
Chapter 17

Inductive and Co-Inductive
Types

The inductive and the coinductive types are two important forms of recur-
sive type. Inductive types correspond to least, or initial, solutions of certain
type isomorphism equations, and coinductive types correspond to their
greatest, or final, solutions. Intuitively, the elements of an inductive type
are those that may be obtained by a finite composition of its introductory
forms. Consequently, if we specify the behavior of a function on each of the
introductory forms of an inductive type, then its behavior is determined for
all values of that type. Such a function is called a recursor, or catamorphism.
Dually, the elements of a coinductive type are those that behave properly
in response to a finite composition of its elimination forms. Consequently,
if we specify the behavior of an element on each elimination form, then we
have fully specified that element as a value of that type. Such an element is
called an generator, or anamorphism.

17.1 Motivating Examples

The most important example of an inductive type is the type of natural
numbers as formalized in Chapter 11. The type nat is defined to be the
least type containing z and closed under s(−). The minimality condition
is witnessed by the existence of the recursor, natiter e {z⇒e0 | s(x)⇒e1},
which transforms a natural number into a value of type τ, given its value
for zero, and a transformation from its value on a number to its value on the
successor of that number. This operation is well-defined precisely because
there are no other natural numbers. Put the other way around, the existence

150 17.1 Motivating Examples

of this operation expresses the inductive nature of the type nat.
With a view towards deriving the type nat as a special case of an in-

ductive type, it is useful to consolidate zero and successor into a single
introductory form, and to correspondingly consolidate the basis and in-
ductive step of the recursor. This following rules specify the statics of this
reformulation:

Γ ` e : unit+ nat

Γ ` foldnat(e) : nat (17.1a)

Γ, x : unit+ τ ` e1 : τ Γ ` e2 : nat
Γ ` recnat[x.e1](e2) : τ

(17.1b)

The expression foldnat(e) is the unique introductory form of the type nat.
Using this, the expression z is defined to be foldnat(l · 〈〉), and s(e) is de-
fined to be foldnat(r · e). The recursor, recnat[x.e1](e2), takes as argu-
ment the abstractor x.e1 that consolidates the basis and inductive step into
a single computation that is given a value of type unit+ τ yields a value
of type τ. Intuitively, if x is replaced by the value l · 〈〉, then e1 computes
the base case of the recursion, and if x is replaced by the value r · e, then e1
computes the inductive step as a function of the result, e, of the recursive
call.

The dynamics of the consolidated representation of natural numbers is
given by the following rules:

foldnat(e) val
(17.2a)

e2 7→ e′2
recnat[x.e1](e2) 7→ recnat[x.e1](e′2)

(17.2b)

recnat[x.e1](foldnat(e2))

7→
[map[t.unit+ t](y.recnat[x.e1](y); e2)/x]e1

(17.2c)

Rule (17.2c) makes use of generic extension (see Chapter 7) to apply the
recursor to the predecessor, if any, of a natural number. The idea is that
the result of extending the recursor from the type unit+ nat to the type
unit+ τ is substituted into the inductive step, given by the expression e1.
If we expand the definition of the generic extension in place, we obtain the

VERSION 1.16 DRAFT REVISED 08.27.2011

17.1 Motivating Examples 151

following reformulation of this rule:

recnat[x.e1](foldnat(e2))

7→
[case e2 {l · ⇒ l · 〈〉 | r · y⇒ r · recnat[x.e1](y)}/x]e1

An illustrative example of a coinductive type is the type of streams of
natural numbers. A stream is an infinite sequence of natural numbers such
that an element of the stream can be computed only after computing all
preceding elements in that stream. That is, the computations of successive
elements of the stream are sequentially dependent in that the computation
of one element influences the computation of the next. This characteristic
of the introductory form for streams is dual to the analogous property of
the eliminatory form for natural numbers whereby the result for a number
is determined by its result for all preceding numbers.

A stream is characterized by its behavior under the elimination forms
for the stream type: hd(e) returns the next, or head, element of the stream,
and tl(e) returns the tail of the stream, the stream resulting when the head
element is removed. A stream is introduced by a generator, the dual of a
recursor, that determines the head and the tail of the stream in terms of the
current state of the stream, which is represented by a value of some type.
The statics of streams is given by the following rules:

Γ ` e : stream
Γ ` hd(e) : nat

(17.3a)

Γ ` e : stream
Γ ` tl(e) : stream

(17.3b)

Γ ` e : τ Γ, x : τ ` e1 : nat Γ, x : τ ` e2 : τ

Γ ` strgen e <hd(x)⇒ e1 & tl(x)⇒ e2> : stream
(17.3c)

In Rule (17.3c) the current state of the stream is given by the expression e
of some type τ, and the head and tail of the stream are determined by the
expressions e1 and e2, respectively, as a function of the current state.

