CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Tolal Functions; Finite Data Types
March 6, 2025

A Simple Expression Language E

Syntax of E defined as Abstract Binding Trees:

Typ 1

Exp

€

num

str

X

num|n |
str[s]
plus(e;ez)
times(ey;er)
cat(er; e2)
len(e)
let(e;;x.e)

e
let xbee;ine,

numbers
strings
variable
numeral
literal
addition
multiplication
concatenation
length
definition

X|Tke:t,

An inductive
definition of
generic
hypothetical
judgments

Statics (Type System) for E

Lx:thx:1

[I' - str[s]: str

[' F num|[#z] : num

'Fey:num I'F e :num

[' = plus(ej;er) : num

I'Fey:num I'F e :num

I' - times(ej;ez) : num

['Fe :str I'Fep:str
I' - cat(eg;ep) : str

['He:str
I' - 1len(e) : num

I'Fey:ty I,x:tibFe:Dm
' - 1let(er;x.2) : 1o

(4.1a)
(4.1b)

4.1¢)

(4.1d)

(4.1e)

(4.1f)

(4.1g)

(4.1h)

Structural Dynamics for E

A structural dynamics for the language E is given by a transition system whose states are
closed expressions. All states are initial. The final states are the (closed) values, which
represent the completed computations. The judgment e val, which states that e is a value,
1s inductively defined by the following rules:

num[n] val (5.3a)

str[s] val (5.3b)

The transition judgment e — ¢’ between states is inductively defined by the following

rules:
ny+n =n

plus(num[#n;]; num[n;,]) —> num|n] (5.4a)
e; —> e}
(5.4b)
plus(e;; e;) —> plus(e);e)
al —> ¢/
- (5.40)

plus(e; ex) —> plus(e;;e))

Structural Dynamics for E

s1° 8y, = § str

cat(str[s;]; str[s,]) —> str[s] (5.4d)
e| — ¢
/ (5.4e)
cat(e;;ey) —> cat(e];er)
I —> e
€1 va ér €5 (54f)

cat(e;; e2) —> cat(e; e5)

|: el —> €] :| (5.40)

let(eg; x.e2) —> let(e]; x.€2)

[e; val]
let(e;x.ex) —> [e1/x]er

(5.4h)

EF : E + Higher-Order Functions

The language EF enriches E with function types, as specified by the following
grammar:

Typ
Exp e

arr(t;;m) 11 — 7o function
lam{t}(x.e) A(x:7T)e abstraction
ap(er;er) e1(er) application

The statics of EF is given by extending rules (4.1) with the following rules:

I'x:tikFe:Dm
I' - lam{t|}(x.e) : arr(ty; T0)

(8.4a)

I'Fe:arr(m;r) I'FHey:nm
[I' - ap(er;er): T

(8.4b)

EF : E + Higher-Order Functions

Lemma 8.2 (Inversion). Suppose that1' e : t.

1. If e = lam{T|}(x.€3), then T = arr(t;;x) and ', x : 11 F ey : 15.

2. If e = ap(ey; ey), then there exists Ty such that ' =e; . arr(ty; 1) and ' = e, : 15,

Proof The proof proceeds by rule induction on the typing rules. Observe that for each rule,
exactly one case applies and that the premises of the rule provide the required result. [

Lemma 8.3 (Substitution). IfI',x:t k¢ : 1, andT"' Fe: 1, thenT F [e/x]e : T

Proof By rule induction on the derivation of the first judgment. []

EF : E + Higher-Order Functions

The dynamics of EF extends that of E with the following rules:

lam{t}(x.e) val

e —> ¢}

ap(e;; ez) —> ap(e}; ez)

[ey val ey — €} i|

ap(ey; ex) —> ap(ey; eh)

[e> val]
ap(lam{ry}(x.e1);e2) —> [ex2/x]eq

(8.5a)

(8.5b)

(8.5¢)

(8.5d)

EF Preservation

Theorem 8.4 (Preservation). Ife : T and e — €/, then e’ : 7.

