
The Simple Imperative Language

intexp ::= 0 |1 | . . .
| var
| -intexp | intexp+intexp | intexp-intexp | . . .

boolexp ::= true | false
| intexp = intexp | intexp < intexp | intexp ≤ intexp | . . .
| ¬boolexp | boolexp ∧ boolexp | boolexp ∨ boolexp | . . .

(no quantified terms)

comm ::= var:= intexp
| skip
| comm ; comm
| if boolexp then comm else comm
| while boolexp do comm (may fail to terminate)

Denotational Semantics of SIL

[[−]]intexp ∈ intexp→ Σ → Z Σ = var → Z

[[−]]boolexp ∈ boolexp→ Σ → B (simpler than [[−]]assert)

[[−]]comm ∈ comm→ Σ → Σ⊥ Σ⊥
def
= Σ ∪ {⊥} (divergence)

[[v:= e]]commσ = [σ | v : [[e]]intexpσ]

[[x:= x*6]]comm[x : 7]
= [x : 7 | x : [[x*6]]intexp[x : 7]]
= [x : 7 | x : 42]
= [x : 42]

[[skip]]commσ = σ

[[c ; c′]]commσ
NOT!
= [[c′]]comm ([[c]]commσ︸ ︷︷ ︸)

= ⊥ if c fails to terminate

Denotational Semantics of SIL

[[−]]intexp ∈ intexp→ Σ → Z Σ = var → Z

[[−]]boolexp ∈ boolexp→ Σ → B (simpler than [[−]]assert)

[[−]]comm ∈ comm→ Σ → Σ⊥ Σ⊥
def
= Σ ∪ {⊥} (divergence)

[[v:= e]]commσ = [σ | v : [[e]]intexpσ]

[[x:= x*6]]comm[x : 7]
= [x : 7 | x : [[x*6]]intexp[x : 7]]
= [x : 7 | x : 42]
= [x : 42]

[[skip]]commσ = σ

[[c ; c′]]commσ
NOT!
= [[c′]]comm ([[c]]commσ︸ ︷︷ ︸)

= ⊥ if c fails to terminate

Denotational Semantics of SIL

[[−]]intexp ∈ intexp→ Σ → Z Σ = var → Z

[[−]]boolexp ∈ boolexp→ Σ → B (simpler than [[−]]assert)

[[−]]comm ∈ comm→ Σ → Σ⊥ Σ⊥
def
= Σ ∪ {⊥} (divergence)

[[v:= e]]commσ = [σ | v : [[e]]intexpσ]

[[x:= x*6]]comm[x : 7]
= [x : 7 | x : [[x*6]]intexp[x : 7]]
= [x : 7 | x : 42]
= [x : 42]

[[skip]]commσ = σ

[[c ; c′]]commσ
NOT!
= [[c′]]comm ([[c]]commσ︸ ︷︷ ︸)

= ⊥ if c fails to terminate

Denotational Semantics of SIL

[[−]]intexp ∈ intexp→ Σ → Z Σ = var → Z

[[−]]boolexp ∈ boolexp→ Σ → B (simpler than [[−]]assert)

[[−]]comm ∈ comm→ Σ → Σ⊥ Σ⊥
def
= Σ ∪ {⊥} (divergence)

[[v:= e]]commσ = [σ | v : [[e]]intexpσ]

[[x:= x*6]]comm[x : 7]
= [x : 7 | x : [[x*6]]intexp[x : 7]]
= [x : 7 | x : 42]
= [x : 42]

[[skip]]commσ = σ

[[c ; c′]]commσ
NOT!
= [[c′]]comm ([[c]]commσ)[[c]]commσ︸ ︷︷ ︸

= ⊥ if c fails to terminate

Denotational Semantics of SIL

[[−]]intexp ∈ intexp→ Σ → Z Σ = var → Z

[[−]]boolexp ∈ boolexp→ Σ → B (simpler than [[−]]assert)

[[−]]comm ∈ comm→ Σ → Σ⊥ Σ⊥
def
= Σ ∪ {⊥} (divergence)

[[v:= e]]commσ = [σ | v : [[e]]intexpσ]

[[x:= x*6]]comm[x : 7]
= [x : 7 | x : [[x*6]]intexp[x : 7]]
= [x : 7 | x : 42]
= [x : 42]

[[skip]]commσ = σ

[[c ; c′]]commσ
NOT!
= [[c′]]comm ([[c]]commσ︸ ︷︷ ︸)

= ⊥ if c fails to terminate

Semantics of Sequential Composition

We can extend f ∈ S → T⊥ to f⊥⊥ ∈ S⊥→ T⊥:

f⊥⊥ x
def
=

⊥, if x = ⊥
f x, otherwise

This defines (−)⊥⊥ ∈ (S → T⊥) → S⊥→ T⊥
(a special case of the Kleisli monadic operator).

