The Simple Imperative Language

```
intexp ::= 0 \mid 1 \mid \dots
           |-intexp|intexp+intexp|intexp-intexp|...
boolexp ::= true \mid false
           | intexp = intexp | intexp < intexp | intexp \leq intexp | ...
           |\neg boolexp \mid boolexp \land boolexp \mid boolexp \lor boolexp \mid \dots
             (no quantified terms)
 comm ::= var := intexp
            skip
            comm; comm
            if boolexp then comm else comm
            while boolexp do comm (may fail to terminate)
```

```
[\![-]\!]_{intexp} \in intexp \to \Sigma \to \mathbf{Z}
                                                                               \Sigma = var \rightarrow \mathbf{Z}
\llbracket - \rrbracket_{boolexp} \in boolexp \to \Sigma \to \mathbf{B}
                                                                                 (simpler than [\![-]\!]_{assert})
                                                                               \Sigma_{\perp} \stackrel{\text{def}}{=} \Sigma \cup \{\bot\} \text{ (divergence)}
 \llbracket - \rrbracket_{comm} \in comm \to \Sigma \to \Sigma_{\perp}
           \llbracket v := e \rrbracket_{comm} \sigma = \llbracket \sigma \mid v : \llbracket e \rrbracket_{intexp} \sigma \rrbracket
                                        [x:=x*6]_{comm}[x:7]
                                        = [x : 7 | x : [x*6]]_{intexp}[x : 7]]
                                         = [x:7|x:42]
                                         = [x : 42]
            [skip]_{comm}\sigma = \sigma
```

```
\Sigma = var \rightarrow \mathbf{Z}
 [\![-]\!]_{intexp} \in intexp \to \Sigma \to \mathbf{Z}
\llbracket - \rrbracket_{boolexp} \in boolexp \to \Sigma \to \mathbf{B}
                                                                                       (simpler than [\![-]\!]_{assert})
                                                                                      \Sigma_{\perp} \stackrel{\text{def}}{=} \Sigma \cup \{\bot\} \text{ (divergence)}
 \llbracket - \rrbracket_{comm} \in comm \to \Sigma \to \Sigma_{\perp}
            \llbracket v := e \rrbracket_{comm} \sigma = \llbracket \sigma \mid v : \llbracket e \rrbracket_{intexp} \sigma \rrbracket
                                           [x:=x*6]_{comm}[x:7]
                                            = [x : 7 | x : [x*6]]_{intexp}[x : 7]]
                                            = [x:7|x:42]
                                            = [x : 42]
             [skip]_{comm}\sigma = \sigma
            \llbracket c \; ; \; c' \rrbracket_{comm} \sigma = \llbracket c' \rrbracket_{comm} \left( \llbracket c \rrbracket_{comm} \sigma \right)
```

```
\Sigma = var \rightarrow \mathbf{Z}
 [\![-]\!]_{intexp} \in intexp \to \Sigma \to \mathbf{Z}
\llbracket - \rrbracket_{boolexp} \in boolexp \to \Sigma \to \mathbf{B}
                                                                                          (simpler than [\![-]\!]_{assert})
                                                                                         \Sigma_{\perp} \stackrel{\text{def}}{=} \Sigma \cup \{\bot\} \text{ (divergence)}
 \llbracket - \rrbracket_{comm} \in comm \to \Sigma \to \Sigma_{\perp}
            \llbracket v := e \rrbracket_{comm} \sigma = \llbracket \sigma \mid v : \llbracket e \rrbracket_{intexp} \sigma \rrbracket
                                            [x:=x*6]_{comm}[x:7]
                                             = [x : 7 | x : [x*6]]_{intexp}[x : 7]]
                                              = [x:7|x:42]
                                              = [x : 42]
              \|\mathbf{skip}\|_{comm}\sigma
             \llbracket c \; ; \; c' \rrbracket_{comm} \sigma \stackrel{\mathsf{NOT!}}{=} \llbracket c' \rrbracket_{comm} \left( \llbracket c \rrbracket_{comm} \sigma \right)
                                                                                    = \perp if c fails to terminate
```

Semantics of Sequential Composition

We can extend $f \in S \to T_{\perp}$ to $f_{\perp \perp} \in S_{\perp} \to T_{\perp}$:

$$f_{\perp \perp} x \stackrel{\text{def}}{=} \begin{cases} \perp, & \text{if } x = \perp \\ f x, & \text{otherwise} \end{cases}$$

This defines $(-)_{\perp \! \! \perp} \in (S \to T_{\perp}) \to S_{\perp} \to T_{\perp}$ (a special case of the Kleisli monadic operator).