Proof The proof is by induction on rules (8.5), which define the dynamics of the language.
Consider rule (8.5d),

ap(lam{z,}(x.e)); e2) —> [ea/x]e;

Suppose that ap(lam{t,}(x.e1);ez) : 71. By Lemma 8.2, wehavee, : pandx : 7o e : 717,
so by Lemma 8.3, [ey/x]e; : 1.
The other rules governing application are handled similarly. [

EF Progress

Lemma 8.5 (Canonical Forms). If e : arr(t); 1) and e val, then e =), (x : 11) ey for some
variable x and expression e, such that x : 7} - e : 1y.

Proof By induction on the typing rules, using the assumption e val. []

Theorem 8.6 (Progress). If e : T, then either e val, or there exists €' such that e — ¢'.

Proof The proof is by induction on rules (8.4). Note that because we consider only closed
terms, there are no hypotheses on typing derivations.

Consider rule (8.4b) (under the by-name interpretation). By induction either e; val or
e; — €. In the latter case, we have ap(e;; e2) — ap(e]; e2). In the former case, we

have by Lemma 8.5 that e; = lam{7,}(x.e) for some x and e. But then ap(e;;er) —>
[ex/x]e. L]

EF Evaluation Dynamics

An inductive definition of the evaluation judgment e || v for EF is given by the following
rules:

(8.6a)

lam{t}(x.e) | lam{t}(x.e)

e1 | lam{t}(x.e) [ex/x]le v
ap(er;ez) J v
It is easy to check that if e | v, then v val, and that if e val, then e | e.

(8.6b)

Theorem 8.7. ¢ || v iffe —>™ v and v val.

Proof In the forward direction, we proceed by rule induction on rules (8.6), following
along similar lines as the proof of Theorem 7.2.

In the reverse direction, we proceed by rule induction on rules (5.1). The proof relies on
an analog of Lemma 7.4, which states that evaluation is closed under converse execution,
which is proved by induction on rules (8.5). []

System T

The syntax of T is given by the following grammar:

Typ t© := nat nat naturals
arr(ty; 7o) 71 —> 7o, function
Exp e 1= x X variable
Z Z Zero
s(e) s(e) successor
recl{ep: x.y.e;j(e) rece{z<— ¢y|s(x)withy — e}
recursion
lam{t}(x.e) A(x :T)e abstraction

ap(er;er) ei(er) application

System T Statics

The statics of T is given by the following typing rules:

Ix:tkHx:1

' z:nat

I' e :nat
I' - s(e) : nat

I'Fe:nat I'ke:t I',x:nat,y:the 7t
' Frec{ey; x.y.ei}(e) : t

I'x:tykFe:Dm
I' - lam{t|}(x.e) : arr(ty; 12)

I'Fe:arr(m;t) I'kHey:m
[' - ap(e;er): T

As usual, admissibility of the structural rule of substitution is crucially important.

Lemma9.1. IfTFe:tandl,x:tkeée 17, thenT - [e/x]e : T'.

(9.1a)

(9.1b)

(9.1¢)

(9.1d)

(9.1e)

(9.11)

System T Dynamics

The closed values of T are defined by the following rules:

(9.2a)
z val
[e val]
s(e) val (©.2b)
(9.2¢)

lam{t}(x.e) val

The premise of rule (9.2b) is included for an eager interpretation of successor, and excluded
for a lazy interpretation.

System T Dynamics

The transition rules for the dynamics of T are as follows:

[cr— e] (9.32)

s(e) — s(€)

e — e

- (9.3b)
ap(ep; ex) —> ap(e;;er)
[ejval ey r— €} / i| 9.3¢)
ap(er; e2) —> ap(ey; e;)
[e, val]
ap(lan{z](r.e); 2) — [es/xle 630
er— ¢
rec{ep; x.y.e1}(e) —> rec{ep; x.y.e1}(e’) (©.3¢)
(9.31)
rec{ep; x.y.e;}(z) —> ey
s(e) val 9.39)

rec{ep; x.y.e1}(s(e)) —> [e, rec{ep; x.y.ei}(e)/x, v]e;

System T Safety

Lemma 9.2 (Canonical Forms). Ife : T and e val, then

1. If T = nat, then e = s(e’) for some €.

2. If t =1 = 1), thene =)\ (x : 11) ey for some ey.

Theorem 9.3 (Safety). 1. Ife:tande+— €, thene' : 1.

