
Chapter 29

Control Stacks

The technique of structural dynamics is very useful for theoretical pur-
poses, such as proving type safety, but is too high level to be directly usable
in an implementation. One reason is that the use of “search rules” requires
the traversal and reconstruction of an expression in order to simplify one
small part of it. In an implementation we would prefer to use some mecha-
nism to record “where we are” in the expression so that we may “resume”
from that point after a simplification. This can be achieved by introduc-
ing an explicit mechanism, called a control stack, that keeps track of the
context of an instruction step for just this purpose. By making the control
stack explicit the transition rules avoid the need for any premises—every
rule is an axiom. This is the formal expression of the informal idea that no
traversals or reconstructions are required to implement it. In this chapter
we introduce an abstract machine, K{nat⇀}, for the language L{nat⇀}.
The purpose of this machine is to make control flow explicit by introducing
a control stack that maintains a record of the pending sub-computations of
a computation. We then prove the equivalence ofK{nat⇀}with the struc-
tural dynamics of L{nat⇀}.

29.1 Machine Definition

A state, s, ofK{nat⇀} consists of a control stack, k, and a closed expression,
e. States may take one of two forms:

1. An evaluation state of the form k . e corresponds to the evaluation of
a closed expression, e, relative to a control stack, k.

274 29.1 Machine Definition

2. A return state of the form k / e, where e val, corresponds to the evalu-
ation of a stack, k, relative to a closed value, e.

As an aid to memory, note that the separator “points to” the focal entity
of the state, the expression in an evaluation state and the stack in a return
state.

The control stack represents the context of evaluation. It records the
“current location” of evaluation, the context into which the value of the
current expression is to be returned. Formally, a control stack is a list of
frames:

ε stack (29.1a)

f frame k stack

k; f stack
(29.1b)

The definition of frame depends on the language we are evaluating. The
frames of K{nat⇀} are inductively defined by the following rules:

s(−) frame (29.2a)

ifz(−; e1; x.e2) frame (29.2b)

ap(−; e2) frame (29.2c)

The frames correspond to searchrules in the dynamics of L{nat⇀}. Thus,
instead of relying on the structure of the transition derivation to maintain a
record of pending computations, we make an explicit record of them in the
form of a frame on the control stack.

The transition judgement between states of the K{nat⇀} machine is
inductively defined by a set of inference rules. We begin with the rules for
natural numbers.

k . z 7→ k / z (29.3a)

k . s(e) 7→ k;s(−) . e (29.3b)

k;s(−) / e 7→ k / s(e) (29.3c)

To evaluate z we simply return it. To evaluate s(e), we push a frame on
the stack to record the pending successor, and evaluate e; when that returns
with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k . ifz(e; e1; x.e2) 7→ k;ifz(−; e1; x.e2) . e (29.4a)

k;ifz(−; e1; x.e2) / z 7→ k . e1 (29.4b)

VERSION 1.16 DRAFT REVISED 08.27.2011

29.2 Safety 275

k;ifz(−; e1; x.e2) / s(e) 7→ k . [e/x]e2 (29.4c)

First, the test expression is evaluated, recording the pending case analysis
on the stack. Once the value of the test expression has been determined,
we branch to the appropriate arm of the conditional, substituting the pre-
decessor in the case of a positive number.

Finally, we consider the rules for functions and recursion.

k . lam[τ](x.e) 7→ k / lam[τ](x.e) (29.5a)

k . ap(e1; e2) 7→ k;ap(−; e2) . e1 (29.5b)

k;ap(−; e2) / lam[τ](x.e) 7→ k . [e2/x]e (29.5c)

k . fix[τ](x.e) 7→ k . [fix[τ](x.e)/x]e (29.5d)

These rules ensure that the function is evaluated before the argument, ap-
plying the function when both have been evaluated. Note that evaluation
of general recursion requires no stack space! (But see Chapter 39 for more
on evaluation of general recursion.)

The initial and final states of theK{nat⇀} are defined by the following
rules:

ε . e initial (29.6a)

e val
ε / e final

(29.6b)

29.2 Safety

To define and prove safety for K{nat⇀} requires that we introduce a new
typing judgement, k : τ, stating that the stack k expects a value of type τ.
This judgement is inductively defined by the following rules:

ε : τ (29.7a)

k : τ′ f : τ ⇒ τ′

k; f : τ
(29.7b)

This definition makes use of an auxiliary judgement, f : τ ⇒ τ′, stating
that a frame f transforms a value of type τ to a value of type τ′.

s(−) : nat⇒ nat (29.8a)

e1 : τ x : nat ` e2 : τ

ifz(−; e1; x.e2) : nat⇒ τ
(29.8b)

REVISED 08.27.2011 DRAFT VERSION 1.16

276 29.3 Correctness of the Control Machine

e2 : τ2
ap(−; e2) : arr(τ2; τ)⇒ τ

(29.8c)

The two forms of K{nat⇀} state are well-formed provided that their
stack and expression components match.

k : τ e : τ
k . e ok

(29.9a)

k : τ e : τ e val
k / e ok

(29.9b)

We leave the proof of safety of K{nat⇀} as an exercise.