So

Semantics of Conditionals

$$\begin{bmatrix}
\mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1
\end{bmatrix}_{comm}\sigma = \begin{cases}
[[c_0]]_{comm}\sigma, & \mathbf{if} \ [[b]]_{boolexp}\sigma = \mathbf{true} \\
[[c_1]]_{comm}\sigma, & \mathbf{if} \ [[b]]_{boolexp}\sigma = \mathbf{false}
\end{bmatrix}$$

 $[\text{if } x<0 \text{ then } x:=-x \text{ else } skip]]_{comm}[x:-3]$

Example:

= [x : 5]

```
= [[x:=-x]]_{comm}[x:-3], \quad \text{since } [[x<0]]_{boolexp}[x:-3] = \text{true}
= [x:-3|x:[[-x]]_{intexp}[x:-3]]
= [x:3]
[[if x<0 \text{ then } x:=-x \text{ else } skip]]_{comm}[x:5]
= [[skip]]_{comm}[x:5], \quad \text{since } [[x<0]]_{boolexp}[x:5] = \text{false}
```

Problems with the Semantics of Loops

Idea: define the meaning of while $b \operatorname{do} c$ as that of

if b then (c; while b do c) else skip

But the equation

```
[while b \operatorname{do} c]_{comm}\sigma
= [\operatorname{if} b \operatorname{then} (c ; \operatorname{while} b \operatorname{do} c) \operatorname{else} \operatorname{skip}]_{comm}\sigma
= \begin{cases} ([\operatorname{while} b \operatorname{do} c]_{comm})_{\perp \perp} ([[c]_{comm}\sigma), & \text{if } [[b]]_{boolexp}\sigma = \operatorname{true} \\ \sigma, & \text{otherwise} \end{cases}
```

is not syntax directed and sometimes has infinitely many solutions:

[while true do x:=x+1]] $comm = \lambda \sigma : \Sigma . \sigma'$ is a solution for any σ' .

Partially Ordered Sets

```
A relation \rho is reflexive on S iff \forall x \in S. x \rho x
                       transitive iff x\rho y \& y\rho z \Rightarrow x\rho z
                       antisymmetric iff x \rho y \& y \rho x \Rightarrow x = y
                                                iff x\rho y \Rightarrow y\rho x
                       symmetric
\sqsubseteq is reflexive on P & transitive
                                                          \Rightarrow \sqsubseteq is a preorder on P
\sqsubseteq is a preorder on P & antisymmetric \Rightarrow \sqsubseteq is a partial order on P
P with a partial order \sqsubseteq on P
                                                          \Rightarrowa poset P
P with I_P as a partial order on P
                                                          \Rightarrowa discretely ordered P
f \in P \rightarrow P' \& \forall x, y \in P. (x \sqsubseteq y \Rightarrow fx \sqsubseteq' fy) \Rightarrow f \text{ is monotone from } P \text{ to } P'
y \in P : \forall X \subseteq P . \forall x \in X . x \sqsubseteq y
                                                          \Rightarrow y is an upper bound of X
```

Least Upper Bounds

y is a lub of $X \subseteq P$ if y is an upper bound of X and $\forall z \in P$. (z is an upper bound of $X \Rightarrow y \sqsubseteq z$) If P is a poset and $X \subseteq P$, there is at most one lub $\sqcup X$ of X.

 $\sqcup \{\} = \bot$ — the least element of P (when it exists).

Let $\mathcal{X} \subseteq \mathcal{P}$ P such that $\sqcup X$ exists for every $X \in \mathcal{X}$. Then

$$\bigsqcup\{ \bigsqcup X \,|\, X \in \mathcal{X} \,\} = \bigsqcup \bigcup \mathcal{X}$$

if either of these lubs exists. In particular

$$\bigsqcup_{i=0}^{\infty} \bigsqcup_{j=0}^{\infty} x_{ij} = \bigsqcup \{ x_{ij} \mid i \in \mathbf{N} \text{ and } j \in \mathbf{N} \} = \bigsqcup_{j=0}^{\infty} \bigsqcup_{i=0}^{\infty} x_{ij}$$

if $\bigsqcup_{i=0}^{\infty} x_{ij}$ exist for all j, or $\bigsqcup_{j=0}^{\infty} x_{ij}$ exist for all i.

