
CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Judgments and Rules
February 28, 2025

Abstract Syntax Tree (AST)

An ordered tree whose leaves are variables; and whose interior nodes
are operators whose arguments are its children

• A variable of a specified sort
• An operator of sort s with arguments of sorts s1,…, sn

4 Abstract Syntax

into a variety of sorts corresponding to different forms of syntax. A variable stands for an
unspecified, or generic, piece of syntax of a specified sort. Ast’s can be combined by an
operator, which has an arity specifying the sort of the operator and the number and sorts
of its arguments. An operator of sort s and arity s1, . . . , sn combines n ≥ 0 ast’s of sort
s1, . . . , sn, respectively, into a compound ast of sort s.

The concept of a variable is central and therefore deserves special emphasis. A variable
is an unknown object drawn from some domain. The unknown can become known by
substitution of a particular object for all occurrences of a variable in a formula, thereby
specializing a general formula to a particular instance. For example, in school algebra
variables range over real numbers, and we may form polynomials, such as x2 + 2 x + 1,
that can be specialized by substitution of, say, 7 for x to obtain 72 + (2 × 7) + 1, which can
be simplified according to the laws of arithmetic to obtain 64, which is (7 + 1)2.

Abstract syntax trees are classified by sorts that divide ast’s into syntactic categories.
For example, familiar programming languages often have a syntactic distinction between
expressions and commands; these are two sorts of abstract syntax trees. Variables in abstract
syntax trees range over sorts in the sense that only ast’s of the specified sort of the variable
can be plugged in for that variable. Thus, it would make no sense to replace an expression
variable by a command, nor a command variable by an expression, the two being different
sorts of things. But the core idea carries over from school mathematics, namely that a
variable is an unknown, or a place-holder, whose meaning is given by substitution.

As an example, consider a language of arithmetic expressions built from numbers,
addition, and multiplication. The abstract syntax of such a language consists of a single
sort Exp generated by these operators:

1. An operator num[n] of sort Exp for each n ∈ N.
2. Two operators, plus and times, of sort Exp, each with two arguments of sort Exp.

The expression 2 + (3 × x), which involves a variable, x, would be represented by the ast

plus(num[2]; times(num[3]; x))

of sort Exp, under the assumption that x is also of this sort. Because, say, num[4], is an ast
of sort Exp, we may plug it in for x in the above ast to obtain the ast

plus(num[2]; times(num[3]; num[4])),

which is written informally as 2 + (3 × 4). We may, of course, plug in more complex ast’s
of sort Exp for x to obtain other ast’s as result.

The tree structure of ast’s provides a very useful principle of reasoning, called structural
induction. Suppose that we wish to prove that some property P(a) holds for all ast’s a of a
given sort. To show this, it is enough to consider all the ways in which a can be generated
and show that the property holds in each case under the assumption that it holds for its
constituent ast’s (if any). So, in the case of the sort Exp just described, we must show

1. The property holds for any variable x of sort Exp: prove that P(x).
2. The property holds for any number, num[n]: for every n ∈ N, prove that P(num[n]).

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Structural Induction over AST

4 Abstract Syntax

into a variety of sorts corresponding to different forms of syntax. A variable stands for an
unspecified, or generic, piece of syntax of a specified sort. Ast’s can be combined by an
operator, which has an arity specifying the sort of the operator and the number and sorts
of its arguments. An operator of sort s and arity s1, . . . , sn combines n ≥ 0 ast’s of sort
s1, . . . , sn, respectively, into a compound ast of sort s.

The concept of a variable is central and therefore deserves special emphasis. A variable
is an unknown object drawn from some domain. The unknown can become known by
substitution of a particular object for all occurrences of a variable in a formula, thereby
specializing a general formula to a particular instance. For example, in school algebra
variables range over real numbers, and we may form polynomials, such as x2 + 2 x + 1,
that can be specialized by substitution of, say, 7 for x to obtain 72 + (2 × 7) + 1, which can
be simplified according to the laws of arithmetic to obtain 64, which is (7 + 1)2.

Abstract syntax trees are classified by sorts that divide ast’s into syntactic categories.
For example, familiar programming languages often have a syntactic distinction between
expressions and commands; these are two sorts of abstract syntax trees. Variables in abstract
syntax trees range over sorts in the sense that only ast’s of the specified sort of the variable
can be plugged in for that variable. Thus, it would make no sense to replace an expression
variable by a command, nor a command variable by an expression, the two being different
sorts of things. But the core idea carries over from school mathematics, namely that a
variable is an unknown, or a place-holder, whose meaning is given by substitution.

As an example, consider a language of arithmetic expressions built from numbers,
addition, and multiplication. The abstract syntax of such a language consists of a single
sort Exp generated by these operators:

1. An operator num[n] of sort Exp for each n ∈ N.
2. Two operators, plus and times, of sort Exp, each with two arguments of sort Exp.

The expression 2 + (3 × x), which involves a variable, x, would be represented by the ast

plus(num[2]; times(num[3]; x))

of sort Exp, under the assumption that x is also of this sort. Because, say, num[4], is an ast
of sort Exp, we may plug it in for x in the above ast to obtain the ast

plus(num[2]; times(num[3]; num[4])),

which is written informally as 2 + (3 × 4). We may, of course, plug in more complex ast’s
of sort Exp for x to obtain other ast’s as result.

The tree structure of ast’s provides a very useful principle of reasoning, called structural
induction. Suppose that we wish to prove that some property P(a) holds for all ast’s a of a
given sort. To show this, it is enough to consider all the ways in which a can be generated
and show that the property holds in each case under the assumption that it holds for its
constituent ast’s (if any). So, in the case of the sort Exp just described, we must show

1. The property holds for any variable x of sort Exp: prove that P(x).
2. The property holds for any number, num[n]: for every n ∈ N, prove that P(num[n]).

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

5 1.1 Abstract Syntax Trees

3. Assuming that the property holds for a1 and a2, prove that it holds for plus(a1; a2) and
times(a1; a2): if P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
P(a) holds for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of
the interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it
is often useful to prove a property of an ast involving variables in a form that is conditional
on the property holding for the variables. Doing so anticipates that the variables will be
replaced with ast’s that ought to have the property assumed for them, so that the result of
the replacement will have the property as well. This amounts to applying the principle of
structural induction to properties P(a) of the form “if a involves variables x1, . . . , xk , and
Q holds of each xi , then Q holds of a,” so that a proof of P(a) for all ast’s a by structural
induction is just a proof that Q(a) holds for all ast’s a under the assumption that Q holds
for its variables. When there are no variables, there are no assumptions, and the proof of P
is a proof that Q holds for all closed ast’s. On the other hand, if x is a variable in a, and we
replace it by an ast b for which Q holds, then Q will hold for the result of replacing x by b

in a.
For the sake of precision, we now give precise definitions of these concepts. Let S be

a finite set of sorts. For a given set S of sorts, an arity has the form (s1, . . . , sn)s, which
specifies the sort s ∈ S of an operator taking n ≥ 0 arguments, each of sort si ∈ S . Let
O = {Oα } be an arity-indexed family of disjoint sets of operators Oα of arity α. If o is
an operator of arity (s1, . . . , sn)s, we say that o has sort s and has n arguments of sorts
s1, . . . , sn.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let
X = {Xs }s∈S be a sort-indexed family of disjoint finite sets Xs of variables x of sort s.
When X is clear from context, we say that a variable x is of sort s if x ∈ Xs , and we say
that x is fresh for X , or just fresh when X is understood, if x /∈ Xs for any sort s. If x is
fresh for X and s is a sort, then X , x is the family of sets of variables obtained by adding
x to Xs . The notation is ambiguous in that the sort s is not explicitly stated but determined
from context.

The familyA[X] = {A[X]s }s∈S of abstract syntax trees, or ast’s, of sort s is the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs , then x ∈ A[X]s .
2. Operators combine ast’s: if o is an operator of arity (s1, . . . , sn)s, and if a1 ∈ A[X]s1 ,

. . . , an ∈ A[X]sn
, then o(a1; . . . ;an) ∈ A[X]s .

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a ∈ A[X], it is
enough to show:

1. If x ∈ Xs , then Ps(x).
2. If o has arity (s1, . . . , sn)s and Ps1 (a1) and . . . and Psn

(an), then Ps(o(a1; . . . ;an)).

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Formal Definition of AST

5 1.1 Abstract Syntax Trees

3. Assuming that the property holds for a1 and a2, prove that it holds for plus(a1; a2) and
times(a1; a2): if P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
P(a) holds for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of
the interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it
is often useful to prove a property of an ast involving variables in a form that is conditional
on the property holding for the variables. Doing so anticipates that the variables will be
replaced with ast’s that ought to have the property assumed for them, so that the result of
the replacement will have the property as well. This amounts to applying the principle of
structural induction to properties P(a) of the form “if a involves variables x1, . . . , xk , and
Q holds of each xi , then Q holds of a,” so that a proof of P(a) for all ast’s a by structural
induction is just a proof that Q(a) holds for all ast’s a under the assumption that Q holds
for its variables. When there are no variables, there are no assumptions, and the proof of P
is a proof that Q holds for all closed ast’s. On the other hand, if x is a variable in a, and we
replace it by an ast b for which Q holds, then Q will hold for the result of replacing x by b

in a.
For the sake of precision, we now give precise definitions of these concepts. Let S be

a finite set of sorts. For a given set S of sorts, an arity has the form (s1, . . . , sn)s, which
specifies the sort s ∈ S of an operator taking n ≥ 0 arguments, each of sort si ∈ S . Let
O = {Oα } be an arity-indexed family of disjoint sets of operators Oα of arity α. If o is
an operator of arity (s1, . . . , sn)s, we say that o has sort s and has n arguments of sorts
s1, . . . , sn.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let
X = {Xs }s∈S be a sort-indexed family of disjoint finite sets Xs of variables x of sort s.
When X is clear from context, we say that a variable x is of sort s if x ∈ Xs , and we say
that x is fresh for X , or just fresh when X is understood, if x /∈ Xs for any sort s. If x is
fresh for X and s is a sort, then X , x is the family of sets of variables obtained by adding
x to Xs . The notation is ambiguous in that the sort s is not explicitly stated but determined
from context.

The familyA[X] = {A[X]s }s∈S of abstract syntax trees, or ast’s, of sort s is the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs , then x ∈ A[X]s .
2. Operators combine ast’s: if o is an operator of arity (s1, . . . , sn)s, and if a1 ∈ A[X]s1 ,

. . . , an ∈ A[X]sn
, then o(a1; . . . ;an) ∈ A[X]s .

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a ∈ A[X], it is
enough to show:

1. If x ∈ Xs , then Ps(x).
2. If o has arity (s1, . . . , sn)s and Ps1 (a1) and . . . and Psn

(an), then Ps(o(a1; . . . ;an)).

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

5 1.1 Abstract Syntax Trees

3. Assuming that the property holds for a1 and a2, prove that it holds for plus(a1; a2) and
times(a1; a2): if P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
P(a) holds for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of
the interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it
is often useful to prove a property of an ast involving variables in a form that is conditional
on the property holding for the variables. Doing so anticipates that the variables will be
replaced with ast’s that ought to have the property assumed for them, so that the result of
the replacement will have the property as well. This amounts to applying the principle of
structural induction to properties P(a) of the form “if a involves variables x1, . . . , xk , and
Q holds of each xi , then Q holds of a,” so that a proof of P(a) for all ast’s a by structural
induction is just a proof that Q(a) holds for all ast’s a under the assumption that Q holds
for its variables. When there are no variables, there are no assumptions, and the proof of P
is a proof that Q holds for all closed ast’s. On the other hand, if x is a variable in a, and we
replace it by an ast b for which Q holds, then Q will hold for the result of replacing x by b

in a.
For the sake of precision, we now give precise definitions of these concepts. Let S be

a finite set of sorts. For a given set S of sorts, an arity has the form (s1, . . . , sn)s, which
specifies the sort s ∈ S of an operator taking n ≥ 0 arguments, each of sort si ∈ S . Let
O = {Oα } be an arity-indexed family of disjoint sets of operators Oα of arity α. If o is
an operator of arity (s1, . . . , sn)s, we say that o has sort s and has n arguments of sorts
s1, . . . , sn.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let
X = {Xs }s∈S be a sort-indexed family of disjoint finite sets Xs of variables x of sort s.
When X is clear from context, we say that a variable x is of sort s if x ∈ Xs , and we say
that x is fresh for X , or just fresh when X is understood, if x /∈ Xs for any sort s. If x is
fresh for X and s is a sort, then X , x is the family of sets of variables obtained by adding
x to Xs . The notation is ambiguous in that the sort s is not explicitly stated but determined
from context.

The familyA[X] = {A[X]s }s∈S of abstract syntax trees, or ast’s, of sort s is the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs , then x ∈ A[X]s .
2. Operators combine ast’s: if o is an operator of arity (s1, . . . , sn)s, and if a1 ∈ A[X]s1 ,

. . . , an ∈ A[X]sn
, then o(a1; . . . ;an) ∈ A[X]s .

