CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Judgments and Rules
February 28, 2025

Abstract Syntax Tree (AST)

An ordered tree whose leaves are variables; and whose interior nodes
are operators whose arguments are its children

« A variable of a specified sort
* An operator of sort s with arguments of sorts s4,..., s,

As an example, consider a language of arithmetic expressions built from numbers,
addition, and multiplication. The abstract syntax of such a language consists of a single
sort Exp generated by these operators:

1. An operator num[n] of sort Exp for each n € N.

2. Two operators, plus and times, of sort Exp, each with two arguments of sort Exp.

The expression 2 + (3 x x), which involves a variable, x, would be represented by the ast

plus(num[2]; times(num[3]; x))

Structural Induction over AST

The tree structure of ast’s provides a very useful principle of reasoning, called structural
induction. Suppose that we wish to prove that some property P(a) holds for all ast’s a of a
given sort. To show this, it is enough to consider all the ways in which a can be generated
and show that the property holds in each case under the assumption that it holds for its
constituent ast’s (if any). So, in the case of the sort Exp just described, we must show

1. The property holds for any variable x of sort Exp: prove that P(x).
2. The property holds for any number, num[n]: for every n € N, prove that P(num[n]).

3. Assuming that the property holds for a; and a;, prove that it holds for plus(a;;a;) and
times(ay;ay): if P(a;) and P(ay), then P(plus(a;;ay)) and P(times(a;;ay)).

Formal Definition of AST

For the sake of precision, we now give precise definitions of these concepts. Let S be
a finite set of sorts. For a given set S of sorts, an arify has the form (s, ..., s,)s, which
specifies the sort s € § of an operator taking n > 0 arguments, each of sort s; € S. Let
@O = {0, } be an arity-indexed family of disjoint sets of operators O, of arity «. If o is
an operator of arity (s, ..., s,)s, we say that o has sort s and has n arguments of sorts

S1y 0055,

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let
X = { & }ses be a sort-indexed family of disjoint finite sets X of variables x of sort s.
When X is clear from context, we say that a variable x 1s of sort s if x € X, and we say
that x is fresh for X, or just fresh when X 1s understood, if x ¢ X, for any sort s. If x is
fresh for A and s is a sort, then X', x i1s the family of sets of variables obtained by adding
x to X. The notation is ambiguous in that the sort s 1s not explicitly stated but determined
from context.

Formal Definition of AST

The family A[X] = { A[X]; }ses of abstract syntaxtreesyorast’s, of sortsis the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x € X, then x € A[X];.

2. Operators combine ast’s: if o is an operator of arity (s, ..., s,)s, and if a; € A[X];,,
..., ay € A[X];,, then o(ay;. . .;a,) € A[X];.

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a € A[X], it is
enough to show:

1. If x € X, then P,(x).
2. If o has arity (s, ..., s,)s and Py, (a;) and . .. and P; (a,), then Ps(o(ay;. . .;a,)).

Substitution over AST

Variables are given meaning by substitution. If a € A[X, x]y, and b € A[X],, then
[b/x]a € A[X]y is the result of substituting b for every occurrence of x in a. The ast a is
called the rarget, and x 1s called the subject, of the substitution. Substitution is defined by
the following equations:

. [b/x]x =band [b/x]y = yif x #£ y.
2. [b/x]o(ar;. . .;a,) = o([b/x]ay; .. .5[b/x]ay,).

For example, we may check that
[num[2]/x]plus(x;num[3]) = plus(num[2]; num[3]).

We may prove by structural induction that substitution on ast’s is well-defined.

Theorem 1.1. Ifa € A[X, x], then for every b € A[X] there exists a unique ¢ € A[X]
such that [b/x]a = c

Abstract Binding Tree (ABT)

 An ast that can introduce new variables and symbols, called a
binding with a scope (a range within which the bound identifier can
be used)

As a motivating example, consider the expression let x be a; ina,, which introduces
a variable x for use within the expression a, to stand for the expression a;. The variable
x 1s bound by the let expression for use within a;; any use of x within a; refers to a
different variable that happens to have the same name. For example, in the expression
let x be 7in x + x occurrences of x in the addition refer to the variable introduced by the
let. On the other hand, in the expression 1et x be x * x in x + x, occurrences of x within
the multiplication refer to a different variable than those occurring within the addition. The

Abstract Binding Tree (ABT)

An ordered tree whose leaves are variables; and whose interior
nodes are operators whose arguments are its children

« A variable of a specified sort

* An operator of sort s with arguments of generalized sorts (or
valences) v4,..., Vv, where a valence v has the form s,...s,.§’

Thus, to specify that the operator 1let has arity (Exp, Exp.Exp)Exp indicates that it is
of sort Exp whose first argument is of sort Exp and binds no variables and whose second
argument is also of sort Exp and within which is bound one variable of sort Exp. The
informal expression let x be 2 + 2 in x X x may then be written as the abt

let(plus(num[2]; num[2]); x.times(x; x))

in which the operator 1et has two arguments, the first of which is an expression, and the
second of which is an abstractor that binds one expression variable.