Domains

A chain is a countably infinite non-decreasing sequence $x_0 \sqsubseteq x_1 \sqsubseteq \dots$

The limit of a chain C is its lub $\sqcup C$ when it exists.

A chain C is interesting if $\sqcup C \notin C$.

(Chains with finitely many distinct elements are uninteresting.)

A poset P is a predomain (or complete partial order — cpo)

if *P* contains the limits of all its chains.

A predomain P is a domain (or pointed cpo) if P has a least element \bot .

In semantic domains, \sqsubseteq is an order based on information content:

 $x \sqsubseteq y$ (x approximates y, y is a refinement of x)

if x yields the same results as y in all contexts when it terminates, but may diverge in more contexts.

Lifting

Any set S can be viewed as a predomain with discrete partial order $\sqsubseteq = I_S$.

The lifting P_{\perp} of a predomain P is the domain $D = P \cup \{\bot\}$ where $\bot \notin P$, and $x \sqsubseteq_D y$ if $x = \bot$ or $x \sqsubseteq_P y$.

D is a flat domain if $D - \{\bot\}$ is discretely ordered by \sqsubseteq .

Continuous Functions

If P and P' are predomains, $f \in P \to P'$ is a continuous function from P to P' if it maps limits to limits:

$$f(\bigsqcup\{x_i \mid x_i \in C\}) = \bigsqcup'\{f \mid x_i \mid x_i \in C\}$$
 for every chain $C \subseteq P$

Continuous functions are monotone: consider chains $x \sqsubseteq y \sqsubseteq y \dots$

There are non-continuous monotone functions:

Let $P \supseteq$ the interesting chain $C = (x_0 \sqsubseteq x_1 \sqsubseteq ...)$ with a limit x in P, and $P' = \{\bot, \top\}$ with $\bot \sqsubseteq' \top$. Then

$$f = \{ [x_i, \bot] \mid x_i \in C \} \cup \{ [x, \top] \}$$

is monotone but not continuous: $\sqcup' \{ f x_i | x_i \in C \} = \bot \neq \top = f(\sqcup C)$

Monotone vs Continuous Functions

If $f \in P \to P'$ is monotone, then f is continuous iff $f(\bigsqcup_i x_i) \sqsubseteq \bigsqcup_i' (f x_i)$ for all interesting chains x_i $(i \in \mathbb{N})$ in P.

Proof

[1ex] For uninteresting chains:

if
$$\bigsqcup_{i} x_i = x_n$$
, then $\bigsqcup_{i}' (fx_i) = fx_n = f(\bigsqcup_{i} x_i)$.

[1ex] For interesting chains: prove the opposite approximation:

$$(\forall i \in \mathbf{N}. \ x_i \sqsubseteq \bigsqcup_j x_j) \Rightarrow (\forall i \in \mathbf{N}. \ fx_i \sqsubseteq f(\bigsqcup_j x_j))$$
$$\Rightarrow \bigsqcup_i' (fx_i) \sqsubseteq f(\bigsqcup_i x_i)$$

The (Pre)domain of Continuous Functions

Pointwise ordering on functions in $P \rightarrow P'$ where P' is a predomain:

$$f \sqsubseteq_{\rightarrow} g \iff \forall x \in P. \ f \ x \sqsubseteq' g \ x$$

Proposition:

If both P and P' are predomains, then the set $[P \to P']$ of continuous functions from P to P' with partial order \sqsubseteq_{\to} is a predomain with

$$\bigsqcup f_i = \lambda x \in P. \bigsqcup'(f_i x)$$

If P' is a domain, then $[P \to P']$ is a domain with $\bot = \lambda x \in P. \bot'$

The (Pre)domain of Continuous Functions: Proof

To prove $[P \rightarrow P']$ is a predomain:

Let f_i be a chain in $[P \to P']$, and $f = \lambda x \in P$. $\Box' f_i x$. ($\Box' f_i x$ exists because $f_0 x \sqsubseteq' f_1 x \sqsubseteq' \dots$ since $f_0 \sqsubseteq_{\to} f_1 \sqsubseteq_{\to} \dots$ and P' is a predomain)

 $f_i \sqsubseteq_{\rightarrow} f$ since $\forall x \in P$. $f_i x \sqsubseteq' f x$; hence f is an upper bound of $\{f_i\}$.