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a ∈ A[X], it is
enough to show:

1. If x ∈ Xs , then Ps(x).
2. If o has arity (s1, . . . , sn)s and Ps1 (a1) and . . . and Psn

(an), then Ps(o(a1; . . . ;an)).

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Formal Definition of AST

5 1.1 Abstract Syntax Trees

3. Assuming that the property holds for a1 and a2, prove that it holds for plus(a1; a2) and
times(a1; a2): if P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
P(a) holds for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of
the interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it
is often useful to prove a property of an ast involving variables in a form that is conditional
on the property holding for the variables. Doing so anticipates that the variables will be
replaced with ast’s that ought to have the property assumed for them, so that the result of
the replacement will have the property as well. This amounts to applying the principle of
structural induction to properties P(a) of the form “if a involves variables x1, . . . , xk , and
Q holds of each xi , then Q holds of a,” so that a proof of P(a) for all ast’s a by structural
induction is just a proof that Q(a) holds for all ast’s a under the assumption that Q holds
for its variables. When there are no variables, there are no assumptions, and the proof of P
is a proof that Q holds for all closed ast’s. On the other hand, if x is a variable in a, and we
replace it by an ast b for which Q holds, then Q will hold for the result of replacing x by b

in a.
For the sake of precision, we now give precise definitions of these concepts. Let S be

a finite set of sorts. For a given set S of sorts, an arity has the form (s1, . . . , sn)s, which
specifies the sort s ∈ S of an operator taking n ≥ 0 arguments, each of sort si ∈ S . Let
O = {Oα } be an arity-indexed family of disjoint sets of operators Oα of arity α. If o is
an operator of arity (s1, . . . , sn)s, we say that o has sort s and has n arguments of sorts
s1, . . . , sn.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let
X = {Xs }s∈S be a sort-indexed family of disjoint finite sets Xs of variables x of sort s.
When X is clear from context, we say that a variable x is of sort s if x ∈ Xs , and we say
that x is fresh for X , or just fresh when X is understood, if x /∈ Xs for any sort s. If x is
fresh for X and s is a sort, then X , x is the family of sets of variables obtained by adding
x to Xs . The notation is ambiguous in that the sort s is not explicitly stated but determined
from context.

The familyA[X] = {A[X]s }s∈S of abstract syntax trees, or ast’s, of sort s is the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs , then x ∈ A[X]s .
2. Operators combine ast’s: if o is an operator of arity (s1, . . . , sn)s, and if a1 ∈ A[X]s1 ,

. . . , an ∈ A[X]sn
, then o(a1; . . . ;an) ∈ A[X]s .

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a ∈ A[X], it is
enough to show:

1. If x ∈ Xs , then Ps(x).
2. If o has arity (s1, . . . , sn)s and Ps1 (a1) and . . . and Psn

(an), then Ps(o(a1; . . . ;an)).

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

5 1.1 Abstract Syntax Trees

3. Assuming that the property holds for a1 and a2, prove that it holds for plus(a1; a2) and
times(a1; a2): if P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
P(a) holds for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of
the interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it
is often useful to prove a property of an ast involving variables in a form that is conditional
on the property holding for the variables. Doing so anticipates that the variables will be
replaced with ast’s that ought to have the property assumed for them, so that the result of
the replacement will have the property as well. This amounts to applying the principle of
structural induction to properties P(a) of the form “if a involves variables x1, . . . , xk , and
Q holds of each xi , then Q holds of a,” so that a proof of P(a) for all ast’s a by structural
induction is just a proof that Q(a) holds for all ast’s a under the assumption that Q holds
for its variables. When there are no variables, there are no assumptions, and the proof of P
is a proof that Q holds for all closed ast’s. On the other hand, if x is a variable in a, and we
replace it by an ast b for which Q holds, then Q will hold for the result of replacing x by b

in a.
For the sake of precision, we now give precise definitions of these concepts. Let S be

a finite set of sorts. For a given set S of sorts, an arity has the form (s1, . . . , sn)s, which
specifies the sort s ∈ S of an operator taking n ≥ 0 arguments, each of sort si ∈ S . Let
O = {Oα } be an arity-indexed family of disjoint sets of operators Oα of arity α. If o is
an operator of arity (s1, . . . , sn)s, we say that o has sort s and has n arguments of sorts
s1, . . . , sn.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let
X = {Xs }s∈S be a sort-indexed family of disjoint finite sets Xs of variables x of sort s.
When X is clear from context, we say that a variable x is of sort s if x ∈ Xs , and we say
that x is fresh for X , or just fresh when X is understood, if x /∈ Xs for any sort s. If x is
fresh for X and s is a sort, then X , x is the family of sets of variables obtained by adding
x to Xs . The notation is ambiguous in that the sort s is not explicitly stated but determined
from context.

The familyA[X] = {A[X]s }s∈S of abstract syntax trees, or ast’s, of sort s is the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs , then x ∈ A[X]s .
2. Operators combine ast’s: if o is an operator of arity (s1, . . . , sn)s, and if a1 ∈ A[X]s1 ,

. . . , an ∈ A[X]sn
, then o(a1; . . . ;an) ∈ A[X]s .

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a ∈ A[X], it is
enough to show:

1. If x ∈ Xs , then Ps(x).
2. If o has arity (s1, . . . , sn)s and Ps1 (a1) and . . . and Psn

(an), then Ps(o(a1; . . . ;an)).

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Substitution over AST

6 Abstract Syntax

For example, it is easy to prove by structural induction that A[X] ⊆ A[Y] whenever
X ⊆ Y .

Variables are given meaning by substitution. If a ∈ A[X , x]s ′ , and b ∈ A[X]s , then
[b/x]a ∈ A[X]s ′ is the result of substituting b for every occurrence of x in a. The ast a is
called the target, and x is called the subject, of the substitution. Substitution is defined by
the following equations:

1. [b/x]x = b and [b/x]y = y if x $= y.
2. [b/x]o(a1; . . . ;an) = o([b/x]a1; . . . ;[b/x]an).

For example, we may check that

[num[2]/x]plus(x; num[3]) = plus(num[2]; num[3]).

We may prove by structural induction that substitution on ast’s is well-defined.

Theorem 1.1. If a ∈ A[X , x], then for every b ∈ A[X] there exists a unique c ∈ A[X]
such that [b/x]a = c

Proof By structural induction on a. If a = x, then c = b by definition; otherwise, if
a = y $= x, then c = y, also by definition. Otherwise, a = o(a1, . . . , an), and we have
by induction unique c1, . . . , cn such that [b/x]a1 = c1 and . . . [b/x]an = cn, and so c is
c = o(c1; . . . ;cn), by definition of substitution.

1.2 Abstract Binding Trees

Abstract binding trees, or abt’s, enrich ast’s with the means to introduce new variables and
symbols, called a binding, with a specified range of significance, called its scope. The scope
of a binding is an abt within which the bound identifier can be used, either as a place-holder
(in the case of a variable declaration) or as the index of some operator (in the case of a
symbol declaration). Thus, the set of active identifiers can be larger within a subtree of
an abt than it is within the surrounding tree. Moreover, different subtrees may introduce
identifiers with disjoint scopes. The crucial principle is that any use of an identifier should
be understood as a reference, or abstract pointer, to its binding. One consequence is that
the choice of identifiers is immaterial, so long as we can always associate a unique binding
with each use of an identifier.

As a motivating example, consider the expression let x be a1 in a2, which introduces
a variable x for use within the expression a2 to stand for the expression a1. The variable
x is bound by the let expression for use within a2; any use of x within a1 refers to a
different variable that happens to have the same name. For example, in the expression
let x be 7 in x + x occurrences of x in the addition refer to the variable introduced by the
let. On the other hand, in the expression let x be x ∗ x in x + x, occurrences of x within
the multiplication refer to a different variable than those occurring within the addition. The

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Abstract Binding Tree (ABT)

• An ast that can introduce new variables and symbols, called a
binding with a scope (a range within which the bound identifier can
be used)

6 Abstract Syntax

For example, it is easy to prove by structural induction that A[X] ⊆ A[Y] whenever
X ⊆ Y .

Variables are given meaning by substitution. If a ∈ A[X , x]s ′ , and b ∈ A[X]s , then
[b/x]a ∈ A[X]s ′ is the result of substituting b for every occurrence of x in a. The ast a is
called the target, and x is called the subject, of the substitution. Substitution is defined by
the following equations:

1. [b/x]x = b and [b/x]y = y if x $= y.
2. [b/x]o(a1; . . . ;an) = o([b/x]a1; . . . ;[b/x]an).

For example, we may check that

[num[2]/x]plus(x; num[3]) = plus(num[2]; num[3]).

We may prove by structural induction that substitution on ast’s is well-defined.

Theorem 1.1. If a ∈ A[X , x], then for every b ∈ A[X] there exists a unique c ∈ A[X]
such that [b/x]a = c

Proof By structural induction on a. If a = x, then c = b by definition; otherwise, if
a = y $= x, then c = y, also by definition. Otherwise, a = o(a1, . . . , an), and we have
by induction unique c1, . . . , cn such that [b/x]a1 = c1 and . . . [b/x]an = cn, and so c is
c = o(c1; . . . ;cn), by definition of substitution.

1.2 Abstract Binding Trees

Abstract binding trees, or abt’s, enrich ast’s with the means to introduce new variables and
symbols, called a binding, with a specified range of significance, called its scope. The scope
of a binding is an abt within which the bound identifier can be used, either as a place-holder
(in the case of a variable declaration) or as the index of some operator (in the case of a
symbol declaration). Thus, the set of active identifiers can be larger within a subtree of
an abt than it is within the surrounding tree. Moreover, different subtrees may introduce
identifiers with disjoint scopes. The crucial principle is that any use of an identifier should
be understood as a reference, or abstract pointer, to its binding. One consequence is that
the choice of identifiers is immaterial, so long as we can always associate a unique binding
with each use of an identifier.

As a motivating example, consider the expression let x be a1 in a2, which introduces
a variable x for use within the expression a2 to stand for the expression a1. The variable
x is bound by the let expression for use within a2; any use of x within a1 refers to a
different variable that happens to have the same name. For example, in the expression
let x be 7 in x + x occurrences of x in the addition refer to the variable introduced by the
let. On the other hand, in the expression let x be x ∗ x in x + x, occurrences of x within
the multiplication refer to a different variable than those occurring within the addition. The

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Abstract Binding Tree (ABT)
• An ordered tree whose leaves are variables; and whose interior

nodes are operators whose arguments are its children

• A variable of a specified sort
• An operator of sort s with arguments of generalized sorts (or

valences) v1,…, vn where a valence v has the form s1,…sk.s’

7 1.2 Abstract Binding Trees

latter occurrences refer to the binding introduced by the let, whereas the former refer to
some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine the same
binding. So, for example, let x be x ∗ x in x + x could just as well have been written
let y be x ∗ x in y + y, without changing its meaning. In the former case, the variable x

is bound within the addition, and in the latter, it is the variable y, but the “pointer structure”
remains the same. On the other hand, the expression let x be y ∗ y in x + x has a different
meaning to these two expressions, because now the variable y within the multiplication
refers to a different surrounding variable. Renaming of bound variables is constrained to
the extent that it must not alter the reference structure of the expression. For example, the
expression

let x be 2 in let y be 3 in x + x

has a different meaning than the expression

let y be 2 in let y be 3 in y + y,

because the y in the expression y + y in the second case refers to the inner declaration, not
the outer one as before.

The concept of an ast can be enriched to account for binding and scope of a variable.
These enriched ast’s are called abstract binding trees, or abt’s for short. Abt’s generalize
ast’s by allowing an operator to bind any finite number (possibly zero) of variables in each
argument. An argument to an operator is called an abstractor and has the form x1, . . . , xk.a.
The sequence of variables x1, . . . , xk are bound within the abt a. (When k is zero, we elide
the distinction between .a and a itself.) Written in the form of an abt, the expression
let x be a1 in a2 has the form let(a1; x.a2), which more clearly specifies that the variable
x is bound within a2, and not within a1. We often write "x to stand for a finite sequence
x1, . . . , xn of distinct variables and write "x.a to mean x1, . . . , xn.a.

To account for binding, operators are assigned generalized arities of the form
(υ1, . . . , υn)s, which specifies operators of sort s with n arguments of valence υ1, . . . , υn.
In general a valence υ has the form s1, . . . , sk.s, which specifies the sort of an argument as
well as the number and sorts of the variables bound within it. We say that a sequence "x of
variables is of sort "s to mean that the two sequences have the same length k and that the
variable xi is of sort si for each 1 ≤ i ≤ k.

Thus, to specify that the operator let has arity (Exp,Exp.Exp)Exp indicates that it is
of sort Exp whose first argument is of sort Exp and binds no variables and whose second
argument is also of sort Exp and within which is bound one variable of sort Exp. The
informal expression let x be 2 + 2 in x × x may then be written as the abt

let(plus(num[2]; num[2]); x.times(x; x))

in which the operator let has two arguments, the first of which is an expression, and the
second of which is an abstractor that binds one expression variable.

