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Introduction

This document is the Reference Manual of version 8.0 of the COQ proof assistant. A companion volume,
the COQ Tutorial, is provided for the beginners. It is advised to read the Tutorial first. A new book [13]
on practical uses of the COQ system will be published in 2004 and is a good support for both the beginner
and the advanced user.

The COQ system is designed to develop mathematical proofs, and especially to write formal specifi-
cations, programs and to verify that programs are correct with respect to their specification. It provides a
specification language named GALLINA . Terms of GALLINA can represent programs as well as proper-
ties of these programs and proofs of these properties. Using the so-calledCurry-Howard isomorphism,
programs, properties and proofs are formalized in the same language calledCalculus of Inductive Con-
structions, that is aλ-calculus with a rich type system. All logical judgments in COQ are typing judg-
ments. The very heart of the Coq system is the type-checking algorithm that checks the correctness of
proofs, in other words that checks that a program complies to its specification. COQ also provides an
interactive proof assistant to build proofs using specific programs calledtactics.

All services of the COQ proof assistant are accessible by interpretation of a command language
calledthe vernacular.

COQ has an interactive mode in which commands are interpreted as the user types them in from the
keyboard and a compiled mode where commands are processed from a file.

• The interactive mode may be used as a debugging mode in which the user can develop his theories
and proofs step by step, backtracking if needed and so on. The interactive mode is run with
thecoqtop command from the operating system (which we shall assume to be some variety of
UNIX in the rest of this document).

• The compiled mode acts as a proof checker taking a file containing a whole development in order
to ensure its correctness. Moreover, COQ’s compiler provides an output file containing a compact
representation of its input. The compiled mode is run with thecoqc command from the operating
system.

These two modes are documented in chapter 12.
Other modes of interaction with COQ are possible: through an emacs shell window, an emacs generic

user-interface for proof assistant (ProofGeneral [1]) or through a customized interface (PCoq [111]).
These facilities are not documented here. There is also a COQ Integrated Development Environment
described in Chapter 14.

How to read this book

This is a Reference Manual, not a User Manual, then it is not made for a continuous reading. However,
it has some structure that is explained below.

• The first part describes the specification language, Gallina. Chapters 1 and 2 describe the concrete
syntax as well as the meaning of programs, theorems and proofs in the Calculus of Inductive
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4 Introduction
Constructions. Chapter 3 describes the standard library of COQ. Chapter 4 is a mathematical
description of the formalism. Chapter 5 describes the module system.

• The second part describes the proof engine. It is divided in five chapters. Chapter 6 presents
all commands (we call themvernacular commands) that are not directly related to interactive
proving: requests to the environment, complete or partial evaluation, loading and compiling files.
How to start and stop proofs, do multiple proofs in parallel is explained in Chapter 7. In Chapter 8,
all commands that realize one or more steps of the proof are presented: we call themtactics. The
language to combine these tactics into complex proof strategies is given in Chapter 9. Examples
of tactics are described in Chapter 10.

• The third part describes how to extend the syntax of COQ. It corresponds to the Chapter 11.

• In the fourth part more practical tools are documented. First in Chapter 12, the usage ofcoqc
(batch mode) andcoqtop (interactive mode) with their options is described. Then, in Chapter 13,
various utilities that come with the COQ distribution are presented. Finally, Chapter 14 describes
the COQ integrated development environment.

At the end of the document, after the global index, the user can find specific indexes for tactics,
vernacular commands, and error messages.

List of additional documentation

This manual does not contain all the documentation the user may need about COQ. Various informations
can be found in the following documents:

Tutorial A companion volume to this reference manual, the COQ Tutorial, is aimed at gently introduc-
ing new users to developing proofs in COQ without assuming prior knowledge of type theory. In a
second step, the user can read also the tutorial on recursive types (documentRecTutorial.ps ).

Addendum The fifth part (the Addendum) of the Reference Manual is distributed as a separate docu-
ment. It contains more detailed documentation and examples about some specific aspects of the
system that may interest only certain users. It shares the indexes, the page numbers and the bibli-
ography with the Reference Manual. If you see in one of the indexes a page number that is outside
the Reference Manual, it refers to the Addendum.

Installation A text file INSTALL that comes with the sources explains how to install COQ.

The COQ standard library A commented version of sources of the COQ standard library (includ-
ing only the specifications, the proofs are removed) is given in the additional document
Library.ps .
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COQ is a proof assistant for higher-order logic, allowing the development of computer programs consis-
tent with their formal specification. It is the result of about ten years of research of the Coq project. We
shall briefly survey here three main aspects: thelogical languagein which we write our axiomatizations
and specifications, theproof assistantwhich allows the development of verified mathematical proofs,
and theprogram extractorwhich synthesizes computer programs obeying their formal specifications,
written as logical assertions in the language.

The logical language used by COQ is a variety of type theory, called theCalculus of Inductive Con-
structions. Without going back to Leibniz and Boole, we can date the creation of what is now called
mathematical logic to the work of Frege and Peano at the turn of the century. The discovery of anti-
nomies in the free use of predicates or comprehension principles prompted Russell to restrict predicate
calculus with a stratification oftypes. This effort culminated withPrincipia Mathematica, the first sys-
tematic attempt at a formal foundation of mathematics. A simplification of this system along the lines of
simply typedλ-calculus occurred with Church’sSimple Theory of Types. Theλ-calculus notation, orig-
inally used for expressing functionality, could also be used as an encoding of natural deduction proofs.
This Curry-Howard isomorphism was used by N. de Bruijn in theAutomathproject, the first full-scale
attempt to develop and mechanically verify mathematical proofs. This effort culminated with Jutting’s
verification of Landau’sGrundlagenin the 1970’s. Exploiting this Curry-Howard isomorphism, no-
table achievements in proof theory saw the emergence of two type-theoretic frameworks; the first one,
Martin-Löf’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on constructive
principles. The second one, Girard’s polymorphicλ-calculusFω, is a very strong functional system in
which we may represent higher-order logic proof structures. Combining both systems in a higher-order
extension of the Automath languages, T. Coquand presented in 1985 the first version of theCalculus of
Constructions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive
definitions were not possible, and inductive notions had to be defined indirectly through functional en-
codings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989 by T.
Coquand and C. Paulin with primitive inductive definitions, leading to the currentCalculus of Inductive
Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete ex-
amples are discussed. We refer the interested reader to relevant research papers for more information
about the formalism, its meta-theoretic properties, and semantics. However, it should not be necessary
to understand this theoretical material in order to write specifications. It is possible to understand the
Calculus of Inductive Constructions at a higher level, as a mixture of predicate calculus, inductive pred-
icate definitions presented as typed PROLOG, and recursive function definitions close to the language
ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional cal-
culus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-order logic
was proposed in 1965 by J.A. Robinson, with a single uniform inference rule calledresolution. Reso-
lution relies on solving equations in free algebras (i.e. term structures), using theunification algorithm.
Many refinements of resolution were studied in the 1970’s, but few convincing implementations were re-
alized, except of course that PROLOG is in some sense issued from this effort. A less ambitious approach

Coq Reference Manual, V8.0, June 27, 2004



6 Credits
to proof development is computer-aided proof-checking. The most notable proof-checkers developed in
the 1970’s were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover,
an automation of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover
attempted to synthesize proofs by a combination of automated methods, LCF constructed its proofs
through the programming oftactics, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and
Moore’s, is its possibility to extract programs from the constructive contents of proofs. This compu-
tational interpretation of proof objects, in the tradition of Bishop’s constructive mathematics, is based
on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user must just mark
his intention by separating in the logical statements the assertions stating the existence of a computa-
tional object from the logical assertions which specify its properties, but which may be considered as
just comments in the corresponding program. Given this information, the system automatically extracts
a functional term from a consistency proof of its specifications. This functional term may be in turn
compiled into an actual computer program. This methodology of extracting programs from proofs is a
revolutionary paradigm for software engineering. Program synthesis has long been a theme of research
in artificial intelligence, pioneered by R. Waldinger. The Tablog system of Z. Manna and R. Waldinger
allows the deductive synthesis of functional programs from proofs in tableau form of their specifica-
tions, written in a variety of first-order logic. Development of a systematicprogramming logic, based
on extensions of Martin-Löf’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by
R. Constable. The first actual program extractor, PX, was designed and implemented around 1985 by
S. Hayashi from Kyoto University. It allows the extraction of a LISP program from a proof in a logical
system inspired by the logical formalisms of S. Feferman. Interest in this methodology is growing in
the theoretical computer science community. We can foresee the day when actual computer systems
used in applications will contain certified modules, automatically generated from a consistency proof
of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time
systems taking advantage of special hardware, debuggers, and the like. We hope that COQ can be of use
to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation
language was CAML, a functional programming language from the ML family designed at INRIA
in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typedλ-calculus,
called theConstructive Engine. This engine was operated through a high-level notation permitting the
declaration of axioms and parameters, the definition of mathematical types and objects, and the explicit
construction of proof objects encoded asλ-terms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language
was called theMathematical Vernacular. Furthermore, an interactiveTheorem Proverpermitted the
incremental construction of proof trees in a top-down manner, subgoaling recursively and backtracking
from dead-alleys. The theorem prover executed tactics written in CAML, in the LCF fashion. A basic set
of tactics was predefined, which the user could extend by his own specific tactics. This system (Version
4.10) was released in 1989. Then, the system was extended to deal with the new calculus with inductive
types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set of tactics
was streamlined, and the vernacular extended for tactics execution. A package to compile programs
extracted from proofs to actual computer programs in CAML or some other functional language was
designed and implemented by B. Werner. A new user-interface, relying on a CAML-X interface by D.
de Rauglaudre, was designed and implemented by A. Felty. It allowed operation of the theorem-prover
through the manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system
(Version 5.6) was released in 1991.

COQ was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de
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Rauglaudre (Version 5.7) in 1992. A new version of COQ was then coordinated by C. Murthy, with
new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to pro-
gram extraction) and a new user-interaction loop. This system (Version 5.8) was released in May 1993.
A Centaur interface CTCOQ was then developed by Y. Bertot from the Croap project from INRIA-
Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manip-
ulation of existential variables consistently with dependent types in an experimental version of COQ

(V5.9).
The version V5.10 of COQ is based on a generic system for manipulating terms with binding op-

erators due to Chet Murthy. A new proof engine allows the parallel development of partial proofs for
independent subgoals. The structure of these proof trees is a mixed representation of derivation trees
for the Calculus of Inductive Constructions with abstract syntax trees for the tactics scripts, allowing the
navigation in a proof at various levels of details. The proof engine allows generic environment items
managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

• User-programmable tactics are allowed

• It is possible to separately verify development modules, and to load their compiled images without
verifying them again - a quick relocation process allows their fast loading

• A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-
printer

• Syntactic definitions allow convenient abbreviations

• A limited facility of meta-variables allows the automatic synthesis of certain type expressions,
allowing generic notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and fam-
ilies by a new structure, allowing the mutually recursive definitions. P. Manoury implemented a trans-
lation of recursive definitions into the primitive recursive style imposed by the internal recursion oper-
ators, in the style of the ProPre system. C. Muñoz implemented a decision procedure for intuitionistic
propositional logic, based on results of R. Dyckhoff. J.C. Filliâtre implemented a decision procedure
for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inver-
sion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

Credits: addendum for version 6.1

The present version 6.1 of COQ is based on the V5.10 architecture. It was ported to the new language
Objective Caml by Bruno Barras. The underlying framework has slightly changed and allows more
conversions between sorts.

The new version provides powerful tools for easier developments.
Cristina Cornes designed an extension of the COQ syntax to allow definition of terms using a pow-

erful pattern-matching analysis in the style of ML programs.
Amokrane Saïbi wrote a mechanism to simulate inheritance between types families extending a

proposal by Peter Aczel. He also developed a mechanism to automatically compute which arguments of
a constant may be inferred by the system and consequently do not need to be explicitly written.
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Yann Coscoy designed a command which explains a proof term using natural language. Pierre

Crégut built a new tactic which solves problems in quantifier-free Presburger Arithmetic. Both function-
alities have been integrated to the COQ system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of
rewriting rules and equality modulo associativity and commutativity.

Finally the organisation of the COQ distribution has been supervised by Jean-Christophe Filliâtre
with the help of Judicaël Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

Credits: addendum for version 6.2

In version 6.2 of COQ, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML
designed by Daniel de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of COQ

for camlp4, this work was continued by Bruno Barras who also changed the structure of COQ abstract
syntax trees and the primitives to manipulate them. The result of these changes is a faster parsing
procedure with greatly improved syntax-error messages. The user-interface to introduce grammar or
pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions
corresponding to COQ tactic names.

Bruno Barras wrote new more efficient reductions functions.
Hugo Herbelin introduced more uniform notations in the COQ specification language: the definitions

by fixpoints and pattern-matching have a more readable syntax. Patrick Loiseleur introduced user-
friendly notations for arithmetic expressions.

New tactics were introduced: Eduardo Giménez improved a mechanism to introduce macros for
tactics, and designed special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to
simplify polynomial expressions in an arbitrary commutative ring which generalizes the previous tactic
implemented by Samuel Boutin. Jean-Christophe Filliâtre introduced a tactic for refining a goal, using
a proof term with holes as a proof scheme.

David Delahaye designed theSearchIsos tool to search an object in the library given its type (up to
isomorphism).

Henri Laulhère produced the COQ distribution for the Windows environment.
Finally, Hugo Herbelin was the main coordinator of the COQ documentation with principal contri-

butions by Bruno Barras, David Delahaye, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin
and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

Credits: addendum for version 6.3

The main changes in version V6.3 was the introduction of a few new tactics and the extension of the
guard condition for fixpoint definitions.

B. Barras extended the unification algorithm to complete partial terms and solved various tricky bugs
related to universes.
D. Delahaye developed theAutoRewrite tactic. He also designed the new behavior ofIntro and
provided the tacticalsFirst andSolve .
J.-C. Filliâtre developed theCorrectness tactic.
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E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended theInduction tactic.
P. Loiseleur developed theQuote tactic and the new design of theAuto tactic, he also introduced the
index of errors in the documentation.
C. Paulin wrote theFocus command and introduced the reduction functions in definitions, this last
feature was proposed by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliâtre. This
is a major revision with respect to the internal architecture of the system. The COQ version 7.0 was
distributed in March 2001, version 7.1 in September 2001, version 7.2 in January 2002, version 7.3 in
May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliâtre designed the architecture of the new system, he introduced a new repre-
sentation for environments and wrote a new kernel for type-checking terms. His approach was to use
functional data-structures in order to get more sharing, to prepare the addition of modules and also to
get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified”
names, wrote a new pattern-matching compilation algorithm and designed a more compact algorithm
for checking the logical consistency of universes. He contributed to the simplification of COQ internal
structures and the optimisation of the system. He added basic tactics for forward reasoning and coercions
in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern-matching on
goals and context can directly be written from the COQ toplevel. He also provided primitives for the
design of user-defined tactics in CAML .

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library
with axiomatic trigonometric functions, square, square roots, finite sums, Chasles property and basic
plane geometry.

Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new extraction procedure from COQ

terms to CAML or HASKELL programs. This new extraction procedure, unlike the one implemented
in previous version of COQ is able to handle all terms in the Calculus of Inductive Constructions, even
involving universes and strong elimination. P. Letouzey adapted user contributions to extract ML pro-
grams when it was sensible. Jean-Christophe Filliâtre wrotecoqdoc , a documentation tool for COQ

libraries usable from version 7.2.
Bruno Barras improved the reduction algorithms efficiency and the confidence level in the correct-

ness of COQ critical type-checking algorithm.
Yves Bertot designed theSearchPattern andSearchRewrite tools and the support for the

PCOQinterface (http://www-sop.inria.fr/lemme/pcoq/ ).
Micaela Mayero and David Delahaye introducedField , a decision tactic for commutative fields.
Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.
Loïc Pottier developedFourier , a tactic solving linear inequalities on real numbers.
Pierre Crégut developed a new version based on reflexion of theOmegadecision tactic.
Claudio Sacerdoti Coen designed an XML output for the COQ modules to be used in the Hypertex-

tual Electronic Library of Mathematics (HELM cfhttp://www.cs.unibo.it/helm ).
A library for efficient representation of finite maps using binary trees contributed by Jean Goubault

was integrated in the basic theories.
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Jacek Chrząszcz designed and implemented the module system of COQ whose foundations are in

Judicaël Courant’s PhD thesis.

The development was coordinated by C. Paulin.
Many discussions within the Démons team and the LogiCal project influenced significantly the de-

sign of COQ especially with J. Courant, P. Courtieu, J. Duprat, J. Goubault, A. Miquel, C. Marché, B.
Monate and B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry , P. Zimmer-
man from INRIA, C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
Hugo Herbelin & Christine Paulin

Credits: version 8.0

COQ version 8 is a major revision of the COQ proof assistant. First, the underlying logic is slightly
different. The so-calledimpredicativityof the sortSet has been dropped. The main reason is that it
is inconsistent with the principle of description which is quite a useful principle for formalizing mathe-
matics within classical logic. Moreover, even in an constructive setting, the impredicativity ofSet does
not add so much in practice and is even subject of criticism from a large part of the intuitionistic math-
ematician community. Nevertheless, the impredicativity ofSet remains optional for users interested in
investigating mathematical developments which rely on it.

Secondly, the concrete syntax of terms has been completely revised. The main motivations were

• a more uniform, purified style: all constructions are now lowercase, with a functional program-
ming perfume (e.g. abstraction is now writtenfun ), and more directly accessible to the novice
(e.g. dependent product is now writtenforall and allows omission of types). Also, parentheses
and are no longer mandatory for function application.

• extensibility: some standard notations (e.g. “<” and “>”) were incompatible with the previous
syntax. Now all standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of
the syntax.

Together with the revision of the concrete syntax, a new mechanism ofinterpretation scopespermits
to reuse the same symbols (typically +, -, *, /, <, <=) in various mathematical theories without any
ambiguities for COQ, leading to a largely improved readability of COQ scripts. New commands to
easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language
of commands has been carried out. The purpose here is a better uniformity making the tactics and
commands easier to use and to remember.

Thirdly, a restructuration and uniformisation of the standard library of COQ has been performed.
There is now just one Leibniz’ equality usable for all the different kinds of COQ objects. Also, the set
of real numbers now lies at the same level as the sets of natural and integer numbers. Finally, the names
of the standard properties of numbers now follow a standard pattern and the symbolic notations for the
standard definitions as well.

The fourth point is the release of COQIDE, a new graphical gtk2-based interface fully integrated to
COQ. Close in style from the Proof General Emacs interface, it is faster and its integration with COQ

makes interactive developments more friendly. All mathematical Unicode symbols are usable within
COQIDE.
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Finally, the module system of COQ completes the picture of COQ version 8.0. Though released with

an experimental status in the previous version 7.4, it should be considered as a salient feature of the new
version.

Besides, COQ comes with its load of novelties and improvements: new or improved tactics (includ-
ing a new tactic for solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflexion and the imple-
mentation of the new syntax. The smart automatic translator from old to new syntax released with COQ

is also their work with contributions by Olivier Desmettre.
Hugo Herbelin is the main designer and implementor of the notion of interpretation scopes and of

the commands for easily adding new notations.
Hugo Herbelin is the main implementor of the restructuration of the standard library.
Pierre Corbineau is the main designer and implementor of the new tactic for solving first-order state-

ments in presence of inductive types. He is also the maintainer of the non-domain specific automation
tactics.

Benjamin Monate is the developer of the COQIDE graphical interface with contributions by Jean-
Christophe Filliâtre, Pierre Letouzey and Claude Marché.

Claude Marché coordinated the edition of the Reference Manual for COQ V8.0.
Pierre Letouzey and Jacek Chrząszcz respectively maintained the extraction tool and module system

of COQ.
Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and contributors from Sophia-Antipolis

and Nijmegen participated to the extension of the library.
Hugo Herbelin and Christine Paulin coordinated the development which was under the responsabil-

ity of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
Hugo Herbelin & Christine Paulin
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Chapter 1

The GALLINA specification language

This chapter describes GALLINA , the specification language of COQ. It allows to develop mathematical
theories and to prove specifications of programs. The theories are built from axioms, hypotheses, pa-
rameters, lemmas, theorems and definitions of constants, functions, predicates and sets. The syntax of
logical objects involved in theories is described in section 1.2. The language of commands, calledThe
Vernacularis described in section 1.3.

In COQ, logical objects are typed to ensure their logical correctness. The rules implemented by the
typing algorithm are described in chapter 4.

About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set intypewriter
font . In addition, there are special notations for regular expressions.

An expression enclosed in square brackets[. . .] means at most one occurrence of this expression
(this corresponds to an optional component).

The notation “entry sep . . . sep entry” stands for a non empty sequence of expressions parsed by
entry and separated by the literal “sep ”1.

Similarly, the notation “entry . . . entry” stands for a non empty sequence of expressions parsed by
the “entry” entry, without any separator between.

At the end, the notation “[entry sep . . . sep entry]” stands for a possibly empty sequence of
expressions parsed by the “entry” entry, separated by the literal “sep ”.

1.1 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they
separate tokens.

Comments Comments in COQ are enclosed between(* and*) , and can be nested. They can contain
any character. However, string literals must be correctly closed. Comments are treated as blanks.

Identifiers and access identifiers Identifiers, writtenident , are sequences of letters, digits,_ and’ ,
that do not start with a digit or’ . That is, they are recognized by the following lexical class:

1This is similar to the expression “entry { sep entry }” in standard BNF, or “entry ( sep entry )*” in the syntax of regular
expressions.
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first_letter ::= a..z | A..Z | _

subsequent_letter ::= a..z | A..Z | 0..9 | _ | ’
ident ::= first_letter [subsequent_letter. . .subsequent_letter]

All characters are meaningful. In particular, identifiers are case-sensitive. Access identifiers, written
access_ident , are identifiers prefixed by. (dot) without blank. They are used in the syntax of qualified
identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally
preceded by a minus sign.

digit ::= 0..9
num ::= digit . . .digit

integer ::= [- ]num

Strings Strings are delimited by" (double quote), and enclose a sequence of any characters different
from " or the sequence"" to denote the double quote character. In grammars, the entry for quoted
strings isstring.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

_ as at cofix else end
exists exists2 fix for forall fun
if IF in let match mod
Prop return Set then Type using
where with

Special tokens The following sequences of characters are special tokens:

! % & && ( () )
* + ++ , - -> .
.( .. / /\ : :: :<
:= :> ; < <- <-> <:
<= <> = => =_D > >->
>= ? ?= @ [ \/ ]
^ { | |- || } ~

Lexical ambiguities are resolved according to the “longest match” rule: when a sequence of non
alphanumerical characters can be decomposed into several different ways, then the first token is the
longest possible one (among all tokens defined at this moment), and so on.

1.2 Terms

1.2.1 Syntax of terms

Figures 1.1 and 1.2 describe the basic set of terms which form theCalculus of Inductive Constructions
(also called pCIC). The formal presentation of pCIC is given in chapter 4. Extensions of this syntax are
given in chapter 2. How to customize the syntax is described in chapter 11.
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term ::= forall binderlist , term (1.2.8)
| fun binderlist => term (1.2.7)
| fix fix_bodies (1.2.14)
| cofix cofix_bodies (1.2.14)
| let ident_with_params := term in term (1.2.12)
| let fix fix_body in term (1.2.14)
| let cofix cofix_body in term (1.2.14)
| let ( [name , . . . , name] ) [dep_ret_type] := term in term (1.2.13, 2.2.1)
| if term [dep_ret_type] then term else term (1.2.13, 2.2.1)
| term : term (1.2.10)
| term -> term (1.2.8)
| term arg . . . arg (1.2.9)
| @qualid [ term . . . term] (2.6.7)
| term %ident (11.2.2)
| match match_item , . . . , match_item [return_type] with

[[| ] equation | ... | equation] end (1.2.13)
| qualid (1.2.3)
| sort (1.2.5)
| num (1.2.4)
| _ (1.2.11)

arg ::= term
| ( ident := term ) (2.6.7)

binderlist ::= name . . . name [: term] 1.2.6
| binder binderlet . . . binderlet

binder ::= name 1.2.6
| ( name . . . name : term )

binderlet ::= binder 1.2.6
| ( name [: term] := term )

name ::= ident
| _

qualid ::= ident
| qualid access_ident

sort ::= Prop | Set | Type

Figure 1.1: Syntax of terms

1.2.2 Types

COQ terms are typed. COQ types are recognized by the same syntactic class asterm. We denote bytype
the semantic subclass of types inside the syntactic classterm.
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ident_with_params ::= ident [binderlet . . . binderlet] [: term]

fix_bodies ::= fix_body
| fix_body with fix_body with . . . with fix_body for ident

cofix_bodies ::= cofix_body
| cofix_body with cofix_body with . . . with cofix_body for ident

fix_body ::= ident binderlet . . . binderlet [annotation] [: term] := term
cofix_body ::= ident_with_params := term

annotation ::= { struct ident }

match_item ::= term [as name] [in term]

dep_ret_type ::= [as name] return_type

return_type ::= return term

equation ::= pattern , . . . , pattern => term

pattern ::= qualid pattern . . . pattern
| pattern as ident
| pattern %ident
| qualid
| _
| num
| ( pattern , . . . , pattern )

Figure 1.2: Syntax of terms (continued)

1.2.3 Qualified identifiers and simple identifiers

Qualified identifiers(qualid ) denoteglobal constants(definitions, lemmas, theorems, remarks or facts),
global variables(parameters or axioms),inductive typesor constructors of inductive types. Simple
identifiers(or shortly ident) are a syntactic subset of qualified identifiers. Identifiers may also denote
localvariables, what qualified identifiers do not.

1.2.4 Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to
objects through the notation mechanism (see chapter 11 for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see 3.1.3).

Note: negative integers are not at the same level asnum, for this would make precedence unnatural.

1.2.5 Sorts

There are three sortsSet, Prop andType.

• Prop is the universe oflogical propositions. The logical propositions themselves are typing the
proofs. We denote propositions byform. This constitutes a semantic subclass of the syntactic
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classterm.

• Set is is the universe ofprogram typesor specifications. The specifications themselves are typing
the programs. We denote specifications byspecif . This constitutes a semantic subclass of the
syntactic classterm.

• Type is the type ofSet andProp

More on sorts can be found in section 4.1.1.

1.2.6 Binders

Various constructions introduce variables which scope is some of its sub-expressions. There is a uniform
syntax for this. A binder may be an (unqualified) identifier: the name to use to refer to this variable. If
the variable is not to be used, its name can be_. When its type cannot be synthesized by the system,
it can be specified with notation( ident : type ) . There is a notation for several variables sharing the
same type:( ident1. . .identn : type ) .

Some constructions allow “let-binders”, that is either a binder as defined above, or a variable with
a value. The notation is( ident := term ) . Only one variable can be introduced at the same time. It is
also possible to give the type of the variable before the symbol:= .

The last kind of binders is the “binder list”. It is either a list of let-binders (the first one not being a
variable with value), orident1. . .identn : type if all variables share the same type.

COQ terms are typed. COQ types are recognized by the same syntactic class asterm. We denote by
type the semantic subclass of types inside the syntactic classterm.

1.2.7 Abstractions

The expression “fun ident : type=> term” denotes theabstractionof the variableident of type type,
over the termterm. Put in another way, it is function of formal parameterident of type type returning
term.

Keyword fun is followed by a “binder list”, so any of the binders of Section 1.2.6 ap-
ply. Internally, abstractions are only over one variable. Multiple variable binders are an itera-
tion of the single variable abstraction: notationfun ident1 . . . identn : type => term stands for
fun ident1 : type => . . . fun identn : type => term. Variables with a value expand to a local
definition (see Section 1.2.12).

1.2.8 Products

The expression “forall ident : type , term” denotes theproductof the variableident of type type,
over the termterm. As for abstractions,forall is followed by a binder list, and it is represented by an
iteration of single variable products.

Non dependent product types have a special notation “A -> B” stands for “forall _: A, B”.
This is to stress on the fact that non dependent product types are usual functional types.

1.2.9 Applications

The expressionterm0 term1 denotes the application of termterm0 to term1.
The expressionterm0 term1 ... termn denotes the application of the termterm0 to the arguments

term1 ... thentermn. It is equivalent to . . .( term0 term1 ) . . . termn : associativity is to the left.
When using implicit arguments mechanism, implicit positions can be forced a value with notation

( ident := term ) or ( num := term ) . See Section 2.6.7 for details.
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1.2.10 Type cast

The expression “term : type” is a type cast expression. It enforces the type ofterm to betype.

1.2.11 Inferable subterms

Since there are redundancies, a term can be type-checked without giving it in totality. Subterms that are
left to guess by the type-checker are replaced by “_”.

1.2.12 Local definitions (let-in)

let ident := term1 in term2 denotes the local binding ofterm1 to the variableident in term2.
There is a syntactic sugar for local definition of functions:let ident binder1 . . .bindern := term1

in term2 stands forlet ident := fun binder1 . . .bindern in term2.

1.2.13 Definition by case analysis

This paragraph only shows simple variants of case analysis. See Section 2.2.1 and Chapter 15 for
explanations of the general form.

Objects of inductive types can be destructurated by a case-analysis construction, also called pattern-
matching in functional languages. In its simple form, a case analysis expression is used to analyze the
structure of an inductive objects (upon which constructor it is built).

The expressionmatch term0 return_type with pattern1 => term1 | . . . | patternn => termn end ,
denotes apattern-matchingover the termterm0 (expected to be of an inductive typeI). term1. . .termn

are called branches. In a simple patternqualid ident . . . ident , the qualified identifierqualid is intended
to be a constructor. There should be a branch for every constructor ofI.

Thereturn_type is used to compute the resulting type of the wholematch expression and the type
of the branches. Most of the time, when this type is the same as the types of all thetermi, the annotation
is not needed2. This annotation has to be given when the resulting type of the wholematch depends on
the actualterm0 matched.

There are specific notations for case analysis on types with one or two constructors:if / then
/ else andlet ( . . .) := . . .in . . . . See also:section 2.2.1 for details and examples.

See also:Section 2.2.1 for details and examples.

1.2.14 Recursive functions

Expression “fix ident1 binder1 : type1 := term1 with . . . with identn bindern : typen := termn

for ident i” denotes theith component of a block of functions defined by mutual well-founded recur-
sion. It is the local counterpart of theFixpoint command. See Section 1.3.4 for more details. When
n = 1, thefor ident i is omitted.

The expression “cofix ident1 binder1 : type1 with . . . with identn bindern : typen for
ident i” denotes theith component of a block of terms defined by a mutual guarded co-recursion. It is
the local counterpart of theCoFixpoint command. See Section 1.3.4 for more details. Whenn = 1,
thefor ident i is omitted.

The association of a single fixpoint and a local definition have a special syntax: “let
fix f . . . := . . . in . . . ” stands for “let f := fix f . . . := . . . in . . . ”. The same applies for
co-fixpoints.