If g is such that $\forall i \in \mathbb{N}$. $f_i \sqsubseteq_{\rightarrow} g$, then $\forall x \in P$. $f_i x \sqsubseteq' gx$,

hence $\forall x \in P$. $fx \sqsubseteq' gx$, i.e. $f \sqsubseteq_{\rightarrow} g$.

 \Rightarrow f is the limit of f_i ... but is f continuous so it is in $[P \to P']$?

Yes: If x_j is a chain in P, then

$$f(\bigsqcup_{j} x_{j}) = \bigsqcup_{i}' f_{i}(\bigsqcup_{j} x_{j}) = \bigsqcup_{i}' \bigsqcup_{j}' f_{i} x_{j} = \bigsqcup_{j}' \bigsqcup_{i}' f_{i} x_{j} = \bigsqcup_{j}' f x_{j}$$

Some Continuous Functions

For predomains P, P', P'',

- if $f \in P \to P'$ is a constant function, then $f \in [P \to P']$
- $I_P \in [P \to P]$
- if $f \in [P \to P']$ and $g \in [P' \to P'']$, then $g \cdot f \in [P \to P'']$
- if $f \in [P \to P']$, then $(-\cdot f) \in [[P' \to P''] \to [P \to P'']]$
- if $f \in [P' \to P'']$, then $(f \cdot -) \in [[P \to P'] \to [P \to P'']]$

Strict Functions and Lifting

If D and D' are domains, $f \in D \to D'$ is strict if $f \perp = \perp'$.

If P and P' are predomains and $f \in P \rightarrow P'$, then the strict function

$$f_{\perp} \stackrel{\text{def}}{=} \lambda x \in P_{\perp}. \begin{cases} fx, & \text{if } x \in P \\ \perp', & \text{if } x = \perp \end{cases}$$

is the lifting of f to $P_{\perp} \to P'_{\perp}$; if P' is a domain, then the strict function

$$f_{\perp \perp} \stackrel{\text{def}}{=} \lambda x \in P_{\perp}. \begin{cases} fx, & \text{if } x \in P \\ \perp', & \text{if } x = \perp \end{cases}$$

is the source lifting of f to $P_{\perp} \to P'$.

If f is continuous, so are f_{\perp} and $f_{\perp \perp}$.

 $(-)_{\perp}$ and $(-)_{\perp}$ are also continuous.

Least Fixed-Point

If $f \in S \to S$, then $x \in S$ is a fixed-point of f if x = fx.

Theorem [Least Fixed-Point of a Continuous Function]

If D is a domain and $f \in [D \to D]$,

then $x \stackrel{\text{def}}{=} \bigcup_{i=0}^{\infty} f^i \perp$ is the least fixed-point of f.

Proof:

x exists because $\bot \sqsubseteq f \bot \sqsubseteq \dots f^i \bot \sqsubseteq f^{i+1} \bot \sqsubseteq \dots$ is a chain.

x is a fixed-point because

$$fx = f(\bigsqcup_{i=0}^{\infty} f^i \perp) = \bigsqcup_{i=0}^{\infty} f(f^i \perp) = \bigsqcup_{i=1}^{\infty} f^i \perp = \bigsqcup_{i=0}^{\infty} f^i \perp = x$$

For any fixed-point y of f, $\bot \sqsubseteq y \Rightarrow f\bot \sqsubseteq fy = y$,

by induction $\forall i \in \mathbb{N}$. $f^i \perp \sqsubseteq y$, therefore $x = \sqcup (f^i \perp) \sqsubseteq y$.

The Least Fixed-Point Operator

Let

$$\mathbf{Y}_D = \lambda f \in [D \to D]. \bigsqcup_{i=0}^{\infty} f^i \perp$$

Then for each $f \in [D \to D]$, $\mathbf{Y}_D f$ is the least fixed-point of f.