Fix a setS of sorts and a familyO of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X , the family of abstract binding

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Abstract Binding Tree (ABT)

7 1.2 Abstract Binding Trees

latter occurrences refer to the binding introduced by the let, whereas the former refer to
some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine the same
binding. So, for example, let x be x ∗ x in x + x could just as well have been written
let y be x ∗ x in y + y, without changing its meaning. In the former case, the variable x

is bound within the addition, and in the latter, it is the variable y, but the “pointer structure”
remains the same. On the other hand, the expression let x be y ∗ y in x + x has a different
meaning to these two expressions, because now the variable y within the multiplication
refers to a different surrounding variable. Renaming of bound variables is constrained to
the extent that it must not alter the reference structure of the expression. For example, the
expression

let x be 2 in let y be 3 in x + x

has a different meaning than the expression

let y be 2 in let y be 3 in y + y,

because the y in the expression y + y in the second case refers to the inner declaration, not
the outer one as before.

The concept of an ast can be enriched to account for binding and scope of a variable.
These enriched ast’s are called abstract binding trees, or abt’s for short. Abt’s generalize
ast’s by allowing an operator to bind any finite number (possibly zero) of variables in each
argument. An argument to an operator is called an abstractor and has the form x1, . . . , xk.a.
The sequence of variables x1, . . . , xk are bound within the abt a. (When k is zero, we elide
the distinction between .a and a itself.) Written in the form of an abt, the expression
let x be a1 in a2 has the form let(a1; x.a2), which more clearly specifies that the variable
x is bound within a2, and not within a1. We often write "x to stand for a finite sequence
x1, . . . , xn of distinct variables and write "x.a to mean x1, . . . , xn.a.

To account for binding, operators are assigned generalized arities of the form
(υ1, . . . , υn)s, which specifies operators of sort s with n arguments of valence υ1, . . . , υn.
In general a valence υ has the form s1, . . . , sk.s, which specifies the sort of an argument as
well as the number and sorts of the variables bound within it. We say that a sequence "x of
variables is of sort "s to mean that the two sequences have the same length k and that the
variable xi is of sort si for each 1 ≤ i ≤ k.

Thus, to specify that the operator let has arity (Exp,Exp.Exp)Exp indicates that it is
of sort Exp whose first argument is of sort Exp and binds no variables and whose second
argument is also of sort Exp and within which is bound one variable of sort Exp. The
informal expression let x be 2 + 2 in x × x may then be written as the abt

let(plus(num[2]; num[2]); x.times(x; x))

in which the operator let has two arguments, the first of which is an expression, and the
second of which is an abstractor that binds one expression variable.

Fix a setS of sorts and a familyO of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X , the family of abstract binding

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

8 Abstract Syntax

trees, or abt’s B[X], is defined similarly to A[X], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X]s .
2. For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if a1 ∈ B[X , "x1]s1 , . . . , and an ∈

B[X , "xn]sn
, then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables "x is a bijection ρ : "x ↔ "x ′

between "x and "x ′, where "x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : "xi ↔ "x ′

i , we have ρ̂i(ai) ∈ B[X , "x ′
i], then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X](a) holds for every a ∈ B[X], it is
enough to show the following:

1. if x ∈ Xs , then P[X]s(x).
2. For every o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n, P[X , "x ′

i]si
(ρ̂i(ai)) holds

for every ρi : "xi ↔ "x ′
i with "x ′

i /∈ X , then P[X]s(o("x1.a1; . . . ;"xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

8 Abstract Syntax

trees, or abt’s B[X], is defined similarly to A[X], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X]s .
2. For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if a1 ∈ B[X , "x1]s1 , . . . , and an ∈

B[X , "xn]sn
, then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables "x is a bijection ρ : "x ↔ "x ′

between "x and "x ′, where "x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : "xi ↔ "x ′

i , we have ρ̂i(ai) ∈ B[X , "x ′
i], then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X](a) holds for every a ∈ B[X], it is
enough to show the following:

1. if x ∈ Xs , then P[X]s(x).
2. For every o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n, P[X , "x ′

i]si
(ρ̂i(ai)) holds

for every ρi : "xi ↔ "x ′
i with "x ′

i /∈ X , then P[X]s(o("x1.a1; . . . ;"xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Abstract Binding Tree (ABT)

7 1.2 Abstract Binding Trees

latter occurrences refer to the binding introduced by the let, whereas the former refer to
some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine the same
binding. So, for example, let x be x ∗ x in x + x could just as well have been written
let y be x ∗ x in y + y, without changing its meaning. In the former case, the variable x

is bound within the addition, and in the latter, it is the variable y, but the “pointer structure”
remains the same. On the other hand, the expression let x be y ∗ y in x + x has a different
meaning to these two expressions, because now the variable y within the multiplication
refers to a different surrounding variable. Renaming of bound variables is constrained to
the extent that it must not alter the reference structure of the expression. For example, the
expression

let x be 2 in let y be 3 in x + x

has a different meaning than the expression

let y be 2 in let y be 3 in y + y,

because the y in the expression y + y in the second case refers to the inner declaration, not
the outer one as before.

The concept of an ast can be enriched to account for binding and scope of a variable.
These enriched ast’s are called abstract binding trees, or abt’s for short. Abt’s generalize
ast’s by allowing an operator to bind any finite number (possibly zero) of variables in each
argument. An argument to an operator is called an abstractor and has the form x1, . . . , xk.a.
The sequence of variables x1, . . . , xk are bound within the abt a. (When k is zero, we elide
the distinction between .a and a itself.) Written in the form of an abt, the expression
let x be a1 in a2 has the form let(a1; x.a2), which more clearly specifies that the variable
x is bound within a2, and not within a1. We often write "x to stand for a finite sequence
x1, . . . , xn of distinct variables and write "x.a to mean x1, . . . , xn.a.

To account for binding, operators are assigned generalized arities of the form
(υ1, . . . , υn)s, which specifies operators of sort s with n arguments of valence υ1, . . . , υn.
In general a valence υ has the form s1, . . . , sk.s, which specifies the sort of an argument as
well as the number and sorts of the variables bound within it. We say that a sequence "x of
variables is of sort "s to mean that the two sequences have the same length k and that the
variable xi is of sort si for each 1 ≤ i ≤ k.

Thus, to specify that the operator let has arity (Exp,Exp.Exp)Exp indicates that it is
of sort Exp whose first argument is of sort Exp and binds no variables and whose second
argument is also of sort Exp and within which is bound one variable of sort Exp. The
informal expression let x be 2 + 2 in x × x may then be written as the abt

let(plus(num[2]; num[2]); x.times(x; x))

in which the operator let has two arguments, the first of which is an expression, and the
second of which is an abstractor that binds one expression variable.

Fix a setS of sorts and a familyO of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X , the family of abstract binding

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

8 Abstract Syntax

trees, or abt’s B[X], is defined similarly to A[X], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X]s .
2. For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if a1 ∈ B[X , "x1]s1 , . . . , and an ∈

B[X , "xn]sn
, then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables "x is a bijection ρ : "x ↔ "x ′

between "x and "x ′, where "x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : "xi ↔ "x ′

i , we have ρ̂i(ai) ∈ B[X , "x ′
i], then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X](a) holds for every a ∈ B[X], it is
enough to show the following:

1. if x ∈ Xs , then P[X]s(x).
2. For every o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n, P[X , "x ′

i]si
(ρ̂i(ai)) holds

for every ρi : "xi ↔ "x ′
i with "x ′

i /∈ X , then P[X]s(o("x1.a1; . . . ;"xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

8 Abstract Syntax

trees, or abt’s B[X], is defined similarly to A[X], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X]s .
2. For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if a1 ∈ B[X , "x1]s1 , . . . , and an ∈

B[X , "xn]sn
, then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables "x is a bijection ρ : "x ↔ "x ′

between "x and "x ′, where "x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : "xi ↔ "x ′

i , we have ρ̂i(ai) ∈ B[X , "x ′
i], then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X](a) holds for every a ∈ B[X], it is
enough to show the following:

1. if x ∈ Xs , then P[X]s(x).
2. For every o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n, P[X , "x ′

i]si
(ρ̂i(ai)) holds

for every ρi : "xi ↔ "x ′
i with "x ′

i /∈ X , then P[X]s(o("x1.a1; . . . ;"xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

8 Abstract Syntax

trees, or abt’s B[X], is defined similarly to A[X], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X]s .
2. For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if a1 ∈ B[X , "x1]s1 , . . . , and an ∈

B[X , "xn]sn
, then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables "x is a bijection ρ : "x ↔ "x ′

between "x and "x ′, where "x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : "xi ↔ "x ′

i , we have ρ̂i(ai) ∈ B[X , "x ′
i], then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X](a) holds for every a ∈ B[X], it is
enough to show the following:

1. if x ∈ Xs , then P[X]s(x).
2. For every o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n, P[X , "x ′

i]si
(ρ̂i(ai)) holds

for every ρi : "xi ↔ "x ′
i with "x ′

i /∈ X , then P[X]s(o("x1.a1; . . . ;"xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

8 Abstract Syntax

trees, or abt’s B[X], is defined similarly to A[X], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X]s .
2. For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if a1 ∈ B[X , "x1]s1 , . . . , and an ∈

B[X , "xn]sn
, then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables "x is a bijection ρ : "x ↔ "x ′

between "x and "x ′, where "x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : "xi ↔ "x ′

i , we have ρ̂i(ai) ∈ B[X , "x ′
i], then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X](a) holds for every a ∈ B[X], it is
enough to show the following:

1. if x ∈ Xs , then P[X]s(x).
2. For every o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n, P[X , "x ′

i]si
(ρ̂i(ai)) holds

for every ρi : "xi ↔ "x ′
i with "x ′

i /∈ X , then P[X]s(o("x1.a1; . . . ;"xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Abstract Binding Tree (ABT)

8 Abstract Syntax

trees, or abt’s B[X], is defined similarly to A[X], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X]s .
2. For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if a1 ∈ B[X , "x1]s1 , . . . , and an ∈

B[X , "xn]sn
, then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X) of a finite sequence of variables "x is a bijection ρ : "x ↔ "x ′

between "x and "x ′, where "x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : "xi ↔ "x ′

i , we have ρ̂i(ai) ∈ B[X , "x ′
i], then o("x1.a1; . . . ;"xn.an) ∈ B[X]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X](a) holds for every a ∈ B[X], it is
enough to show the following:

1. if x ∈ Xs , then P[X]s(x).
2. For every o of arity ("s1.s1, . . . , "sn.sn)s, if for each 1 ≤ i ≤ n, P[X , "x ′

i]si
(ρ̂i(ai)) holds

for every ρi : "xi ↔ "x ′
i with "x ′

i /∈ X , then P[X]s(o("x1.a1; . . . ;"xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

9 1.2 Abstract Binding Trees

1. x ∈ x.
2. x ∈ o("x1.a1; . . . ;"xn.an) if there exists 1 ≤ i ≤ n such that for every fresh renaming

ρ : "xi ↔ "zi we have x ∈ ρ̂(ai).

The first condition states that x is free in x but not free in y for any variable y other than x.
The second condition states that if x is free in some argument, independently of the choice
of bound variable names in that argument, then it is free in the overall abt.

The relation a =α b of α-equivalence (so-called for historical reasons) means that a and
b are identical up to the choice of bound variable names. The α-equivalence relation is the
strongest congruence containing the following two conditions:

1. x =α x.
2. o("x1.a1; . . . ;"xn.an) =α o("x ′

1.a
′
1; . . . ;"x ′

n.a
′
n) if for every 1 ≤ i ≤ n, ρ̂i(ai) =α ρ̂ ′

i(a
′
i) for

all fresh renamings ρi : "xi ↔ "zi and ρ ′
i : "x ′

i ↔ "zi .

The idea is that we rename "xi and "x ′
i consistently, avoiding confusion, and check that ai

and a′
i are α-equivalent. If a =α b, then a and b are α-variants of each other.

Some care is required in the definition of substitution of an abt b of sort s for free
occurrences of a variable x of sort s in some abt a of some sort, written [b/x]a. Substitution
is partially defined by the following conditions:

1. [b/x]x = b, and [b/x]y = y if x &= y.
2. [b/x]o("x1.a1; . . . ;"xn.an) = o("x1.a

′
1; . . . ;"xn.a

′
n), where, for each 1 ≤ i ≤ n, we require

that "xi /∈ b, and we set a′
i = [b/x]ai if x /∈ "xi , and a′

i = ai otherwise.

The definition of [b/x]a is quite delicate and merits careful consideration.
One trouble spot for substitution is to notice that if x is bound by an abstractor within

a, then x does not occur free within the abstractor and hence is unchanged by substitution.
For example, [b/x]let(a1; x.a2) = let([b/x]a1; x.a2), there being no free occurrences of
x in x.a2. Another trouble spot is the capture of a free variable of b during substitution.
For example, if y ∈ b and x &= y, then [b/x]let(a1; y.a2) is undefined, rather than
being let([b/x]a1; y.[b/x]a2), as one might at first suspect. For example, provided that
x &= y, [y/x]let(num[0]; y.plus(x; y)) is undefined, not let(num[0]; y.plus(y; y)), which
confuses two different variables named y.

