The Simple Imperative Language

intexp ;=01 ...
| var
| —intexp | intexp+intexp | intexp-intexp | . ..

boolexp .= true | false
| intexp = intexp | intexp < intexp | intexp < intexp| ...
| —boolexp | boolexp A boolexp | boolexp V boolexp | . ..
(no quantified terms)

var:=1intexp

skip

comm ; comm

if boolexp then comm else comm

while boolexp do comm (may fail to terminate)

comm ..

Denotational Semantics of SIL

[[_]]mtexp € ntexp — 2= — Z S = var — 7,
[—Dsooicap € boolezp — = — B (simpler than [—] gssert)
def

I—1comm € comm— X — 3| > | = X UA{Ll} (divergence)

Denotational Semantics of SIL

[—1intezp € intexrp — X — Z > = wvar — 7
[—Dsooicap € boolezp — = — B (simpler than [—] gssert)
[—1comm € comm— ¥ — > | > def 5 {1} (divergence)
[v:=ellcommo = [o|v: [e] fmtexpa]

[[x:fx*6]] comm|x @ 7]

= [x:7|x: [[X*G]]mtexp[x 7]
X 7 |x:42]

X : 42]

Denotational Semantics of SIL

[—1intezp € intexrp — X — Z > = wvar — 7
[—Dsooicap € boolezp — = — B (simpler than [—] gssert)
[—1comm € comm— ¥ — > | > def 5 {1} (divergence)
[v:=ellcommo = [o|v: [e] fmtexpa]

[[x:fx*6]] comm|x @ 7]

= [x:7|x: [[X*G]]mtexp[x 7]
X 7 |x:42]

X : 42]

[[Skip]] commO — (02

Denotational Semantics of SIL

[—1intezp € intexrp — X — Z > = wvar — 7
[—Dsooicap € boolezp — = — B (simpler than [—] gssert)
[—1comm € comm— ¥ — > | > def 5 {1} (divergence)
[v:=ellcommo = [o|v: [e] fmtexpa]

[[x:fx*6]] comm|x @ 7]

= [x:7|x: [[X*G]]mtexp[x 7]
X 7 |x:42]

X : 42]

[[Skip]] commO — (02

[[C ’ C/]] commO — [[C/]] comm ([[C]] commO')

Denotational Semantics of SIL

[—1intezp € intexrp — X — Z > = wvar — 7
[—Dsooicap € boolezp — = — B (simpler than [—] gssert)
[—1comm € comm— ¥ — > | > def 5 {1} (divergence)
[v:=ellcommo = [o|v: [e] intexpa]

[x:=x%6] comm|[x : 7]

= [x:7|x: [[X*G]]z'ntexp[x : 7]]
= [x:7|x:42]
= [x : 42]
[[Skip]] commO — (02
NOT!
[[C ’ C/]] commO — [[C/]] comm (\[[C]] comm9)

— | if ¢ fails to terminate

Semantics of Sequential Composition

Wecanextend fe S - T tof €S| —T:
def{J_, ifr = 1

fuz = f x, otherwise
This defines (=)pe(S—-T,)—S5, —-T;

(a special case of the Kleisli monadic operator).

So

[[—]] comm & comm — 2 — ZJ_
= [[C/]] comm € 2= — 2|
= ([Teomm)n € X, — >

[[C) C,]] commO — (IIC/]] comm)J_l_ (HC]] commU)

Semantics of Conditionals

[[CO]] commO, if [[b]] bOOZprO' — true

[if b then cg else cq] o= .
o [e1llcommo, if [b]l poprenpo = false

Example:

[if x<0 then x:=-x else skip] comm[x : —3]

= [[x:=-X]l comm[x : —3], since [[x<0]l pypjezp[x 1 —3] = true
= [x: =3 |x: [[-X]]mtexp[x . —3]]
= [x: 3]

[if x<0 then x:=-x else skip] comm/[x : 5]
= [skip] commlx : 5. since [x<0] joosesp[x : 5] = false
= [x : 5]

Problems with the Semantics of Loops

Idea: define the meaning of while b do c as that of
if b then (c ; while b do ¢) else skip
But the equation

[[While b dO C]] commO

= [[if b then (c ; while b do ¢) else skip]| commo

_ J(Iwhile b do c[l comm) 11 ([cllcommo), if [[b] boolerp? = true
o, otherwise

is not syntax directed and sometimes has infinitely many solutions:

[while true do x:=x+1] comm = Ao . . o’ is a solution for any o’

