Chapter 19

Types are the central organizing principle in the study of programming
languages. Yet many languages of practical interest are said to be untyped.
Have we missed something important? The answer is no! The supposed
opposition between typed and untyped languages turns out to be illusory.
In fact, untyped languages are special cases of typed languages with a sin-
gle, pre-determined recursive type. Far from being untyped, such languages
are instea

In this ¢ dy the premier example of a uni- typed program-

ming language, the (untyped) A-calculus. This form
by
It is dis egance. lhe A-calculus has but one “fea-

ture”, the higher-order function, with which to compute. Everything is a
function, hence every expression may be applied to an argument, which
must itself be a function, with the result also being a function. To borrow a
well-worn phrase, in the A-calculus it’s functions all the way down!

The abstract syntax of L{A} is given by the following grammar:

X variable
Ax.u A-abstraction
uq1(up) application

The statics of L{A} is defined by general hypothetical judgements of
the form x; ok, ..., x, ok I u ok, stating that u is a well-formed expression

1An apt description of Dana Scott’s.

168 19.1 The A-Calculus

involving the variables x1, ..., x,. (As usual, we omit explicit mention of
the parameters when they can be determined from the form of the hypothe-
ses.) This relation is inductively defined by the following rules:

(19.1a)

(19.1¢)

The dynamics is given by the following rules:

(19.2b)

In the A-calculus literature this judgement is called weak head reduction. The
tirst rule is called B-reduction; it defines the meaning of function application
as substitution of argument for para
Despite the apparent lack of type is nevertheles

Thsrs 1.k i st st -

Proof. Exactly as in preceding chapters. We may show by induction on
transition that well-formation is preserved by the dynamics. Since every
closed value of L{A} is a A-abstraction, every closed expression is either a
value or can make progress. O

_r L{A} is a judgement of the form T - u =

u', where I' = x;1 ok,...,x, ok for some n > 0, and u and u’ are terms
having at most the variables x, ..., x, free. It is inductively defined by the

following rules:
(19.3a)

(19.3b)
(19.3¢)

VERSION 1.16 DRAFT REVISED 08.27.2011

19.2 Definability 169

(19.3d)

(19.3e)

reOGew kA P

We often write just u = 1’ when the variables involved need not be empha-
sized or are clear from context.

Church’s Law states that any conceivable
notion of computable function on the natural numbers is equ1valent to the
A-calculus. Th1s is certainly true for all known me

utable f

. Church’s Law is therefore a scientific law in the
same sense as, say, Newton’s Law of Universal Gravitation, which makes
a prediction about all future measurements of the acceleration in a gravita-

tional field.?

The main idea is to show tha
PCF primitives for manipulating the natural numbers are definable in the
untyped A-calculus. This means, in particular, that we must show that the
natural numbers are definable as A-terms in such a way that case analysis,
which discriminates between zero and non-zero numbers, is definable. The
principal difficulty is with computing the predecessor of a number, which
requires a bit of cleverness. Finally, we show how to represent general
recursion, completing the proof.

2Unfortunately, it is common in Computer Science to put forth as “laws” assertions that
are not scientific laws at all. For example, Moore’s Law is merely an observation about a
near-term trend in microprocessor fabrication that is certainly not valid over the long term,
and Amdahl’s Law is but a simple truth of arithmetic. Worse, Church’s Law, which is a
proper scientific law, is usually called Church’s Thesis, which, to the author’s ear, suggests
something less than the full force of a scientific law.

REVISED 08.27.2011 DRAFT VERSION 1.16

170 19.2 Definability

The first task is to represent the natural numbers as certain A-terms,
called the Church numerals.

(19.4b)

the n-fold application of u; to u;. That is, 7 iterates its second argument
(the induction step) n times, starting with its first argument (the basis).