Although capture avoidance is an essential characteristic of substitution, it is, in a sense,
merely a technical nuisance. If the names of bound variables have no significance, then
capture can always be avoided by first renaming the bound variables in a to avoid any
free variables in b. In the foregoing example, if we rename the bound variable y to
y ′ to obtain a′ ! let(num[0]; y ′.plus(x; y ′)), then [b/x]a′ is defined and is equal to
let(num[0]; y ′.plus(b; y ′)). The price for avoiding capture in this way is that substitution
is only determined up to α-equivalence, and so we may no longer think of substitution as a
function but only as a proper relation.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Judgments

2 Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages.
In this chapter we will develop the basic framework of inductive definitions and give
some examples of their use. An inductive definition consists of a set of rules for deriving
judgments, or assertions, of a variety of forms. Judgments are statements about one or more
abstract binding trees of some sort. The rules specify necessary and sufficient conditions
for the validity of a judgment, and hence fully determine its meaning.

2.1 Judgments

We start with the notion of a judgment, or assertion, about an abstract binding tree. We
shall make use of many forms of judgment, including examples such as these:

n nat n is a natural number
n1 + n2 = n n is the sum of n1 and n2
τ type τ is a type
e : τ expression e has type τ

e ⇓ v expression e has value v

A judgment states that one or more abstract binding trees have a property or stand in
some relation to one another. The property or relation itself is called a judgment form, and
the judgment that an object or objects have that property or stand in that relation is said
to be an instance of that judgment form. A judgment form is also called a predicate, and
the objects constituting an instance are its subjects. We write a J or J a, for the judgment
asserting that J holds of the abt a. Correspondingly, we sometimes notate the judgment
form J by − J, or J −, using a dash to indicate the absence of an argument to J. When it is
not important to stress the subject of the judgment, we write J to stand for an unspecified
judgment, that is, an instance of some judgment form. For particular judgment forms, we
freely use prefix, infix, or mix-fix notation, as illustrated by the above examples, in order
to enhance readability.

2.2 Inference Rules

An inductive definition of a judgment form consists of a collection of rules of the form
J1 . . . Jk

J
(2.1)

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

Inference Rules

2 Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages.
In this chapter we will develop the basic framework of inductive definitions and give
some examples of their use. An inductive definition consists of a set of rules for deriving
judgments, or assertions, of a variety of forms. Judgments are statements about one or more
abstract binding trees of some sort. The rules specify necessary and sufficient conditions
for the validity of a judgment, and hence fully determine its meaning.

2.1 Judgments

We start with the notion of a judgment, or assertion, about an abstract binding tree. We
shall make use of many forms of judgment, including examples such as these:

n nat n is a natural number
n1 + n2 = n n is the sum of n1 and n2
τ type τ is a type
e : τ expression e has type τ

e ⇓ v expression e has value v

A judgment states that one or more abstract binding trees have a property or stand in
some relation to one another. The property or relation itself is called a judgment form, and
the judgment that an object or objects have that property or stand in that relation is said
to be an instance of that judgment form. A judgment form is also called a predicate, and
the objects constituting an instance are its subjects. We write a J or J a, for the judgment
asserting that J holds of the abt a. Correspondingly, we sometimes notate the judgment
form J by − J, or J −, using a dash to indicate the absence of an argument to J. When it is
not important to stress the subject of the judgment, we write J to stand for an unspecified
judgment, that is, an instance of some judgment form. For particular judgment forms, we
freely use prefix, infix, or mix-fix notation, as illustrated by the above examples, in order
to enhance readability.

2.2 Inference Rules

An inductive definition of a judgment form consists of a collection of rules of the form
J1 . . . Jk

J
(2.1)

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

13 2.2 Inference Rules

in which J and J1, . . . , Jk are all judgments of the form being defined. The judgments
above the horizontal line are called the premises of the rule, and the judgment below the
line is called its conclusion. If a rule has no premises (that is, when k is zero), the rule is
called an axiom; otherwise, it is called a proper rule.

An inference rule can be read as stating that the premises are sufficient for the conclusion:
to show J , it is enough to show J1, . . . , Jk . When k is zero, a rule states that its conclusion
holds unconditionally. Bear in mind that there may be, in general, many rules with the same
conclusion, each specifying sufficient conditions for the conclusion. Consequently, if the
conclusion of a rule holds, then it is not necessary that the premises hold, for it might have
been derived by another rule.

For example, the following rules form an inductive definition of the judgment form − nat:

zero nat
(2.2a)

a nat
succ(a) nat (2.2b)

These rules specify that a nat holds whenever either a is zero, or a is succ(b) where b nat
for some b. Taking these rules to be exhaustive, it follows that a nat iff a is a natural
number.

Similarly, the following rules constitute an inductive definition of the judgment
form − tree:

empty tree
(2.3a)

a1 tree a2 tree
node(a1;a2) tree

(2.3b)

These rules specify that a tree holds if either a is empty, or a is node(a1;a2), where a1 tree
and a2 tree. Taking these to be exhaustive, these rules state that a is a binary tree, which is
to say it is either empty, or a node consisting of two children, each of which is also a binary
tree.

The judgment form a is b expresses the equality of two abt’s a and b such that a nat
and b nat is inductively defined by the following rules:

zero is zero
(2.4a)

a is b
succ(a) is succ(b) (2.4b)

In each of the preceding examples, we have made use of a notational convention for
specifying an infinite family of rules by a finite number of patterns, or rule schemes. For
example, rule (2.2b) is a rule scheme that determines one rule, called an instance of the rule
scheme, for each choice of object a in the rule. We will rely on context to determine whether
a rule is stated for a specific object a or is instead intended as a rule scheme specifying a
rule for each choice of objects in the rule.

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

13 2.2 Inference Rules

in which J and J1, . . . , Jk are all judgments of the form being defined. The judgments
above the horizontal line are called the premises of the rule, and the judgment below the
line is called its conclusion. If a rule has no premises (that is, when k is zero), the rule is
called an axiom; otherwise, it is called a proper rule.

An inference rule can be read as stating that the premises are sufficient for the conclusion:
to show J , it is enough to show J1, . . . , Jk . When k is zero, a rule states that its conclusion
holds unconditionally. Bear in mind that there may be, in general, many rules with the same
conclusion, each specifying sufficient conditions for the conclusion. Consequently, if the
conclusion of a rule holds, then it is not necessary that the premises hold, for it might have
been derived by another rule.

For example, the following rules form an inductive definition of the judgment form − nat:

zero nat
(2.2a)

a nat
succ(a) nat (2.2b)

These rules specify that a nat holds whenever either a is zero, or a is succ(b) where b nat
for some b. Taking these rules to be exhaustive, it follows that a nat iff a is a natural
number.

Similarly, the following rules constitute an inductive definition of the judgment
form − tree:

empty tree
(2.3a)

a1 tree a2 tree
node(a1;a2) tree

(2.3b)

These rules specify that a tree holds if either a is empty, or a is node(a1;a2), where a1 tree
and a2 tree. Taking these to be exhaustive, these rules state that a is a binary tree, which is
to say it is either empty, or a node consisting of two children, each of which is also a binary
tree.

The judgment form a is b expresses the equality of two abt’s a and b such that a nat
and b nat is inductively defined by the following rules:

zero is zero
(2.4a)

a is b
succ(a) is succ(b) (2.4b)

In each of the preceding examples, we have made use of a notational convention for
specifying an infinite family of rules by a finite number of patterns, or rule schemes. For
example, rule (2.2b) is a rule scheme that determines one rule, called an instance of the rule
scheme, for each choice of object a in the rule. We will rely on context to determine whether
a rule is stated for a specific object a or is instead intended as a rule scheme specifying a
rule for each choice of objects in the rule.

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

Derivations

14 Inductive Definitions

A collection of rules is considered to define the strongest judgment form that is closed
under, or respects, those rules. To be closed under the rules simply means that the rules are
sufficient to show the validity of a judgment: J holds if there is a way to obtain it using the
given rules. To be the strongest judgment form closed under the rules means that the rules
are also necessary: J holds only if there is a way to obtain it by applying the rules. The
sufficiency of the rules means that we may show that J holds by deriving it by composing
rules. Their necessity means that we may reason about it using rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation
of it. A derivation of a judgment is a finite composition of rules, starting with axioms and
ending with that judgment. It can be thought of as a tree in which each node is a rule whose
children are derivations of its premises. We sometimes say that a derivation of J is evidence
for the validity of an inductively defined judgment J .

We usually depict derivations as trees with the conclusion at the bottom, and with the
children of a node corresponding to a rule appearing above it as evidence for the premises
of that rule. Thus, if

J1 . . . Jk

J

is an inference rule and
!

1, . . . ,
!

k are derivations of its premises, then
!

1 . . .
!

k

J

is a derivation of its conclusion. In particular, if k = 0, then the node has no children.
For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.

(2.5)

Similarly, here is a derivation of node(node(empty;empty);empty) tree:

empty tree empty tree
node(empty;empty) tree empty tree
node(node(empty;empty);empty) tree

.

(2.6)

To show that an inductively defined judgment is derivable, we need only find a deriva-
tion for it. There are two main methods for finding derivations, called forward chaining,
or bottom-up construction, and backward chaining, or top-down construction. Forward

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

14 Inductive Definitions

A collection of rules is considered to define the strongest judgment form that is closed
under, or respects, those rules. To be closed under the rules simply means that the rules are
sufficient to show the validity of a judgment: J holds if there is a way to obtain it using the
given rules. To be the strongest judgment form closed under the rules means that the rules
are also necessary: J holds only if there is a way to obtain it by applying the rules. The
sufficiency of the rules means that we may show that J holds by deriving it by composing
rules. Their necessity means that we may reason about it using rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation
of it. A derivation of a judgment is a finite composition of rules, starting with axioms and
ending with that judgment. It can be thought of as a tree in which each node is a rule whose
children are derivations of its premises. We sometimes say that a derivation of J is evidence
for the validity of an inductively defined judgment J .

We usually depict derivations as trees with the conclusion at the bottom, and with the
children of a node corresponding to a rule appearing above it as evidence for the premises
of that rule. Thus, if

J1 . . . Jk

J

is an inference rule and
!

1, . . . ,
!

k are derivations of its premises, then
!

1 . . .
!

k

J

is a derivation of its conclusion. In particular, if k = 0, then the node has no children.
For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.

(2.5)

Similarly, here is a derivation of node(node(empty;empty);empty) tree:

empty tree empty tree
node(empty;empty) tree empty tree
node(node(empty;empty);empty) tree

.

(2.6)

To show that an inductively defined judgment is derivable, we need only find a deriva-
tion for it. There are two main methods for finding derivations, called forward chaining,
or bottom-up construction, and backward chaining, or top-down construction. Forward

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

14 Inductive Definitions

A collection of rules is considered to define the strongest judgment form that is closed
under, or respects, those rules. To be closed under the rules simply means that the rules are
sufficient to show the validity of a judgment: J holds if there is a way to obtain it using the
given rules. To be the strongest judgment form closed under the rules means that the rules
are also necessary: J holds only if there is a way to obtain it by applying the rules. The
sufficiency of the rules means that we may show that J holds by deriving it by composing
rules. Their necessity means that we may reason about it using rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation
of it. A derivation of a judgment is a finite composition of rules, starting with axioms and
ending with that judgment. It can be thought of as a tree in which each node is a rule whose
children are derivations of its premises. We sometimes say that a derivation of J is evidence
for the validity of an inductively defined judgment J .

We usually depict derivations as trees with the conclusion at the bottom, and with the
children of a node corresponding to a rule appearing above it as evidence for the premises
of that rule. Thus, if

J1 . . . Jk

J

is an inference rule and
!

1, . . . ,
!

k are derivations of its premises, then
!

1 . . .
!

k

J

is a derivation of its conclusion. In particular, if k = 0, then the node has no children.
For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.

(2.5)

Similarly, here is a derivation of node(node(empty;empty);empty) tree:

empty tree empty tree
node(empty;empty) tree empty tree
node(node(empty;empty);empty) tree

.

(2.6)

To show that an inductively defined judgment is derivable, we need only find a deriva-
tion for it. There are two main methods for finding derivations, called forward chaining,
or bottom-up construction, and backward chaining, or top-down construction. Forward

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

Rule Induction

15 2.4 Rule Induction

chaining starts with the axioms and works forward towards the desired conclusion, whereas
backward chaining starts with the desired conclusion and works backwards towards the
axioms.

More precisely, forward chaining search maintains a set of derivable judgments and
continually extends this set by adding to it the conclusion of any rule all of whose premises
are in that set. Initially, the set is empty; the process terminates when the desired judgment
occurs in the set. Assuming that all rules are considered at every stage, forward chaining
will eventually find a derivation of any derivable judgment, but it is impossible (in general)
to decide algorithmically when to stop extending the set and conclude that the desired
judgment is not derivable. We may go on and on adding more judgments to the derivable
set without ever achieving the intended goal. It is a matter of understanding the global
properties of the rules to determine that a given judgment is not derivable.