Partially Ordered Sets

A relation pis reflexiveon S iff Vx € S. zpx

transitive ifft xpy & ypz = xpz
antisymmetric iff zpy & ypr = =1y
symmetric ifft xpy = ypx

C is reflexive on P & transitive =L is a preorder on P

L is a preorder on P & antisymmetric =-L is a partial order on P

P with a partial order C on P =a poset P

P with Ip as a partial order on P =a discretely ordered P
feP—P & Vx,yeP. (x C y=fx T’ fy)=f is monotone from P to P’
ye P . VX CPVxeX.zy =y 1s an upper bound of X

Least Upper Bounds

yisalub of X C P if yis an upper bound of X
and Vz € P. (zis an upper bound of X = y C z)
If Pisaposetand X C P, there is at most one lub || X of X.

LI{} = L — the least element of P (when it exists).

Let X C P P such that || X exists for every X € X. Then

LHUX [X ex)=[UX

if either of these lubs exists. In particular

colllNe'e | | o oo
|_| |_|atij=|_|{x,,;j\z€Nand]€N}: |_| wa
1=07=0 7=01:=0

if 172 o ;5 exist for all j, or |_|OO 0 T;; exist for all <.

Domains

A chain is a countably infinite non-decreasing sequence xg C 1 C ...
The limit of a chain C'is its lub || C when it exists.
A chain C'is interesting if | | C' ¢ C.

(Chains with finitely many distinct elements are uninteresting.)

A poset P is a predomain (or complete partial order — cpo)

if P contains the limits of all its chains.
A predomain P is a domain (or pointed cpo) if P has a least element _L.

In semantic domains, C is an order based on information content:
x C y (z approximates y, y is a refinement of x)

if x yields the same results as y in all contexts when it terminates,
but may diverge in more contexts.

Lifting

Any set S can be viewed as a predomain with discrete partial order

L = Ig.

The lifting P| of a predomain P is the domain D = PU{l}

o NSA
YEARENGS

D is a flat domain if D — {_L} is discretely ordered by L.

where | ¢ P,andz Cp yifx = 1L orz Cp .

Continuous Functions

If P and P’ are predomains, f € P — P'isa

continuous function from P to P’ if it maps limits to limits:

FQ x|z e C}) = [{fxi|x; € C} forevery chain C C P
Continuous functions are monotone: consider chainsz C y C y. ..
There are non-continuous monotone functions:

Let P DO the interesting chain C' = (zg C z1 C ...) with a limit z in P,
and P’ = {1, T} with L T’ T. Then

f={lz; L]z e CYU{[z, T]}

is monotone but not continuous: |'{ f z; |z, €e C}=1 = T=f(LUC)

Monotone vs Continuous Functions

If f € P — P’is monotone, then f is continuous

iff f(| |z;) C |_|/(f z;) for all interesting chains z; (¢ € N) in P.
))

Proof

[1ex] For uninteresting chains:
if |_| x; = xn, then |_|’(f:vz) = fxn = f(| |x;).
1 1 1
[1ex] For interesting chains: prove the opposite approximation:

J J
= ' (fz:) C f(Jx:)

The (Pre)domain of Continuous Functions

Pointwise ordering on functions in P — P’ where P’ is a predomain:
fC.g < VzeP fzl'gux

Proposition:
If both P and P’ are predomains, then the set [P — P’] of continuous

functions from P to P’ with partial order C_, is a predomain with

LI fi = Xz € P.| [(fix)

If P'is a domain, then [P — P’]isadomainwith L _, = x € P. 1’

The (Pre)domain of Continuous Functions: Proof

To prove [P — P’] is a predomain:
Let f; beachainin [P — P'],and f = \x € P. |/ f;x.

(L f;x exists because foxr T’ fiz T/ ...since fo C_, f1 C_ ...
and P’ is a predomain)

fi C_, fsinceVx € P. fix C' fz; hence f is an upper bound of { f;}.
If gissuch thatVi € N. f; C_, g, thenVz € P. f;x C/ gz,
henceVx € P. fx C' gz,ie. f C_, g.

= f is the limit of f;... butis f continuous so itisin [P — P’]?