Theorem 29.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

29.3 Correctness of the Control Machine

It is natural to ask whether K{nat⇀} correctly implements L{nat⇀}. If
we evaluate a given expression, e, using K{nat⇀}, do we get the same
result as would be given by L{nat⇀}, and vice versa?

Answering this question decomposes into two conditions relatingK{nat⇀}
to L{nat⇀}:

Completeness If e 7→∗ e′, where e′ val, then ε . e 7→∗ ε / e′.

Soundness If ε . e 7→∗ ε / e′, then e 7→∗ e′ with e′ val.

Let us consider, in turn, what is involved in the proof of each part.
For completeness it is natural to consider a proof by induction on the

definition of multistep transition, which reduces the theorem to the follow-
ing two lemmas:

1. If e val, then ε . e 7→∗ ε / e.

2. If e 7→ e′, then, for every v val, if ε . e′ 7→∗ ε / v, then ε . e 7→∗ ε / v.

The first can be proved easily by induction on the structure of e. The second
requires an inductive analysis of the derivation of e 7→ e′, giving rise to two
complications that must be accounted for in the proof. The first complica-
tion is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the machine is

ε . ap(e1; e2) 7→ ε;ap(−; e2) . e1,

VERSION 1.16 DRAFT REVISED 08.27.2011

29.3 Correctness of the Control Machine 277

and so we must consider evaluation of e1 on a non-empty stack.
A natural generalization is to prove that if e 7→ e′ and k . e′ 7→∗ k / v,

then k . e 7→∗ k / v. Consider again the case e = ap(e1; e2), e′ = ap(e′1; e2),
with e1 7→ e′1. We are given that k . ap(e′1; e2) 7→∗ k / v, and we are to
show that k . ap(e1; e2) 7→∗ k / v. It is easy to show that the first step of
the former derivation is

k . ap(e′1; e2) 7→ k;ap(−; e2) . e′1.

We would like to apply induction to the derivation of e1 7→ e′1, but to do so
we must have a v1 such that e′1 7→∗ v1, which is not immediately at hand.

This means that we must consider the ultimate value of each sub-expression
of an expression in order to complete the proof. This information is pro-
vided by the evaluation dynamics described in Chapter 9, which has the
property that e ⇓ e′ iff e 7→∗ e′ and e′ val.

Lemma 29.2. If e ⇓ v, then for every k stack, k . e 7→∗ k / v.

The desired result follows by the analogue of Theorem 9.2 on page 83
for L{nat⇀}, which states that e ⇓ v iff e 7→∗ v.

For the proof of soundness, it is awkward to reason inductively about
the multistep transition from ε . e 7→∗ ε / v, because the intervening
steps may involve alternations of evaluation and return states. Instead we
regard each K{nat⇀}machine state as encoding an expression, and show
that K{nat⇀} transitions are simulated by L{nat⇀} transitions under
this encoding.

Specifically, we define a judgement, s# e, stating that state s “unravels
to” expression e. It will turn out that for initial states, s = ε . e, and final
states, s = ε / e, we have s # e. Then we show that if s 7→∗ s′, where
s′ final, s # e, and s′ # e′, then e′ val and e 7→∗ e′. For this it is enough to
show the following two facts:

1. If s# e and s final, then e val.

2. If s 7→ s′, s# e, s′ # e′, and e′ 7→∗ v, where v val, then e 7→∗ v.

The first is quite simple, we need only observe that the unravelling of a
final state is a value. For the second, it is enough to show the following
lemma.

Lemma 29.3. If s 7→ s′, s# e, and s′ # e′, then e 7→∗ e′.

Corollary 29.4. e 7→∗ n iff ε . e 7→∗ ε / n.

The remainder of this section is devoted to the proofs of the soundness
and completeness lemmas.

REVISED 08.27.2011 DRAFT VERSION 1.16

278 29.3 Correctness of the Control Machine

29.3.1 Completeness

Proof of Lemma 29.2 on the previous page. The proof is by induction on an eval-
uation dynamics for L{nat⇀}.

Consider the evaluation rule

e1 ⇓ lam[τ2](x.e) [e2/x]e ⇓ v
ap(e1; e2) ⇓ v

(29.10)

For an arbitrary control stack, k, we are to show that k . ap(e1; e2) 7→∗ k / v.
Applying both of the inductive hypotheses in succession, interleaved with
steps of the abstract machine, we obtain

k . ap(e1; e2) 7→ k;ap(−; e2) . e1

7→∗ k;ap(−; e2) / lam[τ2](x.e)
7→ k . [e2/x]e
7→∗ k / v.

The other cases of the proof are handled similarly.

29.3.2 Soundness

The judgement s# e′, where s is either k . e or k / e, is defined in terms of
the auxiliary judgement k ./ e = e′ by the following rules:

k ./ e = e′

k . e# e′
(29.11a)

k ./ e = e′

k / e# e′
(29.11b)

In words, to unravel a state we wrap the stack around the expression. The
latter relation is inductively defined by the following rules:

ε ./ e = e (29.12a)

k ./ s(e) = e′

k;s(−) ./ e = e′
(29.12b)

k ./ ifz(e1; e2; x.e3) = e′

k;ifz(−; e2; x.e3) ./ e1 = e′
(29.12c)

k ./ ap(e1; e2) = e
k;ap(−; e2) ./ e1 = e

(29.12d)

These judgements both define total functions.