Forward chaining is undirected in the sense that it does not take account of the end goal
when deciding how to proceed at each step. In contrast, backward chaining is goal-directed.
Backward chaining search maintains a queue of current goals, judgments whose derivations
are to be sought. Initially, this set consists solely of the judgment we wish to derive. At each
stage, we remove a judgment from the queue and consider all rules whose conclusion is
that judgment. For each such rule, we add the premises of that rule to the back of the queue,
and continue. If there is more than one such rule, this process must be repeated, with the
same starting queue, for each candidate rule. The process terminates whenever the queue is
empty, all goals having been achieved; any pending consideration of candidate rules along
the way can be discarded. As with forward chaining, backward chaining will eventually
find a derivation of any derivable judgment, but there is, in general, no algorithmic method
for determining in general whether the current goal is derivable. If it is not, we may futilely
add more and more judgments to the goal set, never reaching a point at which all goals
have been satisfied.

2.4 Rule Induction

Because an inductive definition specifies the strongest judgment form closed under a
collection of rules, we may reason about them by rule induction. The principle of rule
induction states that to show that a property a P holds whenever a J is derivable, it is
enough to show that P is closed under, or respects, the rules defining the judgment form J.
More precisely, the property P respects the rule

a1 J . . . ak J
a J

if P(a) holds whenever P(a1), . . . ,P(ak) do. The assumptions P(a1), . . . ,P(ak) are called
the inductive hypotheses, and P(a) is called the inductive conclusion of the inference.

The principle of rule induction is simply the expression of the definition of an inductively
defined judgment form as the strongest judgment form closed under the rules comprising
the definition. Thus, the judgment form defined by a set of rules is both (a) closed under

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

Iterated Inductive Definitions

17 2.5 Iterated and Simultaneous Inductive Definitions

Lemma 2.3. If succ(a1) is succ(a2), then a1 is a2.

Proof Similar to the proof of Lemma 2.1.

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top
of another. In an iterated inductive definition, the premises of a rule

J1 . . . Jk

J

may be instances of either a previously defined judgment form, or the judgment form being
defined. For example, the following rules define the judgment form − list, which states that
a is a list of natural numbers:

nil list
(2.7a)

a nat b list
cons(a;b) list

(2.7b)

The first premise of rule (2.7b) is an instance of the judgment form a nat, which was
defined previously, whereas the premise b list is an instance of the judgment form being
defined by these rules.

Frequently two or more judgments are defined at once by a simultaneous inductive
definition. A simultaneous inductive definition consists of a set of rules for deriving instances
of several different judgment forms, any of which may appear as the premise of any rule.
Because the rules defining each judgment form may involve any of the others, none of the
judgment forms can be taken to be defined prior to the others. Instead, we must understand
that all of the judgment forms are being defined at once by the entire collection of rules.
The judgment forms defined by these rules are, as before, the strongest judgment forms that
are closed under the rules. Therefore, the principle of proof by rule induction continues to
apply, albeit in a form that requires us to prove a property of each of the defined judgment
forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive
definition of the judgments a even, stating that a is an even natural number, and a odd,
stating that a is an odd natural number:

zero even
(2.8a)

b odd
succ(b) even

(2.8b)

a even
succ(a) odd (2.8c)

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

Simultaneous Inductive Definitions

17 2.5 Iterated and Simultaneous Inductive Definitions

Lemma 2.3. If succ(a1) is succ(a2), then a1 is a2.

Proof Similar to the proof of Lemma 2.1.

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top
of another. In an iterated inductive definition, the premises of a rule

J1 . . . Jk

J

may be instances of either a previously defined judgment form, or the judgment form being
defined. For example, the following rules define the judgment form − list, which states that
a is a list of natural numbers:

nil list
(2.7a)

a nat b list
cons(a;b) list

(2.7b)

The first premise of rule (2.7b) is an instance of the judgment form a nat, which was
defined previously, whereas the premise b list is an instance of the judgment form being
defined by these rules.

Frequently two or more judgments are defined at once by a simultaneous inductive
definition. A simultaneous inductive definition consists of a set of rules for deriving instances
of several different judgment forms, any of which may appear as the premise of any rule.
Because the rules defining each judgment form may involve any of the others, none of the
judgment forms can be taken to be defined prior to the others. Instead, we must understand
that all of the judgment forms are being defined at once by the entire collection of rules.
The judgment forms defined by these rules are, as before, the strongest judgment forms that
are closed under the rules. Therefore, the principle of proof by rule induction continues to
apply, albeit in a form that requires us to prove a property of each of the defined judgment
forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive
definition of the judgments a even, stating that a is an even natural number, and a odd,
stating that a is an odd natural number:

zero even
(2.8a)

b odd
succ(b) even

(2.8b)

a even
succ(a) odd (2.8c)

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

17 2.5 Iterated and Simultaneous Inductive Definitions

Lemma 2.3. If succ(a1) is succ(a2), then a1 is a2.

Proof Similar to the proof of Lemma 2.1.

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top
of another. In an iterated inductive definition, the premises of a rule

J1 . . . Jk

J

may be instances of either a previously defined judgment form, or the judgment form being
defined. For example, the following rules define the judgment form − list, which states that
a is a list of natural numbers:

nil list
(2.7a)

a nat b list
cons(a;b) list

(2.7b)

The first premise of rule (2.7b) is an instance of the judgment form a nat, which was
defined previously, whereas the premise b list is an instance of the judgment form being
defined by these rules.

Frequently two or more judgments are defined at once by a simultaneous inductive
definition. A simultaneous inductive definition consists of a set of rules for deriving instances
of several different judgment forms, any of which may appear as the premise of any rule.
Because the rules defining each judgment form may involve any of the others, none of the
judgment forms can be taken to be defined prior to the others. Instead, we must understand
that all of the judgment forms are being defined at once by the entire collection of rules.
The judgment forms defined by these rules are, as before, the strongest judgment forms that
are closed under the rules. Therefore, the principle of proof by rule induction continues to
apply, albeit in a form that requires us to prove a property of each of the defined judgment
forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive
definition of the judgments a even, stating that a is an even natural number, and a odd,
stating that a is an odd natural number:

zero even
(2.8a)

b odd
succ(b) even

(2.8b)

a even
succ(a) odd (2.8c)

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

18 Inductive Definitions

The principle of rule induction for these rules states that to show simultaneously that
P(a) whenever a even and Q(b) whenever b odd, it is enough to show the following:

1. P(zero);
2. if Q(b), then P(succ(b));
3. if P(a), then Q(succ(a)).

As an example, we may use simultaneous rule induction to prove that (1) if a even, then
either a is zero or a is succ(b) with b odd, and (2) if a odd, then a is succ(b) with b even.
We define P(a) to hold iff a is zero or a is succ(b) for some b with b odd, and define
Q(b) to hold iff b is succ(a) for some a with a even. The desired result follows by rule
induction, because we can prove the following facts:

1. P(zero), which holds because zero is zero.
2. If Q(b), then succ(b) is succ(b′) for some b′ with Q(b′). Take b′ to be b and apply the

inductive assumption.
3. If P(a), then succ(a) is succ(a′) for some a′ with P(a′). Take a′ to be a and apply the

inductive assumption.

2.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an inductive
definition of its graph relating inputs to outputs, and then showing that the relation uniquely
determines the outputs for given inputs. For example, we may define the addition function
on natural numbers as the relation sum(a;b;c), with the intended meaning that c is the sum
of a and b, as follows:

b nat
sum(zero;b;b) (2.9a)

sum(a;b;c)
sum(succ(a);b;succ(c))

(2.9b)

The rules define a ternary (three-place) relation sum(a;b;c) among natural numbers a, b,
and c. We may show that c is determined by a and b in this relation.

Theorem 2.4. For every a nat and b nat, there exists a unique c nat such that sum(a;b;c).

Proof The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a;b;c).
2. (Uniqueness) If sum(a;b;c), and sum(a;b;c′), then c is c′.

6""�!� 3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

Hypothetical Judgments: Derivability
• Rules for expressing the validity of a conclusion conditional on the

validity of one or more hypotheses.

3 Hypothetical and General
Judgments

A hypothetical judgment expresses an entailment between one or more hypotheses and a
conclusion. We will consider two notions of entailment, called derivability and admissibil-
ity. Both express a form of entailment, but they differ in that derivability is stable under
extension with new rules, admissibility is not. A general judgment expresses the universal-
ity, or genericity, of a judgment. There are two forms of general judgment, the generic and
the parametric. The generic judgment expresses generality with respect to all substitution
instances for variables in a judgment. The parametric judgment expresses generality with
respect to renamings of symbols.

3.1 Hypothetical Judgments

The hypothetical judgment codifies the rules for expressing the validity of a conclusion
conditional on the validity of one or more hypotheses. There are two forms of hypothetical
judgment that differ according to the sense in which the conclusion is conditional on the
hypotheses. One is stable under extension with more rules, and the other is not.

3.1.1 Derivability

For a given set R of rules, we define the derivability judgment, written J1, . . . , Jk !R K ,
where each Ji and K are basic judgments, to mean that we may derive K from the expansion
R ∪ { J1, . . . , Jk } of the rules R with the axioms

J1
. . .

Jk

.

We treat the hypotheses, or antecedents, of the judgment, J1, . . . , Jk as “temporary axioms,”
and derive the conclusion, or consequent, by composing rules in R. Thus, evidence for a
hypothetical judgment consists of a derivation of the conclusion from the hypotheses using
the rules in R.

We use capital Greek letters, usually ! or ", to stand for a finite set of basic judgments,
and write R ∪ ! for the expansion of R with an axiom corresponding to each judgment in
!. The judgment ! !R K means that K is derivable from rules R ∪ !, and the judgment
!R ! means that !R J for each J in !. An equivalent way of defining J1, . . . , Jn !R J is

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

3 Hypothetical and General
Judgments

A hypothetical judgment expresses an entailment between one or more hypotheses and a
conclusion. We will consider two notions of entailment, called derivability and admissibil-
ity. Both express a form of entailment, but they differ in that derivability is stable under
extension with new rules, admissibility is not. A general judgment expresses the universal-
ity, or genericity, of a judgment. There are two forms of general judgment, the generic and
the parametric. The generic judgment expresses generality with respect to all substitution
instances for variables in a judgment. The parametric judgment expresses generality with
respect to renamings of symbols.

3.1 Hypothetical Judgments

The hypothetical judgment codifies the rules for expressing the validity of a conclusion
conditional on the validity of one or more hypotheses. There are two forms of hypothetical
judgment that differ according to the sense in which the conclusion is conditional on the
hypotheses. One is stable under extension with more rules, and the other is not.

3.1.1 Derivability

For a given set R of rules, we define the derivability judgment, written J1, . . . , Jk !R K ,
where each Ji and K are basic judgments, to mean that we may derive K from the expansion
R ∪ { J1, . . . , Jk } of the rules R with the axioms

J1
. . .

Jk

.

We treat the hypotheses, or antecedents, of the judgment, J1, . . . , Jk as “temporary axioms,”
and derive the conclusion, or consequent, by composing rules in R. Thus, evidence for a
hypothetical judgment consists of a derivation of the conclusion from the hypotheses using
the rules in R.

We use capital Greek letters, usually ! or ", to stand for a finite set of basic judgments,
and write R ∪ ! for the expansion of R with an axiom corresponding to each judgment in
!. The judgment ! !R K means that K is derivable from rules R ∪ !, and the judgment
!R ! means that !R J for each J in !. An equivalent way of defining J1, . . . , Jn !R J is

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

22 Hypothetical and General Judgments

to say that the rule

J1 . . . Jn

J
(3.1)

is derivable from R, which means that there is a derivation of J composed of the rules in
R augmented by treating J1, . . . , Jn as axioms.

For example, consider the derivability judgment

a nat !(2.2) succ(succ(a)) nat (3.2)

relative to rules (2.2). This judgment is valid for any choice of object a, as shown by the
derivation

a nat
succ(a) nat

succ(succ(a)) nat
(3.3)

which composes rules (2.2), starting with a nat as an axiom, and ending with
succ(succ(a)) nat. Equivalently, the validity of (3.2) may also be expressed by stating
that the rule

a nat
succ(succ(a)) nat (3.4)

is derivable from rules (2.2).
It follows directly from the definition of derivability that it is stable under extension with

new rules.

Theorem 3.1 (Stability). If ! !R J , then ! !R∪R′ J .

Proof Any derivation of J from R ∪ ! is also a derivation from (R ∪ R′) ∪ !, because
any rule in R is also a rule in R ∪ R′.

Derivability enjoys a number of structural properties that follow from its definition,
independently of the rules R in question.

Reflexivity Every judgment is a consequence of itself: !, J !R J . Each hypothesis
justifies itself as conclusion.

Weakening If ! !R J , then !,K !R J . Entailment is not influenced by un-exercised
options.

Transitivity If !,K !R J and ! !R K , then ! !R J . If we replace an axiom by a
derivation of it, the result is a derivation of its consequent without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening follows directly
from the definition of derivability. Transitivity is proved by rule induction on the first
premise.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Hypothetical Judgments: Derivability

22 Hypothetical and General Judgments

to say that the rule

J1 . . . Jn

J
(3.1)

is derivable from R, which means that there is a derivation of J composed of the rules in
R augmented by treating J1, . . . , Jn as axioms.

