
Chapter 13

Product Types

The binary product of two types consists of ordered pairs of values, one from
each type in the order specified. The associated eliminatory forms are pro-
jections, which select the first and second component of a pair. The nullary
product, or unit, type consists solely of the unique “null tuple” of no val-
ues, and has no associated eliminatory form. The product type admits both
a lazy and an eager dynamics. According to the lazy dynamics, a pair is
a value without regard to whether its components are values; they are not
evaluated until (if ever) they are accessed and used in another computation.
According to the eager dynamics, a pair is a value only if its components
are values; they are evaluated when the pair is created.

More generally, we may consider the finite product, ∏i∈I τi, indexed by
a finite set of indices, I. The elements of the finite product type are I-indexed
tuples whose ith component is an element of the type τi, for each i ∈ I.
The components are accessed by I-indexed projection operations, generaliz-
ing the binary case. Special cases of the finite product include n-tuples, in-
dexed by sets of the form I = { 0, . . . , n− 1 }, and labelled tuples, or records,
indexed by finite sets of symbols. Similarly to binary products, finite prod-
ucts admit both an eager and a lazy interpretation.

118 13.1 Nullary and Binary Products

13.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Type τ ::= unit unit nullary product
prod(τ1; τ2) τ1 × τ2 binary product

Expr e ::= triv 〈〉 null tuple
pair(e1; e2) 〈e1, e2〉 ordered pair
proj[l](e) e · l left projection
proj[r](e) e · r right projection

There is no elimination form for the unit type, there being nothing to extract
from the null tuple.

The statics of product types is given by the following rules.

Γ ` triv : unit
(13.1a)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair(e1; e2) : prod(τ1; τ2)
(13.1b)

Γ ` e : prod(τ1; τ2)

Γ ` proj[l](e) : τ1
(13.1c)

Γ ` e : prod(τ1; τ2)

Γ ` proj[r](e) : τ2
(13.1d)

The dynamics of product types is specified by the following rules:

triv val
(13.2a)

{e1 val} {e2 val}
pair(e1; e2) val

(13.2b){ e1 7→ e′1
pair(e1; e2) 7→ pair(e′1; e2)

}
(13.2c)

{
e1 val e2 7→ e′2

pair(e1; e2) 7→ pair(e1; e′2)

}
(13.2d)

e 7→ e′

proj[l](e) 7→ proj[l](e′)
(13.2e)

e 7→ e′

proj[r](e) 7→ proj[r](e′)
(13.2f)

VERSION 1.16 DRAFT REVISED 08.27.2011

13.2 Finite Products 119

{e1 val} {e2 val}
proj[l](pair(e1; e2)) 7→ e1

(13.2g)

{e1 val} {e2 val}
proj[r](pair(e1; e2)) 7→ e2

(13.2h)

The bracketed rules and premises are to be omitted for a lazy dynamics,
and included for an eager dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics,
with the proof proceeding along similar lines in each case.

Theorem 13.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ then either e val or there exists e′ such that e 7→ e′.

Proof. Preservation is proved by induction on transition defined by Rules (13.2).
Progress is proved by induction on typing defined by Rules (13.1).

13.2 Finite Products

The syntax of finite product types is given by the following grammar:

Type τ ::= prod[I](i 7→ τi) ∏i∈I τi product
Expr e ::= tuple[I](i 7→ ei) 〈ei〉i∈I tuple

proj[I][i](e) e · i projection

For I a finite index set of size n ≥ 0, the syntactic form prod[I](i 7→ τi)

specifies an n-argument operator of arity (0, 0, . . . , 0) whose ith argument
is the type τi. When it is useful to emphasize the tree structure, such an
abt is written in the form ∏ 〈i0 : τ0, . . . , in−1 : τn−1〉. Similarly, the syntactic
form tuple[I](i 7→ ei) specifies an abt constructed from an n-argument
operator whose i operand is ei. This may alternatively be written in the
form 〈i0 : e0, . . . , in−1 : en−1〉.

The statics of finite products is given by the following rules:

(∀i ∈ I) Γ ` ei : τi

Γ ` tuple[I](i 7→ ei) : prod[I](i 7→ τi)
(13.3a)

Γ ` e : prod[I](i 7→ ei) j ∈ I
Γ ` proj[I][j](e) : τj

(13.3b)

In Rule (13.3b) the index j ∈ I is a particular element of the index set I,
whereas in Rule (13.3a), the index i ranges over the index set I.

REVISED 08.27.2011 DRAFT VERSION 1.16

120 13.2 Finite Products

The dynamics of finite products is given by the following rules:

{(∀i ∈ I) ei val}
tuple[I](i 7→ ei) val

(13.4a)

{
ej 7→ e′j (∀i 6= j) e′i = ei

tuple[I](i 7→ ei) 7→ tuple[I](i 7→ e′i)

}
(13.4b)

e 7→ e′

proj[I][j](e) 7→ proj[I][j](e′) (13.4c)

tuple[I](i 7→ ei) val

proj[I][j](tuple[I](i 7→ ei)) 7→ ej
(13.4d)

Rule (13.4b) specifies that the components of a tuple are to be evaluated in
some sequential order, without specifying the order in which they compo-
nents are considered. It is straightforward, if a bit technically complicated,
to impose a linear ordering on index sets that determines the evaluation
order of the components of a tuple.

Theorem 13.2 (Safety). If e : τ, then either e val or there exists e′ such that e′ : τ
and e 7→ e′.

Proof. The safety theorem may be decomposed into progress and preserva-
tion lemmas, which are proved as in Section 13.1 on page 118.

We may define nullary and binary products as particular instances of
finite products by choosing an appropriate index set. The type unit may
be defined as the product ∏ ∈∅ ∅ of the empty family over the empty index
set, taking the expression 〈〉 to be the empty tuple, 〈∅〉 ∈∅. Binary products
τ1× τ2 may be defined as the product ∏i∈{ 1,2 } τi of the two-element family
of types consisting of τ1 and τ2. The pair 〈e1, e2〉 may then be defined as
the tuple 〈ei〉i∈{ 1,2 }, and the projections e · l and e · r are correspondingly
defined, respectively, to be e · 1 and e · 2.