VERSION 1.16 DRAFT REVISED 08.27.2011

29.3 Correctness of the Control Machine 279

Lemma 29.5. The judgement s# e has mode (∀, ∃!), and the judgement k ./ e =
e′ has mode (∀, ∀, ∃!).

That is, each state unravels to a unique expression, and the result of
wrapping a stack around an expression is uniquely determined. We are
therefore justified in writing k ./ e for the unique e′ such that k ./ e = e′.

The following lemma is crucial. It states that unravelling preserves the
transition relation.

Lemma 29.6. If e 7→ e′, k ./ e = d, k ./ e′ = d′, then d 7→ d′.

Proof. The proof is by rule induction on the transition e 7→ e′. The inductive
cases, in which the transition rule has a premise, follow easily by induction.
The base cases, in which the transition is an axiom, are proved by an induc-
tive analysis of the stack, k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ =
ap(e′1; e2), and e1 7→ e′1. We have k ./ e = d and k ./ e′ = d′. It follows from
Rules (29.12) that k;ap(−; e2) ./ e1 = d and k;ap(−; e2) ./ e′1 = d′. So by
induction d 7→ d′, as desired.

For an example of a base case, suppose that e = ap(lam[τ2](x.e); e2)

and e′ = [e2/x]e with e 7→ e′ directly. Assume that k ./ e = d and k ./ e′ = d′;
we are to show that d 7→ d′. We proceed by an inner induction on the
structure of k. If k = ε, the result follows immediately. Consider, say, the
stack k = k′;ap(−; c2). It follows from Rules (29.12) that k′ ./ ap(e; c2) = d
and k′ ./ ap(e′; c2) = d′. But by the SOS rules ap(e; c2) 7→ ap(e′; c2), so by
the inner inductive hypothesis we have d 7→ d′, as desired.

We are now in a position to complete the proof of Lemma 29.3 on page 277.

Proof of Lemma 29.3 on page 277. The proof is by case analysis on the transi-
tions of K{nat⇀}. In each case after unravelling the transition will corre-
spond to zero or one transitions of L{nat⇀}.

Suppose that s = k . s(e) and s′ = k;s(−) . e. Note that k ./ s(e) = e′

iff k;s(−) ./ e = e′, from which the result follows immediately.
Suppose that s = k;ap(lam[τ](x.e1);−) / e2 and s′ = k . [e2/x]e1.

Let e′ be such that k;ap(lam[τ](x.e1);−) ./ e2 = e′ and let e′′ be such that
k ./ [e2/x]e1 = e′′. Observe that k ./ ap(lam[τ](x.e1); e2) = e′. The result
follows from Lemma 29.6.

REVISED 08.27.2011 DRAFT VERSION 1.16

280 29.4 Notes

29.4 Notes

The abstract machine considered here is typical of a wide class of machines
that make control flow explicit in the state. The prototype is Landin’s SECD
machine [49], which may be seen as a linearization of a structural opera-
tional semantics [75]. An advantage of a machine model is that the explicit
treatment of control is natural for languages that allow the control state
to be explicitly manipulated (see Chapter 31 for a prime example). A dis-
advantage is that one is required to make explicit the control state of the
computation, rather than leave it implicit as in structural operational se-
mantics. Which is better depends wholly on the situation at hand, though
historically there has been greater emphasis on abstract machines than on
structural semantics.

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 30

Exceptions

Exceptions effect a non-local transfer of control from the point at which the
exception is raised to an enclosing handler for that exception. This transfer
interrupts the normal flow of control in a program in response to unusual
conditions. For example, exceptions can be used to signal an error condi-
tion, or to indicate the need for special handling in certain circumstances
that arise only rarely. To be sure, one could use explicit conditionals to
check for and process errors or unusual conditions, but using exceptions
is often more convenient, particularly since the transfer to the handler is
direct and immediate, rather than indirect via a series of explicit checks.

30.1 Failures

A failure is a control mechanism that permits a computation to refuse to re-
turn a value to the point of its evaluation. Failure can be detected by catch-
ing it, diverting evaluation to another expression, called a handler. Failure
can be turned into success, provided that the handler does not itself fail.

The following grammar defines the syntax of failures:

Expr e ::= fail fail failure
catch(e1; e2) catch e1 ow e2 handler

The expression fail aborts the current evaluation, and the expression catch(e1; e2)

handles any failure in e1 by evaluating e2 instead.
The statics of failures is straightforward:

Γ ` fail : τ
(30.1a)

282 30.1 Failures

Γ ` e1 : τ Γ ` e2 : τ

Γ ` catch(e1; e2) : τ
(30.1b)

A failure can have any type, because it never returns. The two expressions
in a catch expression must have the same type, since either might deter-
mine the value of that expression.

The dynamics of failures may be given using stack unwinding. Evalua-
tion of a catch installs a handler on the control stack. Evaluation of a fail

unwinds the control stack by popping frames until it reaches the nearest
enclosing handler, to which control is passed. The handler is evaluated in
the context of the surrounding control stack, so that failures within it prop-
agate further up the stack.