Yes: If x; is a chain in P, then

fUxy) = Hilzy) =1 fizj = |_||_|fz vy =] fz;
J i i

J

Some Continuous Functions

For predomains P, P/, P”,

m if f €¢ P — P’isa constant function, then f € [P — P’]

R [pc [P — P]

B if fec[P— Plandg € [P’ — P"],theng: f € [P — P"]
B if fe[P— P],then(—-f) € [[P' — P"] - [P — P"]]

B if fe [P — P"],then(f-—) €[[P— P] — [P — P"]]

Strict Functions and Lifting
If D and D’ are domains, f € D — D’ is strictif f1 = 1/

If P and P’ are predomains and f € P — P’, then the strict function

def fx, ifxeP
fL_AxEﬂ:{u ifo= 1

is the lifting of f to P| — Pi -if P’ is a domain, then the strict function

def fx, ifxeP
ﬁL_AmEﬂ:{u ifo= 1

is the source lifting of f to P| — P’
If f is continuous, so are f| and f .

(—) | and (—) ;; are also continuous.

Least Fixed-Point

It feS— S, thenx € Sisa fixed-point of f if x = fx.

Theorem [Least Fixed-Point of a Continuous Function]
If Disadomainand f € [D — D],

def °>°

thenz = || f'L is the least fixed-point of f.
1=0

Proof:
r existsbecause L C fL C ... f'l C f’H'lJ_ C ...is a chain.

x is a fixed-point because
fe=1(L iD= [fF) =L fil=[] fil=a
1=0 1=0 1=1 1=0

For any fixed-pointyot f, LCy = fLLC fy=uy,
by induction Vi € N. f*L C y, therefore x = [I(f*L) C y.

The Least Fixed-Point Operator

Let

Y, =\fe[D— DJ. C>|_<|) fil
1=0

Then for each f € [D — D], Ypf is the least fixed-point of f.

Yp € [[D— D] — D]

Semantics of Loops

The semantic equation

ﬂ:While b do C]] commOO

_ J([while b do c]l comm) 1 ([l commo), if [[b] boolexp® = true
o, otherwise

implies that [while b do c]| comm is a fixed-point of

FE e o5 1o e s {fullelommo), it [bllgooreapo = true
o, otherwise

We pick the least fixed-point:

[[While b dO C]] comm d:ef Y[Z—>ZJ_]F

Semantics of Loops: Intuition

wQ def while true do skip Twoll comm = L

def . .
Wi41 = if b then (c ; w;) else skip [w;41]lcomm = Fw;]l comm

The loop while b do c behaves like w; from state o

if the loop evaluates the condition n < ¢ times:

Tw,] | [while b do] commo, ifn <1
Walleomma = 1, ifn >4

or the loop fails to terminate:

I]:While bdo C]] commO — 1 = [[wz]] commO .

S0 . o0
Yo - > . [[Whlle b do C]] commO =— I_I [[’U)fn,]] commO
n=0

= [[While b dO C]] comm — Y[Z—>ZJ_]F

Variable Declarations

Syntax:
comm .= newvar var:=interp in comm

Semantics:

[newvar v:=e in c] commo

L (= v : ov]) 1 ([l commlo | v Lellinteapol)

)4, ifo! = L
~)lo'|v:ov], otherwise
where o' = [[c] comm[o | v : [e] intezpO)

newvar v:=e in ¢ binds v in ¢, but not in e:

FV(newvarv:=einc) = (FV(c) — {v}) U FV (e)

Problems with Substitutions

Only variables are allowed on the left of assignment

= substitution cannot be defined as for predicate logic:
(x:=x+1)/x — 10 = 10:=10+1

We have to require 6 € var — var; then

(vi=e)/6 = (dv):=(e/(cvar-9))
(co5c1)/6 = (co/d) ;5 (c1/9d)
(newvarv:=einc)/d = mnewvar u:=(e/(cvar-9))in (c/[d|v : u])

where u ¢ {dw |w € FV (c) — {v}}

Assigned Variables

Hence it is useful to know which variables are assigned to:

1v}
FA(cg) UFA(c1)

FA(v:=e)
FA(co ; c1)

FA(newvar v:=ein c) FA(c) — {v}

Note that

FA(e) C FV(e)

Coincidence Theorem for Commands

The meaning of a command now depends

not only on the mapping of its free variables:

[[C]] commOU — OV

if [c]l commo #= L and v € FV (c)

(i.e. all non-free variables get the values they had before c was executed).

Coincidence Theorem:

(a) If ou = o’u for all u € F'V(c), then [c]lcommo = L = [c]l commo’
or Vv € FV(¢). [[c] commov = [c]l commo’v.

(b) If [c]l commo #= L, then [[c]] commov = ov forallv ¢ FA(c).