2except if no equation is given, to match the term in an empty type, e.g. the typeFalse
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sentence ::= declaration
| definition
| inductive
| fixpoint
| statement [proof ]

declaration ::= declaration_keyword assums .

declaration_keyword ::= Axiom | Conjecture
| Parameter | Parameters
| Variable | Variables
| Hypothesis | Hypotheses

assums ::= ident . . . ident : term
| binder . . . binder

definition ::= Definition ident_with_params := term .
| Let ident_with_params := term .

inductive ::= Inductive ind_body with . . . with ind_body .
| CoInductive ind_body with . . . with ind_body .

ind_body ::= ident [binderlet . . . binderlet] : term :=
[[| ] ident_with_params | ... | ident_with_params]

fixpoint ::= Fixpoint fix_body with . . . with fix_body .
| CoFixpoint cofix_body with . . . with cofix_body .

statement ::= statement_keyword ident [binderlet . . . binderlet] : term .

statement_keyword ::= Theorem | Lemma| Definition

proof ::= Proof . . . . Qed .
| Proof . . . . Defined .
| Proof . . . . Admitted .

Figure 1.3: Syntax of sentences

1.3 The Vernacular

Figure 1.3 describesThe Vernacularwhich is the language of commands of GALLINA . A sentence of
the vernacular language, like in many natural languages, begins with a capital letter and ends with a dot.

The different kinds of command are described hereafter. They all suppose that the terms occurring
in the sentences are well-typed.

1.3.1 Declarations

The declaration mechanism allows the user to specify his own basic objects. Declared objects play the
role of axioms or parameters in mathematics. A declared object is anident associated to aterm. A
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declaration is accepted by COQ if and only if this term is a correct type in the current context of the
declaration andident was not previously defined in the same module. Thisterm is considered to be the
type, or specification, of theident .

Axiom ident : term .

This command linksterm to the nameident as its specification in the global context. The fact asserted
by term is thus assumed as a postulate.

Error messages:

1. ident already exists

Variants:

1. Parameter ident : term.
Is equivalent toAxiom ident : term

2. Parameter ident1... identn : term.
Addsn parameters with specificationterm

3. Parameter ( ident1,1... ident1,k1 : term1 ) ... ( identn,1... identn,kn : termn ).
Addsn blocks of parameters with different specifications.

4. Conjecture ident : term.
Is equivalent toAxiom ident : term.

Remark: It is possible to replaceParameter by Parameters .

Variable ident : term.

This command linksterm to the nameident in the context of the current section (see Section 2.3 for a
description of the section mechanism). When the current section is closed, nameident will be unknown
and every object using this variable will be explicitly parameterized (the variable isdischarged). Using
theVariable command out of any section is equivalent toAxiom .

Error messages:

1. ident already exists

Variants:

1. Variable ident1... identn : term.
Links term to namesident1. . .identn.

2. Variable ( ident1,1... ident1,k1 : term1 ) ... ( identn,1... identn,kn : termn ).
Addsn blocks of variables with different specifications.

3. Hypothesis ident : term.
Hypothesis is a synonymous ofVariable

Remark: It is possible to replaceVariable by Variables andHypothesis by Hypotheses .
It is advised to use the keywordsAxiom andHypothesis for logical postulates (i.e. when the

assertionterm is of sortProp ), and to use the keywordsParameter andVariable in other cases
(corresponding to the declaration of an abstract mathematical entity).
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1.3.2 Definitions

Definitions differ from declarations in allowing to give a name to a term whereas declarations were just
giving a type to a name. That is to say that the name of a defined object can be replaced at any time by
its definition. This replacement is calledδ-conversion (see Section 4.3). A defined object is accepted by
the system if and only if the defining term is well-typed in the current context of the definition. Then
the type of the name is the type of term. The defined name is called aconstantand one says thatthe
constant is added to the environment.

A formal presentation of constants and environments is given in Section 4.2.

Definition ident := term.

This command binds the valueterm to the nameident in the environment, provided thatterm is well-
typed.

Error messages:

1. ident already exists

Variants:

1. Definition ident : term1 := term2.
It checks that the type ofterm2 is definitionally equal toterm1, and registersident as being of
typeterm1, and bound to valueterm2.

2. Definition ident binder1... bindern : term1 := term2.
This is equivalent to
Definition ident : forall binder1... bindern, term1 := fun binder1. . .bindern => term2 .

Error messages:

1. In environment ... the term: term2 does not have type term1.
Actually, it has type term3.

See also:Sections 6.2.4, 6.2.5, 8.5.5

Let ident := term.

This command binds the valueterm to the nameident in the environment of the current section. The
nameident disappears when the current section is eventually closed, and, all persistent objects (such as
theorems) defined within the section and depending onident are prefixed by the local definitionlet
ident := term in .

Error messages:

1. ident already exists

Variants:

1. Let ident : term1 := term2.

See also:Sections 2.3 (section mechanism), 6.2.4, 6.2.5 (opaque/transparent constants), 8.5.5
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1.3.3 Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric in-
ductive types, mutually inductive types. We explain also co-inductive types.

Simple inductive types

The definition of a simple inductive type has the following form:

Inductive ident : sort :=
ident1 : type1

| ...
| identn : typen

The nameident is the name of the inductively defined type andsort is the universes where it lives.
The namesident1, . . . , identn are the names of its constructors andtype1, . . . , typen their respective
types. The types of the constructors have to satisfy apositivity condition(see Section 4.5.3) forident .
This condition ensures the soundness of the inductive definition. If this is the case, the constantsident ,
ident1, . . . , identn are added to the environment with their respective types. Accordingly to the uni-
verse where the inductive type lives (e.g. its type sort), COQ provides a number of destructors for
ident . Destructors are namedident_ind , ident_rec or ident_rect which respectively correspond
to elimination principles onProp , Set andType . The type of the destructors expresses structural
induction/recursion principles over objects ofident . We give below two examples of the use of the
Inductive definitions.

The set of natural numbers is defined as:

Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.
nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined

The typenat is defined as the leastSet containingOand closed by theS constructor. The constants
nat , OandS are added to the environment.

Now let us have a look at the elimination principles. They are three :nat_ind , nat_rec and
nat_rect . The type ofnat_ind is:

Coq < Check nat_ind.
nat_ind

: forall P : nat -> Prop,
P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order
form of Peano’s induction principle. It allows to prove some universal property of natural numbers
(forall n:nat, P n ) by induction onn.

The types ofnat_rec andnat_rect are similar, except that they pertain to(P:nat->Set)
and(P:nat->Type) respectively . They correspond to primitive induction principles (allowing de-
pendent types) respectively over sortsSet andType . The constantident_ind is always provided,
whereasident_rec andident_rect can be impossible to derive (for example, whenident is a propo-
sition).

Variants:
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1. Coq < Inductive nat : Set := O | S (_:nat).

In the case where inductive types have no annotations (next section gives an example of such
annotations), the positivity condition implies that a constructor can be defined by only giving the
type of its arguments.

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple
sort, but what is called an arity, which is a type whose conclusion is a sort.

As an example of annotated inductive types, let us define theeven predicate:

Coq < Inductive even : nat -> Prop :=
Coq < | even_0 : even O
Coq < | even_SS : forall n:nat, even n -> even (S (S n)).
even is defined
even_ind is defined

The typenat->Prop means thateven is a unary predicate (inductively defined) over natural
numbers. The type of its two constructors are the defining clauses of the predicateeven . The type of
even_ind is:

Coq < Check even_ind.
even_ind

: forall P : nat -> Prop,
P O ->
(forall n : nat, even n -> P n -> P (S (S n))) ->
forall n : nat, even n -> P n

From a mathematical point of view it asserts that the natural numbers satisfying the predicateeven
are exactly the naturals satisfying the clauseseven_0 or even_SS . This is why, when we want to
prove any predicateP over elements ofeven , it is enough to prove it forO and to prove that if any
natural numbern satisfiesP its double successor(S (S n)) satisfies alsoP. This is indeed analogous
to the structural induction principle we got fornat .

Error messages:

1. Non strictly positive occurrence of ident in type

2. The conclusion of type is not valid; it must be built from ident

Parameterized inductive types

Inductive types may be parameterized. Parameters differ from inductive type annotations in the fact that
recursive invokations of inductive types must always be done with the same values of parameters as its
specification.

The general scheme is:

Inductive ident binder1. . .binderk : term := ident1: term1 | . . . |identn: termn .

A typical example is the definition of polymorphic lists:

Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.
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Note that in the type ofnil andcons , we write(list A) and not justlist .

The constantsnil andcons will have respectively types:

Coq < Check nil.
nil

: forall A : Set, list A

Coq < Check cons.
cons

: forall A : Set, A -> list A -> list A

Types of destructors are also quantified with(A:Set) .

Variants:

1. Coq < Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).

This is an alternative definition of lists where we specify the arguments of the constructors rather
than their full type.

Error messages:

1. The numth argument of ident must be ident ’ in type

See also:Sections 4.5 and 4.

Mutually defined inductive types

The definition of a block of mutually inductive types has the form:

Inductive ident1 : type1 :=
ident11 : type1

1

| ...
| ident1n1

: type1
n1

with
...

with identm : typem :=
identm

1 : typem
1

| ...
| identm

nm
: typem

nm
.

It has the same semantics as the aboveInductive definition for eachident1, . . . , identm. All names
ident1, . . . , identm andident11, . . . , identm

nm
are simultaneously added to the environment. Then well-

typing of constructors can be checked. Each one of theident1, . . . , identm can be used on its own.
It is also possible to parameterize these inductive definitions. However, parameters correspond to a

local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types The extended syntax is:

Inductive ident1 params : type1 :=
ident11 : type1

1

| ..
| ident1n1

: type1
n1

with
..

with identm params : typem :=
identm

1 : typem
1
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| ..
| identm

nm
: typem

nm
.

Example: The typical example of a mutual inductive data type is the one for trees and forests. We
assume given two typesA andB as variables. It can be declared the following way.

Coq < Variables A B : Set.

Coq < Inductive tree : Set :=
Coq < node : A -> forest -> tree
Coq < with forest : Set :=
Coq < | leaf : B -> forest
Coq < | cons : tree -> forest -> forest.

This declaration generates automatically six induction principles. They are respectively called
tree_rec , tree_ind , tree_rect , forest_rec , forest_ind , forest_rect . These ones
are not the most general ones but are just the induction principles corresponding to each inductive part
seen as a single inductive definition.

To illustrate this point on our example, we give the types oftree_rec andforest_rec .

Coq < Check tree_rec.
tree_rec

: forall P : tree -> Set,
(forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t

Coq < Check forest_rec.
forest_rec

: forall P : forest -> Set,
(forall b : B, P (leaf b)) ->
(forall (t : tree) (f : forest), P f -> P (cons t f)) ->
forall f1 : forest, P f1

Assume we want to parameterize our mutual inductive definitions with the two type variablesA and
B, the declaration should be done the following way:

Coq < Inductive tree (A B:Set) : Set :=
Coq < node : A -> forest A B -> tree A B
Coq < with forest (A B:Set) : Set :=
Coq < | leaf : B -> forest A B
Coq < | cons : tree A B -> forest A B -> forest A B.

Assume we define an inductive definition inside a section. When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive
definition.

See also:Section 2.3

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other
words, such objects contain only afinite number constructors. Co-inductive types arise from relaxing
this condition, and admitting types whose objects contain an infinity of constructors. Infinite objects are
introduced by a non-ending (but effective) process of construction, defined in terms of the constructors
of the type.

An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called
streams. It can be introduced in COQ using theCoInductive command:
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Coq < CoInductive Stream : Set :=
Coq < Seq : nat -> Stream -> Stream.
Stream is defined

The syntax of this command is the same as the commandInductive (cf. Section 1.3.3). Notice
that no principle of induction is derived from the definition of a co-inductive type, since such principles
only make sense for inductive ones. For co-inductive ones, the only elimination principle is case anal-
ysis. For example, the usual destructors on streamshd:Stream->nat and tl:Str->Str can be
defined as follows:

Coq < Definition hd (x:Stream) := let (a,s) := x in a.
hd is defined

Coq < Definition tl (x:Stream) := let (a,s) := x in s.
tl is defined

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also al-
lowed. An example of a co-inductive predicate is the extensional equality on streams:

Coq < CoInductive EqSt : Stream -> Stream -> Prop :=
Coq < eqst :
Coq < forall s1 s2:Stream,
Coq < hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
EqSt is defined

In order to prove the extensionally equality of two streamss1 ands2 we have to construct and infinite
proof of equality, that is, an infinite object of type(EqSt s1 s2). We will see how to introduce infinite
objects in Section 1.3.4.

1.3.4 Definition of recursive functions

Fixpoint ident params {struct ident0 } : type 0 := term0

This command allows to define inductive objects using a fixed point construction. The meaning of this
declaration is to defineidenta recursive function with arguments specified bybinder1. . .bindern such
that identapplied to arguments corresponding to these binders has typetype0, and is equivalent to the
expressionterm0. The type of theident is consequentlyforall params , type0 and the value is
equivalent tofun params => term0.

To be accepted, aFixpoint definition has to satisfy some syntactical constraints on a special
argument called the decreasing argument. They are needed to ensure that theFixpoint definition
always terminates. The point of the{struct ident} annotation is to let the user tell the system which
argument decreases along the recursive calls. This annotation may be left implicit for fixpoints with one
argument. For instance, one can define the addition function as :

Coq < Fixpoint add (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S p => S (add p m)
Coq < end.
add is recursively defined

Thematch operator matches a value (heren) with the various constructors of its (inductive) type.
The remaining arguments give the respective values to be returned, as functions of the parameters of
the corresponding constructor. Thus here whenn equalsOwe returnm, and whenn equals(S p) we
return(S (add p m)) .
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The match operator is formally described in detail in Section 4.5.4. The system recognizes that

in the inductive call(add p m) the first argument actually decreases because it is apattern variable
coming frommatch n with .

Example: The following definition is not correct and generates an error message:

Coq < Fixpoint wrongplus (n m:nat) {struct n} : nat :=
Coq < match m with
Coq < | O => n
Coq < | S p => S (wrongplus n p)
Coq < end.
Coq < Coq < Error:
Recursive definition of wrongplus is ill-formed.
In environment
n : nat
m : nat
p : nat
Recursive call to wrongplus has principal argument equal to
"n"
instead of a subterm of n

because the declared decreasing argumentn actually does not decrease in the recursive call. The
function computing the addition over the second argument should rather be written:

Coq < Fixpoint plus (n m:nat) {struct m} : nat :=
Coq < match m with
Coq < | O => n
Coq < | S p => S (plus n p)
Coq < end.

The ordinary match operation on natural numbers can be mimicked in the following way.

Coq < Fixpoint nat_match
Coq < (C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C :=
Coq < match n with
Coq < | O => f0
Coq < | S p => fS p (nat_match C f0 fS p)
Coq < end.

The recursive call may not only be on direct subterms of the recursive variablen but also on a deeper
subterm and we can directly write the functionmod2 which gives the remainder modulo 2 of a natural
number.

Coq < Fixpoint mod2 (n:nat) : nat :=
Coq < match n with
Coq < | O => O
Coq < | S p => match p with
Coq < | O => S O
Coq < | S q => mod2 q
Coq < end
Coq < end.

In order to keep the strong normalisation property, the fixed point reduction will only be performed when
the argument in position of the decreasing argument (which type should be in an inductive definition)
starts with a constructor.

The Fixpoint construction enjoys also thewith extension to define functions over mutually
defined inductive types or more generally any mutually recursive definitions.

Variants:
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1. Fixpoint ident1 params1 : type1 := term1

with ...
with identm paramsm : typem := typem

Allows to define simultaneouslyident1, . . . , identm.