Finite products may also be used to define labelled tuples, or records,
whose components are accessed by symbolic names. If L = { l1, . . . , ln } is
a finite set of symbols, called field names, or field labels, then the product type
∏ 〈l0 : τ0, . . . , ln−1 : τn−1〉 has as values tuples of the form 〈l0 : e0, . . . , ln−1 : en−1〉
in which ei : τi for each 0 ≤ i < n. If e is such a tuple, then e · l projects the
component of e labeled by l ∈ L.

VERSION 1.16 DRAFT REVISED 08.27.2011

13.3 Primitive and Mutual Recursion 121

13.3 Primitive and Mutual Recursion

In the presence of products we may simplify the primitive recursion con-
struct defined in Chapter 11 so that only the result on the predecessor, and
not the predecessor itself, is passed to the successor branch. Writing this
as natiter e {z⇒e0 | s(x)⇒e1}, we may define primitive recursion in the
sense of Chapter 11 to be the expression e′ · r, where e′ is the expression

natiter e {z⇒〈z, e0〉 | s(x)⇒〈s(x · l), [x · l, x · r/x0, x1]e1〉}.

The idea is to compute inductively both the number, n, and the result of the
recursive call on n, from which we can compute both n + 1 and the result
of an additional recursion using e1. The base case is computed directly as
the pair of zero and e0. It is easy to check that the statics and dynamics of
the recursor are preserved by this definition.

We may also use product types to implement mutual recursion, which
allows several mutually recursive computations to be defined simultane-
ously. For example, consider the following recursion equations defining
two mathematical functions on the natural numbers:

E(0) = 1
O(0) = 0

E(n + 1) = O(n)
O(n + 1) = E(n)

Intuitively, E(n) is non-zero iff n is even, and O(n) is non-zero iff n is odd.
If we wish to define these functions in L{nat⇀}, we immediately face the
problem of how to define two functions simultaneously. There is a trick
available in this special case that takes advantage of the fact that E and O
have the same type: simply define eo of type nat → nat→ nat so that
eo(0) represents E and eo(1) represents O. (We leave the details as an
exercise for the reader.)

A more general solution is to recognize that the definition of two mutu-
ally recursive functions may be thought of as the recursive definition of a
pair of functions. In the case of the even and odd functions we will define
the labelled tuple, eEO, of type, τEO, given by

∏ 〈even : nat→ nat, odd : nat→ nat〉.

From this we will obtain the required mutually recursive functions as the
projections eEO · even and eEO · odd.

REVISED 08.27.2011 DRAFT VERSION 1.16

122 13.4 Notes

To effect the mutual recursion the expression eEO is defined to be

fix this:τEO is 〈even : eE, odd : eO〉,

where eE is the expression

λ (x:nat. ifz x {z⇒ s(z) | s(y)⇒ this · odd(y)}),

and eO is the expression

λ (x:nat. ifz x {z⇒ z | s(y)⇒ this · even(y)}).

The functions eE and eO refer to each other by projecting the appropriate
component from the variable this standing for the object itself. The choice
of variable name with which to effect the self-reference is, of course, imma-
terial, but it is common to use this or self to emphasize its role.

13.4 Notes

Product types are the abstract essence of structured data [68]. Structures are
tuples whose components are accessible using projections. Most languages
have some form of product type, but frequently in a form that is mixed
up with representation commitments and restrictions on how they may be
used. Rather than introduce ad hoc mechanisms for passing multiple ar-
guments or returning multiple results, one may instead systematize the
concepts of tupling and pattern matching, and decouple them from func-
tion call and return. Similarly, “objects” are just tuples of mutually recur-
sive functions; it seems preferable to break out the building blocks, namely
functions, products, and recursion, rather than to amalgamate them into a
monolith.

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 14

Sum Types

Most data structures involve alternatives such as the distinction between a
leaf and an interior node in a tree, or a choice in the outermost form of a
piece of abstract syntax. Importantly, the choice determines the structure
of the value. For example, nodes have children, but leaves do not, and so
forth. These concepts are expressed by sum types, specifically the binary
sum, which offers a choice of two things, and the nullary sum, which offers
a choice of no things. Finite sums generalize nullary and binary sums to
permit an arbitrary number of cases indexed by a finite index set. As with
products, sums come in both eager and lazy variants, differing in how val-
ues of sum type are defined.

14.1 Binary and Nullary Sums

The abstract syntax of sums is given by the following grammar:

Type τ ::= void void nullary sum
sum(τ1; τ2) τ1 + τ2 binary sum

Expr e ::= abort[τ](e) abortτ e abort
in[l][τ](e) l · e left injection
in[r][τ](e) r · e right injection
case(e; x1.e1; x2.e2) case e {l · x1⇒ e1 | r · x2⇒ e2} case analysis

The nullary sum represents a choice of zero alternatives, and hence ad-
mits no introductory form. The eliminatory form, abort[τ](e), aborts
the computation in the event that e evaluates to a value, which it cannot
do. The elements of the binary sum type are labelled to indicate whether

124 14.1 Binary and Nullary Sums

they are drawn from the left or the right summand, either in[l][τ](e) or
in[r][τ](e). A value of the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

Γ ` e : void
Γ ` abort[τ](e) : τ

(14.1a)

Γ ` e : τ1 τ = sum(τ1; τ2)

Γ ` in[l][τ](e) : τ
(14.1b)

Γ ` e : τ2 τ = sum(τ1; τ2)

Γ ` in[r][τ](e) : τ
(14.1c)

Γ ` e : sum(τ1; τ2) Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case(e; x1.e1; x2.e2) : τ
(14.1d)

Both branches of the case analysis must have the same type. Since a type
expresses a static “prediction” on the form of the value of an expression,
and since a value of sum type could evaluate to either form at run-time, we
must insist that both branches yield the same type.