2. If e : T, then either e val or e —> €’ for some ¢’

System T Definability

A mathematical function f : N — N on the natural numbers is definable in T iff there
exists an expression e s of type nat — nat such that for every n € N,

er(n) = f(n) : nat. (9.4)

That is, the numeric function f : N — N is definable iff there is an expression e of type
nat — nat such that, when applied to the numeral representing the argument n € N, the
application is definitionally equal to the numeral corresponding to f(n) € N.

Definitional equality for T, written I" = ¢ = €’ : 7, is the strongest congruence containing
these axioms:
'x:tikFe:1m TI'kFe:1

9.5a

I' - ap(lam{ri}(x.€2);e1) = [e1/x]ex : (9.52)
I'Fey:t Ix:the:t

I' Frecleg;x.ye}(z)=ep: 1 (9.5b)

FFey:t Mox:the:t 950

I' - rec{eg; x.y.e1}(s(e)) = e, rec{ep; x.y.e j(e)/x, v]e; : T

System T Definability

For example, the doubling function, d(n) = 2 x n, is definable in T by the expression
e; : nat — nat given by

A(x:nat)recx{z<— z|s(u)withv — s(s(v))}.

To check that this defines the doubling function, we proceed by induction on n € N. For
the basis, it is easy to check that

e;s(0) = 0 : nat.
For the induction, assume that
e,(n) =d(n) : nat.

Then calculate using the rules of definitional equality:

eqa(n + 1) = s(s(eq(n)))
= s(s(2 x n))
=2xmn+1)
=dn +1).

System T Definability

As another example, consider the following function, called Ackermann’s function, de-
fined by the following equations:

AO,n)=n+1
Am+1,0) = A(m, 1)
Am+1,n+1)=A(m, A(m + 1, n)).
The Ackermann function grows very quickly. For example, A(4, 2) ~ 2953 which is often
cited as being larger than the number of atoms in the universe! Yet we can show that the
Ackermann function is total by a lexicographic induction on the pair of arguments (m, n).
On each recursive call, either m decreases, or else m remains the same, and n decreases, so
inductively the recursive calls are well-defined, and hence so is A(m, n).

The key to showing that it is definable in T is to note that A(m + 1, n) iterates n times
the function A(m, —), starting with A(m, 1).

System T Definability

Let's define it : (nat — nat) — nat — nat — nat
to be the A-abstraction
A(f :nat > nat)A(n:nat)recn{z— id|s(.))withg — f o g},

where id =)\ (x : nat) x is the identity, and f og = A (x : nat) f(g(x)) is the composition
of f and g. It is easy to check that

it(f)(m)@m) = f"'(m) : nat,

where the latter expression is the n-fold composition of f starting with 7. We may then
define the Ackermann function

e, . nat — nat — nat
to be the expression
A (m :nat)recm{z — s |s()with f — A (n:nat)it(f)n)(f(1))}.
It is instructive to check that the following equivalences are valid:

e,(0)(n) = s(n) (9.6)
eq,(m + 1)(0) = e, (m)(1) 9.7)
eq(m + 1)(n + 1) = e,(m)(e,(s(m))(n)). (9.8)

System T Undefinability

It is impossible to define an infinite loop in T.
Theorem 9.4. Ife : t, then there exists v val such thate = v : 1.

Proof See Corollary 46.135. []

Consequently, values of function type in T behave like mathematical functions: if e :
71 — Tp and e; : 11, then e(e;) evaluates to a value of type 7,. Moreover, if e : nat, then
there exists a natural number n such that e = n : nat.