So
[[−]]comm ∈ comm → Σ → Σ⊥

⇒ [[c′]]comm ∈ Σ → Σ⊥

⇒ ([[c′]]comm)⊥⊥ ∈ Σ⊥→ Σ⊥

[[c ; c′]]commσ = ([[c′]]comm)⊥⊥([[c]]commσ)

Semantics of Conditionals

[[if b then c0 else c1]]commσ =


[[c0]]commσ, if [[b]]boolexpσ = true

[[c1]]commσ, if [[b]]boolexpσ = false

Example:

[[if x<0 then x:= -x else skip]]comm[x : −3]

= [[x:= -x]]comm[x : −3], since [[x<0]]boolexp[x : −3] = true

= [x : −3 | x : [[-x]]intexp[x : −3]]

= [x : 3]

[[if x<0 then x:= -x else skip]]comm[x : 5]

= [[skip]]comm[x : 5], since [[x<0]]boolexp[x : 5] = false

= [x : 5]

Problems with the Semantics of Loops

Idea: define the meaning of while b do c as that of

if b then (c ; while b do c) else skip

But the equation

[[while b do c]]commσ

= [[if b then (c ; while b do c) else skip]]commσ

=

([[while b do c]]comm)⊥⊥([[c]]commσ), if [[b]]boolexpσ = true
σ, otherwise

is not syntax directed and sometimes has infinitely many solutions:

[[while true do x:= x+1]]comm = λσ : Σ. σ′ is a solution for any σ′.

Partially Ordered Sets

A relation ρ is reflexive on S iff ∀x ∈ S. xρx
transitive iff xρy & yρz ⇒ xρz
antisymmetric iff xρy & yρx ⇒ x = y
symmetric iff xρy ⇒ yρx

v is reflexive on P & transitive ⇒v is a preorder on P

v is a preorder on P & antisymmetric ⇒v is a partial order on P

P with a partial order v on P ⇒a poset P

P with IP as a partial order on P ⇒a discretely ordered P

f∈P→P ′ & ∀x, y∈P. (x v y⇒fxv′fy)⇒f is monotone from P to P ′

y ∈ P : ∀X ⊆ P. ∀x ∈ X. x v y ⇒y is an upper bound of X

Least Upper Bounds

y is a lub of X ⊆ P if y is an upper bound of X
and ∀z ∈ P. (z is an upper bound of X ⇒ y v z)

If P is a poset and X ⊆ P , there is at most one lub ⊔
X of X .⊔{} = ⊥ — the least element of P (when it exists).

Let X ⊆ P P such that ⊔
X exists for every X ∈ X . Then

⊔
{

⊔
X |X ∈ X } =

⊔ ⋃
X

if either of these lubs exists. In particular

∞⊔
i=0

∞⊔
j=0

xij =
⊔
{xij | i ∈ N and j ∈ N } =

∞⊔
j=0

∞⊔
i=0

xij

if ⊔∞
i=0 xij exist for all j, or ⊔∞

j=0 xij exist for all i.

Domains

A chain is a countably infinite non-decreasing sequence x0 v x1 v . . .

The limit of a chain C is its lub ⊔
C when it exists.

A chain C is interesting if ⊔
C /∈ C.

(Chains with finitely many distinct elements are uninteresting.)

A poset P is a predomain (or complete partial order — cpo)

if P contains the limits of all its chains.

A predomain P is a domain (or pointed cpo) if P has a least element⊥.

In semantic domains, v is an order based on information content:

x v y (x approximates y, y is a refinement of x)

if x yields the same results as y in all contexts when it terminates,
but may diverge in more contexts.

Lifting

Any set S can be viewed as a predomain with discrete partial order

v= IS.

The lifting P⊥ of a predomain P is the domain D = P ∪ {⊥}

where ⊥ /∈ P , and x vD y if x = ⊥ or x vP y.

c d f

a b

S[0000000000000

0000000000000

CK
�������������

�������������

e

BJ

 g

T\1111111111111

1111111111111

−→

c d f

a b

S[0000000000000

0000000000000

BJ

e

BJ

 g

T\1111111111111

1111111111111

⊥

ai LLLLLLLLLLLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLLLLLLLLLLL

T\2222222222222

2222222222222

AI
�������������

�������������

4<qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq

D is a flat domain if D − {⊥} is discretely ordered by v.