The dynamics of sums is given by the following rules:

e 7→ e′

abort[τ](e) 7→ abort[τ](e′)
(14.2a)

{e val}
in[l][τ](e) val

(14.2b)

{e val}
in[r][τ](e) val

(14.2c){
e 7→ e′

in[l][τ](e) 7→ in[l][τ](e′)

}
(14.2d){

e 7→ e′

in[r][τ](e) 7→ in[r][τ](e′)

}
(14.2e)

e 7→ e′

case(e; x1.e1; x2.e2) 7→ case(e′; x1.e1; x2.e2)
(14.2f)

{e val}
case(in[l][τ](e); x1.e1; x2.e2) 7→ [e/x1]e1

(14.2g)

{e val}
case(in[r][τ](e); x1.e1; x2.e2) 7→ [e/x2]e2

(14.2h)

The bracketed premises and rules are to be included for an eager dynamics,
and excluded for a lazy dynamics.

The coherence of the statics and dynamics is stated and proved as usual.

VERSION 1.16 DRAFT REVISED 08.27.2011

14.2 Finite Sums 125

Theorem 14.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′.

Proof. The proof proceeds by induction on Rules (14.2) for preservation,
and by induction on Rules (14.1) for progress.

14.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so
may we also generalize nullary and binary sums to finite sums. The syntax
for finite sums is given by the following grammar:

Type τ ::= sum(〈i : τi〉i∈I) ∑i∈I τi sum
Expr e ::= in[〈i : τi〉i∈I][i](e) i · e injection

case[I](e; 〈i : xi.ei〉i∈I) case e {i · xi⇒ ei}i∈I case analysis

The general sum ∑i∈I τi is sometimes written in the form ∑ 〈i : τi〉i∈I . The
finite family of types 〈i : τi〉i∈I is often abbreviated to~τ when the finite index
set, I, is clear from context.

The statics of finite sums is defined by the following rules:

Γ ` e : τi i ∈ I
Γ ` in[〈i : τi〉i∈I][i](e) : sum(〈i : τi〉i∈I)

(14.3a)

Γ ` e : sum(〈i : τi〉i∈I) (∀i ∈ I) Γ, xi : τi ` ei : τ

Γ ` case[I](e; 〈i : xi.ei〉i∈I) : τ
(14.3b)

These rules generalize to the finite case the statics for nullary and binary
sums given in Section 14.1 on page 123.

The dynamics of finite sums is defined by the following rules:

{e val}
in[~τ][i](e) val

(14.4a){
e 7→ e′

in[~τ][i](e) 7→ in[~τ][i](e′)

}
(14.4b)

e 7→ e′

case[I](e; 〈i : xi.ei〉i∈I) 7→ case[I](e′; 〈i : xi.ei〉i∈I)
(14.4c)

in[~τ][i](e) val

case[I](in[~τ][i](e); 〈i : xi.ei〉i∈I) 7→ [e/xi]ei
(14.4d)

These again generalize the dynamics of binary sums given in Section 14.1
on page 123.

REVISED 08.27.2011 DRAFT VERSION 1.16

126 14.3 Applications of Sum Types

Theorem 14.2 (Safety). If e : τ, then either e val or there exists e′ : τ such that
e 7→ e′.

Proof. The proof is similar to that for the binary case, as described in Sec-
tion 14.1 on page 123.

As with products, nullary and binary sums are special cases of the finite
form. The type voidmay be defined to be the sum type ∑ ∈∅ ∅ of the empty
family of types. The expression abort(e) may corresponding be defined as
the empty case analysis, case e {∅}. Similarly, the binary sum type τ1 + τ2
may be defined as the sum ∑i∈I τi, where I = { l, r } is the two-element
index set. The binary sum injections l · e and r · e are defined to be their
counterparts, l · e and r · e, respectively. Finally, the binary case analysis,

case e {l · xl⇒ el | r · xr⇒ er},

is defined to be the case analysis, case e {i · xi⇒ τi}i∈I . It is easy to check
that the static and dynamics of sums given in Section 14.1 on page 123 is
preserved by these definitions.

Two special cases of finite sums arise quite commonly. The n-ary sum
corresponds to the finite sum over an index set of the form { 0, . . . , n− 1 }
for some n ≥ 0. The labelled sum corresponds to the case of the index set
being a finite set of symbols serving as symbolic names for the injections.

14.3 Applications of Sum Types

Sum types have numerous uses, several of which we outline here. More
interesting examples arise once we also have recursive types, which are
introduced in Part VI.

14.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often con-
fused with one another. The type unit has exactly one element, triv,
whereas the type void has no elements at all. Consequently, if e : unit,
then if e evaluates to a value, it must be unit — in other words, e has no
interesting value (but it could diverge). On the other hand, if e : void, then e
must not yield a value; if it were to have a value, it would have to be a value
of type void, of which there are none. This shows that what is called the
void type in many languages is really the type unit because it indicates
that an expression has no interesting value, not that it has no value at all!

VERSION 1.16 DRAFT REVISED 08.27.2011

14.3 Applications of Sum Types 127

14.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans,
whose syntax is given by the following grammar:

Type τ ::= bool bool booleans
Expr e ::= tt tt truth

ff ff falsity
if(e; e1; e2) if e then e1 else e2 conditional

The expression if(e; e1; e2) branches on the value of e : bool. We leave a
precise formulation of the static and dynamics of this type as an exercise
for the reader.

The type bool is definable in terms of binary sums and nullary prod-
ucts:

bool = sum(unit; unit) (14.5a)
tt = in[l][bool](triv) (14.5b)
ff = in[r][bool](triv) (14.5c)

if(e; e1; e2) = case(e; x1.e1; x2.e2) (14.5d)

In the last equation above the variables x1 and x2 are chosen arbitrarily
such that x1 /∈ e1 and x2 /∈ e2. (We often write an underscore in place of a
variable to stand for a variable that does not occur within its scope.) It is
a simple matter to check that the evident static and dynamics of the type
bool is engendered by these definitions.

14.3.3 Enumerations

More generally, sum types may be used to define finite enumeration types,
those whose values are one of an explicitly given finite set, and whose elim-
ination form is a case analysis on the elements of that set. For example, the
type suit, whose elements are ♣, ♦, ♥, and ♠, has as elimination form the
case analysis

case e {♣⇒ e0 |♦⇒ e1 |♥⇒ e2 |♠⇒ e3},

which distinguishes among the four suits. Such finite enumerations are
easily representable as sums. For example, we may define suit = ∑ ∈I unit,
where I = {♣,♦,♥,♠} and the type family is constant over this set. The
case analysis form for a labelled sum is almost literally the desired case

REVISED 08.27.2011 DRAFT VERSION 1.16

128 14.3 Applications of Sum Types

analysis for the given enumeration, the only difference being the binding
for the uninteresting value associated with each summand, which we may
ignore.