The dynamics of streams is given by the following rules:

strgen e <hd(x)⇒ e1 & tl(x)⇒ e2> val
(17.4a)

e 7→ e′

hd(e) 7→ hd(e′)
(17.4b)

REVISED 08.27.2011 DRAFT VERSION 1.16

152 17.1 Motivating Examples

hd(strgen e <hd(x)⇒ e1 & tl(x)⇒ e2>) 7→ [e/x]e1
(17.4c)

e 7→ e′

tl(e) 7→ tl(e′)
(17.4d)

tl(strgen e <hd(x)⇒ e1 & tl(x)⇒ e2>)

7→
strgen [e/x]e2 <hd(x)⇒ e1 & tl(x)⇒ e2>

(17.4e)

Rules (17.4c) and (17.4e) express the dependency of the head and tail of the
stream on its current state. Observe that the tail is obtained by applying
the generator to the new state determined by e2 as a function of the current
state.

To derive streams as a special case of a coinductive type, we consolidate
the head and the tail into a single eliminatory form, and reorganize the
generator correspondingly. This leads to the following statics:

Γ ` e : stream
Γ ` unfoldstream(e) : nat× stream

(17.5a)

Γ, x : τ ` e1 : nat× τ Γ ` e2 : τ

Γ ` genstream[x.e1](e2) : stream
(17.5b)

Rule (17.5a) states that a stream may be unfolded into a pair consisting of its
head, a natural number, and its tail, another stream. The head, hd(e), and
tail, tl(e), of a stream, e, are defined to be the projections unfoldstream(e) ·
l and unfoldstream(e) · r, respectively. Rule (17.5b) states that a stream
may be generated from the state element, e2, by an expression e1 that yields
the head element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream[x.e1](e2) val
(17.6a)

e 7→ e′

unfoldstream(e) 7→ unfoldstream(e′)
(17.6b)

unfoldstream(genstream[x.e1](e2))

7→
map[t.nat× t](y.genstream[x.e1](y); [e2/x]e1)

(17.6c)

VERSION 1.16 DRAFT REVISED 08.27.2011

17.2 Statics 153

Rule (17.6c) uses generic extension to generate a new stream whose state
is the second component of [e2/x]e1. Expanding the generic extension we
obtain the following reformulation of this rule:

unfoldstream(genstream[x.e1](e2))

7→
〈([e2/x]e1) · l, genstream[x.e1](([e2/x]e1) · r)〉

17.2 Statics

We may now give a fully general account of inductive and coinductive
types, which are defined in terms of positive type operators. We will con-
sider the language L{µiµf}, which extends L{→×+} with inductive and
co-inductive types.

17.2.1 Types

The syntax of inductive and coinductive types involves type variables, which
are, of course, variables ranging over types. The abstract syntax of induc-
tive and coinductive types is given by the following grammar:

Type τ ::= t t self-reference
ind(t.τ) µi(t.τ) inductive
coi(t.τ) µf(t.τ) coinductive

Type formation judgements have the form

t1 type, . . . , tn type ` τ type,

where t1, . . . , tn are type names. We let ∆ range over finite sets of hypothe-
ses of the form t type, where t name is a type name. The type formation
judgement is inductively defined by the following rules:

∆, t type ` t type (17.7a)

∆ ` unit type (17.7b)

∆ ` τ1 type ∆ ` τ2 type

∆ ` prod(τ1; τ2) type
(17.7c)

∆ ` void type (17.7d)

REVISED 08.27.2011 DRAFT VERSION 1.16

154 17.3 Dynamics

∆ ` τ1 type ∆ ` τ2 type

∆ ` sum(τ1; τ2) type
(17.7e)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(17.7f)

∆, t type ` τ type ∆ ` t.τ pos

∆ ` ind(t.τ) type
(17.7g)

∆, t type ` τ type ∆ ` t.τ pos

∆ ` coi(t.τ) type
(17.8)

17.2.2 Expressions

The abstract syntax of expressions for inductive and coinductive types is
given by the following grammar:

Expr e ::= fold[t.τ](e) fold(e) constructor
rec[t.τ][x.e1](e2) rec[x.e1](e2) recursor
unfold[t.τ](e) unfold(e) destructor
gen[t.τ][x.e1](e2) gen[x.e1](e2) generator

The statics for inductive and coinductive types is given by the following
typing rules:

Γ ` e : [ind(t.τ)/t]τ
Γ ` fold[t.τ](e) : ind(t.τ)

(17.9a)

Γ, x : [ρ/t]τ ` e1 : ρ Γ ` e2 : ind(t.τ)

Γ ` rec[t.τ][x.e1](e2) : ρ
(17.9b)

Γ ` e : coi(t.τ)

Γ ` unfold[t.τ](e) : [coi(t.τ)/t]τ (17.9c)

Γ ` e2 : ρ Γ, x : ρ ` e1 : [ρ/t]τ
Γ ` gen[t.τ][x.e1](e2) : coi(t.τ)

(17.9d)

17.3 Dynamics

The dynamics of these constructs is given in terms of the generic exten-
sion operation described in Chapter 16. The following rules specify a lazy
dynamics for L{µiµf}:

fold(e) val
(17.10a)

VERSION 1.16 DRAFT REVISED 08.27.2011

17.4 Notes 155

e2 7→ e′2
rec[x.e1](e2) 7→ rec[x.e1](e′2)

(17.10b)

rec[x.e1](fold(e2))

7→
[map[t.τ](y.rec[x.e1](y); e2)/x]e1

(17.10c)

gen[x.e1](e2) val
(17.10d)

e 7→ e′

unfold(e) 7→ unfold(e′)
(17.10e)

unfold(gen[x.e1](e2))

7→
map[t.τ](y.gen[x.e1](y); [e2/x]e1)

(17.10f)

Rule (17.10c) states that to evaluate the recursor on a value of recursive
type, we inductively apply the recursor as guided by the type operator to
the value, and then perform the inductive step on the result. Rule (17.10f)
is simply the dual of this rule for coinductive types.

Lemma 17.1. If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on Rules (17.10).

Lemma 17.2. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. By rule induction on Rules (17.9).

17.4 Notes

The general formulation of inductive and coinductive types for program-
ming was introduced by Mendler [57], making use of the functorial action
of a type constructor described in Chapter 16. Mendler’s account is based
on the interpretation of inductive types as initial algebras, and coinductive
types as final co-algebras, for a functor [52, 92].

REVISED 08.27.2011 DRAFT VERSION 1.16

Chapter 18

Recursive Types

Inductive and coinductive types, such as natural numbers and streams,
may be seen as examples of fixed points of type operators up to isomorphism.
An isomorphism between two types, τ1 and τ2, is given by two expressions

1. x1 : τ1 ` e2 : τ2, and

2. x2 : τ2 ` e1 : τ1

that are mutually inverse to each other.1 For example, the types nat and
unit+ nat are isomorphic, as witnessed by the following two expressions:

1. x : unit+ nat ` case x {l · ⇒ z | r · x2⇒ s(x2)} : nat, and

2. x : nat ` ifz x {z⇒ l · 〈〉 | s(x2)⇒ r · x2} : unit+ nat.

These are called, respectively, the fold and unfold operations of the iso-
morphism nat ∼= unit+ nat. Thinking of unit+ nat as [nat/t](unit+ t),
this means that nat is a fixed point of the type operator t.unit+ t.

In this chapter we study the language L{+×⇀µ}, which provides so-
lutions to all type isomorphism equations. The recursive type µt.τ is defined
to be a solution to the type isomorphism

µt.τ ∼= [µt.τ/t]τ.

This is witnessed by the operations

x : µt.τ ` unfold(x) : [µt.τ/t]τ

1To make this precise requires a discussion of equivalence of expressions to be taken up
in Chapter 49. For now we will rely on an intuitive understanding of when two expressions
are equivalent.

158 18.1 Solving Type Isomorphisms

and
x : [µt.τ/t]τ ` fold(x) : µt.τ,

which are mutually inverse to each other.
Requiring solutions to all type equations may seem suspicious, since we

know by Cantor’s Theorem that an isomorphisms such as X ∼= (X → 2)
is impossible. This negative result tells us not that our requirement is un-
tenable, but rather that types are not sets. To permit solution of arbitrary
type equations, we must take into account that types describe computa-
tions, some of which may not even terminate. Consequently, the function
space does not coincide with the set-theoretic function space, but rather is
analogous to it (in a precise sense that we shall not go into here).

18.1 Solving Type Isomorphisms

The recursive type µt.τ, where t.τ is a type operator, represents a solution
for t to the isomorphism t ∼= τ. The solution is witnessed by two oper-
ations, fold(e) and unfold(e), that relate the recursive type µt.τ to its
unfolding, [µt.τ/t]τ, and serve, respectively, as its introduction and elimi-
nation forms.

The language L{+×⇀µ} extends L{⇀}with recursive types and their
associated operations.