Continuous Functions

If P and P ′ are predomains, f ∈ P → P ′ is a

continuous function from P to P ′ if it maps limits to limits:

f(
⊔
{xi |xi ∈ C }) =

⊔′{ f xi |xi ∈ C } for every chain C ⊆ P

Continuous functions are monotone: consider chains x v y v y . . .

There are non-continuous monotone functions:

Let P ⊇ the interesting chain C = (x0 v x1 v . . .) with a limit x in P ,

and P ′ = {⊥,>} with ⊥ v′ >. Then

f = { [xi,⊥] |xi ∈ C } ∪ {[x,>]}

is monotone but not continuous: ⊔′{ f xi |xi ∈ C }=⊥ 6= >=f(
⊔

C)

Monotone vs Continuous Functions

If f ∈ P → P ′ is monotone, then f is continuous

iff f(
⊔
i

xi) v
⊔
i

′(f xi) for all interesting chains xi (i ∈ N) in P .

Proof

[1ex] For uninteresting chains:

if
⊔
i

xi = xn, then
⊔
i

′(fxi) = fxn = f(
⊔
i

xi).

[1ex] For interesting chains: prove the opposite approximation:

(∀i ∈ N. xi v
⊔
j

xj)⇒ (∀i ∈ N. fxi v f(
⊔
j

xj))

⇒
⊔
i

′(fxi) v f(
⊔
i

xi)

The (Pre)domain of Continuous Functions

Pointwise ordering on functions in P → P ′ where P ′ is a predomain:

f v→ g ⇐⇒ ∀x ∈ P. f x v′ g x

Proposition:

If both P and P ′ are predomains, then the set [P → P ′] of continuous

functions from P to P ′ with partial order v→ is a predomain with

⊔
fi = λx ∈ P.

⊔′(fix)

If P ′ is a domain, then [P → P ′] is a domain with ⊥→ = λx ∈ P.⊥′

The (Pre)domain of Continuous Functions: Proof

To prove [P → P ′] is a predomain:

Let fi be a chain in [P → P ′], and f = λx ∈ P.
⊔′fix.

(⊔′fix exists because f0x v′ f1x v′ . . . since f0 v→ f1 v→ . . .
and P ′ is a predomain)

fi v→ f since ∀x ∈ P. fix v′ fx; hence f is an upper bound of {fi}.

If g is such that ∀i ∈ N. fi v→ g, then ∀x ∈ P. fix v′ gx,

hence ∀x ∈ P. fx v′ gx, i.e. f v→ g.

⇒ f is the limit of fi... but is f continuous so it is in [P → P ′]?

Yes: If xj is a chain in P , then

f(
⊔
j

xj) =
⊔
i

′fi(
⊔
j

xj) =
⊔
i

′⊔
j

′fixj =
⊔
j

′⊔
i

′fixj =
⊔
j

′fxj

Some Continuous Functions

For predomains P, P ′, P ′′,

if f ∈ P → P ′ is a constant function, then f ∈ [P → P ′]

IP ∈ [P → P]

if f ∈ [P → P ′] and g ∈ [P ′→ P ′′], then g · f ∈ [P → P ′′]

if f ∈ [P → P ′], then (− · f) ∈ [[P ′→ P ′′] → [P → P ′′]]

if f ∈ [P ′→ P ′′], then (f · −) ∈ [[P → P ′] → [P → P ′′]]

Strict Functions and Lifting

If D and D′ are domains, f ∈ D → D′ is strict if f⊥ = ⊥′.

If P and P ′ are predomains and f ∈ P → P ′, then the strict function

f⊥
def
= λx ∈ P⊥.

fx, if x ∈ P
⊥′, if x = ⊥

is the lifting of f to P⊥→ P ′⊥; if P ′ is a domain, then the strict function

f⊥⊥
def
= λx ∈ P⊥.

fx, if x ∈ P
⊥′, if x = ⊥

is the source lifting of f to P⊥→ P ′.

If f is continuous, so are f⊥ and f⊥⊥.

(−)⊥ and (−)⊥⊥ are also continuous.

Least Fixed-Point

If f ∈ S → S, then x ∈ S is a fixed-point of f if x = fx.

Theorem [Least Fixed-Point of a Continuous Function]

If D is a domain and f ∈ [D → D],

then x
def
=

∞⊔
i=0

f i⊥ is the least fixed-point of f .

Proof:

x exists because ⊥ v f⊥ v . . . f i⊥ v f i+1⊥ v . . . is a chain.

x is a fixed-point because

fx = f(
∞⊔

i=0
f i⊥) =

∞⊔
i=0

f(f i⊥) =
∞⊔

i=1
f i⊥ =

∞⊔
i=0

f i⊥ = x

For any fixed-point y of f , ⊥ v y ⇒ f⊥ v fy = y,

by induction ∀i ∈ N. f i⊥ v y, therefore x =
⊔
(f i⊥) v y.