14.3.4 Options

Another use of sums is to define the option types, which have the following
syntax:

Type τ ::= opt(τ) τ opt option
Expr e ::= null null nothing

just(e) just(e) something
ifnull[τ](e; e1; x.e2) check e {null⇒ e1 | just(x)⇒ e2}

null test

The type opt(τ) represents the type of “optional” values of type τ. The
introductory forms are null, corresponding to “no value”, and just(e),
corresponding to a specified value of type τ. The elimination form dis-
criminates between the two possibilities.

The option type is definable from sums and nullary products according
to the following equations:

opt(τ) = sum(unit; τ) (14.6a)
null = in[l][opt(τ)](triv) (14.6b)

just(e) = in[r][opt(τ)](e) (14.6c)
ifnull[τ](e; e1; x2.e2) = case(e; .e1; x2.e2) (14.6d)

We leave it to the reader to examine the statics and dynamics implied by
these definitions.

The option type is the key to understanding a common misconception,
the null pointer fallacy. This fallacy, which is particularly common in object-
oriented languages, is based on two related errors. The first error is to deem
the values of certain types to be mysterious entities called pointers, based
on suppositions about how these values might be represented at run-time,
rather than on the semantics of the type itself. The second error compounds
the first. A particular value of a pointer type is distinguished as the null
pointer, which, unlike the other elements of that type, does not designate a
value of that type at all, but rather rejects all attempts to use it as such.

To help avoid such failures, such languages usually include a function,
say null : τ → bool, that yields tt if its argument is null, and ff otherwise.

VERSION 1.16 DRAFT REVISED 08.27.2011

14.4 Notes 129

This allows the programmer to take steps to avoid using null as a value of
the type it purports to inhabit. Consequently, programs are riddled with
conditionals of the form

if null(e) then . . . error . . . else . . . proceed (14.7)

Despite this, “null pointer” exceptions at run-time are rampant, in part be-
cause it is quite easy to overlook the need for such a test, and in part be-
cause detection of a null pointer leaves little recourse other than abortion
of the program.

The underlying problem may be traced to the failure to distinguish the
type τ from the type opt(τ). Rather than think of the elements of type τ
as pointers, and thereby have to worry about the null pointer, one instead
distinguishes between a genuine value of type τ and an optional value of
type τ. An optional value of type τ may or may not be present, but, if it
is, the underlying value is truly a value of type τ (and cannot be null). The
elimination form for the option type,

ifnull[τ](e; eerror; x.eok) (14.8)

propagates the information that e is present into the non-null branch by
binding a genuine value of type τ to the variable x. The case analysis ef-
fects a change of type from “optional value of type τ” to “genuine value of
type τ”, so that within the non-null branch no further null checks, explicit
or implicit, are required. Observe that such a change of type is not achieved
by the simple Boolean-valued test exemplified by expression (14.7); the ad-
vantage of option types is precisely that it does so.

14.4 Notes

Heterogeneous data structures are ubiquitous. Sums codify heterogeneity,
yet few languages properly support them. Much of object-oriented pro-
gramming is concerned with heterogeneity. Although often confused with
types, classes are, as here, tags; dispatch is case analysis, but without the
benefit of ensuring that all cases are properly covered. And most such lan-
guages succumb to what Tony Hoare calls his “billion dollar mistake,” the
cursed “null pointer.”

REVISED 08.27.2011 DRAFT VERSION 1.16

Chapter 15

Pattern Matching

Pattern matching is a natural and convenient generalization of the elimina-
tion forms for product and sum types. For example, rather than write

let x be e in x · l+ x · r

to add the components of a pair, e, of natural numbers, we may instead
write

match e {〈x1, x2〉 ⇒ x1 + x2},

using pattern matching to name the components of the pair and refer to
them directly. The first argument to the match expression is called the match
value and the second argument consist of a finite sequence of rules, sepa-
rated by vertical bars. In this example there is only one rule, but as we shall
see shortly there is, in general, more than one rule in a given match expres-
sion. Each rule consists of a pattern, possibly involving variables, and an
expression that may involve those variables (as well as any others currently
in scope). The value of the match is determined by considering each rule
in the order given to determine the first rule whose pattern matches the
match value. If such a rule is found, the value of the match is the value of
the expression part of the matching rule, with the variables of the pattern
replaced by the corresponding components of the match value.

Pattern matching becomes more interesting, and useful, when com-
bined with sums. The patterns l · x and r · x match the corresponding val-
ues of sum type. These may be used in combination with other patterns
to express complex decisions about the structure of a value. For example,
the following match expresses the computation that, when given a pair of
type (unit+ unit)× nat, either doubles or squares its second component

132 15.1 A Pattern Language

depending on the form of its first component:

match e {〈l · 〈〉, x〉 ⇒ x + x | 〈r · 〈〉, y〉 ⇒ y ∗ y}. (15.1)

It is an instructive exercise to express the same computation using only the
primitives for sums and products given in Chapters 13 and 14.

In this chapter we study a simple language, L{pat}, of pattern matching
over eager product and sum types.

15.1 A Pattern Language

The abstract syntax of L{pat} is defined by the following grammar:

Expr e ::= match(e; rs) match e {rs} case analysis
Rules rs ::= rules[n](r1; . . . ; rn) r1 | . . . | rn (n ≥ 0)
Rule r ::= rule[k](p; x1, . . . , xk.e) p⇒ e (k ≥ 0)
Pat p ::= wild wild card

x x variable
triv 〈〉 unit
pair(p1; p2) 〈p1, p2〉 pair
in[l](p) l · p left injection
in[r](p) r · p right injection

The operator match has arity (0, 0), specifying that it takes two operands,
the expression to match and a series of rules. A sequence of rules is con-
structed using the operatator rules[n], which has arity (0, . . . , 0) specify-
ing that it has n ≥ 0 operands. Each rule is constructed by the operator
rule[k] of arity (0, k) which specifies that it has two operands, binding k
variables in the second.