Abstract Binding Tree (ABT)

Fix aset S of sorts and a family O of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X', the family of abstract binding

trees, or abt’s B[X'], is defined similarly to A[X'], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

1. If x € X, then x € B[X],.

2. For each operator o of arity (57.51,...,8,.5,)s, if a; € B[X,X]s, ..., and a, €
BIX, X.1s,, then o(xX;.ay; ... :%,.a,) € B[X];,.

Abstract Binding Tree (ABT)

Fix aset S of sorts and a family O of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X', the family of abstract binding

trees, or abt’s B[X'], is defined similarly to A[X'], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

1. If x € X, then x € B[X],.

. arity (§1.S1,... S —i 1 € 5[/(,)?”“, o, anda, & !

= nr.vYi

- -
R[A), Y::]:,,- thF‘nv"{)»l.ul, . .. ,An.un){ O17C T

fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables X is a bijection p : ¥ <> X’
between X and x’, where X’ is fresh for X'. We write p(a) for the result of replacing each
occurrence of x; in a by p(x;), its fresh counterpart.

For each operator o of arity (51.51, ..., 8,.5,)s, if for each 1 < i < n and each fresh
renaming p; : X; <> X;, we have p;(a;) € B[X, x/], then o(x1.a1; . . . ;Xy.an) € B[X];.

Abstract Binding Tree (ABT)

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X'](a) holds for every a € B[X], it 1s
enough to show the following:

1. if x € A, then P[X];(x).

2. For every o of arity (5;.51, ..., S,.5,)s, if for each 1 < i < n, P[X, x/];,(p;i(a;)) holds
for every p; : x; <> x! with X! ¢ X then P[X];(0(X1.a1; . . . ;Xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

The relation @ =, b of a-equivalence (so-called for historical reasons) means that a and
b are identical up to the choice of bound variable names. The a-equivalence relation is the
strongest congruence containing the following two conditions:

1. x =, x.

2. o(X1.ay;. . Xp-ay) = 0(X7.at;.. X .a)) if forevery 1 < i < n, pi(a;) =4 p;(a]) for
all fresh renamings p; : X; <> zZ; and p; : x| <> Z;.

Judgments

We start with the notion of a judgment, or assertion, about an abstract binding tree. We
shall make use of many forms of judgment, including examples such as these:

n nat n is a natural number
ny+n,=n n 1s the sum of n; and n»,
T type T 1S a type

e:T expression e has type ©

e v expression e has value v

A judgment states that one or more abstract binding trees have a property or stand in
some relation to one another. The property or relation itself is called a judgment form, and
the judgment that an object or objects have that property or stand in that relation 1s said
to be an instance of that judgment form. A judgment form is also called a predicate, and
the objects constituting an instance are its subjects. We write a J or J a, for the judgment
asserting that J holds of the abt a. Correspondingly, we sometimes notate the judgment
form J by — J, or J —, using a dash to indicate the absence of an argument to J. When it is

Inference Rules

An inductive definition of a judgment form consists of a collection of rules of the form

Jiooo
2.1
5 (2.1)
zero nat empty tree
a nat a) tree aj tree

succ(a) nat node(a;;a») tree

Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation
of it. A derivation of a judgment is a finite composition of rules, starting with axioms and
ending with that judgment. It can be thought of as a tree in which each node is a rule whose
children are derivations of its premises. We sometimes say that a derivation of J is evidence
for the validity of an inductively defined judgment J.

We usually depict derivations as trees with the conclusion at the bottom, and with the
children of a node corresponding to a rule appearing above it as evidence for the premises
of that rule. Thus, if

...

J
1s an inference rule and Vl, oV . are derivations of its premises, then

Vi oo Vi

J
zero nat
succ(zero) nat empty tree empty tree
succ(succ(zero)) nat node(empty;empty) tree empty tree

succ(succ(succ(zero))) nat - node(node(empty;empty);empty) tree

Rule Induction

Because an inductive definition specifies the strongest judgment form closed under a
collection of rules, we may reason about them by rule induction. The principle of rule
induction states that to show that a property @ P holds whenever a J is derivable, it is
enough to show that P is closed under, or respects, the rules defining the judgment form J.
More precisely, the property P respects the rule

ad ... aJ
aJ

if P(a) holds whenever P(a;), ..., P(a;) do. The assumptions P(a;), ..., P(ay) are called
the inductive hypotheses, and P(a) 1s called the inductive conclusion of the inference.