$$\mathbf{Y}_D \in [[D \to D] \to D]$$

Semantics of Loops

The semantic equation

[[while $b \ {
m do} \ c$]] $_{comm}\sigma$

$$=\begin{cases} (\llbracket \mathbf{while} \ b \ \mathbf{do} \ c \rrbracket_{comm})_{\perp \perp} (\llbracket c \rrbracket_{comm} \sigma), & \text{if } \llbracket b \rrbracket_{boolexp} \sigma = \mathbf{true} \\ \sigma, & \text{otherwise} \end{cases}$$

implies that [[while $b \ do \ c$]] $_{comm}$ is a fixed-point of

$$F \stackrel{\mathrm{def}}{=} \lambda f \in [\Sigma \to \Sigma_{\perp}]. \lambda \sigma \in \Sigma. \begin{cases} f_{\perp \perp}(\llbracket c \rrbracket_{comm}\sigma), & \text{if } \llbracket b \rrbracket_{boolexp}\sigma = \mathbf{true} \\ \sigma, & \text{otherwise} \end{cases}$$

We pick the least fixed-point:

[while
$$b \operatorname{do} c$$
] $comm \stackrel{\text{def}}{=} \mathbf{Y}_{[\Sigma \to \Sigma_{\perp}]} F$

Semantics of Loops: Intuition

 $w_0 \stackrel{\text{def}}{=} \text{ while true do skip}$ $[\![w_0]\!]_{comm} = \bot$ $w_{i+1} \stackrel{\text{def}}{=} \text{ if } b \text{ then } (c \text{ ; } w_i) \text{ else skip } [\![w_{i+1}]\!]_{comm} = F[\![w_i]\!]_{comm}$

The loop while b do c behaves like w_i from state σ if the loop evaluates the condition $n \leq i$ times:

$$\llbracket w_i \rrbracket_{comm} \sigma = \begin{cases} \llbracket \mathbf{while} \ b \ \mathbf{do} \ c \rrbracket_{comm} \sigma, & \text{if } n \leq i \\ \bot, & \text{if } n > i \end{cases}$$

or the loop fails to terminate:

[while
$$b \operatorname{do} c$$
] $comm\sigma = \bot = [w_i] comm\sigma$.

So
$$\forall \sigma \in \Sigma. \text{ [[while } b \text{ do } c]]_{comm} \sigma = \bigcup_{n=0}^{\infty} [[w_n]]_{comm} \sigma$$
$$\Rightarrow \text{[[while } b \text{ do } c]]_{comm} = \mathbf{Y}_{[\Sigma \to \Sigma_{\perp}]} F$$

Variable Declarations

Syntax:

$$comm ::= newvar \ var := intexp \ in \ comm$$

Semantics:

$$\begin{bmatrix}
\operatorname{newvar} v := e \text{ in } c \end{bmatrix}_{comm} \sigma \\
\stackrel{\text{def}}{=} ([-|v : \sigma v])_{\perp \perp} (\llbracket c \rrbracket_{comm} [\sigma | v : \llbracket e \rrbracket_{intexp} \sigma]) \\
= \begin{cases}
\bot, & \text{if } \sigma' = \bot \\
[\sigma' | v : \sigma v], & \text{otherwise}
\end{cases} \\
\text{where } \sigma' = \llbracket c \rrbracket_{comm} [\sigma | v : \llbracket e \rrbracket_{intexp} \sigma]$$

newvar v := e in c binds v in c, but not in e:

$$FV(\text{newvar } v := e \text{ in } c) = (FV(c) - \{v\}) \cup FV(e)$$

Problems with Substitutions

Only variables are allowed on the left of assignment

 \Rightarrow substitution cannot be defined as for predicate logic:

$$(x:=x+1)/x \rightarrow 10 = 10:=10+1$$

We have to require $\delta \in var \rightarrow var$; then

$$(v := e)/\delta = (\delta v) := (e/(c_{\text{var}} \cdot \delta))$$

 $(c_0; c_1)/\delta = (c_0/\delta); (c_1/\delta)$

• • •

$$(\text{newvar } v := e \text{ in } c)/\delta = \text{newvar } u := (e/(c_{\text{Var}} \cdot \delta)) \text{ in } (c/[\delta \mid v : u])$$

$$\text{where } u \notin \{\delta w \mid w \in FV(c) - \{v\}\}$$

Assigned Variables

Hence it is useful to know which variables are assigned to:

$$FA(v := e) = \{v\}$$

$$FA(c_0; c_1) = FA(c_0) \cup FA(c_1)$$

$$\cdots$$

$$FA(\text{newvar } v := e \text{ in } c) = FA(c) - \{v\}$$

Note that

$$FA(c) \subseteq FV(c)$$

Coincidence Theorem for Commands

The meaning of a command now depends not only on the mapping of its free variables:

$$[\![c]\!]_{comm}\sigma v = \sigma v$$

if
$$[\![c]\!]_{comm}\sigma \neq \bot$$
 and $v \notin FV(c)$

(i.e. all non-free variables get the values they had before c was executed).