15.2 Statics

The statics of L{pat} makes use of a special form of hypothetical judge-
ment, written

x1 : τ1, . . . , xk : τk
 p : τ,

with almost the same meaning as

x1 : τ1, . . . , xk : τk ` p : τ,

except that each variable is required to be used at most once in p. When
reading the judgement Λ
 p : τ it is helpful to think of Λ as an output,

VERSION 1.16 DRAFT REVISED 08.27.2011

15.2 Statics 133

and p and τ as inputs. Given p and τ, the rules determine the hypotheses
Λ such that Λ
 p : τ.

x : τ
 x : τ (15.2a)

∅
 : τ (15.2b)

∅
 〈〉 : unit (15.2c)

Λ1
 p1 : τ1 Λ2
 p2 : τ2 dom(Λ1) ∩ dom(Λ2) = ∅
Λ1 Λ2
 〈p1, p2〉 : τ1 × τ2

(15.2d)

Λ1
 p : τ1

Λ1
 l · p : τ1 + τ2
(15.2e)

Λ2
 p : τ2

Λ2
 r · p : τ1 + τ2
(15.2f)

Rule (15.2a) states that a variable is a pattern of type τ. Rule (15.2d) states
that a pair pattern consists of two patterns with disjoint variables.

The typing judgments for a rule,

p⇒ e : τ > τ′,

and for a sequence of rules,

r1 | . . . | rn : τ > τ′,

specify that rules transform a value of type τ into a value of type τ′. These
judgements are inductively defined as follows:

Λ
 p : τ Γ Λ ` e : τ′

Γ ` p⇒ e : τ > τ′
(15.3a)

Γ ` r1 : τ > τ′ . . . Γ ` rn : τ > τ′

Γ ` r1 | . . . | rn : τ > τ′
(15.3b)

Using the typing judgements for rules, the typing rule for a match ex-
pression may be stated quite easily:

Γ ` e : τ Γ ` rs : τ > τ′

Γ ` match e {rs} : τ′
(15.4)

REVISED 08.27.2011 DRAFT VERSION 1.16

134 15.3 Dynamics

15.3 Dynamics

A substitution, θ, is a finite mapping from variables to values. If θ is the sub-
stitution 〈x1 : e1〉 ⊗ · · · ⊗ 〈xk : ek〉, we write θ̂(e) for [e1, . . . , ek/x1, . . . , xk]e.
The judgement θ : Λ is inductively defined by the following rules:

∅ : ∅
(15.5a)

θ : Λ θ(x) = e e : τ

θ : Λ, x : τ
(15.5b)

The judgement θ
 p / e states that the pattern, p, matches the value,
e, as witnessed by the substitution, θ, defined on the variables of p. This
judgement is inductively defined by the following rules:

〈x : e〉
 x / e (15.6a)

∅
 / e (15.6b)

∅
 〈〉 / 〈〉 (15.6c)

θ1
 p1 / e1 θ2
 p2 / e2 dom(θ1) ∩ dom(θ2) = ∅
θ1 ⊗ θ2
 〈p1, p2〉 / 〈e1, e2〉

(15.6d)

θ
 p / e
θ
 l · p / l · e (15.6e)

θ
 p / e
θ
 r · p / r · e (15.6f)

These rules simply collect the bindings for the pattern variables required to
form a substitution witnessing the success of the matching process.

The judgement e ⊥ p states that e does not match the pattern p. It is
inductively defined by the following rules:

e1 ⊥ p1

〈e1, e2〉 ⊥ 〈p1, p2〉
(15.7a)

e2 ⊥ p2

〈e1, e2〉 ⊥ 〈p1, p2〉
(15.7b)

l · e ⊥ r · p (15.7c)

e ⊥ p
l · e ⊥ l · p (15.7d)

VERSION 1.16 DRAFT REVISED 08.27.2011

15.3 Dynamics 135

r · e ⊥ l · p (15.7e)

e ⊥ p
r · e ⊥ r · p (15.7f)

Neither a variable nor a wildcard nor a null-tuple can mismatch any value
of appropriate type. A pair can only mismatch a pair pattern due to a mis-
match in one of its components. An injection into a sum type can mismatch
the opposite injection, or it can mismatch the same injection by having its
argument mismatch the argument pattern.

Theorem 15.1. Suppose that e : τ, e val, and Λ
 p : τ. Then either there exists
θ such that θ : Λ and θ
 p / e, or e ⊥ p.

Proof. By rule induction on Rules (15.2), making use of the canonical forms
lemma to characterize the shape of e based on its type.

The dynamics of the match expression is given in terms of the pattern
match and mismatch judgements as follows:

e 7→ e′

match e {rs} 7→ match e′ {rs} (15.8a)

e val
match e {} err

(15.8b)

e val θ
 p0 / e

match e {p0 ⇒ e0|rs} 7→ θ̂(e0)
(15.8c)

e val e ⊥ p0 match e {rs} 7→ e′

match e {p0 ⇒ e0|rs} 7→ e′
(15.8d)

Rule (15.8b) specifies that evaluation results in a checked error once all rules
are exhausted. Rules (15.8c) specifies that the rules are to be considered in
order. If the match value, e, matches the pattern, p0, of the initial rule in
the sequence, then the result is the corresponding instance of e0; otherwise,
matching continues by considering the remaining rules.

Theorem 15.2 (Preservation). If e 7→ e′ and e : τ, then e′ : τ.

Proof. By a straightforward induction on the derivation of e 7→ e′.

REVISED 08.27.2011 DRAFT VERSION 1.16

136 15.4 Exhaustiveness and Redundancy

15.4 Exhaustiveness and Redundancy

While it is possible to state and prove a progress theorem for L{pat} as
defined in Section 15.1 on page 132, it would not have much force, because
the statics does not rule out pattern matching failure. What is missing is
enforcement of the exhaustiveness of a sequence of rules, which ensures that
every value of the domain type of a sequence of rules must match some
rule in the sequence. In addition it would be useful to rule out redundancy of
rules, which arises when a rule can only match values that are also matched
by a preceding rule. Since pattern matching considers rules in the order in
which they are written, such a rule can never be executed, and hence can
be safely eliminated.