For example, consider the derivability judgment

a nat !(2.2) succ(succ(a)) nat (3.2)

relative to rules (2.2). This judgment is valid for any choice of object a, as shown by the
derivation

a nat
succ(a) nat

succ(succ(a)) nat
(3.3)

which composes rules (2.2), starting with a nat as an axiom, and ending with
succ(succ(a)) nat. Equivalently, the validity of (3.2) may also be expressed by stating
that the rule

a nat
succ(succ(a)) nat (3.4)

is derivable from rules (2.2).
It follows directly from the definition of derivability that it is stable under extension with

new rules.

Theorem 3.1 (Stability). If ! !R J , then ! !R∪R′ J .

Proof Any derivation of J from R ∪ ! is also a derivation from (R ∪ R′) ∪ !, because
any rule in R is also a rule in R ∪ R′.

Derivability enjoys a number of structural properties that follow from its definition,
independently of the rules R in question.

Reflexivity Every judgment is a consequence of itself: !, J !R J . Each hypothesis
justifies itself as conclusion.

Weakening If ! !R J , then !,K !R J . Entailment is not influenced by un-exercised
options.

Transitivity If !,K !R J and ! !R K , then ! !R J . If we replace an axiom by a
derivation of it, the result is a derivation of its consequent without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening follows directly
from the definition of derivability. Transitivity is proved by rule induction on the first
premise.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

22 Hypothetical and General Judgments

to say that the rule

J1 . . . Jn

J
(3.1)

is derivable from R, which means that there is a derivation of J composed of the rules in
R augmented by treating J1, . . . , Jn as axioms.

For example, consider the derivability judgment

a nat !(2.2) succ(succ(a)) nat (3.2)

relative to rules (2.2). This judgment is valid for any choice of object a, as shown by the
derivation

a nat
succ(a) nat

succ(succ(a)) nat
(3.3)

which composes rules (2.2), starting with a nat as an axiom, and ending with
succ(succ(a)) nat. Equivalently, the validity of (3.2) may also be expressed by stating
that the rule

a nat
succ(succ(a)) nat (3.4)

is derivable from rules (2.2).
It follows directly from the definition of derivability that it is stable under extension with

new rules.

Theorem 3.1 (Stability). If ! !R J , then ! !R∪R′ J .

Proof Any derivation of J from R ∪ ! is also a derivation from (R ∪ R′) ∪ !, because
any rule in R is also a rule in R ∪ R′.

Derivability enjoys a number of structural properties that follow from its definition,
independently of the rules R in question.

Reflexivity Every judgment is a consequence of itself: !, J !R J . Each hypothesis
justifies itself as conclusion.

Weakening If ! !R J , then !,K !R J . Entailment is not influenced by un-exercised
options.

Transitivity If !,K !R J and ! !R K , then ! !R J . If we replace an axiom by a
derivation of it, the result is a derivation of its consequent without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening follows directly
from the definition of derivability. Transitivity is proved by rule induction on the first
premise.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Hypothetical Judgments: Admissibility
23 3.1 Hypothetical Judgments

3.1.2 Admissibility

Admissibility, written ! |=R J , is a weaker form of hypothetical judgment stating that !R !

implies !R J . That is, the conclusion J is derivable from rules R when the assumptions
! are all derivable from rules R. In particular if any of the hypotheses are not derivable
relative toR, then the judgment is vacuously true. An equivalent way to define the judgment
J1, . . . , Jn |=R J is to state that the rule

J1 . . . Jn

J (3.5)

is admissible relative to the rules in R. Given any derivations of J1, . . . , Jn using the rules
in R, we may build a derivation of J using the rules in R.

For example, the admissibility judgment

succ(a) even |=(2.8) a odd (3.6)

is valid, because any derivation of succ(a) even from rules (2.2) must contain a sub-
derivation of a odd from the same rules, which justifies the conclusion. This fact can be
proved by induction on rules (2.8). That judgment (3.6) is valid may also be expressed by
saying that the rule

succ(a) even
a odd (3.7)

is admissible relative to rules (2.8).
In contrast to derivability the admissibility judgment is not stable under extension to the

rules. For example, if we enrich rules (2.8) with the axiom

succ(zero) even
, (3.8)

then rule (3.6) is inadmissible, because there is no composition of rules deriving zero odd.
Admissibility is as sensitive to which rules are absent from an inductive definition as it is
to which rules are present in it.

The structural properties of derivability ensure that derivability is stronger than admissi-
bility.

Theorem 3.2. If ! !R J , then ! |=R J .

Proof Repeated application of the transitivity of derivability shows that if ! !R J and
!R !, then !R J .

To see that the converse fails, note that

succ(zero) even "!(2.8) zero odd,

because there is no derivation of the right-hand side when the left-hand side is added as an
axiom to rules (2.8). Yet the corresponding admissibility judgment

succ(zero) even |=(2.8) zero odd

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

23 3.1 Hypothetical Judgments

3.1.2 Admissibility

Admissibility, written ! |=R J , is a weaker form of hypothetical judgment stating that !R !

implies !R J . That is, the conclusion J is derivable from rules R when the assumptions
! are all derivable from rules R. In particular if any of the hypotheses are not derivable
relative toR, then the judgment is vacuously true. An equivalent way to define the judgment
J1, . . . , Jn |=R J is to state that the rule

J1 . . . Jn

J (3.5)

is admissible relative to the rules in R. Given any derivations of J1, . . . , Jn using the rules
in R, we may build a derivation of J using the rules in R.

For example, the admissibility judgment

succ(a) even |=(2.8) a odd (3.6)

is valid, because any derivation of succ(a) even from rules (2.2) must contain a sub-
derivation of a odd from the same rules, which justifies the conclusion. This fact can be
proved by induction on rules (2.8). That judgment (3.6) is valid may also be expressed by
saying that the rule

succ(a) even
a odd (3.7)

is admissible relative to rules (2.8).
In contrast to derivability the admissibility judgment is not stable under extension to the

rules. For example, if we enrich rules (2.8) with the axiom

succ(zero) even
, (3.8)

then rule (3.6) is inadmissible, because there is no composition of rules deriving zero odd.
Admissibility is as sensitive to which rules are absent from an inductive definition as it is
to which rules are present in it.

The structural properties of derivability ensure that derivability is stronger than admissi-
bility.

Theorem 3.2. If ! !R J , then ! |=R J .

Proof Repeated application of the transitivity of derivability shows that if ! !R J and
!R !, then !R J .

To see that the converse fails, note that

succ(zero) even "!(2.8) zero odd,

because there is no derivation of the right-hand side when the left-hand side is added as an
axiom to rules (2.8). Yet the corresponding admissibility judgment

succ(zero) even |=(2.8) zero odd

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Hypothetical Judgments: Admissibility

23 3.1 Hypothetical Judgments

3.1.2 Admissibility

Admissibility, written ! |=R J , is a weaker form of hypothetical judgment stating that !R !

implies !R J . That is, the conclusion J is derivable from rules R when the assumptions
! are all derivable from rules R. In particular if any of the hypotheses are not derivable
relative toR, then the judgment is vacuously true. An equivalent way to define the judgment
J1, . . . , Jn |=R J is to state that the rule

J1 . . . Jn

J (3.5)

is admissible relative to the rules in R. Given any derivations of J1, . . . , Jn using the rules
in R, we may build a derivation of J using the rules in R.

For example, the admissibility judgment

succ(a) even |=(2.8) a odd (3.6)

is valid, because any derivation of succ(a) even from rules (2.2) must contain a sub-
derivation of a odd from the same rules, which justifies the conclusion. This fact can be
proved by induction on rules (2.8). That judgment (3.6) is valid may also be expressed by
saying that the rule

succ(a) even
a odd (3.7)

is admissible relative to rules (2.8).
In contrast to derivability the admissibility judgment is not stable under extension to the

rules. For example, if we enrich rules (2.8) with the axiom

succ(zero) even
, (3.8)

then rule (3.6) is inadmissible, because there is no composition of rules deriving zero odd.
Admissibility is as sensitive to which rules are absent from an inductive definition as it is
to which rules are present in it.

The structural properties of derivability ensure that derivability is stronger than admissi-
bility.

Theorem 3.2. If ! !R J , then ! |=R J .

Proof Repeated application of the transitivity of derivability shows that if ! !R J and
!R !, then !R J .

To see that the converse fails, note that

succ(zero) even "!(2.8) zero odd,

because there is no derivation of the right-hand side when the left-hand side is added as an
axiom to rules (2.8). Yet the corresponding admissibility judgment

succ(zero) even |=(2.8) zero odd

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

24 Hypothetical and General Judgments

is valid, because the hypothesis is false: there is no derivation of succ(zero) even from
rules (2.8). Even so, the derivability

succ(zero) even !(2.8) succ(succ(zero)) odd

is valid, because we may derive the right-hand side from the left-hand side by composing
rules (2.8).

Evidence for admissibility can be thought of as a mathematical function transforming
derivations !1, . . . ,!n of the hypotheses into a derivation ! of the consequent. Therefore,
the admissibility judgment enjoys the same structural properties as derivability and hence
is a form of hypothetical judgment:

Reflexivity If J is derivable from the original rules, then J is derivable from the original
rules: J |=R J .

Weakening If J is derivable from the original rules assuming that each of the judgments
in ! are derivable from these rules, then J must also be derivable assuming that ! and
K are derivable from the original rules: if ! |=R J , then !,K |=R J .

Transitivity If !,K |=R J and ! |=R K , then ! |=R J . If the judgments in ! are
derivable, so is K , by assumption, and hence so are the judgments in !,K , and hence
so is J .

Theorem 3.3. The admissibility judgment ! |=R J enjoys the structural properties of
entailment.

Proof Follows immediately from the definition of admissibility as stating that if the
hypotheses are derivable relative to R, then so is the conclusion.

If a rule r is admissible with respect to a rule set R, then !R,r J is equivalent to !R J .
For if !R J , then obviously !R,r J , by simply disregarding r . Conversely, if !R,r J , then
we may replace any use of r by its expansion in terms of the rules in R. It follows by
rule induction on R, r that every derivation from the expanded set of rules R, r can be
transformed into a derivation from R alone. Consequently, if we wish to prove a property
of the judgments derivable from R, r , when r is admissible with respect to R, it suffices
show that the property is closed under rules R alone, because its admissibility states that
the consequences of rule r are implicit in those of rules R.

3.2 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to allow rules with derivability
judgments as premises and conclusions. Doing so lets us introduce local hypotheses that
apply only in the derivation of a particular premise, and also allows us to constrain inferences
based on the global hypotheses in effect at the point where the rule is applied.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Hypothetical Inductive Definitions
25 3.2 Hypothetical Inductive Definitions

A hypothetical inductive definition consists of a set of hypothetical rules of the following
form:

! !1 ! J1 . . . ! !n ! Jn

! ! J
. (3.9)

The hypotheses ! are the global hypotheses of the rule, and the hypotheses !i are the
local hypotheses of the ith premise of the rule. Informally, this rule states that J is a
derivable consequence of ! when each Ji is a derivable consequence of !, augmented
with the hypotheses !i . Thus, one way to show that J is derivable from ! is to show, in
turn, that each Ji is derivable from ! !i . The derivation of each premise involves a “context
switch” in which we extend the global hypotheses with the local hypotheses of that premise,
establishing a new set of global hypotheses for use within that derivation.

We require that all rules in a hypothetical inductive definition be uniform in the sense that
they are applicable in all global contexts. Uniformity ensures that a rule can be presented
in implicit, or local form,

!1 ! J1 . . . !n ! Jn

J
, (3.10)

in which the global context has been suppressed with the understanding that the rule applies
for any choice of global hypotheses.

A hypothetical inductive definition is to be regarded as an ordinary inductive definition
of a formal derivability judgment ! ! J consisting of a finite set of basic judgments ! and
a basic judgment J . A set of hypothetical rules R defines the strongest formal derivability
judgment that is structural and closed under uniform rules R. Structurality means that the
formal derivability judgment must be closed under the following rules:

!, J ! J
(3.11a)

! ! J
!,K ! J

(3.11b)

! ! K !,K ! J

! ! J
(3.11c)

These rules ensure that formal derivability behaves like a hypothetical judgment. We write
! !R J to mean that ! ! J is derivable from rules R.

The principle of hypothetical rule induction is just the principle of rule induction applied
to the formal hypothetical judgment. So to show that P(! ! J) when ! !R J , it is enough
to show that P is closed under the rules of R and under the structural rules.1 Thus, for each
rule of the form (3.9), whether structural or in R, we must show that

if P(! !1 ! J1) and . . . and P(! !n ! Jn), then P(! ! J).

But this is just a restatement of the principle of rule induction given in Chapter 2, specialized
to the formal derivability judgment ! ! J .

In practice, we usually dispense with the structural rules by the method described in
Section 3.1.2. By proving that the structural rules are admissible, any proof by rule induction

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Hypothetical Rule Induction

25 3.2 Hypothetical Inductive Definitions

A hypothetical inductive definition consists of a set of hypothetical rules of the following
form:

! !1 ! J1 . . . ! !n ! Jn

! ! J
. (3.9)

The hypotheses ! are the global hypotheses of the rule, and the hypotheses !i are the
local hypotheses of the ith premise of the rule. Informally, this rule states that J is a
derivable consequence of ! when each Ji is a derivable consequence of !, augmented
with the hypotheses !i . Thus, one way to show that J is derivable from ! is to show, in
turn, that each Ji is derivable from ! !i . The derivation of each premise involves a “context
switch” in which we extend the global hypotheses with the local hypotheses of that premise,
establishing a new set of global hypotheses for use within that derivation.

