Adding Effects: The fail Command

Syntax:
comm .= fail

Semantics:
Must terminate program execution immediately, reporting the last state encountered.

=> failure is similar to nontermination:
if any executed command diverges, the whole program diverges

if any executed command fails, the whole program fails

=- semantics of sequencing may use a lifting function similar to (—) ||
but propagating failure instead of nontermination

The Failure Domain

The semantic domain must be extended to account for failure:

> def

> U ({abort} x X)
~ {normal, abort} x > (more abstract)
~ > 4+ >
The meanings of commands are now of type
[cllcomm € X — (i)J_
[fail]] commo = (abort, o)

Semantic equations for the primitive commands remain “unchanged”:
[v:=elcommo = lo|v: Lelintespo]
H:Skip]] commO = O

but more abstractly they are modified to

[v:=elcommo = (normal, [o|v: [[e]]mtexpO'D

[skip]lcommo = (normal, o)

Sequential Composition with Failure

Semantics of sequential composition uses another lifting:

[[CO > Cl]]comm — ([[Cl]]COmm)* . [[CO]] comm

where for every f € S — T the function fx € S| — T is defined by

fsl = L
fx(normal,) = fx
f«{abort, x) = (abort, x)

The semantics of while was defined using that of sequencing, so

: def
I]:Whlle b do C]] comm :e Y[Z—>2J_]F

where F fo = if [b] pppiespo = true then fi([cll commo) else (normal, o)

Note: These commands are semantically equivalent (for any command c)
in a language without failure, but not in one with:

c ; while true do skip while true do skip

Local Declarations with Failure: Problem

Recall the semantics of local declarations

[newvar v:=ein c]lcommo = ([— | v : ov]) | (el comm[o | v : [[e]]mtexpa])

The naive generalization in the presence of failure
[newvar v:=ein c] commo = ([~ |v : ov])« ([c]lcommlo | v : [ellintexpo])
doesn’t quite work: if c fails, the result shows the state when c failed:

[newvar x:=1 in fail]] commo = (abort, [o|x : 1])

so names of local variables can be exported out of scope
= renaming does not preserve meaning;:

[x:=0 ; newvar x:=1in fail]l commo = (abort, [o|x: 1])

[x:=0 ; newvar y:=1in fail]] commo = (abort, [c|x:0]|y: 1])

Conclusion: The old bindings of local variables must be restored
even when the result is in {abort} x >.

Local Declarations with Failure: Solution

Use yet another lifting function to restore bindings: if f € S — T, then f; € S| — T

fit = 1
f+(abort,) (abort, fx)

(normal, fx)

fr(normal,)

Then

[newvar v:=ein c]lcommo = ([— | v : cffu])Jr ([l commlo | v : el mtexpa])

Effectively failure is “caught” at local declarations
and “re-raised” after the old binding is restored.

Semantics of Failure

> = {normal, abort} x X
[cDcomm € £ — (X))

[[fail:[commT <ab0rt, O'>

(normal, [o|v : [e] int6$p0]>

(normal, o)

[['U = 6:[commT

I]:Skip:[commO

(M1l comm)«(Meoll commo)
([—]v: UU])T (Ll commlo | v : [[e]]intexpg])

[[CO > ClI commO

[newvar v:=ein c] commo

fal = L fiLt = 1
fx(normal, o) = fo fi(normal, o) = (normal, fo)
f«(abort,oc) = (abort, o) fi(abort, o) = (abort, fo)

(the equations for the conditional and the loop look unchanged)

Specifications with Failure

Recall semantics of total and partial correctness:

[[[p] C [CJ]]]spec = Vo € 2. |Ip]] assert0 =
([l commo # L and [[q]] assert ([l commo))
[[{p} C {q}]] spec = Vo € 2. ﬂp]] assert0 =

([l commo = L or [[qll ussert (Mell comma))

Our assertion language cannot handle results in {abort} x X,
so we treat these results as failing to satisfy an assertion:

[lp]l c [ql] = Vo e X.[Ipllo = ([clle ¢ {L} U ({abort} x X) and [q]] ([c]lo))
[{p} c{q}] = Voe XZ. [pllo = ([[c]e € {L} U ({abort} x) or [[¢]l([cllo))

Then the strongest rules for fail are

(FLT) [false] fail [false]
(FLP) {true} fail {false}

More Effects: Intermediate Output

Syntax:
comm .= lintexp
Intended semantics:

le outputs the value of e (and then the execution continues).