More Trouble with Substitutions

Recall that for predicate logic [—[([~ intezpo - 0) = [—/d]lo.
The corresponding property for commands: [—] (o -§) = [—/d]lo - §;

fails in general due to aliasing:

(x:=x+1; y:=y*2)/[x : z|y : Z] (z:=2z+1 ; z:=27%2)

x: 2|y : 2] [z:2] - [x:z|y:Z]
but
[x:=x+1; y:=y*2]l comm|[x : 2|y : 2] = [x:3|y: 4
([z:=2z+1; z:=z%2[comm|z : 2]) - [x : zly : z] = z . 6] - [x :_z|y . 7]
= |x:06]|y: 0

Substitution Theorem for Commands:
If § € var — var and ¢ is an injection from aset V' 2O FV (c¢),
and o and o’ are such that 0’v = o(dv) forallv € V,

then ([[C]] COmm)OJ’U — (I]:C/é]] commO 5)?] fOl‘ all v € V.

Abstractness of Semantics

Abstract semantics are an attempt to separate the
important properties of a language (what computations can it express)

from the unimportant (how exactly computations are represented).

The more terms are considered equal by a semantics,

the more abstract it is.

A semantic function [[—]]1 is at least as abstract as [—]|g

if [—]1 equates all terms that [—] o does:

Ve. [clo = [lo = [cl1 = ['T1

Soundness of Semantics

If there are other means of observing the result of a computation,

a semantics may be incorrect if it equates too many terms.

C = the set of contexts: terms with a hole e.
A term c can be placed in the hole of a context C, yielding term C'[c]

(not subtitution — variable capture is possible)

Example: if C = newvar x:=11ne,
then C[x:=x+1] = newvar x:=1 in x:=x+1.

O = terms — outcomes: the set of observations.
A semantic function [[—]] is sound iff

Ve,d. [[e] =[] = YO € O.VC € C.O(C]c]) = O(C[]).

Fully Abstract Semantics

Recap:
[—]1 is at least as abstract as [—] g
if [—] 1 equates all terms that [—] o does:

Ve [cllo = [€'llo = [el1 = [<I1
[—1 is sound iff
Ve, c . [lc] = [= VYO € O.¥VC € C.0(C|c]) = O(C[]).
A semantics is fully abstract iff
Ve,d . [[e] =[] & VO € O.VC € C.0(C|c]) = O(CI[])

i.e. iff it is a “most abstract” sound semantics.

Full Abstractness of Semantics for SIL

: : f
Consider observations Os € O Lt comm — Z 1

observing the value of variable v after executing from state o

J_, 1f [[C]] commO — 1
[[C]] commOoU, OtherWise

Oa,v(C) — { } = ((—)v) L (el commo)

[—1 comm. is fully abstract (with respect to observations O):

8 [—]comm is sound: By compositionality, if [c]lcomm = [l comm,
then [C'c]]l comm = [C[]] comm for any context C' (induction);
hence O(C[c]) = O(C[]) for any observation O.

B [—] comm is most abstract: Consider the empty context C' = e;

if Ogv(c) = Og () forallv € var, o € 3, then [c] = [[¢].

Observing Termination of Closed Commands

Suffices to observe if closed commands terminate:

If [c]l comm 7 [T comm, construct a context that distinguishes ¢ and ¢'.

SUppOSe [[C]] commO 71_& [[C/]] commO for some o.

Let {v;|i € Lton} & FV(c) U FV (<),

and x; be constants such that [x;]lipsesp0’ = ov;.

Then by the Coincidence Theorem
[l commlo’|v; © k"€ ™) %= [T commlo’|v; = ki "< T

for any state o’

Observing Termination Cont’d

Consider then the context C closing both ¢ and ¢":
def . .
C = newvarvi:=k11ln ... Newvar vp:=kKpin e
C[c] and C[c’] may not both diverge from any initial state ¢’, since
[Clecll commo’ = ([—|v; : U/Uz‘i61 to "D (el commlo’|v; - /‘Gii€1 ton)
and C[c] = L = C[] is only possible if

[[C]]COmm[U,|Ui : ’%‘iel to "l=1= [[C/]]camm[glm : /{iiel to "1,

but by assumption and Coincidence the initial state

[0/ |v; © k; *€1 ¥0 7] distinguishes c and ¢'.

Observing Termination Cont’d

If only one of C|[c] and C[c] terminates,

then the restricted observations on C' distinguishes between them.

If both C[c] and C[c/] terminate,
then [[C]] commO # 1 # [[C/]] commO,

hence [c]lov = []lo’ # [¢']lov for some v.

Then for context

D def C|(e ; while v=x do skip)]

we have [D[c]]l commo’ = L % [D[11 comma’,
= Oow(Dlc]) # Osp(DI]).