We require that all rules in a hypothetical inductive definition be uniform in the sense that
they are applicable in all global contexts. Uniformity ensures that a rule can be presented
in implicit, or local form,

!1 ! J1 . . . !n ! Jn

J
, (3.10)

in which the global context has been suppressed with the understanding that the rule applies
for any choice of global hypotheses.

A hypothetical inductive definition is to be regarded as an ordinary inductive definition
of a formal derivability judgment ! ! J consisting of a finite set of basic judgments ! and
a basic judgment J . A set of hypothetical rules R defines the strongest formal derivability
judgment that is structural and closed under uniform rules R. Structurality means that the
formal derivability judgment must be closed under the following rules:

!, J ! J
(3.11a)

! ! J
!,K ! J

(3.11b)

! ! K !,K ! J

! ! J
(3.11c)

These rules ensure that formal derivability behaves like a hypothetical judgment. We write
! !R J to mean that ! ! J is derivable from rules R.

The principle of hypothetical rule induction is just the principle of rule induction applied
to the formal hypothetical judgment. So to show that P(! ! J) when ! !R J , it is enough
to show that P is closed under the rules of R and under the structural rules.1 Thus, for each
rule of the form (3.9), whether structural or in R, we must show that

if P(! !1 ! J1) and . . . and P(! !n ! Jn), then P(! ! J).

But this is just a restatement of the principle of rule induction given in Chapter 2, specialized
to the formal derivability judgment ! ! J .

In practice, we usually dispense with the structural rules by the method described in
Section 3.1.2. By proving that the structural rules are admissible, any proof by rule induction

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

25 3.2 Hypothetical Inductive Definitions

A hypothetical inductive definition consists of a set of hypothetical rules of the following
form:

! !1 ! J1 . . . ! !n ! Jn

! ! J
. (3.9)

The hypotheses ! are the global hypotheses of the rule, and the hypotheses !i are the
local hypotheses of the ith premise of the rule. Informally, this rule states that J is a
derivable consequence of ! when each Ji is a derivable consequence of !, augmented
with the hypotheses !i . Thus, one way to show that J is derivable from ! is to show, in
turn, that each Ji is derivable from ! !i . The derivation of each premise involves a “context
switch” in which we extend the global hypotheses with the local hypotheses of that premise,
establishing a new set of global hypotheses for use within that derivation.

We require that all rules in a hypothetical inductive definition be uniform in the sense that
they are applicable in all global contexts. Uniformity ensures that a rule can be presented
in implicit, or local form,

!1 ! J1 . . . !n ! Jn

J
, (3.10)

in which the global context has been suppressed with the understanding that the rule applies
for any choice of global hypotheses.

A hypothetical inductive definition is to be regarded as an ordinary inductive definition
of a formal derivability judgment ! ! J consisting of a finite set of basic judgments ! and
a basic judgment J . A set of hypothetical rules R defines the strongest formal derivability
judgment that is structural and closed under uniform rules R. Structurality means that the
formal derivability judgment must be closed under the following rules:

!, J ! J
(3.11a)

! ! J
!,K ! J

(3.11b)

! ! K !,K ! J

! ! J
(3.11c)

These rules ensure that formal derivability behaves like a hypothetical judgment. We write
! !R J to mean that ! ! J is derivable from rules R.

The principle of hypothetical rule induction is just the principle of rule induction applied
to the formal hypothetical judgment. So to show that P(! ! J) when ! !R J , it is enough
to show that P is closed under the rules of R and under the structural rules.1 Thus, for each
rule of the form (3.9), whether structural or in R, we must show that

if P(! !1 ! J1) and . . . and P(! !n ! Jn), then P(! ! J).

But this is just a restatement of the principle of rule induction given in Chapter 2, specialized
to the formal derivability judgment ! ! J .

In practice, we usually dispense with the structural rules by the method described in
Section 3.1.2. By proving that the structural rules are admissible, any proof by rule induction

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Where the structural rules are:

General Judgments

26 Hypothetical and General Judgments

may restrict attention to the rules in R alone. If all rules of a hypothetical inductive
definition are uniform, the structural rules (3.11b) and (3.11c) are clearly admissible.
Usually, rule (3.11a) must be postulated explicitly as a rule, rather than shown to be
admissible on the basis of the other rules.

3.3 General Judgments

General judgments codify the rules for handling variables in a judgment. As in mathematics
in general, a variable is treated as an unknown, ranging over a specified set of objects. A
generic judgment states that a judgment holds for any choice of objects replacing designated
variables in the judgment. Another form of general judgment codifies the handling of
symbolic parameters. A parametric judgment expresses generality over any choice of fresh
renamings of designated symbols of a judgment. To keep track of the active variables and
symbols in a derivation, we write ! !U ;X

R J to say that J is derivable from ! according to
rules R, with objects consisting of abt’s over symbols U and variables X .

The concept of uniformity of a rule must be extended to require that rules be closed
under renaming and substitution for variables and closed under renaming for parameters.
More precisely, if R is a set of rules containing a free variable x of sort s, then it must also
contain all possible substitution instances of abt’s a of sort s for x, including those that
contain other free variables. Similarly, if R contains rules with a parameter u, then it must
contain all instances of that rule obtained by renaming u of a sort to any u′ of the same sort.
Uniformity rules out stating a rule for a variable, without also stating it for all instances of
that variable. It also rules out stating a rule for a parameter without stating it for all possible
renamings of that parameter.

Generic derivability judgment is defined by

Y | ! !X
R J iff ! !X Y

R J,

where Y ∩ X = ∅. Evidence for generic derivability consists of a generic derivation !
involving the variables X Y . So long as the rules are uniform, the choice of Y does not
matter, in a sense to be explained shortly.

For example, the generic derivation !,

x nat
succ(x) nat

succ(succ(x)) nat
,

is evidence for the judgment

x | x nat !X
(2.2) succ(succ(x)) nat

provided x /∈ X . Any other choice of x would work just as well, as long as all rules are
uniform.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Generic Derivability

26 Hypothetical and General Judgments

may restrict attention to the rules in R alone. If all rules of a hypothetical inductive
definition are uniform, the structural rules (3.11b) and (3.11c) are clearly admissible.
Usually, rule (3.11a) must be postulated explicitly as a rule, rather than shown to be
admissible on the basis of the other rules.

3.3 General Judgments

General judgments codify the rules for handling variables in a judgment. As in mathematics
in general, a variable is treated as an unknown, ranging over a specified set of objects. A
generic judgment states that a judgment holds for any choice of objects replacing designated
variables in the judgment. Another form of general judgment codifies the handling of
symbolic parameters. A parametric judgment expresses generality over any choice of fresh
renamings of designated symbols of a judgment. To keep track of the active variables and
symbols in a derivation, we write ! !U ;X

R J to say that J is derivable from ! according to
rules R, with objects consisting of abt’s over symbols U and variables X .

The concept of uniformity of a rule must be extended to require that rules be closed
under renaming and substitution for variables and closed under renaming for parameters.
More precisely, if R is a set of rules containing a free variable x of sort s, then it must also
contain all possible substitution instances of abt’s a of sort s for x, including those that
contain other free variables. Similarly, if R contains rules with a parameter u, then it must
contain all instances of that rule obtained by renaming u of a sort to any u′ of the same sort.
Uniformity rules out stating a rule for a variable, without also stating it for all instances of
that variable. It also rules out stating a rule for a parameter without stating it for all possible
renamings of that parameter.

Generic derivability judgment is defined by

Y | ! !X
R J iff ! !X Y

R J,

where Y ∩ X = ∅. Evidence for generic derivability consists of a generic derivation !
involving the variables X Y . So long as the rules are uniform, the choice of Y does not
matter, in a sense to be explained shortly.

For example, the generic derivation !,

x nat
succ(x) nat

succ(succ(x)) nat
,

is evidence for the judgment

x | x nat !X
(2.2) succ(succ(x)) nat

provided x /∈ X . Any other choice of x would work just as well, as long as all rules are
uniform.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Generic Derivability27 3.4 Generic Inductive Definitions

The generic derivability judgment enjoys the following structural properties governing
the behavior of variables, provided that R is uniform.

Proliferation If Y | ! !X
R J , then Y, y | ! !X

R J .
Renaming If Y, y | ! !X

R J , then Y, y ′ | [y ↔ y ′]! !X
R [y ↔ y ′]J for any y ′ /∈ X Y .

Substitution If Y, y | ! !X
R J and a ∈ B[X Y], then Y | [a/y]! !X

R [a/y]J .

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expan-
sions of the universe. Renaming is built into the meaning of the generic judgment. It is left
implicit in the principle of substitution that the substituting abt is of the same sort as the
substituted variable.

Parametric derivability is defined analogously to generic derivability, albeit by general-
izing over symbols, rather than variables. Parametric derivability is defined by

V ‖ Y | ! !U ;X
R J iff Y | ! !U V ;X

R J,

where V ∩U = ∅. Evidence for parametric derivability consists of a derivation! involving
the symbols V . Uniformity of R ensures that any choice of parameter names is as good as
any other; derivability is stable under renaming.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of
rules, with the effect of augmenting the variables, as well as the rules, within those premises.
A generic rule has the form

Y Y1 | ! !1 ! J1 . . . Y Yn | ! !n ! Jn

Y | ! ! J
. (3.12)

The variables Y are the global variables of the inference, and, for each 1 ≤ i ≤ n, the
variables Yi are the local variables of the ith premise. In most cases, a rule is stated for all
choices of global variables and global hypotheses. Such rules can be given in implicit form,

Y1 | !1 ! J1 . . . Yn | !n ! Jn

J
. (3.13)

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form Y | ! ! J . Formal generic judgments are identified up to
renaming of variables, so that the latter judgment is treated as identical to the judgment
Y ′ | ρ̂(!) ! ρ̂(J) for any renaming ρ : Y ↔ Y ′. If R is a collection of generic rules, we
write Y | ! !R J to mean that the formal generic judgment Y | ! ! J is derivable from
rules R.

When specialized to a set of generic rules, the principle of rule induction states that to
show P(Y | ! ! J) when Y | ! !R J , it is enough to show that P is closed under the rules

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Generic Inductive Definitions

27 3.4 Generic Inductive Definitions

The generic derivability judgment enjoys the following structural properties governing
the behavior of variables, provided that R is uniform.

Proliferation If Y | ! !X
R J , then Y, y | ! !X

R J .
Renaming If Y, y | ! !X

R J , then Y, y ′ | [y ↔ y ′]! !X
R [y ↔ y ′]J for any y ′ /∈ X Y .

Substitution If Y, y | ! !X
R J and a ∈ B[X Y], then Y | [a/y]! !X

R [a/y]J .

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expan-
sions of the universe. Renaming is built into the meaning of the generic judgment. It is left
implicit in the principle of substitution that the substituting abt is of the same sort as the
substituted variable.

Parametric derivability is defined analogously to generic derivability, albeit by general-
izing over symbols, rather than variables. Parametric derivability is defined by

V ‖ Y | ! !U ;X
R J iff Y | ! !U V ;X

R J,

where V ∩U = ∅. Evidence for parametric derivability consists of a derivation! involving
the symbols V . Uniformity of R ensures that any choice of parameter names is as good as
any other; derivability is stable under renaming.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of
rules, with the effect of augmenting the variables, as well as the rules, within those premises.
A generic rule has the form

Y Y1 | ! !1 ! J1 . . . Y Yn | ! !n ! Jn

Y | ! ! J
. (3.12)

The variables Y are the global variables of the inference, and, for each 1 ≤ i ≤ n, the
variables Yi are the local variables of the ith premise. In most cases, a rule is stated for all
choices of global variables and global hypotheses. Such rules can be given in implicit form,

Y1 | !1 ! J1 . . . Yn | !n ! Jn

J
. (3.13)

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form Y | ! ! J . Formal generic judgments are identified up to
renaming of variables, so that the latter judgment is treated as identical to the judgment
Y ′ | ρ̂(!) ! ρ̂(J) for any renaming ρ : Y ↔ Y ′. If R is a collection of generic rules, we
write Y | ! !R J to mean that the formal generic judgment Y | ! ! J is derivable from
rules R.

When specialized to a set of generic rules, the principle of rule induction states that to
show P(Y | ! ! J) when Y | ! !R J , it is enough to show that P is closed under the rules

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Generic Rule Induction

27 3.4 Generic Inductive Definitions

The generic derivability judgment enjoys the following structural properties governing
the behavior of variables, provided that R is uniform.

Proliferation If Y | ! !X
R J , then Y, y | ! !X

R J .
Renaming If Y, y | ! !X

R J , then Y, y ′ | [y ↔ y ′]! !X
R [y ↔ y ′]J for any y ′ /∈ X Y .

Substitution If Y, y | ! !X
R J and a ∈ B[X Y], then Y | [a/y]! !X

R [a/y]J .