Example: The size of trees and forests can be defined the following way:

Coq < Fixpoint tree_size (t:tree) : nat :=
Coq < match t with
Coq < | node a f => S (forest_size f)
Coq < end
Coq < with forest_size (f:forest) : nat :=
Coq < match f with
Coq < | leaf b => 1
Coq < | cons t f’ => (tree_size t + forest_size f’)
Coq < end.

A generic commandScheme is useful to build automatically various mutual induction principles. It is
described in Section 8.13.

CoFixpoint ident : type0 := term0.

The CoFixpoint command introduces a method for constructing an infinite object of a coinductive
type. For example, the stream containing all natural numbers can be introduced applying the following
method to the numberO(see Section 1.3.3 for the definition ofStream , hd andtl ):

Coq < CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be
admissible, a method of construction must provide at least one extra constructor of the infinite object
for each iteration. A syntactical guard condition is imposed on co-recursive definitions in order to
ensure this: each recursive call in the definition must be protected by at least one constructor, and only
by constructors. That is the case in the former definition, where the single recursive call offrom is
guarded by an application ofSeq. On the contrary, the following recursive function does not satisfy the
guard condition:

Coq < CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
Coq < if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
Coq < Coq < Error:
Recursive definition of filter is ill-formed.
In environment
filter : (nat -> bool) -> Stream -> Stream
p : nat -> bool
s : Stream
unguarded recursive call in "filter p (tl s)"

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it
occurs at the head of an application which is the argument of a case analysis expression. In any other
context, it is considered as a canonical expression which is completely evaluated. We can test this using
the commandEval , which computes the normal forms of a term:

Coq < Eval compute in (from 0).
= (cofix from (n : nat) : Stream := Seq n (from (S n))) 0
: Stream
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Coq < Eval compute in (hd (from 0)).

= 0
: nat

Coq < Eval compute in (tl (from 0)).
= (cofix from (n : nat) : Stream := Seq n (from (S n))) 1
: Stream

Variants:

1. CoFixpoint ident1 params : type1 := term1

As for most constructions, arguments of co-fixpoints expressions can be introduced before the:=
sign.

2. CoFixpoint ident1 : type1 := term1

with
. . .

with identm : typem := termm

As in theFixpoint command (cf. Section 1.3.4), it is possible to introduce a block of mutually
dependent methods.

1.3.5 Statement and proofs

A statement claims a goal of which the proof is then interactively done using tactics. More on the proof
editing mode, statements and proofs can be found in chapter 7.

Theorem ident : type.

This command bindstype to the nameident in the environment, provided that a proof oftype is next
given.

After a statement, COQ needs a proof.

Variants:

1. Lemma ident : type.
It is a synonymous ofTheorem

2. Remark ident : type.
It is a synonymous ofTheorem

3. Fact ident : type.
It is a synonymous ofTheorem

4. Definition ident : type.
Allow to define a term of typetype using the proof editing mode. It behaves asTheorem but is
intended for the interactive definition of expression which computational behaviour will be used
by further commands.See also:6.2.5 and 8.5.5.

Proof . . . .Qed .

A proof starts by the keywordProof . Then COQ enters the proof editing mode until the proof is
completed. The proof editing mode essentially contains tactics that are described in chapter 8. Besides
tactics, there are commands to manage the proof editing mode. They are described in chapter 7. When
the proof is completed it should be validated and put in the environment using the keywordQed.
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Error message:

1. ident already exists

Remarks:

1. Several statements can be simultaneously opened.

2. Not only other statements but any vernacular command can be given within the proof editing
mode. In this case, the command is understood as if it would have been given before the statements
still to be proved.

3. Proof is recommended but can currently be omitted. On the opposite,Qed (or Defined , see
below) is mandatory to validate a proof.

4. Proofs ended byQedare declared opaque (see 6.2.4) and cannot be unfolded by conversion tactics
(see 8.5). To be able to unfold a proof, you should end the proof byDefined (see below).

Variants:

1. Proof . . . .Defined .
Same asProof . . . .Qed . but the proof is then declared transparent (see 6.2.5), which means
it can be unfolded in conversion tactics (see 8.5).

2. Proof . . . .Save.
Same asProof . . . .Qed .

3. Goal type. . .Save ident
Same asLemmaident : type. . .Save. This is intended to be used in the interactive mode.
Conversely to named lemmas, anonymous goals cannot be nested.

4. Proof. . . .Admitted.
Turns the current conjecture into an axiom and exits editing of current proof.
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Chapter 2

Extensions of GALLINA

GALLINA is the kernel language of COQ. We describe here extensions of the Gallina’s syntax.

2.1 Record types

TheRecord construction is a macro allowing the definition of records as is done in many programming
languages. Its syntax is described on figure 2.1. In fact, theRecord macro is more general than
the usual record types, since it allows also for “manifest” expressions. In this sense, theRecord
construction allows to define “signatures”.

sentence ++= record

record ::= Record ident [binderlet . . . binderlet] : sort :=
[ ident] { [field ; . . . ; field] } .

field ::= name : type
| name [: term] := term

Figure 2.1: Syntax for the definition ofRecord

In the expression

Record ident params : sort := ident0 { ident1 : term1; . . .identn : termn } .

the identifierident is the name of the defined record andsort is its type. The identifierident0 is the name
of its constructor. Ifident0 is omitted, the default nameBuild_ ident is used. The identifiersident1, ..,
identn are the names of fields andterm1, .., termn their respective types. Remark that the type ofident i

may depend on the previousident j (for j < i). Thus the order of the fields is important. Finally,params
are the parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance,Record
ident [ params ] : sort := { ident1 : type1 ; ident2 := term2 ; ident3 : type3 } in which case the
correctness oftype3 may rely on the instanceterm2 of ident2 andterm2 in turn may depend onident1.

Example: The set of rational numbers may be defined as:

Coq < Record Rat : Set := mkRat
Coq < {sign : bool;
Coq < top : nat;
Coq < bottom : nat;
Coq < Rat_bottom_cond : 0 <> bottom;
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Coq < Rat_irred_cond :
Coq < forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1}.
Rat is defined
Rat_rect is defined
Rat_ind is defined
Rat_rec is defined
sign is defined
top is defined
bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Remark here that the fieldRat_cond depends on the fieldbottom .
Let us now see the work done by theRecord macro. First the macro generates an inductive defini-

tion with just one constructor:

Inductive ident params : sort :=
ident0 ( ident1: term1) .. ( identn: termn).

To build an object of typeident , one should provide the constructorident0 with n terms filling the fields
of the record.

As an example, let us define the rational1/2:

Coq < Require Import Arith.

Coq < Theorem one_two_irred :
Coq < forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.

. . .

Coq < Qed.

Coq < Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
half is defined

Coq < Check half.
half

: Rat

The macro generates also, when it is possible, the projection functions for destructuring an object
of type ident . These projection functions have the same name that the corresponding fields. If a field is
named “_” then no projection is built for it. In our example:

Coq < Eval compute in half.(top).
= 1
: nat

Coq < Eval compute in half.(bottom).
= 2
: nat

Coq < Eval compute in half.(Rat_bottom_cond).
= O_S 1
: 0 <> bottom half

Warnings:

1. Warning: ident i cannot be defined.

It can happen that the definition of a projection is impossible. This message is followed by an
explanation of this impossibility. There may be three reasons:
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term ++= term .( qualid )
| term .( qualid arg . . . arg )
| term .( @qualid term . . . term )

Figure 2.2: Syntax ofRecord projections

(a) The nameident i already exists in the environment (see Section 1.3.1).

(b) The body ofident i uses an incorrect elimination forident (see Sections 1.3.4 and 4.5.4).

(c) The type of the projectionsident i depends on previous projections which themselves
couldn’t be defined.

Error messages:

1. A record cannot be recursive

The record nameident appears in the type of its fields.

2. During the definition of the one-constructor inductive definition, all the errors of inductive defini-
tions, as described in Section 1.3.3, may also occur.

See also:Coercions and records in Section 16.9 of the chapter devoted to coercions.

Remark: Structure is a synonym of the keywordRecord .

Remark: An experimental syntax for projections based on a dot notation is available. The command to
activate it is

Set Printing Projections.

The corresponding grammar rules are given Figure 2.2. Whenqualid denotes a projection, the
syntaxterm.( qualid ) is equivalent toqualid term, the syntaxterm.( qualid arg1 ... argn)
to qualid arg1 . . .argn term, and the syntaxterm.(@ qualid term1 ... termn) to @qualid term1

. . .termn term. In each case,term is the object projected and the other arguments are the parameters of
the inductive type.

To deactivate the printing of projections, useUnset Printing Projections .

2.2 Variants and extensions ofmatch

2.2.1 Multiple and nested pattern-matching

The basic version ofmatch allows pattern-matching on simple patterns. As an extension, multiple and
nested patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence ofmatch on sim-
ple patterns. Especially, a construction defined using the extendedmatch is printed under its expanded
form.

See also:chapter 15.
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2.2.2 Pattern-matching on boolean values: theif expression

For inductive types with exactly two constructors and for pattern-matchings expressions which do not
depend on the arguments of the constructors, it is possible to use aif ... then ... else
notation. For instance, the definition

Coq < Definition not (b:bool) :=
Coq < match b with
Coq < | true => false
Coq < | false => true
Coq < end.
not is defined

can be alternatively written

Coq < Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructorsC1 andC2, we have the following equivalence

if term [dep_ret_type] then term1 else term2 ≡

match term [dep_ret_type] with
| C 1 _ ... _ => term1

| C 2 _ ... _ => term2

end
Here is an example.

Coq < Check (fun x (H:{x=0}+{x<>0}) =>
Coq < match H with
Coq < | left _ => true
Coq < | right _ => false
Coq < end).
fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false

: forall x : nat, {x = 0} + {x <> 0} -> bool

Notice that the printing uses theif syntax becausesumbool is declared as such (see section 2.2.4).

2.2.3 Irrefutable patterns: the destructuring let

Closed terms (that is not relying on any axiom or variable) in an inductive type having only one
constructor, sayfoo , have necessarily the form(foo ...) . In this case, thematch construc-
tion can be written with a syntax close to thelet ... in ... construction. Expressionlet
( ident1,. . . ,identn ) := term0 in term1 performs case analysis onterm0 which must be in an induc-
tive type with one constructor withn arguments. Variablesident1. . .identn are bound to then arguments
of the constructor in expressionterm1. For instance, the definition

Coq < Definition fst (A B:Set) (H:A * B) := match H with
Coq < | pair x y => x
Coq < end.
fst is defined

can be alternatively written

Coq < Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
fst is defined
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Note however that reduction is slightly different from regularlet ... in ... construction since
it can occur only ifterm0 can be put in constructor form. Otherwise, reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using
match or thelet construction (see Section 2.2.4).

The general equivalence for an inductive type with one constructorsC is

let ( ident1,..., identn) [dep_ret_type] := term in term ’
≡ match term [dep_ret_type] with C ident1 ... identn => term ’ end

2.2.4 Options for pretty-printing of match

There are three options controlling the pretty-printing ofmatch expressions.

Printing of wildcard pattern

Some variables in a pattern may not occur in the right-hand side of the pattern-matching clause. There
are options to control the display of these variables.

Set Printing Wildcard.

The variables having no occurrences in the right-hand side of the pattern-matching clause are just printed
using the wildcard symbol “_”.

Unset Printing Wildcard.

The variables, even useless, are printed using their usual name. But some non dependent variables have
no name. These ones are still printed using a “_”.

Test Printing Wildcard.

This tells if the wildcard printing mode is on or off. The default is to print wildcard for useless variables.

Printing of the elimination predicate

In most of the cases, the type of the result of a matched term is mechanically synthesisable. Especially,
if the result type does not depend of the matched term.

Set Printing Synth.

The result type is not printed when COQ knows that it can re-synthesise it.

Unset Printing Synth.

This forces the result type to be always printed.

Test Printing Synth.

This tells if the non-printing of synthesisable types is on or off. The default is to not print synthesisable
types.
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Printing matching on irrefutable pattern

If an inductive type has just one constructor, pattern-matching can be written usinglet ... := ... in ...

Add Printing Let ident .

This addsident to the list of inductive types for which pattern-matching is written using alet expres-
sion.

Remove Printing Let ident .

This removesident from this list.

Test Printing Let ident .

This tells if ident belongs to the list.

Print Table Printing Let.

This prints the list of inductive types for which pattern-matching is written using alet expression.
The list of inductive types for which pattern-matching is written using alet expression is managed

synchronously. This means that it is sensible to the commandReset .

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern-matching can be written usingif ...
then ... else ...

Add Printing If ident .

This addsident to the list of inductive types for which pattern-matching is written using anif expres-
sion.

Remove Printing If ident .

This removesident from this list.

Test Printing If ident .

This tells if ident belongs to the list.

Print Table Printing If.

This prints the list of inductive types for which pattern-matching is written using anif expression.
The list of inductive types for which pattern-matching is written using anif expression is managed

synchronously. This means that it is sensible to the commandReset .
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Example

This example emphasizes what the printing options offer.

Coq < Test Printing Let prod.
Cases on elements of prod are printed using a ‘let’ form

Coq < Print fst.
fst =
fun (A B : Set) (p : A * B) => let (x, _) := p in x

: forall A B : Set, A * B -> A
Argument scopes are [type_scope type_scope _]

Coq < Remove Printing Let prod.

Coq < Unset Printing Synth.

Coq < Unset Printing Wildcard.

Coq < Print fst.
fst =
fun (A B : Set) (p : A * B) => let (x, _) return A := p in x

: forall A B : Set, A * B -> A
Argument scopes are [type_scope type_scope _]

2.3 Section mechanism

The sectioning mechanism allows to organise a proof in structured sections. Then local declarations
become available (see Section 1.3.2).

2.3.1 Section ident

This command is used to open a section namedident .

2.3.2 End ident

This command closes the section namedident . When a section is closed, all local declarations (vari-
ables and local definitions) aredischarged. This means that all global objects defined in the section are
generalised with respect to all variables and local definitions it depends on in the section. None of the
local declarations (considered as autonomous declarations) survive the end of the section.

Here is an example :

Coq < Section s1.

Coq < Variables x y : nat.
x is assumed
y is assumed

Coq < Let y’ := y.
y’ is defined

Coq < Definition x’ := S x.
x’ is defined

Coq < Definition x” := x’ + y’.
x” is defined

Coq < Print x’.
x’ = S x

: nat
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module_type ::= ident
| module_type with Definition ident := term
| module_type with Module ident := qualid

module_binding ::= ( ident ... ident : module_type )

module_bindings ::= module_binding . . . module_binding

module_expression ::= qualid . . . qualid

Figure 2.3: Syntax of modules

Coq < End s1.
x’ is discharged.
x” is discharged.

Coq < Print x’.
x’ = fun x : nat => S x

: nat -> nat
Argument scope is [nat_scope]

Coq < Print x”.
x” = fun x y : nat => let y’ := y in x’ x + y’

: nat -> nat -> nat
Argument scopes are [nat_scope nat_scope]

Notice the difference between the value ofx’ andx” inside sections1 and outside.

Error messages:

1. This is not the last opened section

Remarks:

1. Most commands, likeHint , Notation , option management, ... which appear inside a section
are cancelled when the section is closed.

2.4 Module system

The module system provides a way of packaging related elements together, as well as a mean of massive
abstraction.

2.4.1 Module ident

This command is used to start an interactive module namedident .

Variants:

1. Module ident module_bindings

Starts an interactive functor with parameters given bymodule_bindings.