Stack unwinding can be defined directly using structural dynamics, but
we prefer to make use of the stack machine defined in Chapter 29. In ad-
dition to states of the form k . e, which evaluates the expression e on the
stack k, and k / e, which passes the value e to the stack k, we make use of
an additional form of state, k J , which passes a failure up the stack to the
nearest enclosing handler.

The set of frames defined in Chapter 29 is extended with the additonal
form catch(−; e2). The transition rules given in Chapter 29 are extended
with the following additional rules:

k . fail 7→ k J
(30.2a)

k . catch(e1; e2) 7→ k;catch(−; e2) . e1
(30.2b)

k;catch(−; e2) / v 7→ k / v
(30.2c)

k;catch(−; e2) J 7→ k . e2
(30.2d)

k; f J 7→ k J (30.2e)

As a notational convenience, we require that Rule (30.2e) apply only if none
of the preceding rules apply. Evaluating fail propagates a failure up the
stack. The act of raising an exception may itself raise an exception. Eval-
uating catch(e1; e2) consists of pushing the handler onto the control stack
and evaluating e1. If a value is propagated to the handler, the handler is re-
moved and the value continues to propagate upwards. If a failure is prop-
agated to the handler, the stored expression is evaluated with the handler
removed from the control stack. All other frames propagate failures.

VERSION 1.16 DRAFT REVISED 08.27.2011

30.2 Exceptions 283

The definition of initial state remains the same as for K{nat⇀}, but we
change the definition of final state to include these two forms:

e val
ε / e final

(30.3a)

ε J final
(30.3b)

The first of these is as before, corresponding to a normal result with the
specified value. The second is new, corresponding to an uncaught excep-
tion propagating through the entire program.

It is a straightforward exercise the extend the definition of stack typ-
ing given in Chapter 29 to account for the new forms of frame. Using this,
safety can be proved by standard means. Note, however, that the meaning
of the progress theorem is now significantly different: a well-typed pro-
gram does not get stuck, but it may well result in an uncaught failure!

Theorem 30.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

30.2 Exceptions

Failures are simplistic in that they do not distinguish different causes, and
hence do not permit handlers to react differently to different circumstances.
An exception is a generalization of a failure that associates a value with the
failure. This value is passed to the handler, allowing it to discriminate be-
tween various forms of failures, and to pass data appropriate to that form
of failure. The type of values associated with exceptions is discussed in Sec-
tion 30.3 on the next page. For now, we simply assume that there is some
type, τexn, of values associated with a failure.

The syntax of exceptions is given by the following grammar:

Expr e ::= raise[τ](e) raise(e) exception
handle(e1; x.e2) handle e1 ow x⇒ e2 handler

The argument to raise is evaluated to determine the value passed to the
handler. The expression handle(e1; x.e2) binds a variable, x, in the han-
dler, e2, to which the associated value of the exception is bound, should an
exception be raised during the execution of e1.

REVISED 08.27.2011 DRAFT VERSION 1.16

284 30.3 Exception Type

The statics of exceptions generalizes that of failures:

Γ ` e : τexn
Γ ` raise[τ](e) : τ

(30.4a)

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` handle(e1; x.e2) : τ
(30.4b)

The dynamics of exceptions is a mild generalization of the dynamics of
failures in which we generalize the failure state, k J , to the exception state,
k J e, which passes a value of type τexn along with the failure. The syntax
of stack frames is extended to include raise[τ](−) and handle(−; x.e2).
The dynamics of exceptions is specified by the following rules:

k . raise[τ](e) 7→ k;raise[τ](−) . e
(30.5a)

k;raise[τ](−) / e 7→ k J e
(30.5b)

k;raise[τ](−) J e 7→ k J e
(30.5c)

k . handle(e1; x.e2) 7→ k;handle(−; x.e2) . e1
(30.5d)

k;handle(−; x.e2) / e 7→ k / e
(30.5e)

k;handle(−; x.e2) J e 7→ k . [e/x]e2
(30.5f)

(f 6= handle(−; x.e2))

k; f J e 7→ k J e
(30.5g)

It is a straightforward exercise to extend the safety theorem given in
Section 30.1 on page 281 to exceptions.

30.3 Exception Type

The statics of exceptions is parameterized by the type of exception values,
τexn. This type may be chosen arbitrarily, but it must be shared by all ex-
ceptions in a program to ensure type safety. For otherwise a handler cannot
tell what type of value to expect from an exception, compromising safety.

VERSION 1.16 DRAFT REVISED 08.27.2011

30.3 Exception Type 285

But how do we choose the type of exceptions? A very naı̈ve choice
would be to take τexn to be the type str, so that, for example, one may
write

raise "Division by zero error."

to signal the obvious arithmetic fault. This is fine as far as it goes, but a
handler for such an exception would have to interpret the string if it is to
distinguish one exception from another!

Motivated by this, we might choose τexn to be nat, which amounts to
saying that exceptional conditions are coded as natural numbers.1 This
does allow the handler to distinguish one source of failure from another,
but makes no provision for associating data with the failure. Moreover, it
forces the programmer to impose a single, global convention for indexing
the causes of failure, compromising modular development and evolution.