Using this definition it is not difficult to define the basic functions of
arithmetic. For example, successor, addition, and multiplication are de-
fined by the following untyped A-terms:

(19.5)
(19.6)
(19.7)

It is easy to check that succ(77) = n + 1, and that similar correctness con-

ditions hold for tions of addition and multiplication.
To defin equires a bit of ingenuity. We wish to find a

term pred such that
(19.8)
(19.9)

To compute the predecessor using Church numerals, we must show how to
compute the result for n + 1 as a function of its value for 7. At first glance
this seems straightforward—just take the successor—until we consider the
base case, in which we define the predecessor of 0 to be 0. This invalidates
the obvious strategy of taking successors at inductive steps, and necessi-
tates some other approach.

What to do? A useful intuition is to think of the computation in terms
of a pair of “shift registers” satisfying the invariant that on the nth iteration
the registers contain the predecessor of n and n itself, respectively. Given
the result for 1, namely the pair (n — 1,n1), we pass to the result for n + 1
by shifting left and incrementing to obtain (1,1 4 1). For the base case, we
initialize the registers with (0,0), reflecting the stipulation that the prede-
cessor of zero be zero. To compute the predecessor of n we compute the
pair (n — 1, n) by this method, and return the first component.

It follows that

VERSION 1.16 DRAFT REVISED 08.27.2011

19.3 Scott’s Theorem 171

To make this precise, we must first define a Church-style representation

of ordered pairs.
(19.10)
(19.11)
(19.12)

It is easy to check that under this encoding (uj,u2) -1 = uy, and that a
similar equivalence holds for the second projection. We may now define
the required representation, uy, of the predecessor function:

(19.13)

(19.14)
It is easy to check is gives us the required behavior. Finally, we may
defin 0 be the untyped term

This gives us all the apparatus of PCEF, apart from general recursion. But
this is also definable using a fixed point combinator. There are many choices
of fixed point combinator, of which the best known is the Y combinator:

YSARQERSODQLFGOM. s

Using the Y combinator, we may define general recursion by writing Y (A x. 1),
where x stands for the recursive expression itself.

Definitional equivalence for the untyped A-calculus is undecidable: there
is no algorithm to determine whether or not two untyped terms are defini-
tionally equivalent. The proof of this result is based on two key lemmas:

Observe that

1. For any untyped A-term 1, we may find an untyped term v such that
u(Tv1) = v, where "0 7 is the Godel number of v, and v is its rep-
resentation as a Church numeral. (See Chapter 11 for a discussion of
Godel-numbering.)

REVISED 08.27.2011 DRAFT VERSION 1.16

172 19.3 Scott’s Theorem

2. Any two non-trivial® properties Ay and A; of untyped terms that re-
spect definitional equivalence are inseparable. This means that there
is no decidable property B of untyped terms such that .4y u implies
that B u and .A; u implies that it is not the case that B u. In particular,
if Ap and A; are inseparable, then neither is decidable.

For a property B of untyped terms to respect definitional equivalence means
thatif Buand u = v/, then B v’.

Lemma 19.2. For any u there exists v such that u ("v') = v.

Proof Sketch. The proof relies on the definability of the following two oper-
ations in the untyped A-calculus:

1. ap(ruf') Tu™ ="uy (ux) ™.
2. nm@() ="
Intuitively, the first takes the representations of two untyped terms, and
builds the representation of the application of one to the other. The sec-
ond takes a numeral for 1, and yields the representation of 7. Given these,
we may find the required term v by defining v = w("w "), where w =
Ax.uap(x) (nm(x))). We have
v=w(w?"
=uCapCw) (mmw™))
= u(l—w(l—wj)—l)
=u("o).
The definition is very similar to that of Y (u), except that u takes as input

the representation of a term, and we find a v such that, when applied to the
representation of v, the term u yields v itself. O

Lemma 19.3. Suppose that Ay and A; are two non-vacuous properties of untyped
terms that respect definitional equivalence. Then there is no untyped term w such
that

1. For every u either w Cu™) =0orw (Tu') =1.

2. If Ag u, thenw ("u™) = 0.

3A property of untyped terms is said to be trivial if it either holds for all untyped terms
or never holds for any untyped term.