Using this, we can show, using a technique called diagonalization, that there are functions
on the natural numbers that are not definable in T. We make use of a technique, called
Godel-numbering, that assigns a unique natural number to each closed expression of T.
By assigning a unique number to each expression, we may manipulate expressions as data
values in T so that T is able to compute with its own programs.'

System T Undefinability

The essence of Godel-numbering is captured by the following simple construction on
abstract syntax trees. (The generalization to abstract binding trees 1s slightly more difficult,
the main complication being to ensure that all a-equivalent expressions are assigned the
same Godel number.) Recall that a general ast @ has the form o(a,, ..., @), where o is an
operator of arity k. Enumerate the operators so that every operator has an index i € N, and
let m be the index of o in this enumeration. Define the Godel number "a ' of a to be the
number

M,

where py 1s the kth prime number (so that po = 2, p; = 3, and so on), and ny, ..., n; are
the Godel numbers of a;, ..., @, respectively. This procedure assigns a natural number
to each ast. Conversely, given a natural number, n, we may apply the prime factorization
theorem to “parse” n as a unique abstract syntax tree. (If the factorization is not of the right
form, which can only be because the arity of the operator does not match the number of
factors, then n does not code any ast.)

System T Undefinability

Now, using this representation, we may define a (mathematical) function f,,; : N —
N — N such that, for any e : nat — nat, fuw(e)m) = n iff e(m) =n : nat.’
The determinacy of the dynamics, together with Theorem 9.4, ensure that f,,;, 1s a well-
defined function. It is called the universal function for T because it specifies the behavior
of any expression e of type nat — nat. Using the universal function, let us define an
auxiliary mathematical function, called the diagonal function 6 : N — N, by the equation
8(m) = funiv(m)(m). The 8 function is chosen so that §("e™) = n iff e(Te) = n : nat.
(The motivation for its definition will become clear in a moment.)

The function f,,,;, is not definable in T. Suppose that it were definable by the expression
e.niv, then the diagonal function § would be definable by the expression

es = A (m . nat) euniv(m)(m)-

System T Undefinability

But in that case we would have the equations
88(?) = emin("e (e

=e(Tel).

Now let ex be the function expression
A (x :nat) s(es(x)),

so that we may deduce

ean("ean) =s(es("en)

= s(ea("ea).

But the termination theorem implies that there exists n such that eo(" ea ') = n, and hence
we have n = s(n), which is impossible.

Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ T = unit unit nullary product
prod(t;T2) 7T X T, binary product

Exp e 1= triv () null tuple
pair(ej;e;) (er, ez) ordered pair
pr[l](e) e-1 left projection
prlr](e) e-r right projection

The statics of product types is given by the following rules.

(10.1a)
' () :unit
F'ke:ty The:n
['FEo(er,e) 11 X1 (10.1b)
FFe:tyx1n
FTke-1:7 (10.1¢)
I'Fe:1yx1m o1,

ke -r:nm

Nullary and Binary Products

The dynamics of product types is defined by the following rules:

(10.2a)
() val
[e; val] [ep val] (10.2b)
(e1, ez) val
e —> ¢
: (10.2¢)
| (e1, e2) —> (e}, e2) |
[ey val ey r— ¢]
: 2 2 (10.2d)
| <ela 62> > <ela 62>_
er—e (10.2¢)
e-l— e -1
er—e (10.2f)
e-r—>¢é-r
[e; val] [e; val]
(e1,e2) - 1 —> e (10-2¢)
[61 vaI] [62 vaI] (1021’1)

(ej,er) T e

Finite Products

The syntax of finite product types is given by the following grammar:

Typ v = prod({i = Ti}ier) (Ti)ier product
Exp e == tpl({i = ei}ic;) (ei)ier tuple
prli](e) e-i projection

The variable I stands for a finite index set over which products are formed. The type
prod({i < t;}ier), or [[;.; T for short, is the type of I-tuples of expressions e; of type 7,
one for each i € I. An [-tuple has the form tpl({i < e;};c;), Or (€;);c; for short, and for
each i € [the ith projection from an /-tuple e 1s written pr[i](e), or e - i for short.