The first concern—how to associate data specific to the type of failure—
can be addressed by taking τexn to be a labelled sum type whose classes are
the forms of failure, and whose associated types determine the form of the
data attached to the exception. For example, the type τexn might have the
form

τexn = [div : unit, fnf : string, . . .].

The class div might represent an arithmetic fault, with no associated data,
and the class fnf might represent a “file not found” error, with associated
data being the name of the file.

Using a sum type for τexn makes it easy for the handler to discriminate
on the source of the failure, and to recover the associated data without fear
of a type safety violation. For example, we might write

try e1 ow x ⇒
match x {
div 〈〉 ⇒ ediv

| fnf s ⇒ efnf }

to handle the exceptions specified by the sum type given in the preceding
paragraph.

The problem with choosing a sum type for τexn is that it imposes a static
classification of the sources of failure in a program. There must be one, glob-
ally agreed-upon type that classifies all possible forms of failure, and spec-
ifies their associated data. Using sums in this manner impedes modular

1In Unix these are called errno’s, for error numbers.

REVISED 08.27.2011 DRAFT VERSION 1.16

286 30.4 Encapsulation

development and evolution, since all of the modules comprising a system
must agree on the one, central type of exception values. A better approach
is to use dynamic classification for exception values by choosing τexn to be an
extensible sum, one to which new classes may be added at execution time.
This allows separate program modules to introduce their own failure clas-
sification scheme without worrying about interference with one another;
the initialization of the module generates new classes at run-time that are
guaranteed to be distinct from all other classes previously or subsequently
generated. (See Chapter 36 for more on dynamic classification.)

30.4 Encapsulation

It is sometimes useful to distinguish expressions that can fail or raise an
exception from those that cannot. An expression is called fallible, or ex-
ceptional, if it can fail or raise an exception during its evaluation, and is
infallible, or unexceptional, otherwise. The concept of fallibility is intention-
ally permissive in that an infallible expression may be considered to be
(vacuously) fallible, whereas infallibility is intended to be strict in that an
infallible expression cannot fail. Consequently, if e1 and e2 are two infal-
lible expressions both of whose values are required in a computation, we
may evaluate them in either order without affecting the outcome. If, on
the other hand, one or both are fallible, then the outcome of the compu-
tation is sensitive to the evaluation order (whichever fails first determines
the overall result).

To formalize this distinction we distinguish two modes of expression,
the fallible and the infallible, linked by a modality classifying the fallible
expressions of a type.

Type τ ::= fallible(τ) τ fallible fallible
Fall f ::= fail fail failure

succ(e) succ e success
try(e; x. f1; f2) let fall(x) be e in f1 ow f2 handler

Infall e ::= x x variable
fall(f) fall f fallible
try(e; x.e1; e2) let fall(x) be e in e1 ow e2 handler

The type τ fallible is the type of encapsulated fallible expressions of
type τ. Fallible expressions include failures, successes (infallible expres-
sions thought of as vacuously fallible), and handlers that intercept failures,

VERSION 1.16 DRAFT REVISED 08.27.2011

30.4 Encapsulation 287

but which may itself fail. Infallible expressions include variables, encap-
sulated fallible expressions, and handlers that intercepts failures, always
yielding an infallible result.

The statics of encapsulated failures consists of two judgement forms,
Γ ` e : τ for infallible expressions and Γ ` f ∼ τ for fallible expressions.
These judgements are defined by the following rules:

Γ, x : τ ` x : τ
(30.6a)

Γ ` f ∼ τ

Γ ` fall(f) : fallible(τ)
(30.6b)

Γ ` e : fallible(τ) Γ, x : τ ` e1 : τ′ Γ ` e2 : τ′

Γ ` try(e; x.e1; e2) : τ′
(30.6c)

Γ ` fail ∼ τ
(30.6d)

Γ ` e : τ
Γ ` succ(e) ∼ τ

(30.6e)

Γ ` e : fallible(τ) Γ, x : τ ` f1 ∼ τ′ Γ ` f2 ∼ τ′

Γ ` try(e; x. f1; f2) ∼ τ′
(30.6f)

Rule (30.6c) specifies that a handler may be used to turn a fallible expres-
sion (encapsulated by e) into an infallible computation, provided that the
result is infallible regardless of whether the encapsulated expression suc-
ceeds or fails.

The dynamics of encapsulated failures is readily derived, though some
care must be taken with the elimination form for the modality.

fall(f) val
(30.7a)

k . try(e; x.e1; e2) 7→ k;try(−; x.e1; e2) . e
(30.7b)

k;try(−; x.e1; e2) / fall(f) 7→ k;try(−; x.e1; e2);fall(−) . f
(30.7c)

k . fail 7→ k J
(30.7d)

REVISED 08.27.2011 DRAFT VERSION 1.16

288 30.5 Notes

k . succ(e) 7→ k;succ(−) . e
(30.7e)

k;succ(−) / e 7→ k / succ(e) (30.7f)

e val
k;try(−; x.e1; e2);fall(−) / succ(e) 7→ k . [e/x]e1

(30.7g)

k;try(−; x.e1; e2);fall(−) J 7→ k . e2
(30.7h)

We have omitted the rules for the fallible form of handler; they are sim-
ilar to Rules (30.7b) to (30.7b) and (30.7g) to (30.7h), albeit with infallible
subexpressions e1 and e2 replaced by fallible subexpressions f1 and f2.