VERSION 1.16 DRAFT REVISED 08.27.2011

19.4 Untyped Means Uni-Typed 173

3. If Ay u, thenw (Cu’) = 1.

Proof. Suppose there is such an untyped term w. Let v be the untyped
term A x.ifz(w(x);us; _.up), where Ag 1o and A; u;. By Lemma 19.2 on
the preceding page there is an untyped term t such that v("t") = t. If
w@t) =0, thent = v(T+") = uy, and so A; t, since A; respects def-

initional equivalence and A; u;. But then w("t") = 1 by the defining
properties of w, which is a contradiction. Similarly, if w("t") = 1, then
Ao t,and hence w (Tt ") =0, again a contradiction. O

Corollary 19.4. There is no algorithm to decide whether or not u = u'.

Proof. For fixed u consider the property &£, u’ defined by v’ = u. This is
non-vacuous and respects definitional equivalence, and hence is undecid-
able. O

The untyped A-calculus may be faithfully embedded in a typed language
with recursive types. This means that every untyped A-term has a represen-
tation as a typed expression in such a way that execution of the representa-
tion of a A-term corresponds to execution of the term itself. This embedding
is not a matter of writing an interpreter for the A-calculus in £{+x—pu}
(which we could surely do), but rather a direct representation of untyped
A-terms as typed expressions in a language with recursive types.

The key observation is that the untyped A-calculus is really the uni—tiﬁed

ﬁ- ilculus! It is not the absence of iies that iives it its powe

A value of type D is of the form fold(e) where e is a value of type D — D
— a function whose domain and range are both D. Any such function can
be regarded as a value of type D by “rolling”, and any value of type D can
be turned into a function by “unrolling”. As usual, a recursive type may
be seen as a solution to a type isomorphism equation, which in the present
case is the equation

D=D— D.

This specifies that D is a type that is isomorphic to the space of functions
on D itself, something that is impossible in conventional set theory, but is
feasible in the computationally-based setting of the A-calculus.

REVISED 08.27.2011 DRAFT VERSION 1.16

174 19.5 Notes

This isomorphism leads to the following translation, of L{A} into L{+x—pu}:

(19.16a)
(19.16b)
(19.16¢)

Observe that the embedding of a A-abstraction is a value, and that the
embedding of an application exposes the function being applied by un-
rolling the recursive type. Consequently,

is
easily proved by induction on the structure of u;. Thus B-reduction is faith-
fully implemented by evaluation of the embedded terms.

Thus we see that the canonical untyped language, £L{A}, which by dint
of terminology stands in opposition to typed languages, turns out to be
but a typed language after all! Rather than eliminating types, an untyped
language consolidates an infinite collection of types into a single recursive
type. Doing so renders static type checking trivial, at the expense of incur-
ring substantial dynamic overhead to coerce values to and from the recur-
sive type. In Chapter 20 we will take this a step further by admitting many
different types of data values (not just functions), each of which is a com-
ponent of a “master” recursive type. This shows that so-called dynamically
typed languages are, in fact, statically typed. Thus a traditional distinction
can hardly be considered an opposition, since dynamic languages are but
particular forms of static language in which (undue) emphasis is placed on
a single recursive type.

19.5 Notes

The untyped A-calculus was introduced by Church [20] in the 1930’s as
a codification of the informal concept of a computable function. Unlike

VERSION 1.16 DRAFT REVISED 08.27.2011

19.5 Notes 175

the well-known machine models, such as the Turing machine or the ran-
dom access machine, the A-calculus directly codifies mathematical and pro-
gramming practice. The definitive reference for all aspects of the untyped
A-calculus is Barendregt’s text [10]. In particular, the proof of Scott’s theo-
rem given here is adapted from Barendregt’s account. The reduction of un-
typed to typed A-calculus via the concept of a recursive type was achieved
by Scott in his pioneering work on the semantics of the A-calculus [85].