Ilterated Inductive Definitions

Inductive definitions are often iferated, meaning that one inductive definition builds on top
of another. In an iterated inductive definition, the premises of a rule

J .. Jk
J

may be instances of either a previously defined judgment form, or the judgment form being
defined. For example, the following rules define the judgment form — list, which states that
a 1s a list of natural numbers:

(2.7a)

nil list

a nat b list
cons(a;b) list

(2.7b)

Simultaneous Inductive Definitions

Frequently two or more judgments are defined at once by a simultaneous inductive
definition. A simultaneous inductive definition consists of a set of rules for deriving instances
of several different judgment forms, any of which may appear as the premise of any rule.

(2.8a)
Zero even
b odd
succ(b) even (2.8b)
a even (2.8¢)

succ(a) odd

The principle of rule induction for these rules states that to show simultaneously that
P(a) whenever a even and Q(b) whenever b odd, it is enough to show the following:

1. P(zero);
2. 1if 9(b), then P(succ(b));
3. if P(a), then O(succ(a)).

Hypothetical Judgments: Derivability

« Rules for expressing the validity of a conclusion conditional on the
validity of one or more hypotheses.

For a given set R of rules, we define the derivability judgment, written Jy, ..., Jp Fr K,
where each J; and K are basic judgments, to mean that we may derive K from the expansion
RU{Jy, ..., J;} of the rules R with the axioms

3 . -

We use capital Greek letters, usually I' or A, to stand for a finite set of basic judgments,
and write R U I for the expansion of /R with an axiom corresponding to each judgment in
I'. The judgment I' = K means that K is derivable from rules R U I', and the judgment

=z I' means that =% J foreach J in ['. An equivalent way of defining Jy, ..., J, Fr J 1s
to say that the rule

Ji ... Iy
J

(3.1)

is derivable from R, which means that there is a derivation of J composed of the rules in
R augmented by treating Jq, ..., J, as axioms.

Hypothetical Judgments: Derivability

Theorem 3.1 (Stability). If ' b J, then I" Frur J.

Reflexivity Every judgment is a consequence of itself: I', J % J. Each hypothesis
justifies itself as conclusion.

Weakening If ' = J, then I', K % J. Entailment is not influenced by un-exercised
options.

Transitivity If ', K =5 J and I' = K, then I ¢ J. If we replace an axiom by a
derivation of it, the result is a derivation of its consequent without that hypothesis.

Hypothetical Judgments: Admissibility

Admissibility, written I' = J,1s a weaker form of hypothetical judgment stating that =z I"
implies =7 J. That is, the conclusion J is derivable from rules /R when the assumptions
[" are all derivable from rules R. In particular if any of the hypotheses are not derivable

relative to R, then the judgment 1s vacuously true. An equivalent way to define the judgment
Ji, ..., J, Er J is to state that the rule

J ... Iy
J (3.5)

1s admissible relative to the rules in R. Given any derivations of Ji, ..., J, using the rules
in R, we may build a derivation of J using the rules in 'R..

For example, the admissibility judgment
succ(a) even |:(2.8) a odd (3.6)

is valid, because any derivation of succ(a) even from rules (2.2) must contain a sub-
derivation of a odd from the same rules, which justifies the conclusion. This fact can be

Hypothetical Judgments: Admissibility

Theorem 3.2. [fI' =r J, then ' =5 J.

Reflexivity If J is derivable from the original rules, then J is derivable from the original
rules: J = J.

Weakening If J is derivable from the original rules assuming that each of the judgments
in I' are derivable from these rules, then J must also be derivable assuming that I" and
K are derivable from the original rules: if I' = J, then I, K =5 J.

Transitivity If '), £ =z J and I' = K, then I' =5 J. If the judgments in I" are
derivable, so 1s K, by assumption, and hence so are the judgments in I', K, and hence
sois J.

Hypothetical Inductive Definitions

A hypothetical inductive definition consists of a set of hypothetical rules of the following
form:
roan=Js ... I'r,EJ,
CHJ '

The hypotheses I' are the global hypotheses of the rule, and the hypotheses I'; are the
local hypotheses of the ith premise of the rule. Informally, this rule states that J 1s a
derivable consequence of I' when each J; is a derivable consequence of I', augmented
with the hypotheses I';. Thus, one way to show that J is derivable from I' is to show, in
turn, that each J; is derivable from I' I';. The derivation of each premise involves a “context
switch” in which we extend the global hypotheses with the local hypotheses of that premise,
establishing a new set of global hypotheses for use within that derivation.