An initial state has the form k . e, where e is an infallible expression,
and k is a stack of suitable type. Consequently, a fallible expression, f , can
only be evaluated on a stack of the form

k;try(−; x.e1; e2);fall(−)

in which a handler for any failure that may arise from f is present. There-
fore, a final state has the form ε / e, where e val; no uncaught failure can
arise.

30.5 Notes

Various forms of exceptions were explored in the many dialects of Lisp (see,
for example, [90]). The original formulation of ML as a metalanguage for
mechanized logic [33] made extensive use of exceptions (called “failures”)
to implement tactics and tacticals. Most modern languages now include an
exception mechanism of the kind considered here.

The essential distinction between the exception mechanism and excep-
tion values is often misunderstood. The two have no relationship to one an-
other. Exception values are often dynamically classified (see Chapter 36),
but dynamic classification has many more uses than just exception values.
Another common misconception is to link exceptions with fluid binding
(for which see Chapter 35). As the account given here makes clear, there
is absolutely no relationship between exceptions and fluid binding. Excep-
tions are simply a particular use of the monad associated with option types,
as described in Section 30.4 on page 286.

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 31

Continuations

The semantics of many control constructs (such as exceptions and co-routines)
can be expressed in terms of reified control stacks, a representation of a con-
trol stack as an ordinary value. This is achieved by allowing a stack to
be passed as a value within a program and to be restored at a later point,
even if control has long since returned past the point of reification. Rei-
fied control stacks of this kind are called continuations; they are values that
can be passed and returned at will in a computation. Continuations never
“expire”, and it is always sensible to reinstate a continuation without com-
promising safety. Thus continuations support unlimited “time travel” —
we can go back to a previous point in the computation and then return to
some point in its future, at will.

Why are continuations useful? Fundamentally, they are representations
of the control state of a computation at a given point in time. Using con-
tinuations we can “checkpoint” the control state of a program, save it in a
data structure, and return to it later. In fact this is precisely what is neces-
sary to implement threads (concurrently executing programs) — the thread
scheduler must be able to checkpoint a program and save it for later exe-
cution, perhaps after a pending event occurs or another thread yields the
processor.

31.1 Informal Overview

We will extend L{→} with the type cont(τ) of continuations accepting
values of type τ. The introduction form for cont(τ) is letcc[τ](x.e),
which binds the current continuation (that is, the current control stack) to the
variable x, and evaluates the expression e. The corresponding elimination

290 31.1 Informal Overview

form is throw[τ](e1; e2), which restores the value of e1 to the control stack
that is the value of e2.

To illustrate the use of these primitives, consider the problem of mul-
tiplying the first n elements of an infinite sequence q of natural numbers,
where q is represented by a function of type nat → nat. If zero occurs
among the first n elements, we would like to effect an “early return” with
the value zero, rather than perform the remaining multiplications. This
problem can be solved using exceptions (we leave this as an exercise), but
we will give a solution that uses continuations in preparation for what fol-
lows.

Here is the solution in L{nat⇀}, without short-cutting:

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ⇒ s(z)

| s(n’) ⇒ (q z) × (ms (q ◦ succ) n’)

}

The recursive call composes q with the successor function to shift the se-
quence by one step.

Here is the version with short-cutting:

λ q : nat ⇀ nat.

λ n : nat.

letcc ret : nat cont in

let ms be

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ⇒ s(z)

| s(n’) ⇒
case q z {
z ⇒ throw z to ret

| s(n’’) ⇒ (q z) × (ms (q ◦ succ) n’)

}
}

in

ms q n

VERSION 1.16 DRAFT REVISED 08.27.2011

31.2 Semantics of Continuations 291

The letcc binds the return point of the function to the variable ret for use
within the main loop of the computation. If zero is encountered, control is
thrown to ret, effecting an early return with the value zero.

Let’s look at another example: given a continuation k of type τ cont and
a function f of type τ′ → τ, return a continuation k′ of type τ′ cont with
the following behavior: throwing a value v′ of type τ′ to k′ throws the value
f (v′) to k. This is called composition of a function with a continuation. We wish
to fill in the following template:

fun compose(f:τ′ → τ,k:τ cont):τ′ cont =

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one in
effect at the point of the ellipsis in the expression throw f(...) to k. This
is the continuation that, when given a value v′, applies f to it, and throws
the result to k. We can seize this continuation using letcc, writing

throw f(letcc x:τ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f:τ′ → τ, k:τ cont):τ′ cont =

letcc ret:τ′ cont cont in

throw (f (letcc r in throw r to ret)) to k

The type of ret is that of a continuation-expecting continuation!

31.2 Semantics of Continuations

We extend the language of L{→} expressions with these additional forms:

Type τ ::= cont(τ) τ cont continuation
Expr e ::= letcc[τ](x.e) letcc x in e mark

throw[τ](e1; e2) throw e1 to e2 goto
cont(k) cont(k) continuation

The expression cont(k) is a reified control stack, which arises during eval-
uation.