REVISED 08.27.2011 DRAFT VERSION 1.16

Chapter 20

We saw in Chapter 19 that an untyped language may be viewed as a uni-
typed language in which the so-called untyped terms are terms of a distin-
guished recursive type. In the case of the untyped A-calculus this recursive
type has a particularly simple form, expressing that every term is isomor-
phic to a function. Consequently, no run-time errors can occur due to the
misuse of a value—the only elimination form is application, and its first ar-
gument can only be a function. Obviously this property breaks down once
more than one class of value is permitted into the language. For example, if
we add natural numbers as a primitive concept to the untyped A-calculus
(rather than defining them via Church encodings), then it is possible to in-
cur a run-time error arising from attempting to apply a number to an argu-
ment, or to add a function to a number. One school of thought in language
design is to turn this vice into a virtue by embracing a model of compu-
tation that h ultiple classes of value of a single type. Such languages
are said to bmpmported opposition to statically typed
languages. But the s sition is illusory. Just as the untyped A-
calculus is really unityped, so dynamic languages are special cases of static
languages.

To illustrate dynamic typing we formulate a dynamically typed version of

L{nat —}, calle_ The abstract syntax of L{dyn} is given by the

178 20.1 Dynamically Typed PCF

following grammar:

X variable
n numeral
Zero Zero

succ(d) successor

ifzd {zero = dj | succ(x) =d;}
zero test

Alx.d) abstraction

dy (dp) application

fixxisd recursion

There are two classes of values in L{dyn}, the numbers, which have the
form 7,1 and the functions, which have the form A(x.d). The expressions
zero and succ(d) are not in themselves values, but rather are operations
that evaluate to classified values.

The concrete syntax of L{dyn} is somewhat deceptive, in keeping with
common practice in dynamic languages. For example, the concrete syntax
for a number is a bare numeral, 7, but in fact it is just a convenient nota-
tion for the classified value, num(7), of class num. Similarly, the concrete
syntax for a function is a A-abstraction, A (x.d), which must be regarded as
standing for the classified value fun(A x.d) of class fun.

The statics of L{dyn} is essentially the same as that of L{A} given in
Chapter 19; it merely checks that there are no free variables in the expres-

sion. The judgement

states that d is a well-formed expression with free variables among those in
the hypothesis list.

The dynamics of £{dyn} checks for errors that would never arise in
a safe statically typed language. For example, function application must
ensure that its first argument is a function, signaling an error in the case
that it is not, and similarly the case analysis construct must ensure that its
first argument is a number, signaling an error if not. The reason for having
classes labelling values is precisely to make this run-time check possible.

The value judgement, d val, states that d is a fully evaluated (closed)

expression:
=i (2012)
oW ot

LThe numerals, 7, are n-fold compositions of the form s(s(...s(z)...)).

VERSION 1.16 DRAFT REVISED 08.27.2011

20.1 Dynamically Typed PCF 179

The dynamics makes use of judgements that check the class of a value,
and recover the underlying A-abstraction in the case of a function.

num (77) is_num 7 (20.2a)

fun(A x.d) is_fun x.d (20.2b)

The second argument of each of these judgements has a special status—it is
not an expression of L{dyn}, but rather just a special piece of syntax used
internally to the transition rules given below.

We also will need the “negations” of the class-checking judgements in
order to detect run-time type errors.

e 03

(20.3b)

The transition judgemen d the error judgement, d err, are
defined simultaneously by the following rules:?

(20.4a)
(20.4b)

(20.4¢)

e
el
el

(20.4d)
(20.4€)
(20.4f)
(20.4g)
(20.4h)
(20.4i)

2The obvious error propagation rules discussed in Chapter 8 are omitted here for the
sake of concision.

REVISED 08.27.2011 DRAFT VERSION 1.16

180 20.2 Variations and Extensions

(20.4j)

(20.4K)
(20.41)

Rule (20.4g) labels the predecessor with the class num to maintain the in-
variant that variables are bound to expressions of L{dyn}.

The language L£L{dyn} enjoys essentially the same safety properties as
L{nat —}, except that there are more opportunities for errors to arise at
run-time.