When I = {i;, ..., i, |, the [-tuple type may be written in the form

(i1 > T1,...,0, < T,)

where we make explicit the association of a type to each index i € I. Similarly, we may
write

(i1 > e,...,0, <> e,)

for the /-tuple whose ith component is e;.

Finite Products

The statics of finite products is given by the following rules:

I'Fe:ty ... T'lke,:1
I'E{(ii—>e,....,iy,—e): {il1—=>T,...,I, = T,)

(10.3a)

'Fe:{(iiTr—>1,...,i,—>1) (1<k<n)
F|—€°ik2‘L’k

(10.3b)

In rule (10.3b), the index iy € [is a particular element of the index set I/, whereas in
rule (10.3a), the indices iy, . . ., i, range over the entire index set /.
The dynamics of finite products is given by the following rules:

[e; val ... e, val]

; : 10.4a
(i1 —>eq,...,1, < e, val ()

eyval ... ej_jval e =e ... e;_lzej_l
ej—¢€; e =ei1 ... e, =e (10.4b)

([1=>el,....ip > e) —> (ij > e}, ...,i, e,

/
R (10.4c)
e-i—é -i
i1 <> e,...,I, < e,) val

[(1 1s s 'n n)] (104d)

(il%el,...,in%€n>-ikl—>€k

Primitive Mutual Recursion

Using products we may simplify the primitive recursion construct of T so that only the
recursive result on the predecessor, and not the predecessor itself, is passed to the successor
branch. Writing this as iter{ey; x.e;}(e), we may define rec{ep; x.y.e;}(e) to be &' - r,
where e’ 1s the expression

iter{(z, ep); x".(s(x’' - 1), [x" - x/x]e;)}(e).

The 1dea 1s to compute inductively both the number n and the result of the recursive call on
n, from which we can compute both n 4 1 and the result of another recursion using e;. The
base case is computed directly as the pair of zero and e. It is easy to check that the statics
and dynamics of the recursor are preserved by this definition.

Primitive Mutual Recursion

We may also use product types to implement mutual primitive recursion, in which
we define two functions simultaneously by primitive recursion. For example, consider the
following recursion equations defining two mathematical functions on the natural numbers:

e(0) =1
0(0) =0
en+1)=o0(n)
on+1)=-e(n)
Intuitively, e(n) is non-zero if and only if n is even, and o(n) is non-zero if and only if n is

odd.
To define these functions in T enriched with products, we first define an auxiliary function

eeo Of type

nat — (nat x nat)
that computes both results simultaneously by swapping back and forth on recursive calls:

A(n:nat Yitern{z<— (1,0) |s(b)— (b-x,b-1)}.

We may then define eey and eyqg as follows:

eev = A (n:nat)eeo®): 1

A

eod = A(n:nat)eeo(n) - r.

Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ © == woid void nullary sum
sum(ty; 72) 1+ 1 binary sum

Exp e 1= abort{r}(e) abort(e) abort
in[1{t;; 2} (e) l-e left injection
in[r|{t;; 2} (e) r-e right injection

case(e; xj.e;;xp.p) caseef{l-x;—e;|r-x; — e} case analysis

The nullary sum represents a choice of zero alternatives, and hence admits no introduction
form. The elimination form, abort(e), aborts the computation in the event that e evaluates
to a value, which it cannot do. The elements of the binary sum type are labeled to show
whether they are drawn from the left or the right summand, either 1 - e or r - e. A value of
the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

['Fe:void

I' - abort(e) : t (112
'Fe:1n
11.1
'Fl-e:ti+1m ()
'Fe:n
11.1
'Fr-e:t1+1m (©
I'Fe: Ixp:tker: Ixy:mber:
e+ Lxi:nhe 7t 1L mre: T (11.1d)