2. Module ident : module_type

Starts an interactive module specifying its module type.
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3. Module ident module_bindings : module_type

Starts an interactive functor with parameters given bymodule_bindings, and output module type
module_type.

4. Module ident <: module_type

Starts an interactive module satisfyingmodule_type.

5. Module ident module_bindings <: module_type

Starts an interactive functor with parameters given bymodule_bindings. The output module type
is verified against the module typemodule_type.

2.4.2 End ident

This command closes the interactive moduleident . If the module type was given the content of the
module is matched against it and an error is signaled if the matching fails. If the module is basic (is not
a functor) its components (constants, inductive types, submodules etc) are now available through the dot
notation.

Error messages:

1. No such label ident

2. Signature components for label ident do not match

3. This is not the last opened module

2.4.3 Module ident := module_expression

This command defines the module identifierident to be equal tomodule_expression.

Variants:

1. Module ident module_bindings := module_expression

Defines a functor with parameters given bymodule_bindings and bodymodule_expression.

2. Module ident module_bindings : module_type := module_expression

Defines a functor with parameters given bymodule_bindings (possibly none), and output module
typemodule_type, with bodymodule_expression.

3. Module ident module_bindings <: module_type := module_expression

Defines a functor with parameters given bymodule_bindings (possibly none) with bodymod-
ule_expression. The body is checked againstmodule_type.

2.4.4 Module Type ident

This command is used to start an interactive module typeident .

Variants:

1. Module Type ident module_bindings

Starts an interactive functor type with parameters given bymodule_bindings.
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2.4.5 End ident

This command closes the interactive module typeident .

Error messages:

1. This is not the last opened module type

2.4.6 Module Type ident := module_type

Defines a module typeident equal tomodule_type.

Variants:

1. Module Type ident module_bindings := module_type

Defines a functor typeident specifying functors taking argumentsmodule_bindings and returning
module_type.

2.4.7 Declare Module ident

Starts an interactive module declaration. This command is available only in module types.

Variants:

1. Declare Module ident module_bindings

Starts an interactive declaration of a functor with parameters given bymodule_bindings.

2. Declare Module ident module_bindings <: module_type

Starts an interactive declaration of a functor with parameters given bymodule_bindings (possibly
none). The declared output module type is verified against the module typemodule_type.

2.4.8 End ident

This command closes the interactive declaration of moduleident .

2.4.9 Declare Module ident : module_type

Declares a module ofident of typemodule_type. This command is available only in module types.

Variants:

1. Declare Module ident module_bindings : module_type

Declares a functor with parametersmodule_bindings and output module typemodule_type.

2. Declare Module ident := qualid

Declares a module equal to the modulequalid .

3. Declare Module ident <: module_type := qualid

Declares a module equal to the modulequalid , verifying that the module type of the latter is a
subtype ofmodule_type.
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Example

Let us define a simple module.

Coq < Module M.
Interactive Module M started

Coq < Definition T := nat.
T is defined

Coq < Definition x := 0.
x is defined

Coq < Definition y : bool.
1 subgoal

============================
bool

Coq < exact true.
Proof completed.

Coq < Defined.
exact true.
y is defined

Coq < End M.
Module M is defined

Inside a module one can define constants, prove theorems and do any other things that can be done in
the toplevel. Components of a closed module can be accessed using the dot notation:

Coq < Print M.x.
M.x = 0

: nat

A simple module type:

Coq < Module Type SIG.
Interactive Module Type SIG started

Coq < Parameter T : Set.
T is assumed

Coq < Parameter x : T.
x is assumed

Coq < End SIG.
Module Type SIG is defined

Inside a module type the proof editing mode is not available. Consequently commands like
Definition without body,Lemma, Theorem are not allowed. In order to declare constants, use
Axiom andParameter .

Now we can create a new module fromM, giving it a less precise specification: they component is
dropped as well as the body ofx .

Coq < Module N : SIG with Definition T := nat := M.
Coq < Coq < Module N is defined

Coq < Print N.T.
N.T = nat

: Set
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Coq < Print N.x.
*** [ N.x : N.T ]

Coq < Print N.y.
User error: N.y not a defined object

The definition ofN using the module type expressionSIG with Definition T:=nat is equiva-
lent to the following one:

Coq < Module Type SIG’.

Coq < Definition T : Set := nat.

Coq < Parameter x : T.

Coq < End SIG’.

Coq < Module N : SIG’ := M.

If we just want to be sure that the our implementation satisfies a given module type without restricting
the interface, we can use a transparent constraint

Coq < Module P <: SIG := M.
Module P is defined

Coq < Print P.y.
P.y = true

: bool

Now let us create a functor, i.e. a parametric module

Coq < Module Two (X Y: SIG).
Interactive Module Two started

Coq < Definition T := (X.T * Y.T)%type.

Coq < Definition x := (X.x, Y.x).

Coq < End Two.
Module Two is defined

and apply it to our modules and do some computations

Coq < Module Q := Two M N.
Module Q is defined

Coq < Eval compute in (fst Q.x + snd Q.x).
= N.x
: nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of
its possible implementations:

Coq < Module Type SIG2.
Interactive Module Type SIG2 started

Coq < Declare Module M1 : SIG.
Module M1 is declared

Coq < Declare Module M2 <: SIG.
Interactive Declaration of Module M2 started

Coq < Definition T := M1.T.
T is defined
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Coq < Parameter x : T.
x is assumed

Coq < End M2.
Module M2 is declared

Coq < End SIG2.
Module Type SIG2 is defined

Coq < Module Mod <: SIG2.

Coq < Module M1.

Coq < Definition T := nat.

Coq < Definition x := 1.

Coq < End M1.

Coq < Module M2 := M.

Coq < End Mod.
Module Mod is defined

Notice thatM is a correct body for the componentM2since itsT component is equalnat and hence
M1.T as specified.

Remarks:

1. Modules and module types can be nested components of each other.

2. When a module declaration is started inside a module type, the proof editing mode is still unavail-
able.

3. One can have sections inside a module or a module type, but not a module or a module type inside
a section.

4. Commands likeHint or Notation can also appear inside modules and module types. Note
that in case of a module definition like:

Module N : SIG := M.

or

Module N : SIG.
...
End N.

hints and the like valid forNare not those defined inM(or the module body) but the ones defined
in SIG.

2.4.10 Import qualid

If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components
available by their short names.

Example:
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Coq < Module Mod.
Interactive Module Mod started

Coq < Definition T:=nat.
T is defined

Coq < Check T.
T

: Set

Coq < End Mod.
Module Mod is defined

Coq < Check Mod.T.
Mod.T

: Set

Coq < Check T. (* Incorrect ! *)
Toplevel input, characters 6-7
> Check T.
> ^
Error: The reference T was not found in the current environment

Coq < Import Mod.

Coq < Check T. (* Now correct *)
T

: Set

Variants:

1. Export qualid

When the module containing the commandExport qualid is imported,qualid is imported as
well.

Error messages:

1. qualid is not a module

Warnings:

1. Warning: Trying to mask the absolute namequalid !

2.4.11 Print Module ident

Prints the module type and (optionally) the body of the moduleident .

2.4.12 Print Module Type ident

Prints the module type corresponding toident .

2.5 Libraries and qualified names

2.5.1 Names of libraries and files

Libraries The theories developed in COQ are stored inlibraries. A library is characterised by a name
calledroot of the library. The standard library of COQ has root nameCoq and is known by default when
a COQ session starts.
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Libraries have a tree structure. E.g., theCoq library contains the sub-librariesInit , Logic ,

Arith , Lists , ... The “dot notation” is used to separate the different component of a library name.
For instance, theArith library of COQ standard library is written “Coq.Arith ”.

Remark: no blank is allowed between the dot and the identifier on its right, otherwise the dot is inter-
preted as the full stop (period) of the command!

Physical paths vs logical paths Libraries and sub-libraries are denoted bylogical directory paths
(written dirpath and of which the syntax is the same asqualid , see 1.2.3). Logical directory paths can
be mapped to physical directories of the operating system using the command (see 6.5.3)

Add LoadPath physical_pathas dirpath .

A library can inherit the tree structure of a physical directory by using the-R option tocoqtop or the
command (see 6.5.4)

Add Rec LoadPath physical_pathas dirpath .

Remark: When used interactively withcoqtop command, COQ opens a library calledTop.

The file level At some point, (sub-)libraries containmoduleswhich coincide with files at the physical
level. As for sublibraries, the dot notation is used to denote a specific module of a library. Typically,
Coq.Init.Logic is the logical path associated to the fileLogic.v of COQ standard library. Notice
that compilation (see 12) is done at the level of files.

If the physical directory where a fileFile.v lies is mapped to the empty logical directory path
(which is the default when using the simple form ofAdd LoadPath or -I option to coqtop), then the
name of the module it defines isFile .

2.5.2 Qualified names

Modules contain constructions (sub-modules, axioms, parameters, definitions, lemmas, theorems, re-
marks or facts). The (full) name of a construction starts with the logical name of the module
in which it is defined followed by the (short) name of the construction. Typically, the full name
Coq.Init.Logic.eq denotes Leibniz’ equality defined in the moduleLogic in the sublibrary
Init of the standard library of COQ.

Absolute, partially qualified and short names The full name of a library, module, section, definition,
theorem, ... is itsabsolute name. The last identifier (eq in the previous example) is itsshort name(or
sometimesbase name). Any suffix of the absolute name is apartially qualified name(e.g.Logic.eq
is a partially qualified name forCoq.Init.Logic.eq ). Partially qualified names (shortlyqualified
name) are also built from identifiers separated by dots. They are writtenqualid in the documentation.

COQ does not accept two constructions (definition, theorem, ...) with the same absolute name but
different constructions can have the same short name (or even same partially qualified names as soon as
the full names are different).

Visibility COQ maintains aname tablemapping qualified names to absolute names. This table is
modified by the commandsRequire (see 6.4.1),Import andExport (see 2.4.10) and also each
time a new declaration is added to the context.
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An absolute name is calledvisible from a given short or partially qualified name when this name
suffices to denote it. This means that the short or partially qualified name is mapped to the absolute
name in COQ name table.

It may happen that a visible name is hidden by the short name or a qualified name of another con-
struction. In this case, the name that has been hidden must be referred to using one more level of
qualification. Still, to ensure that a construction always remains accessible, absolute names can never be
hidden.

Examples:

Coq < Check 0.
0

: nat

Coq < Definition nat := bool.
nat is defined

Coq < Check 0.
0

: Datatypes.nat

Coq < Check Datatypes.nat.
Datatypes.nat

: Set

Coq < Locate nat.
Constant Top.nat
Inductive Coq.Init.Datatypes.nat (visible as Datatypes.nat)

Remark: There is also a name table for sublibraries, modules and sections.

Remark: In versions prior to COQ 7.4, lemmas declared withRemark andFact kept in their full
name the names of the sections in which they were defined. Since COQ 7.4, they strictly behaves as
Theorem andLemmado.

See also:CommandLocate in Section 6.2.10.

Requiring a file A module compiled in a “.vo” file comes with a logical names (e.g. physical file
theories/Init/Datatypes.vo in the COQ installation directory is bound to the logical module
Coq.Init.Datatypes ). When requiring the file, the mapping between physical directories and log-
ical library should be consistent with the mapping used to compile the file (for modules of the standard
library, this is automatic – check it by typingPrint LoadPath ).

The commandAdd Rec LoadPath is also available fromcoqtop and coqc by using op-
tion -R .

2.6 Implicit arguments

An implicit argument of a function is an argument which can be inferred from the knowledge of the type
of other arguments of the function, or of the type of the surrounding context of the application. Espe-
cially, an implicit argument corresponds to a parameter dependent in the type of the function. Typical
implicit arguments are the type arguments in polymorphic functions. More precisely, there are several
kinds of implicit arguments.
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Strict Implicit Arguments. An implicit argument can be either strict or non strict. An implicit ar-
gument is saidstrict if, whatever the other arguments of the function are, it is still inferable from the
type of some other argument. Technically, an implicit argument is strict if it corresponds to a parameter
which is not applied to a variable which itself is another parameter of the function (since this parameter
may erase its arguments), not in the body of amatch , and not itself applied or matched against patterns
(since the original form of the argument can be lost by reduction).

For instance, the first argument of

cons: forall A:Set, A -> list A -> list A

in moduleList.v is strict becauselist is an inductive type andA will always be inferable from the
type list A of the third argument ofcons . On the opposite, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n -> ex nat P

is implicit but not strict, since it can only be inferred from the typeP n of the the third argument and
if P is e.g. fun _ => True , it reduces to an expression wheren does not occur any longer. The
first argumentP is implicit but not strict either because it can only be inferred fromP n andP is not
canonically inferable from an arbitraryn and the normal form ofP n (consider e.g. thatn is 0 and the
third argument has typeTrue , then anyP of the formfun n => match n with 0 => True |
_ => anything end would be a solution of the inference problem.

Contextual Implicit Arguments. An implicit argument can becontextualor non. An implicit argu-
ment is saidcontextualif it can be inferred only from the knowledge of the type of the context of the
current expression. For instance, the only argument of

nil : forall A:Set, list A

is contextual. Similarly, both arguments of a term of type

forall P:nat->Prop, forall n:nat, P n \/ n = 0

are contextual (moreover,n is strict andP is not).

2.6.1 Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the
other arguments, the user can force the given argument to be guessed by replacing it by “_”. If possible,
the correct argument will be automatically generated.

Error messages:

1. Cannot infer a term for this placeholder

COQ was not able to deduce an instantiation of a “_”.

2.6.2 Declaration of implicit arguments for a constant

In case one wants that some arguments of a given object (constant, inductive types, constructors, as-
sumptions, local or not) are always inferred by Coq, one may declare once for all which are the expected
implicit arguments of this object. The syntax is

Implicit Arguments qualid [ ident ... ident ]
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where the list ofident is the list of parameters to be declared implicit. After this, implicit arguments can
just (and have to) be skipped in any expression involving an application ofqualid .

Example:

Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.

Coq < Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)

: list nat

Coq < Implicit Arguments cons [A].

Coq < Implicit Arguments nil [A].

Coq < Check (cons 3 nil).
cons 3 nil

: list nat

Remark: To know which are the implicit arguments of an object, use commandPrint Implicit
(see 2.6.8).

Remark: If the list of arguments is empty, the command removes the implicit arguments ofqualid .

2.6.3 Automatic declaration of implicit arguments for a constant

COQ can also automatically detect what are the implicit arguments of a defined object. The command is
just

Implicit Arguments qualid .

The auto-detection is governed by options telling if strict and contextual implicit arguments must be
considered or not (see Sections 2.6.5 and 2.6.6).

Example:

Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.

Coq < Implicit Arguments cons.

Coq < Print Implicit cons.
cons : forall A : Set, A -> list A -> list A
Argument A is implicit

Coq < Implicit Arguments nil.

Coq < Print Implicit nil.
nil : forall A : Set, list A
No implicit arguments

Coq < Set Contextual Implicit.

Coq < Implicit Arguments nil.

Coq < Print Implicit nil.
nil : forall A : Set, list A
Argument A is implicit
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The computation of implicit arguments takes account of the unfolding of constants. For instance,

the variablep below has type(Transitivity R) which is reducible toforall x,y:U, R x
y -> forall z:U, R y z -> R x z . As the variablesx , y andz appear strictly in body of
the type, they are implicit.

Coq < Variable X : Type.

Coq < Definition Relation := X -> X -> Prop.

Coq < Definition Transitivity (R:Relation) :=
Coq < forall x y:X, R x y -> forall z:X, R y z -> R x z.

Coq < Variables (R : Relation) (p : Transitivity R).

Coq < Implicit Arguments p.