Proof. By rule induction on Rules (20.4). The rules are designed so that
if d ok, then some rule, possibly an error rule, applies, ensuring progress.
Since well-formedness is closed under substitution, the result of a transition
is always well-formed. O

The dynamic language L£{dyn} defined in Section 20.1 on page 177 closely
parallels the static language £{nat —} defined in Chapter 12. One dis-
crepancy, however, is in the treatment of natural numbers. Whereas in
L{nat —} the zero and successor operations are introductory forms for
the type nat, in L{dyn} they are elimination forms that act on separately-
defined numerals. The point of this representation is to ensure that there is
a well-defined class of numbers in the language.

It is worthwhile to explore an alternative representation that, super-
ficially, is even closer to L{nat —}. Suppose that we eliminate the ex-
pression num(77) from the language, but retain zero and succ(d), with
the idea that these are to be thought of as introductory forms for num-
bers in the language. We are faced with the problem that such an expres-
sion is well-formed for any well-formed d. So, in particular, the expres-
sion succ(A(x.d)) is a value, as is succ(zero). There is no longer a well-
defined class of numbers, but rather two separate classes of values, zero and
successor, with no assurance that the successor is of a number.

VERSION 1.16 DRAFT REVISED 08.27.2011

20.2 Variations and Extensions 181

The dynamics of the conditional branch changes only slightly, as de-
scribed by the following rules:

(20.5a)
(20.5b)
' -

(20.5d)

The foregoing rules are to be augmented by the following rules that check
whether a value is of class zero or successor:

_ (20.6a)
- (20.6b)
— (20.6¢)

_ (20.6d)

A peculiarity of this formulation of the conditional is that it can only be un-
derstood as distinguishing zero from succ(_), rather than as distinguish-
ing zero from non-zero. The reason is that if d is not zero, it might be either
a successor or a function, and hence its “predecessor” is not well-defined.

Similar considerations arise when enriching £{dyn} with structured
data. The classic example is to enrich the language as follows:
Expr d = nil null
cons(dy;dp) pair
ifnild{nil =do | cons(x;y) =d;}
conditional

The expression ifnil(d;dy; x,y.d;) distinguishes the null structure from
the pair of two structures. We leave to the reader the exercise of formulating
the dynamics of this extension.

REVISED 08.27.2011 DRAFT VERSION 1.16

182 20.2 Variations and Extensions

An advantage of dynamic typing is that the constructors nil and cons (dy; d3)
are sufficient to build unbounded, as well as boun data tures such
as lists or trees. For example, the list consisting ay be rep-

resented by the value

It is a perfectly valid expression, but does not correspond to any natural
data structure.

The disadvantage of this representation becomes apparent as soon as
one wishes to define operations on lists, such as the append function:

What if x is the second list-like value given above? As it stands, the ap-
pend function will signal an error upon reaching the function at the end of
the list. If, however, y is this value, no error is signalled. This asymmetry
may seem innocuous, but it is only one simple manifestation of a perva-
sive problem with dynamic languages:

as the assumption arguments unction ought to be
genuine lists.

The conditional expression ifnil(d;do; x,y.d1) is rather ad hoc in that
it makes a distinction between nil and all other values. Why not distin-
guish successors from non-successors, or functions from non-functions? A
more systematic approach is to enrich the language with predicates and de-
structors. Predicates determine whether a value is of a specified class, and
destructors recover the value labelled with a given class.

cond(d;dy;dy) conditional

nil?(d) nil test

cons?(d) pair test

car(d) first projection
cdr (d) second projection

The conditional cond(d;dy;d;) distinguishes d between nil and all other
values. If d is not nil, the conditional evaluates to dj, and otherwise eval-
uates to dq. In other words the value nil represents boolean falsehood,

VERSION 1.16 DRAFT REVISED 08.27.2011

20.3 Critique of Dynamic Typing 183

and all other values represent boolean truth. The predicates ni1?(d) and
cons?(d) test the class of their argument, yielding nil if the argument is
not of the specified class, and yielding some non-nil if so. The destructors
car(d) and cdr(d)® decompose cons(dy;dp) into dy and dy, respectively.
As an example, the append function may be defined using predicates as
follows:

fixais A(x.A(y.cond(x; cons(car(x);a(cdr(x)) (y));y))).