(3.9)

Hypothetical Rule Induction

The principle of hypothetical rule induction is just the principle of rule induction applied
to the formal hypothetical judgment. So to show that P(I" = J) when I" = J, it is enough
to show that P is closed under the rules of R and under the structural rules." Thus, for each
rule of the form (3.9), whether structural or in R, we must show that

if P’ - Jy)and ... and P(I'T, - J,,), then P(I' - J).

Where the structural rules are:

(3.11a)
C,JFJ
r-J
FRE T (3.11b)
r-K T,K+J G3.11¢)

I'=J

General Judgments

General judgments codify the rules for handling variables in a judgment. As in mathematics
in general, a variable 1s treated as an unknown, ranging over a specified set of objects. A
generic judgment states that a judgment holds for any choice of objects replacing designated
variables 1n the judgment. Another form of general judgment codifies the handling of
symbolic parameters. A parametric judgment expresses generality over any choice of fresh
renamings of designated symbols of a judgment. To keep track of the active variables and
symbols in a derivation, we write [° I—%X J to say that J is derivable from I according to
rules R, with objects consisting of abt’s over symbols {/ and variables X.

Generic Derivability

Generic derivability judgment is defined by
VI|TkgJ iff THYYJ,

where) N X' = (). Evidence for generic derivability consists of a generic derivation V
involving the variables X). So long as the rules are uniform, the choice of) does not
matter, in a sense to be explained shortly.

For example, the generic derivation V,

X nat
succ(x) nat

succ(succ(x)) nat ’
is evidence for the judgment

X | x nat I—é 2) succ(succ(x)) nat

provided x ¢ X. Any other choice of x would work just as well, as long as all rules are
uniform.

Generic Derivability

The generic derivability judgment enjoys the following structural properties governing
the behavior of variables, provided that R is uniform.

Proliferation If Y | T I—% J,then),y | I I—% J.
Renaming If Y,y [T 5 J,then Y, y' | [y < YIT =% [y <> y'1J forany y ¢ X' V.
Substitution If),y | T -} J anda € B[X Y], then Y | [a/yI[5 [a/y]1J.

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expan-
sions of the universe. Renaming is built into the meaning of the generic judgment. It is left
implicit in the principle of substitution that the substituting abt is of the same sort as the
substituted variable.

Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of
rules, with the effect of augmenting the variables, as well as the rules, within those premises.
A generic rule has the form

YITFJ

(3.12)

The variables) are the global variables of the inference, and, for each 1 < i < n, the
variables); are the local variables of the ith premise. In most cases, a rule is stated for all
choices of global variables and global hypotheses. Such rules can be given in implicit form,

- n o W T de
J

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form Y | I' = J. Formal generic judgments are identified up to
renaming of variables, so that the latter judgment is treated as identical to the judgment
V' | p(I') = p(J) for any renaming p :) <>)'. If R is a collection of generic rules, we
write V | ' ¢ J to mean that the formal generic judgment Y | I' = J is derivable from
rules R.

(3.13)

Generic Rule Induction

When specialized to a set of generic rules, the principle of rule induction states that to
show P(Y |T' = J)when) | " - J,itis enough to show that ‘P is closed under the rules

R. Specifically, for each rule in R of the form (3.12), we must show that
POV | TTIEJ) ... POV, | T, = Jy)then P(Y | T' = J).

To ensure that the formal generic judgment behaves like a generic judgment, we must
always ensure that the following structural rules are admissible:

V. x' | [x < XI'F[x < x'|J

YIT,JE=J Y xTFJ
= J

y;)l}LJ’I—J Y|II'tJ Y|II,JEJ
’ Y|TEJ

yyxl |FF|_|—]J V., x| I'J aeB[)]

Ylla/x]l' = la/x]J

Parametric Derivability

Parametric derivability 1s defined analogously to generic derivability, albeit by general-
1zing over symbols, rather than variables. Parametric derivability is defined by

VIYI|THEY J iff YT HELSY T,

where V NU = (). Evidence for parametric derivability consists of a derivation V involving
the symbols V. Uniformity of R ensures that any choice of parameter names 1s as good as
any other; derivability is stable under renaming.

The concept of a generic inductive definition extends to parametric judgments as well.
Briefly, rules are defined on formal parametric judgments of the form)V || YV | ' - J, with
symbols V, as well as variables,)). Such formal judgments are identified up to renaming
of its variables and its symbols to ensure that the meaning is independent of the choice of
variable and symbol names.