REVISED 08.27.2011 DRAFT VERSION 1.16

292 31.2 Semantics of Continuations

The statics of this extension is defined by the following rules:

Γ, x : cont(τ) ` e : τ

Γ ` letcc[τ](x.e) : τ
(31.1a)

Γ ` e1 : τ1 Γ ` e2 : cont(τ1)

Γ ` throw[τ′](e1; e2) : τ′
(31.1b)

The result type of a throw expression is arbitrary because it does not return
to the point of the call.

The statics of continuation values is given by the following rule:

k : τ
Γ ` cont(k) : cont(τ)

(31.2)

A continuation value cont(k) has type cont(τ) exactly if it is a stack ac-
cepting values of type τ.

To define the dynamics we extendK{nat⇀} stacks with two new forms
of frame: e2 exp

throw[τ](−; e2) frame
(31.3a)

e1 val

throw[τ](e1;−) frame
(31.3b)

Every reified control stack is a value:

k stack
cont(k) val

(31.4)

The transition rules for the continuation constructs are as follows:

k . letcc[τ](x.e) 7→ k . [cont(k)/x]e (31.5a)

k . throw[τ](e1; e2) 7→ k;throw[τ](−; e2) . e1 (31.5b)

e1 val

k;throw[τ](−; e2) / e1 7→ k;throw[τ](e1;−) . e2
(31.5c)

k;throw[τ](v;−) / cont(k′) 7→ k′ / v (31.5d)

Evaluation of a letcc expression duplicates the control stack; evaluation of
a throw expression destroys the current control stack.

The safety of this extension of L{→} may be established by a simple
extension to the safety proof for K{nat⇀} given in Chapter 29.

VERSION 1.16 DRAFT REVISED 08.27.2011

31.3 Coroutines 293

We need only add typing rules for the two new forms of frame, which
are as follows:

e2 : cont(τ)

throw[τ′](−; e2) : τ ⇒ τ′
(31.6a)

e1 : τ e1 val

throw[τ′](e1;−) : cont(τ)⇒ τ′
(31.6b)

The rest of the definitions remain as in Chapter 29.

Lemma 31.1 (Canonical Forms). If e : cont(τ) and e val, then e = cont(k)
for some k such that k : τ.

Theorem 31.2 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

31.3 Coroutines

The distinction between a routine and a subroutine is the distinction be-
tween a manager and a worker. The routine calls upon the subroutine to
accomplish a piece of work, and the subroutine returns to the routine when
its work is done. The relationship is asymmetric in that there is a clear dis-
tinction between the caller, the main routine, and the callee, the subroutine.
Often it is useful to consider a symmetric situation in which two routines
each call the other to help accomplish a task. Such a pair of routines are
called coroutines; their relationship to one another is symbiotic rather than
parasitic.

The key to implementing a subroutine is for the caller to pass to the
callee a continuation representing the return point of the subroutine call.
When the subroutine is finished, it calls the continuation passed to it by
the calling routine. Since the subroutine is finished at that point, there is
no need for the callee to pass a continuation back to the caller. The key to
implementing coroutines is to have each routine treat the other as a subrou-
tine of itself. In particular, whenever a coroutine cedes control to its caller,
it provides a continuation that the caller may use to cede control back to
the callee, in the process providing a continuation for itself. (This raises an
interesting question of how the whole process gets started. We’ll return to
this shortly.)

To see how a pair of coroutines is implemented, let us consider the type
of each routine in the pair. A routine is a continuation accepting two ar-
guments, a datum to be passed to that routine when it is resumed, and a

REVISED 08.27.2011 DRAFT VERSION 1.16

294 31.3 Coroutines

continuation to be resumed when the routine is finished its task. The datum
represents the state of the computation, and the continuation is a coroutine
that accepts arguments of the same form. Thus, the type of a coroutine
must satisfy the type isomorphism

τ coro ∼= (τ × τ coro) cont.

So we may take τ coro to be the recursive type

τ coro , µt.(τ × t) cont.

Up to isomorphism, the type τ coro is the type of continuations that accept
a value of type τ, representing the state of the coroutine, and the partner
coroutine, a value of the same type.

A coroutine, r, passes control to another coroutine, r′, by evaluating the
expression resume(〈s, r′〉), where s is the current state of the computation.
Doing so creates a new coroutine whose entry point is the return point
(calling site) of the application of resume. Therefore the type of resume is

τ × τ coro→ τ × τ coro.

The definition of resume is as follows:

λ (〈s, r′〉:τ × τ coro. letcc k in throw 〈s, fold(k)〉 to unfold(r′))

When applied, resume seizes the current continuation, and passes the state,
s, and the seized continuation (packaged as a coroutine) to the called corou-
tine.

But how do we create a system of coroutines in the first place? Since
the state is explicitly passed from one routine to the other, a coroutine may
be defined as a state transformation function that, when activated with the
current state, determines the next state of the computation. A system of
coroutines is created by establishing a joint exit point to which the result
of the system is thrown, and creating a pair of coroutines that iteratively
transform the state and pass control to the partner routine. If either rou-
tine wishes to terminate the computation, it does so by throwing a result
value to their common exit point. Thus, a coroutine may be specified by a
function of type

(ρ,τ) rout , ρ cont→ τ → τ,

where ρ is the result type and τ is the state type of the system of coroutines.
The set up a system of coroutines we define a function run that, given

two routines, creates a function of type τ → ρ that, when applied to the

VERSION 1.16 DRAFT REVISED 08.27.2011

31.3 Coroutines 295

initial state, computes a result of type ρ. The computation consists of a
cooperating pair of routines that share a common exit point. The definition
of run begins as follows:

λ 〈r1, r2〉. λ s0. letcc x0 in let r′1 be r1(x0) in let r′2 be r2(x0) in . . .