The safety theorem for £L{dyn} is often promoted as an advantage of dy-

namic over static typing. Unlike static languages, which rule out some
candidate pro i d, m
hence, by Theorem 20.1 on page 180,

efined dynamics. But this can also be seen as a disadvantage, since
errors that could be ruled out at compile time by type checking are not sig-
nalled until run time in £{dyn}. To make this possible, the dynamics of
L{dyn} must enforce conditions that need not be checked in a statically
typed language.

Consider, for example, the addition function in £{dyn}, whose spec-
ification is that, when passed two values of class num, returns their sum,
which is also of class num:*

fun()\ x. fix(p.fun(Ay. ifz(y; x;y . succ(p(y')))II).

The addition function may, deceptively, be written in concrete syntax as
follows:

AMx.fixpisA(y.ifzy {zero= x | succ(y) = succ(p(y) }).

It is deceptive, because the concrete syntax obscures the class tags on val-
ues, and obscures the use of primitives that check those tags. Let us now
examine the costs of these operations in a bit more detail.

First, observe that the body of the fixed point expression is labelled with
class fun. The dynamics of the fixed point construct binds p to this function.
This means that the dynamic class check incurred by the application of p in

3This terminology for the projections is archaic, but firmly established in the literature.

“This specification imposes no restrictions on the behavior of addition on arguments
that are not classified as numbers, but one could make the further demand that the function
abort when applied to arguments that are not classified by num.

REVISED 08.27.2011 DRAFT VERSION 1.16

184 20.4 Notes

the recursive call is guaranteed to succeed. But L{dyn} offers no means of
suppressing this redundant check, because it cannot express the invariant
that p is always bound to a value of class fun.

Second, observe that the result of applying the inner A-abstraction is
either x, the argument of the outer A-abstraction, or the successor of a re-
cursive call to the function itself. The successor operation checks that its
argument is of class num, even though this is guaranteed for all but the
base case, which returns the given x, which can be of any class at all. In
principle we can check that x is of class num once, and observe that it is oth-
erwise a loop invariant that the result of applying the inner function is of
this class. However, L{dyn} gives us no way to express this invariant; the
repeated, redundant tag checks imposed by the successor operation cannot
be avoided.

Third, the argument, y, to the inner function is either the original ar-
gument to the addition function, or is the predecessor of some earlier re-
cursive call. But as long as the original call is to a value of class num, then
the dynamics of the conditional will ensure that all recursive calls have this
class. And again there is no way to express this invariant in £{dyn}, and
hence there is no way to avoid the class check imposed by the conditional
branch.

Classification is not free—storage is required for the class label, and it
takes time to detach the class from a value each time it is used and to attach
a class to a value whenever it is created. Although the overhead of classi-
fication is not asymptotically significant (it slows down the program only
by a constant factor), it is nevertheless non-negligible, and should be elim-
inated whenever possible. But this is impossible within £{dyn}, because it
cannot enforce the restrictions required to express the required invariants.
For that we need a static type system.

20.4 Notes

The earliest dynamically typed language is Lisp [56], which continues to in-
fluence language design a half decade after its invention. Dynamic PCF is
essentially the core of Lisp, but with a proper treatment of variable binding,
correcting what McCarthy himself as described as an error in the original.
Informal discussions of dynamic languages are often confused by the elli-
sion of the dynamic checks that are made explicit here. While the surface
syntax of dynamic PCF is essentially the same as that for PCF, minus the
type annotations, the underlying dynamics is fundamentally different. It

VERSION 1.16 DRAFT REVISED 08.27.2011

20.4 Notes 185

is for this reason that static PCF cannot be properly seen as a restriction of
dynamic PCF by the imposition of a type system, contrary to what seems
to be a widely held belief. It is simply not accurate to state that a static type
sytem is a post hoc restriction imposed on a dynamically typed language.