15.4.1 Match Constraints

To express exhaustiveness and irredundancy, we introduce a language of
match constraints that identify a subset of the closed values of a type. With
each rule we associate a constraint that classifies the values that are matched
by that rule. A sequence of rules is exhaustive if every value of the domain
type of the rule satisfies the match constraint of some rule in the sequence.
A rule in a sequence is redundant if every value that satisfies its match con-
traint also satisfies the match constraint of some preceding rule.

The language of match constraints is defined by the following grammar:

Constr ξ ::= all[τ] > truth
and(ξ1; ξ2) ξ1 ∧ ξ2 conjunction
nothing[τ] ⊥ falsity
or(ξ1; ξ2) ξ1 ∨ ξ2 disjunction
in[l](ξ1) l · ξ1 left injection
in[r](ξ2) r · ξ2 right injection
triv 〈〉 unit
pair(ξ1; ξ2) 〈ξ1, ξ2〉 pair

It is easy to define the judgement ξ : τ specifying that the constraint ξ
constrains values of type τ.

The De Morgan Dual, ξ, of a match constraint, ξ, is defined by the fol-

VERSION 1.16 DRAFT REVISED 08.27.2011

15.4 Exhaustiveness and Redundancy 137

lowing rules:

> =⊥
ξ1 ∧ ξ2 = ξ1 ∨ ξ2

⊥ = >
ξ1 ∨ ξ2 = ξ1 ∧ ξ2

l · ξ1 = l · ξ1 ∨ r · >
r · ξ1 = r · ξ1 ∨ l · >
〈〉 =⊥

〈ξ1, ξ2〉 = 〈ξ1, ξ2〉 ∨ 〈ξ1, ξ2〉 ∨ 〈ξ1, ξ2〉

Intuitively, the dual of a match constraint expresses the negation of that
constraint. In the case of the last four rules it is important to keep in mind
that these constraints apply only to specific types.

The satisfaction judgement, e |= ξ, is defined for values e and constraints
ξ of the same type by the following rules:

e |= > (15.9a)

e |= ξ1 e |= ξ2

e |= ξ1 ∧ ξ2
(15.9b)

e |= ξ1

e |= ξ1 ∨ ξ2
(15.9c)

e |= ξ2

e |= ξ1 ∨ ξ2
(15.9d)

e1 |= ξ1

l · e1 |= l · ξ1
(15.9e)

e2 |= ξ2

r · e2 |= r · ξ2
(15.9f)

〈〉 |= 〈〉 (15.9g)

e1 |= ξ1 e2 |= ξ2

〈e1, e2〉 |= 〈ξ1, ξ2〉
(15.9h)

The De Morgan dual construction negates a constraint.

REVISED 08.27.2011 DRAFT VERSION 1.16

138 15.4 Exhaustiveness and Redundancy

Lemma 15.3. If ξ is a constraint on values of type τ, then e |= ξ if, and only if,
e 6|= ξ.

We define the entailment of two constraints, ξ1 |= ξ2 to mean that e |= ξ2
whenever e |= ξ1. By Lemma 15.3 we have that ξ1 |= ξ2 iff |= ξ1 ∨ ξ2. We
often write ξ1, . . . , ξn |= ξ for ξ1 ∧ . . . ∧ ξn |= ξ so that in particular |= ξ
means e |= ξ for every value e : τ.

15.4.2 Enforcing Exhaustiveness and Redundancy

To enforce exhaustiveness and irredundancy the statics of pattern match-
ing is augmented with constraints that express the set of values matched
by a given set of rules. A sequence of rules is exhaustive if every value of
suitable type satisfies the associated constraint. A rule is redundant relative
to the preceding rules if every value satisfying its constraint satisfies one of
the preceding constraints. A sequence of rules is irredundant iff no rule is
redundant relative to the rules that precede it in the sequence.

The judgement Λ
 p : τ [ξ] augments the judgement Λ
 p : τ with a
match constraint characterizing the set of values of type τ matched by the
pattern p. It is inductively defined by the following rules:

x : τ
 x : τ [>] (15.10a)

∅
 : τ [>] (15.10b)

∅
 〈〉 : unit [〈〉] (15.10c)

Λ1
 p : τ1 [ξ1]

Λ1
 l · p : τ1 + τ2 [l · ξ1]
(15.10d)

Λ2
 p : τ2 [ξ2]

Λ2
 r · p : τ1 + τ2 [r · ξ2]
(15.10e)

Λ1
 p1 : τ1 [ξ1] Λ2
 p2 : τ2 [ξ2] Λ1 # Λ2

Λ1 Λ2
 〈p1, p2〉 : τ1 × τ2 [〈ξ1, ξ2〉]
(15.10f)

Lemma 15.4. Suppose that Λ
 p : τ [ξ]. For every e : τ such that e val, e |= ξ
iff θ
 p / e for some θ, and e 6|= ξ iff e ⊥ p.

The judgement Γ ` r : τ > τ′ [ξ] augments the formation judgement for
a rule with a match constraint characterizing the pattern component of the
rule. The judgement Γ ` rs : τ > τ′ [ξ] augments the formation judgement

VERSION 1.16 DRAFT REVISED 08.27.2011

15.4 Exhaustiveness and Redundancy 139

for a sequence of rules with a match constraint characterizing the values
matched by some rule in the given rule sequence.

Λ
 p : τ [ξ] Γ Λ ` e : τ′

Γ ` p⇒ e : τ > τ′ [ξ]
(15.11a)

(∀1 ≤ i ≤ n) ξi 6|= ξ1 ∨ . . . ∨ ξi−1

Γ ` r1 : τ > τ′ [ξ1] . . . Γ ` rn : τ > τ′ [ξn]

Γ ` r1 | . . . | rn : τ > τ′ [ξ1 ∨ . . . ∨ ξn]

(15.11b)

Rule (15.11b) requires that each successive rule not be redundant relative to
the preceding rules. The overall constraint associated to the rule sequence
specifies that every value of type τ satisfy the constraint associated with
some rule.

The typing rule for match expressions demands that the rules that com-
prise it be exhaustive:

Γ ` e : τ Γ ` rs : τ > τ′ [ξ] |= ξ

Γ ` match e {rs} : τ′
(15.12)

Rule (15.11b) ensures that ξ is a disjunction of the match constraints asso-
ciated to the constituent rules of the match expression. The requirement
that ξ be valid amounts to requiring that every value of type τ satisfies the
constraint of at least one rule of the match.