Given two routines, run establishes their common exit point, and passes
this continuation to both routines. By throwing to this continuation either
routine may terminate the computation with a result of type ρ. The body
of the run function continues as follows:

rep(r′2)(letcc k in rep(r′1)(〈s0, fold(k)〉))

The auxiliary function rep creates an infinite loop that transforms the state
and passes control to the other routine:

λ t. fix l isλ 〈s, r〉. l(resume(〈t(s), r〉)).

The system is initialized by starting routine r1 with the initial state, and
arranging that, when it cedes control to its partner, it starts routine r2 with
the resulting state. At that point the system is bootstrapped: each routine
will resume the other on each iteration of the loop.

A good example of coroutining arises whenever we wish to interleave
input and output in a computation. We may achieve this using a coroutine
between a producer routine and a consumer routine. The producer emits the
next element of the input, if any, and passes control to the consumer with
that element removed from the input. The consumer processes the next
data item, and returns control to the producer, with the result of processing
attached to the output. The input and output are modeled as lists of type
τi list and τo list, respectively, which are passed back and forth between
the routines.1 The routines exchange messages according to the following
protocol. The message OK(〈i, o〉) is sent from the consumer to producer
to acknowledge receipt of the previous message, and to pass back the cur-
rent state of the input and output channels. The message EMIT(〈v, 〈i, o〉〉),
where v is a value of type τi opt, is sent from the producer to the consumer
to emit the next value (if any) from the input, and to pass the current state
of the input and output channels to the consumer.

This leads to the following implementation of the producer/consumer
model. The type τ of the state maintained by the routines is the labelled

1In practice the input and output state are implicit, but we prefer to make them explicit
for the sake of clarity.

REVISED 08.27.2011 DRAFT VERSION 1.16

296 31.3 Coroutines

sum type

[OK : τi list× τo list, EMIT : τi opt× (τi list× τo list)].

This type specifies the message protocol between the producer and the con-
sumer described in the preceding paragraph.

The producer, P, is defined by the expression

λ x0. λ msg. casemsg {b1 | b2 | b3},

where the first branch, b1, is

OK · 〈nil, os〉 ⇒ EMIT · 〈null, 〈nil, os〉〉

and the second branch, b2, is

OK · 〈cons(i; is), os〉 ⇒ EMIT · 〈just(i), 〈is, os〉〉,

and the third branch, b3, is

EMIT · ⇒ error.

In words, if the input is exhausted, the producer emits the value null, along
with the current channel state. Otherwise, it emits just(i), where i is the
first remaining input, and removes that element from the passed channel
state. The producer cannot see an EMIT message, and signals an error if it
should occur.

The consumer, C, is defined by the expression

λ x0. λ msg. casemsg {b′1 | b′2 | b′3},

where the first branch, b′1, is

EMIT · 〈null, 〈 , os〉〉 ⇒ throw os to x0,

the second branch, b′2, is

EMIT · 〈just(i), 〈is, os〉〉 ⇒ OK · 〈is, cons(f(i); os)〉,

and the third branch, b′3, is

OK · ⇒ error.

The consumer dispatches on the emitted datum. If it is absent, the output
channel state is passed to x0 as the ultimate value of the computation. If

VERSION 1.16 DRAFT REVISED 08.27.2011

31.4 Notes 297

it is present, the function f (unspecified here) of type τi → τo is applied
to transform the input to the output, and the result is added to the output
channel. If the message OK is received, the consumer signals an error, as the
producer never produces such a message.

The initial state, s0, has the form OK · 〈is, os〉, where is and os are the
initial input and output channel state, respectively. The computation is
created by the expression

run(〈P, C〉)(s0),

which sets up the coroutines as described earlier.
While it is relatively easy to visualize and implement coroutines involv-

ing only two partners, it is more complex, and less useful, to consider a
similar pattern of control among n ≥ 2 participants. In such cases it is
more common to structure the interaction as a collection of n routines, each
of which is a coroutine of a central scheduler. When a routine resumes its
partner, it passes control to the scheduler, which determines which routine
to execute next, again as a coroutine of itself. When structured as corou-
tines of a scheduler, the individual routines are called threads. A thread
yields control by resuming its partner, the scheduler, which then determines
which thread to execute next as a coroutine of itself. This pattern of con-
trol is called cooperative multi-threading, since it is based on explicit yields,
rather than implicit yields imposed by asynchronous events such as timer
interrupts.

31.4 Notes

Continuations are a ubiquitous notion in programming languages. Reynolds’s
survey [83] provides an excellent account of the history and literature on
continuations. The account given here draws on the work of Felleisen [27].

REVISED 08.27.2011 DRAFT VERSION 1.16