REVISED 08.27.2011 DRAFT VERSION 1.16

Chapter 21

A hybrid language is one that combines static and dynamic typi
riching a statically typed language with a distinguished typ
namic values. The dynamically typed language considered in

y en-
f dy-
apter 20

rid language, however, is itself illusory, because the
type dyn is really a particular recursive type. This shows that there is no
need for any special mechanisms to support dynamic typing. Rather, they
may be derived from the more general concept of a recursive type. More-
over, this shows that dynamic typing is but a mode of use of static typing! The
supposed opposition between dynamic and static typing is, therefore, a
fallacy: dynamic typing can hardly be opposed to that of which it is but a
special case!

Consider the language £{nat dyn —}, which extends £{nat —} (defined
in Chapter 12) with the following additional constructs:

dyn dynamic
l-e construct
e-l destruct
num number
fun function

188 21.1 A Hybrid Language

The type dyn is the type of dynamically classified values. The new operation
attaches a classifier to a value, and the cast operation checks the classifier
and returns the associated value.

The statics of £L{nat dyn —} extends that of £L{nat —} with the follow-
ing additional rules:

(21.1a)

(21.1b)

(21.1¢)
(21.1d)

The statics ensures that class labels are applied to objects of the appropriate
type, namely num for natural numbers, and fun for functions defined over
labelled values.

The dynamics of £{nat dyn — } extends that of £L{nat —} with the fol-
lowing rules:

(21.2a)

ol
(21.2b)
(21.2¢)
(21.2d)
(21.2¢)

Casting compares the class of the object to the required class, returning the
underlying object if these coincide, and signalling an error otherwise.

Proof. By a straightforward rule induction on the statics of £{nat dyn —}.
O

VERSION 1.16 DRAFT REVISED 08.27.2011

21.2 Optimization of Dynamic Typing 189

Proof. Preservation is proved by rule induction on the dynamics, and progress
is proved by rule induction on the statics, making use of the canonical
forms lemma. The opportunities for run-time errors are the same as those

for L{dyn}—a well-typed cast might fail at run-time if the class of the cast
does not match the class of the value. |

The language L£{nat dyn —} combines static and dynamic typing by en-
riching £{nat —} with the type, dyn, of classified values. It is, for this
reason, called a hybrid language. Unlike a purely dynamic type system, a
hybrid type system can express invariants that are crucial to the optimiza-
tion of programs in L{dyn}.

Let us examine this in the case of the addition function, which may be
defined in £{nat dyn —} as follows:
where

is defined to be the expression

This is a reformulation of the“ven in Section 20.3
on page 183 in which we have made explicit the checking and imposition of

classes on values. We will exploit the static type system of £{nat dyn —} to
optimize this dynamically typed implementation of addition in accordance
with the specification given in Section 20.3 on page 183.

First, note that the body of the fix expression is an explicitly labelled
function. This means that when the recursion is unwound, the variable p is
bound to this value of type dyn. Consequently, the check that p is labelled
with class fun is redundant, and can be eliminated. This is achieved by
rewriting the function as follows:

) G ton £ aynie) G,

REVISED 08.27.2011 DRAFT VERSION 1.16

190 21.2 Optimization of Dynamic Typing

where ¢} , is the expression

We have “hoisted” the function class label out of the loop, and suppressed
the cast inside the loop. Correspondingly, the type of p has changed to
dyn — dyn, reflecting that the body is now a “bare function”, rather than a
labelled function value of type dyn.

Next, observe that the parameter y of type dyn is cast to a number on
each iteration of the loop before it is tested for zero. Since this function
is recursive, the bindings of y arise in one of two ways, at the initial call
to the addition function, and on each recursive call. But the recursive call
is made on the predecessor of y, which is a true natural number that is
labelled with num at the call site, only to be removed by the class check at
the conditional on the next iteration. This suggests that we hoist the check
on y outside of the loop, and avoid labelling the argument to the recursive
call. Doing so changes the type of the function, however, from dyn — dyn to
nat — dyn. Consequently, further changes are required to ensure that the
entire function remains well-typed.