Coq < Print p.
*** [ p : Transitivity R ]
Expanded type for implicit arguments
p : forall x y : X, R x y -> forall z : X, R y z -> R x z
Arguments x, y, z are implicit

Coq < Print Implicit p.
p : forall x y : X, R x y -> forall z : X, R y z -> R x z
Arguments x, y, z are implicit

Coq < Variables (a b c : X) (r1 : R a b) (r2 : R b c).

Coq < Check (p r1 r2).
p r1 r2

: R a c

2.6.4 Mode for automatic declaration of implicit arguments

In case one wants to systematically declare implicit the arguments detectable as such, one may switch
to the automatic declaration of implicit arguments mode by using the command

Set Implicit Arguments.

Conversely, one may unset the mode by usingUnset Implicit Arguments . The mode is off
by default. Auto-detection of implicit arguments is governed by options controlling whether strict and
contextual implicit arguments have to be considered or not.

2.6.5 Controlling strict implicit arguments

By default, COQ automatically set implicit only the strict implicit arguments. To relax this constraint,
use command

Unset Strict Implicit.

Conversely, use commandSet Strict Implicit to restore the strict implicit mode.

Remark: In versions of COQ prior to version 8.0, the default was to declare the strict implicit arguments
as implicit.

2.6.6 Controlling contextual implicit arguments

By default, COQ does not automatically set implicit the contextual implicit arguments. To tell COQ to
infer also contextual implicit argument, use command

Set Contextual Implicit.

Conversely, use commandUnset Contextual Implicit to unset the contextual implicit mode.
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term ++= @qualid term . . . term
| @ qualid
| qualid argument . . . argument

argument ::= term
| ( ident := term)

Figure 2.4: Syntax for explicitations of implicit arguments

2.6.7 Explicit Applications

In presence of non strict or contextual argument, or in presence of partial applications, the synthesis
of implicit arguments may fail, so one may have to give explicitly certain implicit arguments of an
application. The syntax for this is( ident := term) whereident is the name of the implicit argument and
term is its corresponding explicit term. Alternatively, one can locally deactivate the hidding of implicit
arguments of a function by using the notation@qualid term1.. termn. This syntax extension is given
Figure 2.4.
Example (continued):

Coq < Check (p r1 (z:=c)).
p r1 (z:=c)

: R b c -> R a c

Coq < Check (p (x:=a) (y:=b) r1 (z:=c) r2).
p r1 r2

: R a c

2.6.8 Displaying what the implicit arguments are

To display the implicit arguments associated to an object use command

Print Implicit qualid .

2.6.9 Explicitation of implicit arguments for pretty-printing

By default the basic pretty-printing rules hide the inferable implicit arguments of an application. To
force printing all implicit arguments, use command

Set Printing Implicit.

Conversely, to restore the hidding of implicit arguments, use command

Unset Printing Implicit.

See also:Set Printing All in section 2.8.

2.6.10 Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve equations involv-
ing implicit arguments. Assume thatqualid denotes an object(Build_struc c1 . . . cn) in the structure
structof which the fields arex1, ..., xn. Assume thatqualid is declared as a canonical structure using
the command

Canonical Structure qualid .
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Then, each time an equation of the form(xi _) =βδιζ ci has to be solved during the type-checking
process,qualid is used as a solution. Otherwise said,qualid is canonically used to extend the fieldci

into a complete structure built onci.
Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.

Here is an example.

Coq < Require Import Relations.

Coq < Require Import EqNat.

Coq < Set Implicit Arguments.

Coq < Unset Strict Implicit.

Coq < Structure Setoid : Type :=
Coq < {Carrier :> Set;
Coq < Equal : relation Carrier;
Coq < Prf_equiv : equivalence Carrier Equal}.

Coq < Definition is_law (A B:Setoid) (f:A -> B) :=
Coq < forall x y:A, Equal x y -> Equal (f x) (f y).

Coq < Axiom eq_nat_equiv : equivalence nat eq_nat.

Coq < Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.

Coq < Canonical Structure nat_setoid.

Thanks tonat_setoid declared as canonical, the implicit argumentsA andB can be synthesised
in the next statement.

Coq < Lemma is_law_S : is_law S.
1 subgoal

============================
is_law (A:=nat_setoid) (B:=nat_setoid) S

Remark: If a same field occurs in several canonical structure, then only the structure declared first as
canonical is considered.

Variants:

1. Canonical Structure ident := term : type.
Canonical Structure ident := term.
Canonical Structure ident : type := term.

These are equivalent to a regular definition ofident followed by the declaration

Canonical Structure ident .

See also:more examples in user contributioncategory (Rocq/ALGEBRA).

2.6.11 Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be
convenient to bind the namesn or mto the typenat of natural numbers). The command for that is

Implicit Types ident ... ident : type
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The effect of the command is to automatically set the type of bound variables starting withident (either
ident itself or ident followed by one or more single quotes, underscore or digits) to betype (unless the
bound variable is already declared with an explicit type in which case, this latter type is considered).

Example:

Coq < Require Import List.

Coq < Implicit Types m n : nat.

Coq < Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.
1 subgoal

============================
forall m n (l : list nat), n :: l = m :: l -> n = m

Coq < intros m n.
1 subgoal

m : nat
n : nat
============================

forall l : list nat, n :: l = m :: l -> n = m

Coq < Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.
1 subgoal

============================
forall (m n : bool) (l : list bool), n :: l = m :: l -> n = m

Variants:

1. Implicit Type ident : type
This is useful for declaring the implicit type of a single variable.

2.7 Coercions

Coercions can be used to implicitly inject terms from oneclassin which they reside into another one.
A classis either a sort (denoted by the keywordSortclass ), a product type (denoted by the keyword
Funclass ), or a type constructor (denoted by its name), e.g. an inductive type or any constant with a
type of the formforall (x1 : A1)..(xn : An), s wheres is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and
more generally to consider that a term of type A is of type B provided that there is a declared coercion
between A and B. The main command is

Coercion qualid : class1 >-> class2.

which declares the construction denoted byqualid as a coercion betweenclass1 andclass2.
More details and examples, and a description of the commands related to coercions are provided in

chapter 16.

2.8 Printing constructions in full

Coercions, implicit arguments, the type of pattern-matching, but also notations (see chapter 11) can
obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are
sensitive to the implicit arguments). The command
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Set Printing All.

deactivates all high-level printing features such as coercions, implicit arguments, returned
type of pattern-matching, notations and various syntactic sugar for pattern-matching or record
projections. Otherwise said,Set Printing All includes the effects of the commands
Set Printing Implicit , Set Printing Coercions , Set Printing Synth , Unset
Printing Projections and Unset Printing Notations . To reactivate the high-level
printing features, use the command

Unset Printing All.
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Chapter 3

The COQ library

The COQ library is structured into three parts:

The initial library: it contains elementary logical notions and datatypes. It constitutes the basic state
of the system directly available when running COQ;

The standard library: general-purpose libraries containing various developments of COQ axiomatiza-
tions about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules
are directly accessible through theRequire command (see section 6.4.1);

User contributions: Other specification and proof developments coming from the COQ users’ commu-
nity. These libraries are no longer distributed with the system. They are available by anonymous
FTP (see section 3.3).

This chapter briefly reviews these libraries.

3.1 The basic library

This section lists the basic notions and results which are directly available in the standard COQ system
1.

3.1.1 Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However,
it does not assign a meaning to these notations. The purpose of this is to define precedence and asso-
ciativity of very common notations, and avoid users to use them with other precedence, which may be
confusing.

3.1.2 Logic

The basic library of COQ comes with the definitions of standard (intuitionistic) logical connectives
(they are defined as inductive constructions). They are equipped with an appealing syntax enriching the
(subclassform) of the syntactic classterm. The syntax extension is shown on figure 3.2.

Remark: Implication is not defined but primitive (it is a non-dependent product of a proposition over
another proposition). There is also a primitive universal quantification (it is a dependent product over a

1Most of these constructions are defined in thePrelude module in directorytheories/Init at the COQ root directory;
this includes the modulesNotations , Logic , Datatypes , Specif , Peano , andWf. ModuleLogic_Type also makes
it in the initial state
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Notation Precedence Associativity

_ <-> _ 95 no
_ \/ _ 85 right
_ /\ _ 80 right

~ _ 75 right
_ = _ 70 no

_ = _ = _ 70 no
_ = _ :> _ 70 no

_ <> _ 70 no
_ <> _ :> _ 70 no

_ < _ 70 no
_ > _ 70 no

_ <= _ 70 no
_ >= _ 70 no

_ < _ < _ 70 no
_ < _ <= _ 70 no
_ <= _ < _ 70 no

_ <= _ <= _ 70 no
_ + _ 50 left
_ - _ 50 left
_ * _ 40 left
_ / _ 40 left

- _ 35 right
/ _ 35 right

_ ^ _ 30 right

Figure 3.1: Notations in the initial state

form ::= True (True )
| False (False )
| ~ form (not )
| form / \ form (and )
| form \/ form (or )
| form -> form (primitive implication)
| form <-> form (iff )
| forall ident : type , form (primitive for all)
| exists ident [: specif ] , form (ex )
| exists2 ident [: specif ] , form & form (ex2 )
| term = term (eq)
| term = term :> specif (eq)

Figure 3.2: Syntax of formulas

proposition). The primitive universal quantification allows both first-order and higher-order quantifica-
tion.

Propositional Connectives

First, we find propositional calculus connectives:
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Coq < Inductive True : Prop := I.

Coq < Inductive False : Prop := .

Coq < Definition not (A: Prop) := A -> False.

Coq < Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).

Coq < Section Projections.

Coq < Variables A B : Prop.

Coq < Theorem proj1 : A /\ B -> A.

Coq < Theorem proj2 : A /\ B -> B.

Coq < End Projections.

Coq < Inductive or (A B:Prop) : Prop :=
Coq < | or_introl (_:A)
Coq < | or_intror (_:B).

Coq < Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).

Coq < Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.

Quantifiers

Then we find first-order quantifiers:

Coq < Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.

Coq < Inductive ex (A: Set) (P:A -> Prop) : Prop :=
Coq < ex_intro (x:A) (_:P x).

Coq < Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
Coq < ex_intro2 (x:A) (_:P x) (_:Q x).

The following abbreviations are allowed:

exists x:A, P ex A (fun x:A => P)
exists x, P ex _ (fun x => P)
exists2 x:A, P & Q ex2 A (fun x:A => P) (fun x:A => Q)
exists2 x, P & Q ex2 _ (fun x => P) (fun x => Q)

The type annotation:A can be omitted whenA can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, given aType A and anx of type A,
the predicate(eq A x) is the smallest one which containsx . This definition, due to Christine Paulin-
Mohring, is equivalent to defineeq as the smallest reflexive relation, and it is also equivalent to Leibniz’
equality.

Coq < Inductive eq (A:Type) (x:A) : A -> Prop :=
Coq < refl_equal : eq A x x.
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Lemmas

Finally, a few easy lemmas are provided.

Coq < Theorem absurd : forall A C:Prop, A -> ~ A -> C.

Coq < Section equality.

Coq < Variables A B : Type.

Coq < Variable f : A -> B.

Coq < Variables x y z : A.

Coq < Theorem sym_eq : x = y -> y = x.

Coq < Theorem trans_eq : x = y -> y = z -> x = z.

Coq < Theorem f_equal : x = y -> f x = f y.

Coq < Theorem sym_not_eq : x <> y -> y <> x.

Coq < End equality.

Coq < Definition eq_ind_r :
Coq < forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y.

Coq < Definition eq_rec_r :
Coq < forall (A:Type) (x:A) (P:A -> Set), P x -> forall y:A, y = x -> P y.

Coq < Definition eq_rect_r :
Coq < forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y.

Coq < Hint Immediate sym_eq sym_not_eq : core.

The theoremf_equal is extended to functions with two to five arguments. The theorem are names
f_equal2 , f_equal3 , f_equal4 andf_equal5 . For instancef_equal3 is defined the follow-
ing way.

Coq < Theorem f_equal3 :
Coq < forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1) (x2 y2:A2)
Coq < (x3 y3:A3), x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.

3.1.3 Datatypes

In the basic library, we find the definition2 of the basic data-types of programming, again defined as in-
ductive constructions over the sortSet . Some of them come with a special syntax shown on Figure 3.3.

Programming

Coq < Inductive unit : Set := tt.

Coq < Inductive bool : Set := true | false.

Coq < Inductive nat : Set := O | S (n:nat).

Coq < Inductive option (A:Set) : Set := Some (_:A) | None.

Coq < Inductive identity (A:Type) (a:A) : A -> Type :=
Coq < refl_identity : identity A a a.

2They are inDatatypes.v
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specif ::= specif * specif (prod )
| specif + specif (sum)
| specif + { specif } (sumor )
| { specif } + { specif } (sumbool )
| { ident : specif | form } (sig )
| { ident : specif | form & form } (sig2 )
| { ident : specif & specif } (sigS )
| { ident : specif & specif & specif } (sigS2 )

term ::= ( term , term ) (pair )

Figure 3.3: Syntax of datatypes and specifications

Note that zero is the letterO, andnot the numeral0.
identity is logically equivalent to equality but it lives in sortSet . Computationaly, it behaves

like unit .
We then define the disjoint sum ofA+Bof two setsA andB, and their productA*B.

Coq < Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).

Coq < Inductive prod (A B:Set) : Set := pair (_:A) (_:B).

Coq < Section projections.

Coq < Variables A B : Set.

Coq < Definition fst (H: prod A B) := match H with
Coq < | pair x y => x
Coq < end.

Coq < Definition snd (H: prod A B) := match H with
Coq < | pair x y => y
Coq < end.

Coq < End projections.

3.1.4 Specification

The following notions3 allows to build new datatypes and specifications. They are available with the
syntax shown on Figure 3.34.

For instance, givenA:Set and P:A->Prop , the construct{x:A | P x} (in abstract syntax
(sig A P) ) is a Set . We may build elements of this set as(exist x p) whenever we have a
witnessx:A with its justificationp:P x .

From such a(exist x p) we may in turn extract its witnessx:A (using an elimination construct
such asmatch ) but not its justification, which stays hidden, like in an abstract data type. In technical
terms, one says thatsig is a “weak (dependent) sum”. A variantsig2 with two predicates is also
provided.

Coq < Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).

Coq < Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
Coq < exist2 (x:A) (_:P x) (_:Q x).

3They are defined in moduleSpecif.v
4This syntax can be found in the moduleSpecifSyntax.v
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A “strong (dependent) sum”{x:A & (P x)} may be also defined, when the predicateP is now

defined as aSet constructor.

Coq < Inductive sigS (A:Set) (P:A -> Set) : Set := existS (x:A) (_:P x).

Coq < Section sigSprojections.

Coq < Variable A : Set.

Coq < Variable P : A -> Set.

Coq < Definition projS1 (H:sigS A P) := let (x, h) := H in x.

Coq < Definition projS2 (H:sigS A P) :=
Coq < match H return P (projS1 H) with
Coq < existS x h => h
Coq < end.

Coq < End sigSprojections.

Coq < Inductive sigS2 (A: Set) (P Q:A -> Set) : Set :=
Coq < existS2 (x:A) (_:P x) (_:Q x).

A related non-dependent construct is the constructive sum{A}+{B} of two propositionsA andB.

Coq < Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data type. An intermediate
betweensumbool andsum is the mixedsumor which combinesA:Set andB:Prop in the Set
A+{B} .

Coq < Inductive sumor (A:Set) (B:Prop) : Set := inleft (_:A) | inright (_:B).

We may define variants of the axiom of choice, like in Martin-Löf’s Intuitionistic Type Theory.