Major change in program meaning;:

B Even two nonterminating programs

may have observably different behaviors.

m Part of the result of executing a program is its output,

which can be an infinite object.

Semantics of Output: The Domain of Sequences

Example:
10 ; whilen > 0doif n = 0then (!'n ; n:=n+1) else skip

A program can behave in one of three ways:

® Output a finite sequence and then terminate (normally or failing)
B Output a finite sequence and then diverge without further output

® Output an infinite sequence

= the output domain can be defined (up to isomorphism) as

Q)
Q&)

n

©.@)
(Z"xs) u Y z" u zZN
0 n=0

Partial Order in the Domain of Sequences

The partial order should reflect the idea that

w C W' if output ' is “more defined” than output w.

If “more defined” is interpreted with respect to the length of observation, we get

/
wl w

Then the empty sequence () is the least element of 2.

There are three kinds of chains in €2:

(O E(7)E(7,00E(7,0) E(7,0) C

(HC(7)C(7,0)C(7,0,6)C (7,0,6)C...

OE(NE(T0E(07)E(70,7,1)C

<= w is a prefix of W’

(diverging with finite output)

(terminating)

Only chains of the latter kind are interesting, and their limits are in Q2 since ZN C Q:

o
if wg C wq C ... is such a chain, then |_| wnp ={[?,wji]|j € Nand i € domw; }

n=0

The Domain of Sequences as an Initial Continuous Algebra

oo oo
Idea: represent Q = | J (Z" x &)U | J Z" U ZN using abstract syntax.

n=0 n=0
The constructors are
b€ {{H—Q b1 = 0
tterm € X — 2 ttermo = (0)
labort € 2 — §2 tabort o = ((abort, o))
tout € 4 xQ2—Q tout (N, w) = (n) +Hw

(H is concatenation of sequences)

Finite applications of constructors define an initial algebra — the finite sequences in €2.

Completing this set with its limits defines €2 as an initial continuous algebra.

Semantics in the Domain of Sequences

The semantic equations become

[[_

[skip]
[v:=€]
[fail]]
[te]

[co 5 el

[newvar v:=e in]

Jsl
f«(tterm o)

f*(babort o) =

fs(rout (n, w)) =

Ncomm €

commO

commO

commO

commO

commO

commO

L
fo

tabort @

comm — 2 — Q2

lterm O

tterm Lo [v @ [e] intexp?]
labort

tout ([el intexp9, lterm o)

(M1l comm)« (Meoll commo)

([—]v: UU])T (Ll commlo | v : IIe]]z'ntexpO'])

filL =
fT(Lterm o) =
fT(Labort o) =

tout (m, fxw) fi(out (n, w)) =

1

tterm (f o)
tabort (f o)
tout (1, frw)

(the equations for the conditional and the loop still look unchanged)

Semantics of Output: An Example

['3; '6; fail] o

[fail]
[fail]
[fail]
[fail]

[fail]

« (['6] (['3] o))

« (['6]« (tout (3, tterm @)))
« (Lout (3, [!'6]« (tterm U)>)

x (Lout (3, ['6] 7))

* (bout <3> lout <67 lterm (7>

lout <37 [fail]l« (tout <67 lterm U)

tout (3, tout <67 [fail]) « (Lterm o)
3, tout (6, [fail]] o))

(
Lout {
(

Lout (3, tout <67 labort 0>>

))
)
))

[« (out (M, w)) = tout (N, frw)
e (Lterm o)=fo

Products of Predomains

If P, ..., Pyarepredomains, then Py X...X P, is the predomain over their Cartesian
product

{{x1, ..., zpn)|x1 € Prand ... and xp, € Py }

with the induced componentwise partial order

(x1, ..., zn) CE{y1, ..., yn) <= x1 Ciyrand ... and xp, Ty, yn
and limit
S
L] @$?, . 2$) |_| z$, . |_| "2y
1=0
If P, are domains, then (L1, ..., Ly) is the least element of P; X ... X Pj.