Type τ ::= t t self-reference
rec(t.τ) µt.τ recursive

Expr e ::= fold[t.τ](e) fold(e) constructor
unfold(e) unfold(e) destructor

The statics of L{+×⇀µ} consists of two forms of judgement. The first,
called type formation, is a general hypothetical judgement of the form

∆ ` τ type,

where ∆ has the form t1 type, . . . , tk type. Type formation is inductively
defined by the following rules:

∆, t type ` t type
(18.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(18.1b)

VERSION 1.16 DRAFT REVISED 08.27.2011

18.2 Recursive Data Structures 159

∆, t type ` τ type

∆ ` rec(t.τ) type
(18.1c)

The second form of judgement comprising the statics is the typing judge-
ment, which is a hypothetical judgement of the form

Γ ` e : τ,

where we assume that τ type. Typing for L{+×⇀µ} is inductively defined
by the following rules:

Γ ` e : [rec(t.τ)/t]τ
Γ ` fold[t.τ](e) : rec(t.τ)

(18.2a)

Γ ` e : rec(t.τ)

Γ ` unfold(e) : [rec(t.τ)/t]τ (18.2b)

The dynamics of L{+×⇀µ} is specified by one axiom stating that the
elimination form is inverse to the introduction form.

{e val}
fold[t.τ](e) val

(18.3a){
e 7→ e′

fold[t.τ](e) 7→ fold[t.τ](e′)

}
(18.3b)

e 7→ e′

unfold(e) 7→ unfold(e′)
(18.3c)

fold[t.τ](e) val
unfold(fold[t.τ](e)) 7→ e

(18.3d)

The bracketed premise and rule are to be included for an eager interpreta-
tion of the introduction form, and omitted for a lazy interpretation.

It is a straightforward exercise to prove type safety for L{+×⇀µ}.

Theorem 18.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

18.2 Recursive Data Structures

One important application of recursive types is to the representation of in-
ductive data types such as the type of natural numbers. We may think of
the type nat as a solution (up to isomorphism) of the type equation

nat ∼= [z : unit, s : nat]

REVISED 08.27.2011 DRAFT VERSION 1.16

160 18.2 Recursive Data Structures

According to this isomorphism every natural number is either zero or the
successor of another natural number. A solution is given by the recursive
type

µt.[z : unit, s : t]. (18.4)

The introductory forms for the type nat are defined by the following equa-
tions:

z = fold(z · 〈〉)
s(e) = fold(s · e).

The conditional branch may then be defined as follows:

ifz e {z⇒ e0 | s(x)⇒ e1} = case unfold(e) {z · ⇒ e0 | s · x⇒ e1},

where the “underscore” indicates a variable that does not occur free in e0.
It is easy to check that these definitions exhibit the expected behavior.

As another example, the type list of lists of natural numbers may be
represented by the recursive type

µt.[n : unit, c : nat× t]

so that we have the isomorphism

list ∼= [n : unit, c : nat× list].

The list formation operations are represented by the following equations:

nil = fold(n · 〈〉)
cons(e1; e2) = fold(c · 〈e1, e2〉).

A conditional branch on the form of the list may be defined by the follow-
ing equation:

listcase e {nil⇒ e0 | cons(x; y)⇒ e1} =
case unfold(e) {n · ⇒ e0 | c · 〈x, y〉 ⇒ e1},

where we have used an underscore for a “don’t care” variable, and used
pattern-matching syntax to bind the components of a pair.

As long as sums and products are evaluated eagerly, there is a natural
correspondence between this representation of lists and the conventional
“blackboard notation” for linked lists. We may think of fold as an abstract

VERSION 1.16 DRAFT REVISED 08.27.2011

18.3 Self-Reference 161

heap-allocated pointer to a tagged cell consisting of either (a) the tag n with
no associated data, or (b) the tag c attached to a pair consisting of a natural
number and another list, which must be an abstract pointer of the same
sort. If sums or products are evaluated lazily, then the blackboard notation
breaks down because it is unable to depict the suspended computations
that are present in the data structure. In general there is no substitute for the
type itself. Drawings can be helpful, but the type determines the semantics.

We may also represent coinductive types, such as the type of streams of
natural numbers, using recursive types. The representation is particularly
natural in the case that fold(−) is evaluated lazily, for then we may define
the type stream to be the recursive type

µt.nat× t.