Coincidence Theorem:

- (a) If $\sigma u = \sigma' u$ for all $u \in FV(c)$, then $\llbracket c \rrbracket_{comm} \sigma = \bot = \llbracket c \rrbracket_{comm} \sigma'$ or $\forall v \in FV(c)$. $\llbracket c \rrbracket_{comm} \sigma v = \llbracket c \rrbracket_{comm} \sigma' v$.
- (b) If $[\![c]\!]_{comm}\sigma \neq \bot$, then $[\![c]\!]_{comm}\sigma v = \sigma v$ for all $v \notin FA(c)$.

More Trouble with Substitutions

Recall that for predicate logic $[-]([-]]_{intexp}\sigma \cdot \delta) = [-/\delta]\sigma$.

The corresponding property for commands: $[\![-]\!](\sigma \cdot \delta) = [\![-/\delta]\!]\sigma \cdot \delta$; fails in general due to aliasing:

$$(x:=x+1; y:=y*2)/[x:z|y:z] = (z:=z+1; z:=z*2)$$

 $[x:2|y:2] = [z:2] \cdot [x:z|y:z]$

but

$$[[x:=x+1; y:=y*2]]_{comm}[x:2|y:2] = [x:3|y:4]$$

$$([[z:=z+1; z:=z*2]]_{comm}[z:2]) \cdot [x:z|y:z] = [z:6] \cdot [x:z|y:z]$$

$$= [x:6|y:6]$$

Substitution Theorem for Commands:

If $\delta \in var \to var$ and δ is an injection from a set $V \supseteq FV(c)$, and σ and σ' are such that $\sigma'v = \sigma(\delta v)$ for all $v \in V$, then $(\llbracket c \rrbracket_{comm})\sigma'v = (\llbracket c/\delta \rrbracket_{comm}\sigma \cdot \delta)v$ for all $v \in V$.

Abstractness of Semantics

Abstract semantics are an attempt to separate the important properties of a language (what computations can it express) from the unimportant (how exactly computations are represented).

The more terms are considered equal by a semantics, the more abstract it is.

A semantic function $[-]_1$ is at least as abstract as $[-]_0$ if $[-]_1$ equates all terms that $[-]_0$ does:

$$\forall c. [\![c]\!]_0 = [\![c']\!]_0 \Rightarrow [\![c]\!]_1 = [\![c']\!]_1$$

Soundness of Semantics

If there are other means of observing the result of a computation, a semantics may be incorrect if it equates too many terms.

 \mathcal{C} = the set of contexts: terms with a hole \bullet .

A term c can be placed in the hole of a context C, yielding term C[c] (not subtitution — variable capture is possible)

Example: if $C = \text{newvar } x := 1 \text{ in } \bullet$, then C[x := x+1] = newvar x := 1 in x := x+1.

 $\mathcal{O} = terms \rightarrow outcomes$: the set of observations.

A semantic function [-] is sound iff

$$\forall c, c'. \llbracket c \rrbracket = \llbracket c' \rrbracket \Rightarrow \forall O \in \mathcal{O}. \forall C \in \mathcal{C}. O(C[c]) = O(C[c']).$$

Fully Abstract Semantics

Recap:

 $[-]_1$ is at least as abstract as $[-]_0$ if $[-]_1$ equates all terms that $[-]_0$ does:

$$\forall c. \ [\![c]\!]_0 = [\![c']\!]_0 \Rightarrow [\![c]\!]_1 = [\![c']\!]_1$$

 $[\![-]\!]$ is sound iff

$$\forall c, c'. \llbracket c \rrbracket = \llbracket c' \rrbracket \Rightarrow \forall O \in \mathcal{O}. \forall C \in \mathcal{C}. O(C[c]) = O(C[c']).$$

A semantics is fully abstract iff

$$\forall c, c'. \llbracket c \rrbracket = \llbracket c' \rrbracket \iff \forall O \in \mathcal{O}. \forall C \in \mathcal{C}. O(C[c]) = O(C[c'])$$

i.e. iff it is a "most abstract" sound semantics.