Then the projections ;' are continuous functions, and if f; are continuous, then so are

Sums of Predomains

If P1, ..., Py are predomains, then P; + ... + P, is the predomain over their sum
{{0,z)|lre PLU...U{{n—12)|x € Py}
ordered by the injected partial orders of the components:
(i, z) £ (J,y) < i=jandz [, y.

All elements in a chainin P; + ... + P, have the same tag, and the limit is

|| Gozs) = G, | jqu;>
i=0 i=0

Py + ...+ Ppisadomain only if n = 1 and P; is a domain.

The injections ¢} are continuous functions, and if f; are continuous, then so are
k (2

fi1®e...® fnand f1 + ... 4+ fn.

Recursive Isomorphism for the Domain of Outputs

Q)
112

(o) _ --+_ ((abort, o) Q) (1,|Q2)

N\ LA

Q%(Z—FZ—FZXQ)L

bEQ - (Z+T4+ZxQ), b= Iq
= such that
Ype(X+X+ZxQ) —-Q Y =Is1547xQ),
ltterm = Y-t € X — Q2
Labort — Y-ipri1 € X — Q2

= Y1pp € LXQ2—Q

lout

Intermediate Input: the Domain of Resumptions

Syntax:

comm .= ?var

Domain of program behaviors €2 3 w:

8 w = 1 = the program runs forever without output or input

B W = lterm 0 = the program terminates normally in state o

B W = i5port 0 = the program fails in state o

I w = oyt (n,w’) = the program outputs n and then has behavior w’

B forg € Z — 2: w = 1jp g = if the program inputs n, it has behavior g n.

QX (E+T+ZxD+(Z),
tin =11 13€(L— Q) —Q

Semantics of Intermediate Input

[?vllcommo = tin(An € Z.tierm [o|v i n])
fxl = L fTJ_ = L
fe(ttermo) = fo fT(Lterm o) = tterm (fo)
f«(tabort) = taport© fT(Labort o) = taport (f0o)
frltout (N, w)) = tout (0, frw) filtout (n, w)) = tout (N, frw)
fxQing) = tn(An € Z. fx (gn)) filing) = tin (f} - 9)
[7x; 'xlo = ['x]« ([?x] o)

[!x]+ (tin (An € Z. tterm [0 | x 2 n]))

tin (An € Z. ['x]l« (tterm [o | x 1 n]))

tin(An e Z.['X]| [o|x:n])

tin (An € Z. oyt (IxIl [o [x 1 n], tterm [o [x 1 n]))
tin (An € Z. 1oyt (N, tterm [0 [x 1 n]))

Continuation Semantics

In an implementation of cg ; c3,
the semantics of c; has no bearing on the result if cg fails to terminate
= the semantics of cq determines whether cq will be executed or not.

But from the direct semantics of sequencing

[co; cill o = [lexll« (lleoll o)

it looks as if the semantics of ¢; determines the result;
much machinery hidden in (—)« to rectify this.

The semantics of output
I w = oyt (n,w’) = the program outputs n and then has behavior w’

also suggests it would be easier to explain a behavior in terms of what to do next,
or its continuation behavior.