Theorem 15.5. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. The exhaustiveness check in Rule (15.12) ensures that if e val and
e : τ, then e |= ξ. The form of ξ given by Rule (15.11b) ensures that e |= ξi
for some constraint ξi corresponding to the ith rule. By Lemma 15.4 on the
facing page the value e must match the ith rule, which is enough to ensure
progress.

15.4.3 Checking Exhaustiveness and Redundancy

Checking exhaustiveness and redundacy reduces to showing that the con-
straint validity judgement |= ξ is decidable. We will prove this by defining
a judgement Ξ incon, where Ξ is a finite set of constraints of the same type,
with the meaning that no value of this type satisfies all of the constraints in
Ξ. We will then show that either Ξ incon or not.

The rules defining inconsistency of a finite set, Ξ, of constraints of the
same type are as follows:

Ξ incon
Ξ,> incon

(15.13a)

REVISED 08.27.2011 DRAFT VERSION 1.16

140 15.5 Notes

Ξ, ξ1, ξ2 incon

Ξ, ξ1 ∧ ξ2 incon
(15.13b)

Ξ,⊥ incon
(15.13c)

Ξ, ξ1 incon Ξ, ξ2 incon

Ξ, ξ1 ∨ ξ2 incon
(15.13d)

Ξ, l · ξ1, r · ξ2 incon
(15.13e)

Ξ incon
l · Ξ incon

(15.13f)

Ξ incon
r · Ξ incon

(15.13g)

Ξ1 incon

〈Ξ1, Ξ2〉 incon
(15.13h)

Ξ2 incon

〈Ξ1, Ξ2〉 incon
(15.13i)

In Rule (15.13f) we write l ·Ξ for the finite set of constraints l · ξ1, . . . , l · ξn,
where Ξ = ξ1, . . . , ξn, and similarly in Rules (15.13g), (15.13h), and (15.13i).

Lemma 15.6. It is decidable whether or not Ξ incon.

Proof. The premises of each rule involves only constraints that are proper
components of the constraints in the conclusion. Consequently, we can
simplify Ξ by inverting each of the applicable rules until no rule applies,
then determine whether or not the resulting set, Ξ′, is contradictory in the
sense that it contains ⊥ or both l · ξ and r · ξ ′ for some ξ and ξ ′.

Lemma 15.7. Ξ incon iff Ξ |= ⊥.

Proof. From left to right we proceed by induction on Rules (15.13). From
right to left we may show that if Ξ incon is not derivable, then there exists
a value e such that e |= Ξ, and hence Ξ 6|= ⊥.

15.5 Notes

Pattern-matching against heterogeneous structured data was first explored
in the context of logic programming languages, such as Prolog [48, 21], but
with an execution model based on proof search. Pattern matching in the
form described here is present in the functional languages Miranda [93],
Hope [17], Haskell [44], Standard ML [60], and Caml [24].

VERSION 1.16 DRAFT REVISED 08.27.2011

Chapter 16

Generic Programming

16.1 Introduction

Many programs can be seen as instances of a general pattern applied to a
particular situation. Very often the pattern is determined by the types of
the data involved. For example, in Chapter 11 the pattern of computing by
recursion over a natural number is isolated as the defining characteristic of
the type of natural numbers. This concept will itself emerge as an instance
of the concept of type-generic, or just generic, programming.

Suppose that we have a function, f , of type σ→ σ′ that transforms val-
ues of type σ into values of type σ′. For example, f might be the doubling
function on natural numbers. We wish to extend f to a transformation
from type [σ/t]τ to type [σ′/t]τ by applying f to various spots in the input
where a value of type σ occurs to obtain a value of type σ′, leaving the rest
of the data structure alone. For example, τ might be bool× σ, in which
case f could be extended to a function of type bool× σ → bool× σ′ that
sends the pairs 〈a, b〉 to the pair 〈a, f(b)〉.

This example glosses over a significant problem of ambiguity of the ex-
tension. Given a function f of type σ → σ′, it is not obvious in general
how to extend it to a function mapping [σ/t]τ to [σ′/t]τ. The problem
is that it is not clear which of many occurrences of σ in [σ/t]τ are to be
transformed by f , even if there is only one occurrence of σ. To avoid am-
biguity we need a way to mark which occurrences of σ in [σ/t]τ are to be
transformed, and which are to be left fixed. This can be achieved by isolat-
ing the type operator, t.τ, which is a type expression in which a designated
variable, t, marks the spots at which we wish the transformation to occur.
Given t.τ and f : σ→ σ′, we can extend f unambiguously to a function of

142 16.2 Type Operators

type [σ/t]τ → [σ′/t]τ.
The technique of using a type operator to determine the behavior of

a piece of code is called generic programming. The power of generic pro-
gramming depends on which forms of type operator are considered. The
simplest case is that of a polynomial type operator, one constructed from
sum and product of types, including their nullary forms. These may be
extended to positive type operators, which also permit restricted forms of
function types.

16.2 Type Operators

A type operator is a type equipped with a designated variable whose oc-
currences mark the positions in the type where a transformation is to be
applied. A type operator is represented by an abstractor t.τ such that
t type ` τ type. An example of a type operator is the abstractor

t.unit+ (bool× t)

in which occurrences of t mark the spots in which a transformation is to
be applied. An instance of the type operator t.τ is obtained by substitut-
ing a type, σ, for the variable, t, within the type τ. We sometimes write
Map[t.τ](σ) for the substitution instance [σ/t]τ.

The polynomial type operators are those constructed from the type vari-
able, t, the types void and unit, and the product and sum type construc-
tors, τ1 × τ2 and τ1 + τ2. It is a straightforward exercise to give inductive
definitions of the judgement t.τ poly stating that the operator t.τ is a poly-
nomial type operator.