Full Abstractness of Semantics for SIL

Consider observations $O_{\sigma,v} \in \mathcal{O} \stackrel{\text{def}}{=} comm \to \mathbf{Z}_{\perp}$ observing the value of variable v after executing from state σ :

$$O_{\sigma,v}(c) = \left\{ \begin{array}{l} \bot, & \text{if } \llbracket c \rrbracket_{comm} \sigma = \bot \\ \llbracket c \rrbracket_{comm} \sigma v, \text{ otherwise} \end{array} \right\} = ((-)v)_{\bot}(\llbracket c \rrbracket_{comm} \sigma)$$

- $[\![-]\!]_{comm}$ is fully abstract (with respect to observations \mathcal{O}):
- $\llbracket \rrbracket_{comm}$ is sound: By compositionality, if $\llbracket c \rrbracket_{comm} = \llbracket c' \rrbracket_{comm}$, then $\llbracket C[c] \rrbracket_{comm} = \llbracket C[c'] \rrbracket_{comm}$ for any context C (induction); hence O(C[c]) = O(C[c']) for any observation O.
- $\llbracket \rrbracket_{comm}$ is most abstract: Consider the empty context $C = \bullet$; if $O_{\sigma,v}(c) = O_{\sigma,v}(c')$ for all $v \in var$, $\sigma \in \Sigma$, then $\llbracket c \rrbracket = \llbracket c' \rrbracket$.

Observing Termination of Closed Commands

Suffices to observe if closed commands terminate:

If $[\![c]\!]_{comm} \neq [\![c']\!]_{comm}$, construct a context that distinguishes c and c'.

Suppose $[\![c]\!]_{comm}\sigma \neq [\![c']\!]_{comm}\sigma$ for some σ .

Let
$$\{v_i \mid i \in 1 \text{ to } n\} \stackrel{\text{def}}{=} FV(c) \cup FV(c'),$$

and κ_i be constants such that $[\![\kappa_i]\!]_{intexp}\sigma' = \sigma v_i$.

Then by the Coincidence Theorem

$$\llbracket c \rrbracket_{comm} [\sigma' | v_i : \kappa_i^{i \in 1 \text{ to } n}] \neq \llbracket c' \rrbracket_{comm} [\sigma' | v_i : \kappa_i^{i \in 1 \text{ to } n}]$$

for any state σ' .

Observing Termination Cont'd

Consider then the context C closing both c and c':

$$C \stackrel{\text{def}}{=} \text{newvar } v_1 := \kappa_1 \text{ in } \dots \text{newvar } v_n := \kappa_n \text{ in } \bullet$$

C[c] and C[c'] may not both diverge from any initial state σ' , since

$$\llbracket C[c] \rrbracket_{comm} \sigma' = (\llbracket -|v_i : \sigma' v_i^{i \in 1 \text{ to } n} \rrbracket)_{\perp \perp} \llbracket c \rrbracket_{comm} \llbracket \sigma' | v_i : \kappa_i^{i \in 1 \text{ to } n} \rrbracket$$

and $C[c] = \bot = C[c']$ is only possible if

$$\llbracket c \rrbracket_{comm} [\sigma' | v_i : \kappa_i^{i \in 1 \text{ to } n}] = \bot = \llbracket c' \rrbracket_{comm} [\sigma' | v_i : \kappa_i^{i \in 1 \text{ to } n}],$$

but by assumption and Coincidence the initial state $[\sigma'|v_i:\kappa_i^{i\in 1 \text{ to } n}]$ distinguishes c and c'.

Observing Termination Cont'd

If only one of C[c] and C[c'] terminates, then the restricted observations on C distinguishes between them.

If both C[c] and C[c'] terminate, then $[\![c]\!]_{comm}\sigma \neq \bot \neq [\![c']\!]_{comm}\sigma$, hence $[\![c]\!]\sigma v = [\![\kappa]\!]\sigma' \neq [\![c']\!]\sigma v$ for some v. Then for context

$$D \stackrel{\text{def}}{=} C[(\bullet; \text{ while } v = \kappa \text{ do skip})]$$

we have $\llbracket D[c] \rrbracket_{comm} \sigma' = \bot \neq \llbracket D[c'] \rrbracket_{comm} \sigma',$ $\Rightarrow O_{\sigma,v}(D[c]) \neq O_{\sigma,v}(D[c']).$