The Least Fixed-Point Operator

Let

YD = λf ∈ [D → D].
∞⊔

i=0
f i⊥

Then for each f ∈ [D → D], YDf is the least fixed-point of f .

YD ∈ [[D → D] → D]

Semantics of Loops

The semantic equation

[[while b do c]]commσ

=

([[while b do c]]comm)⊥⊥([[c]]commσ), if [[b]]boolexpσ = true
σ, otherwise

implies that [[while b do c]]comm is a fixed-point of

F
def
= λf ∈ [Σ → Σ⊥].λσ ∈ Σ.

f⊥⊥([[c]]commσ), if [[b]]boolexpσ = true
σ, otherwise

We pick the least fixed-point:

[[while b do c]]comm
def
= Y[Σ→Σ⊥]F

Semantics of Loops: Intuition

w0
def
= while true do skip [[w0]]comm =⊥

wi+1
def
= if b then (c ; wi) else skip [[wi+1]]comm =F [[wi]]comm

The loop while b do c behaves like wi from state σ

if the loop evaluates the condition n ≤ i times:

[[wi]]commσ =

[[while b do c]]commσ, if n ≤ i
⊥, if n > i

or the loop fails to terminate:

[[while b do c]]commσ = ⊥ = [[wi]]commσ.

So
∀σ ∈ Σ. [[while b do c]]commσ =

∞⊔
n=0

[[wn]]commσ

⇒ [[while b do c]]comm = Y[Σ→Σ⊥]F

Variable Declarations

Syntax:

comm ::= newvar var:= intexp in comm

Semantics:

[[newvar v:= e in c]]commσ
def
= ([− | v : σv])⊥⊥([[c]]comm[σ | v : [[e]]intexpσ])

=

⊥, if σ′ = ⊥
[σ′ | v : σv], otherwise

where σ′ = [[c]]comm[σ | v : [[e]]intexpσ]

newvar v:= e in c binds v in c, but not in e:

FV (newvar v:= e in c) = (FV (c)− {v}) ∪ FV (e)

Problems with Substitutions

Only variables are allowed on the left of assignment

⇒ substitution cannot be defined as for predicate logic:

(x:= x+1)/x → 10 = 10:= 10+1

We have to require δ ∈ var → var ; then

(v:= e)/δ = (δv):= (e/(cvar · δ))
(c0 ; c1)/δ = (c0/δ) ; (c1/δ)

. . .

(newvar v:= e in c)/δ = newvar u:= (e/(cvar · δ)) in (c/[δ | v : u])

where u /∈ {δw |w ∈ FV (c)− {v}}

Assigned Variables

Hence it is useful to know which variables are assigned to:

FA(v:= e) = {v}
FA(c0 ; c1) = FA(c0) ∪ FA(c1)

. . .
FA(newvar v:= e in c) = FA(c)− {v}

Note that

FA(c) ⊆ FV (c)

Coincidence Theorem for Commands

The meaning of a command now depends

not only on the mapping of its free variables:

[[c]]commσv = σv

if [[c]]commσ 6= ⊥ and v /∈ FV (c)

(i.e. all non-free variables get the values they had before c was executed).

Coincidence Theorem:

(a) If σu = σ′u for all u ∈ FV (c), then [[c]]commσ = ⊥ = [[c]]commσ′

or ∀v ∈ FV (c). [[c]]commσv = [[c]]commσ′v.

(b) If [[c]]commσ 6= ⊥, then [[c]]commσv = σv for all v /∈ FA(c).

More Trouble with Substitutions

Recall that for predicate logic [[−]]([[−]]intexpσ · δ) = [[−/δ]]σ.

The corresponding property for commands: [[−]](σ · δ) = [[−/δ]]σ · δ;
fails in general due to aliasing:

(x:= x+1 ; y:= y*2)/[x : z|y : z] = (z:= z+1 ; z:= z*2)
[x : 2 | y : 2] = [z : 2] · [x : z|y : z]

but
[[x:= x+1 ; y:= y*2]]comm[x : 2 | y : 2] = [x : 3 | y : 4]

([[z:= z+1 ; z:= z*2]]comm[z : 2]) · [x : z|y : z] = [z : 6] · [x : z|y : z]
= [x : 6 | y : 6]

Substitution Theorem for Commands:

If δ ∈ var → var and δ is an injection from a set V ⊇ FV (c),

and σ and σ′ are such that σ′v = σ(δv) for all v ∈ V ,

then ([[c]]comm)σ′v = ([[c/δ]]commσ · δ)v for all v ∈ V .