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expan-
sions of the universe. Renaming is built into the meaning of the generic judgment. It is left
implicit in the principle of substitution that the substituting abt is of the same sort as the
substituted variable.

Parametric derivability is defined analogously to generic derivability, albeit by general-
izing over symbols, rather than variables. Parametric derivability is defined by

V ‖ Y | ! !U ;X
R J iff Y | ! !U V ;X

R J,

where V ∩U = ∅. Evidence for parametric derivability consists of a derivation! involving
the symbols V . Uniformity of R ensures that any choice of parameter names is as good as
any other; derivability is stable under renaming.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of
rules, with the effect of augmenting the variables, as well as the rules, within those premises.
A generic rule has the form

Y Y1 | ! !1 ! J1 . . . Y Yn | ! !n ! Jn

Y | ! ! J
. (3.12)

The variables Y are the global variables of the inference, and, for each 1 ≤ i ≤ n, the
variables Yi are the local variables of the ith premise. In most cases, a rule is stated for all
choices of global variables and global hypotheses. Such rules can be given in implicit form,

Y1 | !1 ! J1 . . . Yn | !n ! Jn

J
. (3.13)

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form Y | ! ! J . Formal generic judgments are identified up to
renaming of variables, so that the latter judgment is treated as identical to the judgment
Y ′ | ρ̂(!) ! ρ̂(J) for any renaming ρ : Y ↔ Y ′. If R is a collection of generic rules, we
write Y | ! !R J to mean that the formal generic judgment Y | ! ! J is derivable from
rules R.

When specialized to a set of generic rules, the principle of rule induction states that to
show P(Y | ! ! J) when Y | ! !R J , it is enough to show that P is closed under the rules

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

28 Hypothetical and General Judgments

R. Specifically, for each rule in R of the form (3.12), we must show that

if P(Y Y1 | ! !1 ! J1) . . . P(Y Yn | ! !n ! Jn) then P(Y | ! ! J).

By the identification convention (stated in Chapter 1), the property P must respect renam-
ings of the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must
always ensure that the following structural rules are admissible:

Y | !, J ! J
(3.14a)

Y | ! ! J

Y | !, J ′ ! J
(3.14b)

Y | ! ! J

Y, x | ! ! J
(3.14c)

Y, x ′ | [x ↔ x ′]! ! [x ↔ x ′]J
Y, x | ! ! J

(3.14d)

Y | ! ! J Y | !, J ! J ′

Y | ! ! J ′ (3.14e)

Y, x | ! ! J a ∈ B[Y]
Y | [a/x]! ! [a/x]J

(3.14f)

The admissibility of rule (3.14a) is, in practice, ensured by explicitly including it. The
admissibility of rules (3.14b) and (3.14c) is assured if each of the generic rules is uniform,
because we may assimilate the added variable x to the global variables, and the added
hypothesis J , to the global hypotheses. The admissibility of rule (3.14d) is ensured by the
identification convention for the formal generic judgment. Rule (3.14f) must be verified
explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well.
Briefly, rules are defined on formal parametric judgments of the form V ‖ Y | ! ! J , with
symbols V , as well as variables, Y . Such formal judgments are identified up to renaming
of its variables and its symbols to ensure that the meaning is independent of the choice of
variable and symbol names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming lan-
guages. The formulation given here builds on Martin-Löf (1983, 1987) and Avron (1991).
Hypothetical and general reasoning are consolidated into a single concept in the AU-
TOMATH languages (Nederpelt et al., 1994) and in the LF Logical Framework (Harper
et al., 1993). These systems allow arbitrarily nested combinations of hypothetical and

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

28 Hypothetical and General Judgments

R. Specifically, for each rule in R of the form (3.12), we must show that

if P(Y Y1 | ! !1 ! J1) . . . P(Y Yn | ! !n ! Jn) then P(Y | ! ! J).

By the identification convention (stated in Chapter 1), the property P must respect renam-
ings of the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must
always ensure that the following structural rules are admissible:

Y | !, J ! J
(3.14a)

Y | ! ! J

Y | !, J ′ ! J
(3.14b)

Y | ! ! J

Y, x | ! ! J
(3.14c)

Y, x ′ | [x ↔ x ′]! ! [x ↔ x ′]J
Y, x | ! ! J

(3.14d)

Y | ! ! J Y | !, J ! J ′

Y | ! ! J ′ (3.14e)

Y, x | ! ! J a ∈ B[Y]
Y | [a/x]! ! [a/x]J

(3.14f)

The admissibility of rule (3.14a) is, in practice, ensured by explicitly including it. The
admissibility of rules (3.14b) and (3.14c) is assured if each of the generic rules is uniform,
because we may assimilate the added variable x to the global variables, and the added
hypothesis J , to the global hypotheses. The admissibility of rule (3.14d) is ensured by the
identification convention for the formal generic judgment. Rule (3.14f) must be verified
explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well.
Briefly, rules are defined on formal parametric judgments of the form V ‖ Y | ! ! J , with
symbols V , as well as variables, Y . Such formal judgments are identified up to renaming
of its variables and its symbols to ensure that the meaning is independent of the choice of
variable and symbol names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming lan-
guages. The formulation given here builds on Martin-Löf (1983, 1987) and Avron (1991).
Hypothetical and general reasoning are consolidated into a single concept in the AU-
TOMATH languages (Nederpelt et al., 1994) and in the LF Logical Framework (Harper
et al., 1993). These systems allow arbitrarily nested combinations of hypothetical and

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

28 Hypothetical and General Judgments

R. Specifically, for each rule in R of the form (3.12), we must show that

if P(Y Y1 | ! !1 ! J1) . . . P(Y Yn | ! !n ! Jn) then P(Y | ! ! J).

By the identification convention (stated in Chapter 1), the property P must respect renam-
ings of the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must
always ensure that the following structural rules are admissible:

Y | !, J ! J
(3.14a)

Y | ! ! J

Y | !, J ′ ! J
(3.14b)

Y | ! ! J

Y, x | ! ! J
(3.14c)

Y, x ′ | [x ↔ x ′]! ! [x ↔ x ′]J
Y, x | ! ! J

(3.14d)

Y | ! ! J Y | !, J ! J ′

Y | ! ! J ′ (3.14e)

Y, x | ! ! J a ∈ B[Y]
Y | [a/x]! ! [a/x]J

(3.14f)

The admissibility of rule (3.14a) is, in practice, ensured by explicitly including it. The
admissibility of rules (3.14b) and (3.14c) is assured if each of the generic rules is uniform,
because we may assimilate the added variable x to the global variables, and the added
hypothesis J , to the global hypotheses. The admissibility of rule (3.14d) is ensured by the
identification convention for the formal generic judgment. Rule (3.14f) must be verified
explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well.
Briefly, rules are defined on formal parametric judgments of the form V ‖ Y | ! ! J , with
symbols V , as well as variables, Y . Such formal judgments are identified up to renaming
of its variables and its symbols to ensure that the meaning is independent of the choice of
variable and symbol names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming lan-
guages. The formulation given here builds on Martin-Löf (1983, 1987) and Avron (1991).
Hypothetical and general reasoning are consolidated into a single concept in the AU-
TOMATH languages (Nederpelt et al., 1994) and in the LF Logical Framework (Harper
et al., 1993). These systems allow arbitrarily nested combinations of hypothetical and

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

28 Hypothetical and General Judgments

R. Specifically, for each rule in R of the form (3.12), we must show that

if P(Y Y1 | ! !1 ! J1) . . . P(Y Yn | ! !n ! Jn) then P(Y | ! ! J).

By the identification convention (stated in Chapter 1), the property P must respect renam-
ings of the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must
always ensure that the following structural rules are admissible:

Y | !, J ! J
(3.14a)

Y | ! ! J

Y | !, J ′ ! J
(3.14b)

Y | ! ! J

Y, x | ! ! J
(3.14c)

Y, x ′ | [x ↔ x ′]! ! [x ↔ x ′]J
Y, x | ! ! J

(3.14d)

Y | ! ! J Y | !, J ! J ′

Y | ! ! J ′ (3.14e)

Y, x | ! ! J a ∈ B[Y]
Y | [a/x]! ! [a/x]J

(3.14f)

The admissibility of rule (3.14a) is, in practice, ensured by explicitly including it. The
admissibility of rules (3.14b) and (3.14c) is assured if each of the generic rules is uniform,
because we may assimilate the added variable x to the global variables, and the added
hypothesis J , to the global hypotheses. The admissibility of rule (3.14d) is ensured by the
identification convention for the formal generic judgment. Rule (3.14f) must be verified
explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well.
Briefly, rules are defined on formal parametric judgments of the form V ‖ Y | ! ! J , with
symbols V , as well as variables, Y . Such formal judgments are identified up to renaming
of its variables and its symbols to ensure that the meaning is independent of the choice of
variable and symbol names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming lan-
guages. The formulation given here builds on Martin-Löf (1983, 1987) and Avron (1991).
Hypothetical and general reasoning are consolidated into a single concept in the AU-
TOMATH languages (Nederpelt et al., 1994) and in the LF Logical Framework (Harper
et al., 1993). These systems allow arbitrarily nested combinations of hypothetical and

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Parametric Derivability

27 3.4 Generic Inductive Definitions

The generic derivability judgment enjoys the following structural properties governing
the behavior of variables, provided that R is uniform.

Proliferation If Y | ! !X
R J , then Y, y | ! !X

R J .
Renaming If Y, y | ! !X

R J , then Y, y ′ | [y ↔ y ′]! !X
R [y ↔ y ′]J for any y ′ /∈ X Y .

Substitution If Y, y | ! !X
R J and a ∈ B[X Y], then Y | [a/y]! !X

R [a/y]J .

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expan-
sions of the universe. Renaming is built into the meaning of the generic judgment. It is left
implicit in the principle of substitution that the substituting abt is of the same sort as the
substituted variable.

Parametric derivability is defined analogously to generic derivability, albeit by general-
izing over symbols, rather than variables. Parametric derivability is defined by

V ‖ Y | ! !U ;X
R J iff Y | ! !U V ;X

R J,

where V ∩U = ∅. Evidence for parametric derivability consists of a derivation! involving
the symbols V . Uniformity of R ensures that any choice of parameter names is as good as
any other; derivability is stable under renaming.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of
rules, with the effect of augmenting the variables, as well as the rules, within those premises.
A generic rule has the form

Y Y1 | ! !1 ! J1 . . . Y Yn | ! !n ! Jn

Y | ! ! J
. (3.12)

The variables Y are the global variables of the inference, and, for each 1 ≤ i ≤ n, the
variables Yi are the local variables of the ith premise. In most cases, a rule is stated for all
choices of global variables and global hypotheses. Such rules can be given in implicit form,

Y1 | !1 ! J1 . . . Yn | !n ! Jn

J
. (3.13)

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form Y | ! ! J . Formal generic judgments are identified up to
renaming of variables, so that the latter judgment is treated as identical to the judgment
Y ′ | ρ̂(!) ! ρ̂(J) for any renaming ρ : Y ↔ Y ′. If R is a collection of generic rules, we
write Y | ! !R J to mean that the formal generic judgment Y | ! ! J is derivable from
rules R.

When specialized to a set of generic rules, the principle of rule induction states that to
show P(Y | ! ! J) when Y | ! !R J , it is enough to show that P is closed under the rules

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

28 Hypothetical and General Judgments

R. Specifically, for each rule in R of the form (3.12), we must show that

if P(Y Y1 | ! !1 ! J1) . . . P(Y Yn | ! !n ! Jn) then P(Y | ! ! J).

By the identification convention (stated in Chapter 1), the property P must respect renam-
ings of the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must
always ensure that the following structural rules are admissible:

Y | !, J ! J
(3.14a)

Y | ! ! J

Y | !, J ′ ! J
(3.14b)

Y | ! ! J

Y, x | ! ! J
(3.14c)

Y, x ′ | [x ↔ x ′]! ! [x ↔ x ′]J
Y, x | ! ! J

(3.14d)

Y | ! ! J Y | !, J ! J ′

Y | ! ! J ′ (3.14e)

Y, x | ! ! J a ∈ B[Y]
Y | [a/x]! ! [a/x]J

(3.14f)

The admissibility of rule (3.14a) is, in practice, ensured by explicitly including it. The
admissibility of rules (3.14b) and (3.14c) is assured if each of the generic rules is uniform,
because we may assimilate the added variable x to the global variables, and the added
hypothesis J , to the global hypotheses. The admissibility of rule (3.14d) is ensured by the
identification convention for the formal generic judgment. Rule (3.14f) must be verified
explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well.
Briefly, rules are defined on formal parametric judgments of the form V ‖ Y | ! ! J , with
symbols V , as well as variables, Y . Such formal judgments are identified up to renaming
of its variables and its symbols to ensure that the meaning is independent of the choice of
variable and symbol names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming lan-
guages. The formulation given here builds on Martin-Löf (1983, 1987) and Avron (1991).
Hypothetical and general reasoning are consolidated into a single concept in the AU-
TOMATH languages (Nederpelt et al., 1994) and in the LF Logical Framework (Harper
et al., 1993). These systems allow arbitrarily nested combinations of hypothetical and

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