Before doing so, let us make another observation. The result of the re-
cursive call is checked to ensure that it has class num, and, if so, the un-
derlying value is incremented and labelled with class num. If the result
of the recursive call came from an earlier use of this branch of the condi-
tional, then obviously the class check is redundant, because we know that
it must have class num. But what if the result came from the other branch of
the conditional? In that case the function returns x, which need not be of
class num because it is provided by the caller of the function. However, we
may reasonably insist that it is an error to call addition with a non-numeric
argument. This canbe enforced by replacing x in the zero branch of the
conditional by x - num.

Combining these optimizations we obtain the inner loop-iefined as
follows:

This function has type Fnd runs at full speed when applied to a
natural number—all checks have been hoisted out of the inner loop.
Finally, recall that the overall goal is to define a version of addition that

works on values of type dyn. Thus we require a value of type dyn — dyn,
but what we have at hand is a function of type nat — nat. This can be

VERSION 1.16 DRAFT REVISED 08.27.2011

21.3 Static “Versus” Dynamic Typing 191

converted to the required form by pre-composing with a cast to num and
post-composing with a coercion to num:

The innermost A-abstraction converts the function ¢/ from type nat — nat
to type dyn — dyn by composing it with a class check that ensures that y is
a natural number at the initial call site, and applies a label to the result to
restore it to type dyn.

or example, it is often said that static type
systems associa bles, but dynamic type systems associate
types with values. This oft-repeated characterization appears to be justified
by the absence of type annotations on A-abstractions, and the presence of
classes on values. But it is based on a confusion of classes with types—the
class of a value (num or fun) is not its type. Moreover, a static type system as-
signs types to values just as surely as it does to variables, so the description
fails on this account as well.
Another way to differentiate dynamic from static languages is to say
that whereas static languages check types at compile time, dynamic lan-
guages check types at run time. But to say that static languages check types

checking, not type checki . For example, application checks that
its first argument is labelled with fun; it does not type check the body of
the function. Indeed, at no point does the dynamics compute the type of a
value, rather it checks its class against its expectations before proceeding.
Here again, a supposed contrast between static and dynamic languages
evaporates under careful analysis.

Another characterization is to assert that dynamic languages admit het-
erogeneous collections, whereas static languages admit only homogeneous
collections. For example, in a dynamic language the elements of a list may
be of disparate classes, as illustrated by the expression

cons(s(z);cons(A(A(x.x));nil)).

But they are nevertheless all

REVISED 08.27.2011 DRAFT VERSION 1.16

192 21.4 Reduction to Recursive Types

What, then, are we to make of the traditional distinction between dy-
namic and static languages? Rather than being in opposition to each other,
we see that dynamic languages are a mode of use of static languages. If we have
a type dyn in the language, then we have all of the apparatus of dynamic
languages at our disposal, so there is no loss of expressive power. But there
is a very significant gain from embedding dynamic typing within a static
type discipline! We can avoid much of the overhead of dynamic typing by
simply limiting our use of the type dyn in our programs, as was illustrated
in Section 21.2 on page 189.

use of dynamic typing within a static language

and its
ather than treating
7 particular use of recursive types,
according to the following definitions:

(21.3)
(21.4)
(21.5)
(21.6)
21.7)

One may readily check that the static and dynamics for the type dyn are
derivable according to these definitions.

This encoding readily generalizes to any number of classes of values:
we need only consider additional summands corresponding to each class.
For example, to account for the constructors nil and cons(dy;d>) consid-
ered in Chapter 20, the definition of dyn is expanded to the recursive type

with corresponding definitions for the new and cast operations. This ex-
emplifies the general case: dynamic typing is a mode of use of static types
in which classes of values are simply names of summands in a recursive
type of dynamic values.

VERSION 1.16 DRAFT REVISED 08.27.2011

21.5 Notes 193

21.5 Notes

The concept of a “hybrid” type system is wholly artificial. It is introduced
here as an explanatory bridge between dynamic and static languages. The
reality is that dynamic languages are statically typed. The only point of
discussing hybrid typing is to show that one can expose more or less of
the underlying static type system in a so-called dynamic language. In the
general case dynamic typing is but a particular mode of use of static typ-
ing, rather than being, only thought, opposed to it. This point of
view j tially due

REVISED 08.27.2011 DRAFT VERSION 1.16