['Fcasee{l -xj— e |r-xpx—e}:1

Nullary and Binary Sums

The dynamics of sums is given by the following rules:

er— e
abort(e) —> abort(e’) (11.2a)
Le vall (11.2b)
1-eval
e vall (11.2¢)
r - e val '
[er— e]
l-er—1-¢ (11.2d)
_ A
e / (11.2¢)
r-e—>r-e
/
T / (11.21)
caseef{l -x; <> e |r-x3<> e} —> casee {1l -x;<> e |1 X e}
[e val]
Casel°€{l-x1L>el |r.x2c_>ez}}_> [e/xl]el (112g)
le vall (11.2h)

caser-e{l-x;—e;|r-x2— e} —> [e/x2]er

Finite Sums

Typ t© = sun({i = 7i}icr) [Tilicr sum
Exp e == in[il{T}(e) i-e injection
case(e; {i <> x;.e;}jc;) caseeli-x; < e;};c; case analysis

The variable I stands for a finite index set over which sums are formed. The notation T
stands for a finite function {i < 7;};<; for some index set /. The type sum({i — t;}ic;),
or) .., T; for short, is the type of /-classified values of the form in[i|{/}(e;), ori - ¢; for
short, where i € I and e¢; is an expression of type ;. An [-classified value is analyzed by
an [-way case analysis of the form case(e; {i < x;.€;}icr).

When I = {iy, ..., i, }, the type of [-classified values may be written

[ilc_>T1,°'°ainc_>Tn]

specifying the type associated with each class [; € I. Correspondingly, the 7-way case
analysis has the form

caseef{ij-x1—> ey |... i, x, <= e,}.

Finite Sums

The statics of finite sums is defined by the following rules:

I'Fe:7, (1 <k<n)

11.3
CFip-e:[i1> 1.0 > 1] (11.32)
I'Fe:lij—>1,...,i,—1] I'xy:nqqykte:t ... I,x,:1,Fe,: 1
. . (11.3b)
' casee{ij-xy—e|...li, - x,—e,}:T

These rules generalize the statics for nullary and binary sums given in Section 11.1.
The dynamics of finite sums is defined by the following rules:

o2l (11.4a)

[- e val

/
[, et e] (11.4b)

i-e—1-¢e

/

. c—¢ — (11.4¢)
casee{i - x; = ¢;};.; —> casee {i - x; = ¢;}.;

i - e val (11.4d)

casei-efi - x; = e;j};c; —> le/xile;

Application of Sum Types: Boolean

Typ T 1= Dbool bool booleans
Exp e := true true truth
false false falsity

if(e;e;;e7) if ethenejelsee, conditional

The statics of Booleans is given by the following typing rules:

(11.5a)

[' - true : bool
(11.5b)

[' - false : bool
I'Fe:bool I'kFej:71 TI'kFe:t (11.5¢)

' if ethenejelseer : T

Application of Sum Types: Boolean

The dynamics is given by the following value and transition rules:

(11.6a)
true val
(11.6b)
false val
(11.6¢)
if truethene|elsee; —> ¢
(11.64)
if falsethene|elsee, —> e
: e—=° (11.6e)
ifethene|elseey; —— if ¢ thene;elsee;
The type bool is definable in terms of binary sums and nullary products:
bool = unit 4+ unit (11.7a)
true =1- () (11.7b)
false=1r- () (11.7¢)

if ethene|elsee; = casee{l x|y <> e |r-x2 < e} (11.7d)

Application of Sum Types: Options

Another use of sums is to define the option types, which have the following syntax:

Typ t© == opt(r) T opt option
Exp e = null null nothing
just(e) just(e) something
ifnull{r}{e;;x.ex}(e) whiche{null < e; | just(x)— e}
null test

The type opt(t) represents the type of “optional” values of type . The introduction forms
are null, corresponding to “no value,” and just(e), corresponding to a specified value of
type t. The elimination form discriminates between the two possibilities.

The option type is definable from sums and nullary products according to the following

equations:!

Topt =unit+ 7 (11.8a)
null =1 -) (11.8b)
just(e) =1 -e (11.8¢)

whiche {null < ¢ | just(xy) <> e} = casee{l-_—e;|r-x;—> e} (11.8d)