Coq < Lemma Choice :
Coq < forall (S S’:Set) (R:S -> S’ -> Prop),
Coq < (forall x:S, {y : S’ | R x y}) ->
Coq < {f : S -> S’ | forall z:S, R z (f z)}.

Coq < Lemma Choice2 :
Coq < forall (S S’:Set) (R:S -> S’ -> Set),
Coq < (forall x:S, {y : S’ & R x y}) ->
Coq < {f : S -> S’ & forall z:S, R z (f z)}.

Coq < Lemma bool_choice :
Coq < forall (S:Set) (R1 R2:S -> Prop),
Coq < (forall x:S, {R1 x} + {R2 x}) ->
Coq < {f : S -> bool |
Coq < forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.

The next constructs builds a sum between a data typeA:Set and an exceptional value encoding
errors:

Coq < Definition Exc := option.

Coq < Definition value := Some.

Coq < Definition error := None.
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This module ends with theorems, relating the sortsSet andProp in a way which is consistent with

the realizability interpretation.

Coq < Definition except := False_rec.

Coq < Notation Except := (except _).

Coq < Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.

Coq < Theorem and_rec :
Coq < forall (A B:Prop) (P:Set), (A -> B -> P) -> A /\ B -> P.

3.1.5 Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions
of predecessor, addition and multiplication5. It also provides a scopenat_scope gathering standard
notations for common operations (+,*) and a decimal notation for numbers. That is he can write3
for (S (S (S O))) . This also works on the left hand side of amatch expression (see for example
section 10.1). This scope is opened by default.

The following example is not part of the standard library, but it shows the usage of the notations:

Coq < Fixpoint even (n:nat) : bool :=
Coq < match n with
Coq < | 0 => true
Coq < | 1 => false
Coq < | S (S n) => even n
Coq < end.

Coq < Theorem eq_S : forall x y:nat, x = y -> S x = S y.

Coq < Definition pred (n:nat) : nat :=
Coq < match n with
Coq < | 0 => 0
Coq < | S u => u
Coq < end.

Coq < Theorem pred_Sn : forall m:nat, m = pred (S m).

Coq < Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.

Coq < Hint Immediate eq_add_S : core.

Coq < Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.

Coq < Definition IsSucc (n:nat) : Prop :=
Coq < match n with
Coq < | 0 => False
Coq < | S p => True
Coq < end.

Coq < Theorem O_S : forall n:nat, 0 <> S n.

Coq < Theorem n_Sn : forall n:nat, n <> S n.

5This is in modulePeano.v
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Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | 0 => m
Coq < | S p => S (plus p m)
Coq < end.

Coq < Lemma plus_n_O : forall n:nat, n = plus n 0.

Coq < Lemma plus_n_Sm : forall n m:nat, S (plus n m) = plus n (S m).

Coq < Fixpoint mult (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | 0 => 0
Coq < | S p => m + mult p m
Coq < end.

Coq < Lemma mult_n_O : forall n:nat, 0 = mult n 0.

Coq < Lemma mult_n_Sm : forall n m:nat, plus (mult n m) n = mult n (S m).

Finally, it gives the definition of the usual orderingsle , lt , ge , andgt .

Coq < Inductive le (n:nat) : nat -> Prop :=
Coq < | le_n : le n n
Coq < | le_S : forall m:nat, le n m -> le n (S m).

Coq < Infix "+" := plus : nat_scope.

Coq < Definition lt (n m:nat) := S n <= m.

Coq < Definition ge (n m:nat) := m <= n.

Coq < Definition gt (n m:nat) := m < n.

Properties of these relations are not initially known, but may be required by the user from modules
Le andLt . Finally, Peano gives some lemmas allowing pattern-matching, and a double induction
principle.

Coq < Theorem nat_case :
Coq < forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n.

Coq < Theorem nat_double_ind :
Coq < forall R:nat -> nat -> Prop,
Coq < (forall n:nat, R 0 n) ->
Coq < (forall n:nat, R (S n) 0) ->
Coq < (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.

3.1.6 Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction6.

Coq < Section Well_founded.

Coq < Variable A : Set.

Coq < Variable R : A -> A -> Prop.

Coq < Inductive Acc : A -> Prop :=
Coq < Acc_intro : forall x:A, (forall y:A, R y x -> Acc y) -> Acc x.

Coq < Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y.

6This is defined in moduleWf.v
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Coq < Section AccRec.

Coq < Variable P : A -> Set.

Coq < Variable F :
Coq < forall x:A,
Coq < (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.

Coq < Fixpoint Acc_rec (x:A) (a:Acc x) {struct a} : P x :=
Coq < F x (Acc_inv x a)
Coq < (fun (y:A) (h:R y x) => Acc_rec y (Acc_inv x a y h)).

Coq < End AccRec.

Coq < Definition well_founded := forall a:A, Acc a.

Coq < Hypothesis Rwf : well_founded.

Coq < Theorem well_founded_induction :
Coq < forall P:A -> Set,
Coq < (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.

Coq < Theorem well_founded_ind :
Coq < forall P:A -> Prop,
Coq < (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.

Acc_rec can be used to define functions by fixpoints using well-founded relations to justify termina-
tion. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be
proved.

Coq < Section FixPoint.

Coq < Variable P : A -> Set.

Coq < Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.

Coq < Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
Coq < F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).

Coq < Definition Fix (x:A) := Fix_F x (Rwf x).

Coq < Hypothesis F_ext :
Coq < forall (x:A) (f g:forall y:A, R y x -> P y),
Coq < (forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.

Coq < Lemma Fix_F_eq :
Coq < forall (x:A) (r:Acc x),
Coq < F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.

Coq < Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.

Coq < Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).

Coq < End FixPoint.

Coq < End Well_founded.

3.1.7 Accessing theType level

The basic library includes the definitions7 of the counterparts of some datatypes and logical quantifiers
at theType level: negation, pair, and properties ofidentity .

Coq < Definition notT (A:Type) := A -> False.

Coq < Inductive prodT (A B:Type) : Type := pairT (_:A) (_:B).

At the end, it defines datatypes at theType level.
7This is in moduleLogic_Type.v
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3.2 The standard library

3.2.1 Survey

The rest of the standard library is structured into the following subdirectories:
Logic Classical logic and dependent equality
Arith Basic Peano arithmetic
ZArith Basic integer arithmetic
Bool Booleans (basic functions and results)
Lists Monomorphic and polymorphic lists (basic functions and results), Streams (in-

finite sequences defined with co-inductive types)
Sets Sets (classical, constructive, finite, infinite, power set, etc.)
IntMap Representation of finite sets by an efficient structure of map (trees indexed by

binary integers).
Reals Axiomatization of Real Numbers (classical, basic functions, integer part, frac-

tional part, limit, derivative, Cauchy series, power series and results,... Re-
quires theZArith library).

Relations Relations (definitions and basic results).
Sorting Sorted list (basic definitions and heapsort correctness).
Wellfounded Well-founded relations (basic results).

These directories belong to the initial load path of the system, and the modules they provide are
compiled at installation time. So they are directly accessible with the commandRequire (see chap-
ter 6).

The different modules of the COQ standard library are described in the additional document
Library.dvi . They are also accessible on the WWW through the COQ homepage8.

3.2.2 Notations for integer arithmetics

On figure 3.2.2 is described the syntax of expressions for integer arithmetics. It is provided by requiring
and opening the moduleZArith and opening scopeZ_scope .

Figure 3.2.2 shows the notations provided byZ_scope . It specifies how notations are interpreted
and, when not already reserved, the precedence and associativity.

Coq < Require Import ZArith.

Coq < Check (2 + 3)%Z.
(2 + 3)%Z

: Z

Coq < Open Scope Z_scope.

Coq < Check 2 + 3.
2 + 3

: Z

3.2.3 Peano’s arithmetic (nat )

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further
operations and results belong to other modules. For instance, the decidability of the basic predicates are
defined here. This is provided by requiring the moduleArith .

Figure 3.2.3 describes notation available in scopenat_scope .

8http://coq.inria.fr
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Notation Interpretation Precedence Associativity
_ < _ Zlt
x <= y Zle
_ > _ Zgt
x >= y Zge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ ?= _ Zcompare 70 no
_ + _ Zplus
_ - _ Zminus
_ * _ Zmult
_ / _ Zdiv
_ mod _ Zmod 40 no
- _ Zopp
_ ^ _ Zpower

Figure 3.4: Definition of the scope for integer arithmetics (Z_scope )

Notation Interpretation
_ < _ lt
x <= y le
_ > _ gt
x >= y ge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ + _ plus
_ - _ minus
_ * _ mult

Figure 3.5: Definition of the scope for natural numbers (nat_scope )

3.2.4 Real numbers library

Notations for real numbers

This is provided by requiring and opening the moduleReals and opening scopeR_scope . This set
of notations is very similar to the notation for integer arithmetics. The inverse function was added.

Coq < Require Import Reals.

Coq < Check (2 + 3)%R.
(2 + 3)%R

: R

Coq < Open Scope R_scope.

Coq < Check 2 + 3.
2 + 3
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Notation Interpretation
_ < _ Rlt
x <= y Rle
_ > _ Rgt
x >= y Rge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ + _ Rplus
_ - _ Rminus
_ * _ Rmult
_ / _ Rdiv
- _ Ropp
/ _ Rinv
_ ^ _ pow

Figure 3.6: Definition of the scope for real arithmetics (R_scope )

: R

Some tactics

In addition to thering , field andfourier tactics (see Chapter 8) there are:

• discrR

Proves that a real integer constantc1 is different from another real integer constantc2.

Coq < Require Import DiscrR.

Coq < Goal 5 <> 0.

Coq < discrR.
Proof completed.

• split_Rabs allows to unfoldRabs constant and splits corresponding conjonctions.

Coq < Require Import SplitAbsolu.

Coq < Goal forall x:R, x <= Rabs x.

Coq < intro; split_Rabs.
2 subgoals

x : R
r : x < 0
============================

x <= - x
subgoal 2 is:

x <= x
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Notation Interpretation Precedence Associativity
_ ++ _ app 60 right
_ :: _ cons 60 right

Figure 3.7: Definition of the scope for lists (list_scope )

• split_Rmult allows to split a condition that a product is non null into subgoals corresponding
to the condition on each operand of the product.

Coq < Require Import SplitRmult.

Coq < Goal forall x y z:R, x * y * z <> 0.

Coq < intros; split_Rmult.
3 subgoals

x : R
y : R
z : R
============================

x <> 0
subgoal 2 is:

y <> 0
subgoal 3 is:

z <> 0

All this tactics has been written with the tactic language Ltac described in Chapter 9. More details
are available in documenthttp://coq.inria.fr/~desmettr/Reals.ps .

3.2.5 List library

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring
moduleList .

It defines the following notions:

length length
head first element (with default)
tail all but first element
app concatenation
rev reverse
nth accessingn-th element (with default)
map applying a function
flat_map applying a function returning lists
fold_left iterator (from head to tail)
fold_right iterator (from tail to head)

Table show notations available when opening scopelist_scope .

3.3 Users’ contributions

Numerous users’ contributions have been collected and are available at URLcoq.inria.fr/
contribs/ . On this web page, you have a list of all contributions with informations (author, institu-
tion, quick description, etc.) and the possibility to download them one by one. There is a small search
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engine to look for keywords in all contributions. You will also find informations on how to submit a new
contribution.

The users’ contributions may also be obtained by anonymous FTP from siteftp.inria.fr ,
in directoryINRIA/coq/ and searchable on-line athttp://coq.inria.fr/contribs-eng.
html
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Chapter 4

Calculus of Inductive Constructions

The underlying formal language of COQ is aCalculus of Constructionswith Inductive Definitions. It is
presented in this chapter. For COQ version V7, this Calculus was known as theCalculus of (Co)Inductive
Constructions(CIC in short). The underlying calculus of COQ version V8.0 and up is a weaker calcu-
lus where the sortSet satisfies predicative rules. We call this calculus thePredicative Calculus of
(Co)Inductive Constructions(pCIC in short). In section 4.7 we give the extra-rules for CIC. A compil-
ing option of COQ allows to type-check theories in this extended system.

In pCIC all objects have atype. There are types for functions (or programs), there are atomic types
(especially datatypes)... but also types for proofs and types for the types themselves. Especially, any
object handled in the formalism must belong to a type. For instance, the statement“for all x, P” is not
allowed in type theory; you must say instead:“for all x belonging to T, P”. The expression“x belonging
to T” is written“x:T” . One also says:“x has type T”. The terms of pCIC are detailed in section 4.1.

In pCIC there is an internal reduction mechanism. In particular, it allows to decide if two programs
areintentionallyequal (one saysconvertible). Convertibility is presented in section 4.3.

The remaining sections are concerned with the type-checking of terms. The beginner can skip them.
The reader seeking a background on the Calculus of Inductive Constructions may read several pa-

pers. Giménez [61] provides an introduction to inductive and coinductive definitions in Coq. In their
book [13], Bertot and Castéran give a precise description of the pCIC based on numerous practical ex-
amples. Barras [9], Werner [118] and Paulin-Mohring [104] are the most recent theses dealing with
Inductive Definitions. Coquand-Huet [27, 28, 29] introduces the Calculus of Constructions. Coquand-
Paulin [30] extended this calculus to inductive definitions. The pCIC is a formulation of type theory
including the possibility of inductive constructions, Barendregt [6] studies the modern form of type
theory.

4.1 The terms

In most type theories, one usually makes a syntactic distinction between types and terms. This is not the
case for pCIC which defines both types and terms in the same syntactical structure. This is because the
type-theory itself forces terms and types to be defined in a mutual recursive way and also because similar
constructions can be applied to both terms and types and consequently can share the same syntactic
structure.

Consider for instance the→ constructor and assumenat is the type of natural numbers. Then
→ is used both to denotenat → nat which is the type of functions fromnat to nat, and to denote
nat→ Prop which is the type of unary predicates over the natural numbers. Consider abstraction which
builds functions. It serves to build “ordinary” functions asfun x : nat ⇒ (mult x x) (assumingmult
is already defined) but may build also predicates over the natural numbers. For instancefun x : nat ⇒
(x = x) will represent a predicateP , informally written in mathematicsP (x) ≡ x = x. If P has
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typenat → Prop, (P x) is a proposition, furthermoreforall x : nat, (P x) will represent the type of
functions which associate to each natural numbern an object of type(P n) and consequently represent
proofs of the formula “∀x.P (x)”.

4.1.1 Sorts

Types are seen as terms of the language and then should belong to another type. The type of a type is
always a constant of the language called asort.

The two basic sorts in the language of pCIC areSet andProp.
The sortProp intends to be the type of logical propositions. IfM is a logical proposition then it

denotes a class, namely the class of terms representing proofs ofM . An objectm belonging toM
witnesses the fact thatM is true. An object of typeProp is called aproposition.

The sortSet intends to be the type of specifications. This includes programs and the usual sets such
as booleans, naturals, lists etc.

These sorts themselves can be manipulated as ordinary terms. Consequently sorts also should be
given a type. Because assuming simply thatSet has typeSet leads to an inconsistent theory, we have
infinitely many sorts in the language of pCIC. These are, in addition toSet andProp a hierarchy of
universesType(i) for any integeri. We callS the set of sorts which is defined by:

S ≡ {Prop, Set, Type(i)|i ∈ N}

The sorts enjoy the following properties:Prop:Type(0), Set:Type(0) andType(i):Type(i + 1).
The user will never mention explicitly the indexi when referring to the universeType(i). One

only writesType. The system itself generates for each instance ofType a new index for the universe
and checks that the constraints between these indexes can be solved. From the user point of view we
consequently haveType :Type.

We shall make precise in the typing rules the constraints between the indexes.