This states that every stream may be thought of as a computation of a pair
consisting of a number and another stream. If fold(−) is evaluated ea-
gerly, then we may instead consider the recursive type

µt.unit→ (nat× t),

which expresses the same representation of streams. In either case streams
cannot be easily depicted in blackboard notation, not so much because they
are infinite, but because there is no accurate way to depict the delayed com-
putation other than by an expression in the programming language. Here
again we see that pictures can be helpful, but are not adequate for accu-
rately defining a data structure.

18.3 Self-Reference

In the general recursive expression, fix[τ](x.e), the variable, x, stands for
the expression itself. This is ensured by the unrolling transition

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e,

which substitutes the expression itself for x in its body during execution. It
is useful to think of x as an implicit argument to e, which is to be thought of
as a function of x that it implicitly implied to the recursive expression itself
whenever it is used. In many well-known languages this implicit argument
has a special name, such as this or self, that emphasizes its self-referential
interpretation.

REVISED 08.27.2011 DRAFT VERSION 1.16

162 18.3 Self-Reference

Using this intuition as a guide, we may derive general recursion from
recursive types. This derivation shows that general recursion may, like
other language features, be seen as a manifestation of type structure, rather
than an ad hoc language feature. The derivation is based on isolating a type
of self-referential expressions of type τ, written self(τ). The introduction
form of this type is (a variant of) general recursion, written self[τ](x.e),
and the elimination form is an operation to unroll the recursion by one step,
written unroll(e). The statics of these constructs is given by the following
rules:

Γ, x : self(τ) ` e : τ

Γ ` self[τ](x.e) : self(τ)
(18.5a)

Γ ` e : self(τ)
Γ ` unroll(e) : τ

(18.5b)

The dynamics is given by the following rule for unrolling the self-reference:

self[τ](x.e) val
(18.6a)

e 7→ e′

unroll(e) 7→ unroll(e′)
(18.6b)

unroll(self[τ](x.e)) 7→ [self[τ](x.e)/x]e
(18.6c)

The main difference, compared to general recursion, is that we distinguish
a type of self-referential expressions, rather than impose self-reference at
every type. However, as we shall see shortly, the self-referential type is
sufficient to implement general recursion, so the difference is largely one of
technique.

The type self(τ) is definable from recursive types. As suggested ear-
lier, the key is to consider a self-referential expression of type τ to be a func-
tion of the expression itself. That is, we seek to define the type self(τ) so
that it satisfies the isomorphism

self(τ) ∼= self(τ)→ τ.

This means that we seek a fixed point of the type operator t.t→ τ, where
t /∈ τ is a type variable standing for the type in question. The required fixed
point is just the recursive type

rec(t.t→ τ),

which we take as the definition of self(τ).

VERSION 1.16 DRAFT REVISED 08.27.2011

18.4 Notes 163

The self-referential expression self[τ](x.e) is then defined to be the
expression

fold(λ (x:self(τ). e)).

We may easily check that Rule (18.5a) is derivable according to this defi-
nition. The expression unroll(e) is correspondingly defined to be the ex-
pression

unfold(e)(e).

It is easy to check that Rule (18.5b) is derivable from this definition. More-
over, we may check that

unroll(self[τ](y.e)) 7→∗ [self[τ](y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expres-
sions of type τ.

One consequence of admitting the self-referential type self(τ) is that
we may use it to define general recursion at any type. To be precise, we
may define fix[τ](x.e) to stand for the expression

unroll(self[τ](y.[unroll(y)/x]e))

in which we have unrolled the recursion at each occurrence of x within e.
It is easy to check that this verifies the statics of general recursion given in
Chapter 12. Moreover, it also validates the dynamics, as evidenced by the
following derivation:

fix[τ](x.e) = unroll(self[τ](y.[unroll(y)/x]e))
7→∗ [unroll(self[τ](y.[unroll(y)/x]e))/x]e
= [fix[τ](x.e)/x]e.

It follows that recursive types may be used to define a non-terminating
expression of every type, namely fix[τ](x.x). Unlike many other type
constructs we have considered, recursive types change the meaning of ev-
ery type, not just those that involve recursion. Recursive types are there-
fore said to be a non-conservative extension of languages such as L{nat→},
which otherwise admits no non-terminating computations.

18.4 Notes

The systematic study of recursive types in programming was initiated by
Scott [86, 87] to provide a mathematical model of the untyped λ-calculus.

REVISED 08.27.2011 DRAFT VERSION 1.16

164 18.4 Notes

The derivation of recursion from recursive types is essentially an applica-
tion of Scott’s theory to find the interpretation of a fixed point combinator
in a model of the λ-calculus given by a recursive type. The general theory
of recursive types was studied by Smyth and Plotkin [88] from a category-
theoretic perspective.

VERSION 1.16 DRAFT REVISED 08.27.2011