Abstractness of Semantics

Abstract semantics are an attempt to separate the

important properties of a language (what computations can it express)

from the unimportant (how exactly computations are represented).

The more terms are considered equal by a semantics,

the more abstract it is.

A semantic function [[−]]1 is at least as abstract as [[−]]0

if [[−]]1 equates all terms that [[−]]0 does:

∀c. [[c]]0 = [[c′]]0 ⇒ [[c]]1 = [[c′]]1

Soundness of Semantics

If there are other means of observing the result of a computation,

a semantics may be incorrect if it equates too many terms.

C = the set of contexts: terms with a hole •.

A term c can be placed in the hole of a context C, yielding term C[c]

(not subtitution — variable capture is possible)

Example: if C = newvar x:= 1 in •,
then C[x:= x+1] = newvar x:= 1 in x:= x+1.

O = terms → outcomes : the set of observations.

A semantic function [[−]] is sound iff

∀c, c′. [[c]] = [[c′]] ⇒ ∀O ∈ O. ∀C ∈ C. O(C[c]) = O(C[c′]).

Fully Abstract Semantics

Recap:

[[−]]1 is at least as abstract as [[−]]0

if [[−]]1 equates all terms that [[−]]0 does:

∀c. [[c]]0 = [[c′]]0 ⇒ [[c]]1 = [[c′]]1

[[−]] is sound iff

∀c, c′. [[c]] = [[c′]] ⇒ ∀O ∈ O. ∀C ∈ C. O(C[c]) = O(C[c′]).

A semantics is fully abstract iff

∀c, c′. [[c]] = [[c′]] ⇔ ∀O ∈ O. ∀C ∈ C. O(C[c]) = O(C[c′])

i.e. iff it is a “most abstract” sound semantics.

Full Abstractness of Semantics for SIL

Consider observations Oσ,v ∈ O
def
= comm → Z⊥

observing the value of variable v after executing from state σ:

Oσ,v(c) =

⊥, if [[c]]commσ = ⊥
[[c]]commσv, otherwise

 = ((−) v)⊥([[c]]commσ)

[[−]]comm is fully abstract (with respect to observations O):

[[−]]comm is sound: By compositionality, if [[c]]comm = [[c′]]comm ,

then [[C[c]]]comm = [[C[c′]]]comm for any context C (induction);

hence O(C[c]) = O(C[c′]) for any observation O.

[[−]]comm is most abstract: Consider the empty context C = •;

if Oσ,v(c) = Oσ,v(c′) for all v ∈ var , σ ∈ Σ, then [[c]] = [[c′]].

Observing Termination of Closed Commands

Suffices to observe if closed commands terminate:

If [[c]]comm 6= [[c′]]comm , construct a context that distinguishes c and c′.

Suppose [[c]]commσ 6= [[c′]]commσ for some σ.

Let {vi | i ∈ 1 to n} def
= FV (c) ∪ FV (c′),

and κi be constants such that [[κi]]intexpσ′ = σvi.

Then by the Coincidence Theorem

[[c]]comm[σ′|vi : κi
i∈1 to n] 6= [[c′]]comm[σ′|vi : κi

i∈1 to n]

for any state σ′.

Observing Termination Cont’d

Consider then the context C closing both c and c′:

C
def
= newvar v1:=κ1 in . . .newvar vn:=κn in •

C[c] and C[c′] may not both diverge from any initial state σ′, since

[[C[c]]]commσ′ = ([−|vi : σ′vi
i∈1 to n])⊥⊥ [[c]]comm[σ′|vi : κi

i∈1 to n]

and C[c] = ⊥ = C[c′] is only possible if

[[c]]comm[σ′|vi : κi
i∈1 to n] = ⊥ = [[c′]]comm[σ′|vi : κi

i∈1 to n],

but by assumption and Coincidence the initial state

[σ′|vi : κi
i∈1 to n] distinguishes c and c′.

Observing Termination Cont’d

If only one of C[c] and C[c′] terminates,

then the restricted observations on C distinguishes between them.

If both C[c] and C[c′] terminate,

then [[c]]commσ 6= ⊥ 6= [[c′]]commσ,

hence [[c]]σv = [[κ]]σ′ 6= [[c′]]σv for some v.

Then for context

D
def
= C[(• ; while v=κ do skip)]

we have [[D[c]]]commσ′ = ⊥ 6= [[D[c′]]]commσ′,

⇒ Oσ,v(D[c]) 6= Oσ,v(D[c′]).