Continuation Semantics cont’d

Idea: let the semantic function take an extra argument x € >~ — 2
which describes the behavior of the rest of the program. Then

[[—]]comm e comm — (Z — Q) 3 5 Q

[skip] x o
fvi=e]l ko

[if b then celse]| ko

[co; cill ko

i.e. [co; c1ll

[while b do]

[newvar v:=einc] ko

ko v [elintepo]

if 0] gsserto then [c]l k o else [ko

[coll (Ao’ € . [[eall ko) o

[coll ([e1]l w) o

[coll - [eal

Ys _ .o F where F k' o = if [b]o then [[c] &' o else ko
[l (Ao’ € .m0 |02 ov]) [o | v ¢ [e]lo]

[c] gg%m ko

wu ([l reet o), in particular [e]direet = [e]eont,, o,

Continuation Semantics

Idea: let the semantic function take an extra argument x € K (where K d:ef > —)

which is its continuation: it describes the behavior of the rest of the program,
produces an answer in {2 when applied to an initial state in 2_.

T—Ncomm € comm — (X — Q) - X — Q

i.e. the semantics of a command maps continuations to continuations:

[[—]] comm & comm — K — K

[skip]l x = Mo € X.ko
= K
ie. [[skip] = Ix
[vi=elx = M€ X.klo|v: [ellinterpo]
[co;cilc = doeXZ. [eg] (N’ € Z. [e1] ko) o

Ao € 2. [eo]l ([e1]l k) o
[eoll (Leal)

i.e. [co; c1ll = leol - el

More Continuation Semantics

[if b then celse | k = Ao € X. if [b] ysserto then [c]| ko else [ko

[while b do c]] s = [[if b then (c ; while b do ¢) else skip]
= Mo € . if [b]] ysserto then ([[c] - [whilebdo c]]) ko else ko
= Ao € X.if [b]] ysserto then [[c]] ([while bdo c]] k) o else ko
= F ([[while b do ¢]| k), where
Fr' = Mo & X.if [b] ysserto then [[c]] &' o else ko
[whilebdo c]] ks = Ys_.o F where F k' o = if [b]lo then [[c] &' o else ko

[newvarv:=einc]ls = A€ X.[[c] (Mo’ € Z.k[c"|v:ov])[o]|v: [e]o]

Relationship Between Direct and Continuation Semantics

The connection is that

[o = nu ([t o)
e et = o - st

which can be shown by structural induction on comm, e.g.
[skip] " k = I}k = K k- [skip]¥ret = k| - Iy = &
Ic; C/]] cont . — [c] cont ([[C/]] cont k) = [c] cont (’fJ_I_) [[C/]] direct)

= (K - '] dz'rect)ll— el direct

=k - ([[C/]] dz’rect)lL) IICI direct — K - [[C : C/]] direct

When the “final” (or “top-level”) continuation is the injection ¢y € > — > |, then

[éommer = Cpda - [eDdomsh

ie. [l = Ml v

Continuation Semantics of Extensions

For input and output,

[tel & = Ao € . iout (lellinterpos ko)
[7v]lk = MoeX.jz(Mn € Z.k[o]|v:n])

The relationship between direct and continuation semantics is then

[t mo = ke ([l o)
or []el, = ko - [l direct

Failure ignores the given continuation and directly produces a result
= one might expect

[faill ko = ttermo

but this does not work: local variables are not reset to their original bindings.

Continuation Semantics of Failure

So we have to introduce a second, abortive continuation,
which the semantics of failure invokes and of local declarations augments:

[—Dcomm €

[skip]

[v:=€]

[co 5 el

[if b then c else (']

[while b do]

Iﬁ:tiﬁlf
Kt K f
Iitlif
KtKf

Kt Kf

[newvar v:=einc] ki k¢

[tel
[?v]

[fail]

H}tiﬁ:f
lit/{f

Iitlif

comm — K — K - K
Kt
Ao € X.klo|v: [[e]]z'ntexpa]

[eoll ([eill ke wp) v g
Ao € 2. if [bllasserto then [[c]]l ke ki p o else [T x5+ Kfo
Yy oF
where F' v’ o = if [b]lo then [[c] &' Ky o else ko
Ao € X.[lc]l (Ao’ € Z. ke [0 |v 1 ov])
(A" € Z.kylo’|v:ov])[o]|v: [e]o]
Ao € X iout ([ellinteapo, Kt o)
Ao € . tin(Mn €Z.ktlo]|v:n])

rf