16.3 Generic Extension

The generic extension primitive has the form

map[t.τ](x.e′; e)

with statics given by the following rule:

t type ` τ type Γ, x : σ ` e′ : σ′ Γ ` e : [σ/t]τ
Γ ` map[t.τ](x.e′; e) : [σ′/t]τ

(16.1)

The abstractor x.e′ specifies a transformation from type σ, the type of x, to
type σ′, the type of e′. The expression e of type [σ/t]τ determines the value

VERSION 1.16 DRAFT REVISED 08.27.2011

16.3 Generic Extension 143

to be transformed to obtain a value of type [σ′/t]τ. The occurrences of t
in τ determine the spots at which the transformation given by x.e is to be
performed.

The dynamics of generic extension is specified by the following rules.
We consider here only polynomial type operators, leaving the extension to
positive type operators to be considered later.

map[t.t](x.e′; e) 7→ [e/x]e′
(16.2a)

map[t.unit](x.e′; e) 7→ 〈〉
(16.2b)

map[t.τ1 × τ2](x.e′; e)
7→

〈map[t.τ1](x.e′; e · l), map[t.τ2](x.e′; e · r)〉

(16.2c)

map[t.void](x.e′; e) 7→ abort(e)
(16.2d)

map[t.τ1 + τ2](x.e′; e)
7→

case e {l · x1⇒ l · map[t.τ1](x.e′; x1) | r · x2⇒ r · map[t.τ2](x.e′; x2)}
(16.2e)

Rule (16.2a) applies the transformation x.e′ to e itself, since the operator
t.t specifies that the transformation is to be perfomed directly. Rule (16.2b)
states that the empty tuple is transformed to itself. Rule (16.2c) states that
to transform e according to the operator t.τ1 × τ2, the first component of e
is transformed according to t.τ1 and the second component of e is trans-
formed according to t.τ2. Rule (16.2d) states that the transformation of a
value of type void aborts, since there can be no such values. Rule (16.2e)
states that to transform e according to t.τ1 + τ2, case analyze e and recon-
struct it after transforming the injected value according to t.τ1 or t.τ2.

Consider the type operator t.τ given by t.unit+ (bool× t). Let x.e be
the abstractor x.s(x), which increments a natural number. Using Rules (16.2)
we may derive that

map[t.τ](x.e; r · 〈tt, n〉) 7→∗ r · 〈tt, n + 1〉.

REVISED 08.27.2011 DRAFT VERSION 1.16

144 16.3 Generic Extension

The natural number in the second component of the pair is incremented,
since the type variable, t, occurs in that position in the type operator t.τ.

Theorem 16.1 (Preservation). If map[t.τ](x.e′; e) : ρ and map[t.τ](x.e′; e) 7→
e′′, then e′′ : ρ.

Proof. By inversion of Rule (16.1) we have

1. t type ` τ type;

2. x : σ ` e′ : σ′ for some σ and σ′;

3. e : [σ/t]τ;

4. ρ is [σ′/t]τ.

We proceed by cases on Rules (16.2). For example, consider Rule (16.2c). It
follows from inversion that map[t.τ1](x.e′; e · l) : [σ′/t]τ1, and similarly
that map[t.τ2](x.e′; e · r) : [σ′/t]τ2. It is easy to check that

〈map[t.τ1](x.e′; e · l), map[t.τ2](x.e′; e · r)〉

has type [σ′/t]τ1 × τ2, as required.

The positive type operators extend the polynomial type operators to ad-
mit restricted forms of function type. Specifically, t.τ1 → τ2 is a positive
type operator, provided that (1) t does not occur in τ1, and (2) t.τ2 is a pos-
itive type operator. In general, any occurrences of a type variable t in the
domain a function type are said to be negative occurrences, whereas any oc-
currences of t within the range of a function type, or within a product or
sum type, are said to be positive occurrences.1 A positive type operator is
one for which only positive occurrences of the parameter, t, are permitted.

The generic extension according to a positive type operator is defined
similarly to the case of a polynomial type operator, with the following ad-
ditional rule:

map[t.τ1 → τ2](x.e′; e) 7→ λ (x1:τ1. map[t.τ2](x.e′; e(x1)))
(16.3)

1The origin of this terminology seems to be that a function type τ1 → τ2 is analogous to
the implication φ1 ⊃ φ2, which is classically equivalent to ¬φ1 ∨ φ2, so that occurrences in
the domain are under the negation.

VERSION 1.16 DRAFT REVISED 08.27.2011

16.4 Notes 145

Since t is not permitted to occur within the domain type, the type of the
result is τ1 → [σ′/t]τ2, assuming that e is of type τ1 → [σ/t]τ2. It is easy to
verify preservation for the generic extension of a positive type operator.

It is interesting to consider what goes wrong if we relax the restric-
tion on positive type operators to admit negative, as well as positive, oc-
currences of the parameter of a type operator. Consider the type opera-
tor t.τ1 → τ2, without restriction on t, and suppose that x : σ ` e′ : σ′.
The generic extension map[t.τ1 → τ2](x.e′; e) should have type [σ′/t]τ1 →
[σ′/t]τ2, given that e has type [σ/t]τ1 → [σ/t]τ2. The extension should
yield a function of the form

λ (x1:[σ
′/t]τ1. . . .(e(. . .(x1))))

in which we apply e to a transformation of x1 and then transform the re-
sult. The trouble is that we are given, inductively, that map[t.τ1](x.e′;−)
transforms values of type [σ/t]τ1 into values of type [σ′/t]τ1, but we need
to go the other way around in order to make x1 suitable as an argument for e.
But there is no obvious way to obtain the required transformation.

One solution to this is to assume that the fundamental transformation
x.e′ is invertible so that we may apply the inverse transformation on x1 to
get an argument of type suitable for e, then apply the forward transforma-
tion on the result, just as in the positive case. Since we cannot invert an ar-
bitrary transformation, we must instead pass both the transformation and
its inverse to the generic extension operation so that it can “go backwards”
as necessary to cover negative occurrences of the type parameter. So in the
general case the generic extension applies only when we are given a type
isomorphism (a pair of mutually inverse mappings between two types), and
then results in another isomorphism pair. We leave the formulation of this
as an exercise for the reader.

16.4 Notes

The concept of the functorial action of a type constructor has its roots in
category theory [52]. Generic programming is essentially the application of
this idea to computation [42].

REVISED 08.27.2011 DRAFT VERSION 1.16

146 16.4 Notes

VERSION 1.16 DRAFT REVISED 08.27.2011

