioned on various input
hairstyles. The texture colors in the input hairstyle renderings are
only for aesthetic purpose and have no effect on the skin or hair
colors in the generated images. Although structural conditioned
image generation is not our focus and needs more future inves-
tigation on improving the structural alignment, this application
reveals the potential of deploying current T2I models as a “neural
renderer” [Tewari et al. 2020] within the traditional CG pipeline.
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Fig. 10. Single-view hair reconstruction and editing on image sequences, with comparison to [Yang et al. 2019] and HairStep [Zheng et al. 2023].

“wavy and short hair, white sweater”

Input Hair Conditions w/ Conditions w/o Conditions

Fig. 11. Comparison of image generation with and without hair conditions. These images are generated with the same text prompt “wavy and short hair, white
sweater”. Additional text prompts like “front face” or “side face” are appended to assist the head pose in the generated images.
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Input Hairstyle 1 “digital twin of a human” Input Hairstyle 2 “side face, man, curly short hair”

Input Hairstyles Generated by Perm and Simulated by [Amador Herrera et al. 2024]

“a man with short hair is shaking his head”

Fig. 12. Hair-conditioned image generation using Adobe Firefly [Adobe 2024].
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