4.1.2 Constants

Besides the sorts, the language also contains constants denoting objects in the environment. These
constants may denote previously defined objects but also objects related to inductive definitions (either
the type itself or one of its constructors or destructors).

Remark. In other presentations of pCIC, the inductive objects are not seen as external declarations but
as first-class terms. Usually the definitions are also completely ignored. This is a nice theoretical point
of view but not so practical. An inductive definition is specified by a possibly huge set of declarations,
clearly we want to share this specification among the various inductive objects and not to duplicate it.
So the specification should exist somewhere and the various objects should refer to it. We choose one
more level of indirection where the objects are just represented as constants and the environment gives
the information on the kind of object the constant refers to.

Our inductive objects will be manipulated as constants declared in the environment. This roughly
corresponds to the way they are actually implemented in the COQ system. It is simple to map this
presentation in a theory where inductive objects are represented by terms.

4.1.3 Terms

Terms are built from variables, global names, constructors, abstraction, application, local declarations
bindings (“let-in” expressions) and product.

From a syntactic point of view, types cannot be distingued from terms, except that they cannot start
by an abstraction, and that if a term is a sort or a product, it should be a type.
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More precisely the language of theCalculus of Inductive Constructionsis built from the following

rules:

1. the sortsSet, Prop, Type are terms.

2. names for global constants of the environment are terms.

3. variables are terms.

4. if x is a variable andT , U are terms then∀ x : T,U (forall x : T,U in COQ concrete syntax) is a
term. If x occurs inU , ∀ x : T,U reads as“for all x of type T, U”. As U depends onx, one says
that∀ x : T,U is adependent product. If x doesn’t occurs inU then∀ x : T,U reads as“if T then
U” . A non dependent product can be written:T → U .

5. if x is a variable andT , U are terms thenλ x : T,U (fun x : T ⇒ U in COQ concrete syntax) is a
term. This is a notation for theλ-abstraction ofλ-calculus [8]. The termλ x : T,U is a function
which maps elements ofT to U .

6. if T andU are terms then(T U) is a term (T U in COQ concrete syntax). The term(T U) reads
as“T applied to U” .

7. if x is a variable, andT , U are terms thenlet x := T in U is a term which denotes the termU
where the variablex is locally bound toT . This stands for the common “let-in” construction of
functional programs such as ML or Scheme.

Notations. Application associates to the left such that(t t1 . . . tn) represents(. . . (t t1) . . . tn). The
products and arrows associate to the right such that∀ x : A,B → C → D represents∀ x : A, (B →
(C → D)). One uses sometimes∀ x y : A,B or λ x y : A,B to denote the abstraction or product of
several variables of the same type. The equivalent formulation is∀ x : A,∀y : A,B orλ x : A, λy : A,B

Free variables. The notion of free variables is defined as usual. In the expressionsλ x : T,U and
∀x : T,U the occurrences ofx in U are bound. They are represented by de Bruijn indexes in the internal
structure of terms.

Substitution. The notion of substituting a termt to free occurrences of a variablex in a termu is
defined as usual. The resulting term is writtenu{x/t}.

4.2 Typed terms

As objects of type theory, terms are subjected totype discipline. The well typing of a term depends on
an environment which consists in a global environment (see below) and a local context.

Local context. A local context(or shortly context) is an ordered list of declarations of variables. The
declaration of some variablex is either an assumption, writtenx : T (T is a type) or a definition, written
x := t : T . We use brackets to write contexts. A typical example is[x : T ; y := u : U ; z : V ]. Notice
that the variables declared in a context must be distinct. IfΓ declares somex, we writex ∈ Γ. By
writing (x : T ) ∈ Γ we mean that eitherx : T is an assumption inΓ or that there exists somet such
thatx := t : T is a definition inΓ. If Γ defines somex := t : T , we also write(x := t : T ) ∈ Γ.
Contexts must be themselveswell formed. For the rest of the chapter, the notationΓ :: (y : T ) (resp
Γ :: (y := t : T )) denotes the contextΓ enriched with the declarationy : T (respy := t : T ). The
notation[] denotes the empty context.
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We define the inclusion of two contextsΓ and∆ (written asΓ ⊂ ∆) as the property, for all variable

x, typeT and termt, if (x : T ) ∈ Γ then(x : T ) ∈ ∆ and if (x := t : T ) ∈ Γ then(x := t : T ) ∈ ∆.
A variablex is said to be free inΓ if Γ contains a declarationy : T such thatx is free inT .

Environment. Because we are manipulating global declarations (constants and global assumptions),
we also need to consider a global environmentE.

An environment is an ordered list of declarations of global names. Declarations are either assump-
tions or “standard” definitions, that is abbreviations for well-formed terms but also definitions of induc-
tive objects. In the latter case, an object in the environment will define one or more constants (that is
types and constructors, see section 4.5).

An assumption will be represented in the environment asAssum(Γ)(c : T ) which means thatc is
assumed of some typeT well-defined in some contextΓ. An (ordinary) definition will be represented in
the environment asDef(Γ)(c := t : T ) which means thatc is a constant which is valid in some context
Γ whose value ist and type isT .

The rules for inductive definitions (see section 4.5) have to be considered as assumption rules to
which the following definitions apply: if the namec is declared inE, we writec ∈ E and if c : T or
c := t : T is declared inE, we write(c : T ) ∈ E.

Typing rules. In the following, we assumeE is a valid environment wrt to inductive definitions. We
define simultaneously two judgments. The first oneE[Γ] ` t : T means the termt is well-typed
and has typeT in the environmentE and contextΓ. The second judgmentWF(E)[Γ] means that the
environmentE is well-formed and the contextΓ is a valid context in this environment. It also means a
third property which makes sure that any constant inE was defined in an environment which is included
in Γ 1.

A term t is well typed in an environmentE iff there exists a contextΓ and a termT such that the
judgmentE[Γ] ` t : T can be derived from the following rules.

W-E
WF([])[[]]

W-S
E[Γ] ` T : s s ∈ S x 6∈ Γ
WF(E)[Γ :: (x : T )]

E[Γ] ` t : T x 6∈ Γ
WF(E)[Γ :: (x := t : T )]

Def
E[Γ] ` t : T c /∈ E ∪ Γ

WF(E; Def(Γ)(c := t : T ))[Γ]

Ax
WF(E)[Γ]

E[Γ] ` Prop : Type(p)
WF(E)[Γ]

E[Γ] ` Set : Type(q)

WF(E)[Γ] i < j

E[Γ] ` Type(i) : Type(j)

Var
WF(E)[Γ] (x : T ) ∈ Γ or (x := t : T ) ∈ Γ for somet

E[Γ] ` x : T

1This requirement could be relaxed if we instead introduced an explicit mechanism for instantiating constants. At the
external level, the Coq engine works accordingly to this view that all the definitions in the environment were built in a sub-
context of the current context.
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Const

WF(E)[Γ] (c : T ) ∈ E

E[Γ] ` c : T

Prod
E[Γ] ` T : s s ∈ S E[Γ :: (x : T )] ` U : Prop

E[Γ] ` ∀ x : T,U : Prop

E[Γ] ` T : s s ∈ {Prop, Set} E[Γ :: (x : T )] ` U : Set
E[Γ] ` ∀ x : T,U : Set

E[Γ] ` T : Type(i) i ≤ k E[Γ :: (x : T )] ` U : Type(j) j ≤ k

E[Γ] ` ∀ x : T,U : Type(k)

Lam
E[Γ] ` ∀ x : T,U : s E[Γ :: (x : T )] ` t : U

E[Γ] ` λ x : T, t : ∀x : T,U

App
E[Γ] ` t : ∀ x : U, T E[Γ] ` u : U

E[Γ] ` (t u) : T{x/u}

Let
E[Γ] ` t : T E[Γ :: (x := t : T )] ` u : U

E[Γ] ` let x := t in u : U{x/t}

Remark: We may havelet x := t in u well-typed without having((λ x : T, u) t) well-typed (whereT
is a type oft). This is because the valuet associated tox may be used in a conversion rule (see section
4.3).

4.3 Conversion rules

β-reduction. We want to be able to identify some terms as we can identify the application of a function
to a given argument with its result. For instance the identity function over a given typeT can be written
λ x : T, x. In any environmentE and contextΓ, we want to identify any objecta (of typeT ) with the
application((λ x : T, x) a). We define for this areduction(or aconversion) rule we callβ:

E[Γ] ` ((λ x : T, t) u) .β t{x/u}

We say thatt{x/u} is theβ-contractionof ((λ x : T, t) u) and, conversely, that((λ x : T, t) u) is the
β-expansionof t{x/u}.

According toβ-reduction, terms of theCalculus of Inductive Constructionsenjoy some fundamental
properties such as confluence, strong normalization, subject reduction. These results are theoretically of
great importance but we will not detail them here and refer the interested reader to [21].

ι-reduction. A specific conversion rule is associated to the inductive objects in the environment. We
shall give later on (section 4.5.4) the precise rules but it just says that a destructor applied to an object
built from a constructor behaves as expected. This reduction is calledι-reduction and is more precisely
studied in [103, 118].
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δ-reduction. We may have defined variables in contexts or constants in the global environment. It
is legal to identify such a reference with its value, that is to expand (or unfold) it into its value. This
reduction is calledδ-reduction and shows as follows.

E[Γ] ` x .δ t if (x := t : T ) ∈ Γ E[Γ] ` c .δ t if (c := t : T ) ∈ E

ζ-reduction. Coq allows also to remove local definitions occurring in terms by replacing the defined
variable by its value. The declaration being destroyed, this reduction differs fromδ-reduction. It is
calledζ-reduction and shows as follows.

E[Γ] ` let x := u in t .ζ t{x/u}

Convertibility. Let us writeE[Γ] ` t . u for the contextual closure of the relationt reduces tou in the
environmentE and contextΓ with one of the previous reductionβ, ι, δ or ζ.

We say that two termst1 and t2 are convertible(or equivalent)in the environmentE and con-
text Γ iff there exists a termu such thatE[Γ] ` t1 . . . . . u and E[Γ] ` t2 . . . . . u. We then write
E[Γ] ` t1 =βδιζ t2.

The convertibility relation allows to introduce a new typing rule which says that two convertible
well-formed types have the same inhabitants.

At the moment, we did not take into account one rule between universes which says that any term
in a universe of indexi is also a term in the universe of indexi + 1. This property is included into the
conversion rule by extending the equivalence relation of convertibility into an order inductively defined
by:

1. if E[Γ] ` t =βδιζ u thenE[Γ] ` t ≤βδιζ u,

2. if i ≤ j thenE[Γ] ` Type(i) ≤βδιζ Type(j),

3. for anyi, E[Γ] ` Prop ≤βδιζ Type(i),

4. for anyi, E[Γ] ` Set ≤βδιζ Type(i),

5. if E[Γ] ` T =βδιζ U and E[Γ :: (x : T )] ` T ′ ≤βδιζ U ′ then
E[Γ] ` ∀ x : T, T ′ ≤βδιζ ∀ x : U,U ′.

The conversion rule is now exactly:

Conv
E[Γ] ` U : s E[Γ] ` t : T E[Γ] ` T ≤βδιζ U

E[Γ] ` t : U

η-conversion. An other important rule is theη-conversion. It is to identify terms over a dummy
abstraction of a variable followed by an application of this variable. LetT be a type,t be a term in
which the variablex doesn’t occurs free. We have

E[Γ] ` λ x : T, (t x) . t

Indeed, asx doesn’t occur free int, for anyu one applies toλ x : T, (t x), it β-reduces to(t u). So
λ x : T, (t x) andt can be identified.

Remark: Theη-reduction is not taken into account in the convertibility rule of COQ.
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Normal form. A term which cannot be any more reduced is said to be innormal form. There
are several ways (or strategies) to apply the reduction rule. Among them, we have to mention the
head reductionwhich will play an important role (see chapter 8). Any term can be written as
λ x1 : T1, . . . λxk : Tk, (t0 t1 . . . tn) wheret0 is not an application. We say then thatt0 is thehead
of t. If we assume thatt0 is λ x : T, u0 then one step ofβ-head reduction oft is:

λ x1 : T1, . . . λxk : Tk, (λ x : T, u0 t1 . . . tn) . λ (x1 : T1) . . . (xk : Tk), (u0{x/t1} t2 . . . tn)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads
to theβ-head normal formof t:

t . . . . . λ x1 : T1, . . . λxk : Tk, (v u1 . . . um)

wherev is not an abstraction (nor an application). Note that the head normal form must not be confused
with the normal form since someui can be reducible.

Similar notions of head-normal forms involvingδ, ι andζ reductions or any combination of those
can also be defined.

4.4 Derived rules for environments

From the original rules of the type system, one can derive new rules which change the context of defini-
tion of objects in the environment. Because these rules correspond to elementary operations in the COQ

engine used in the discharge mechanism at the end of a section, we state them explicitly.

Mechanism of substitution. One rule which can be proved valid, is to replace a termc by its value
in the environment. As we defined the substitution of a term for a variable in a term, one can define the
substitution of a term for a constant. One easily extends this substitution to contexts and environments.

Substitution Property:
WF(E; Def(Γ)(c := t : T );F )[∆]
WF(E;F{c/t})[∆{c/t}]

Abstraction. One can modify the context of definition of a constantc by abstracting a constant with
respect to the last variablex of its defining context. For doing that, we need to check that the constants
appearing in the body of the declaration do not depend onx, we need also to modify the reference to the
constantc in the environment and context by explicitly applying this constant to the variablex. Because
of the rules for building environments and terms we know the variablex is available at each stage where
c is mentioned.

Abstracting property:

WF(E; Def(Γ :: (x : U))(c := t : T );F )[∆] WF(E)[Γ]
WF(E; Def(Γ)(c := λ x : U, t : ∀ x : U, T );F{c/(c x)})[∆{c/(c x)}]

Pruning the context. We said the judgmentWF(E)[Γ] means that the defining contexts of constants
in E are included inΓ. If one abstracts or substitutes the constants with the above rules then it may
happen that the contextΓ is now bigger than the one needed for defining the constants inE. Because
defining contexts are growing inE, the minimum context needed for defining the constants inE is the
same as the one for the last constant. One can consequently derive the following property.
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Pruning property:

WF(E; Def(∆)(c := t : T ))[Γ]
WF(E; Def(∆)(c := t : T ))[∆]

4.5 Inductive Definitions

A (possibly mutual) inductive definition is specified by giving the names and the type of the inductive
sets or families to be defined and the names and types of the constructors of the inductive predicates.
An inductive declaration in the environment can consequently be represented with two contexts (one for
inductive definitions, one for constructors).

Stating the rules for inductive definitions in their general form needs quite tedious definitions. We
shall try to give a concrete understanding of the rules by precising them on running examples. We take
as examples the type of natural numbers, the type of parameterized lists over a typeA, the relation which
states that a list has some given length and the mutual inductive definition of trees and forests.

4.5.1 Representing an inductive definition

Inductive definitions without parameters

As for constants, inductive definitions can be defined in a non-empty context.
We write Ind(Γ)(ΓI := ΓC ) an inductive definition valid in a contextΓ, a context of definitionsΓI

and a context of constructorsΓC .

Examples. The inductive declaration for the type of natural numbers will be:

Ind()(nat : Set := O : nat, S : nat→ nat )

In a context with a variableA : Set, the lists of elements inA is represented by:

Ind(A : Set)(List : Set := nil : List, cons : A→ List→ List )

AssumingΓI is [I1 : A1; . . . ; Ik : Ak], andΓC is [c1 : C1; . . . ; cn : Cn], the general typing rules are:

Ind(Γ)(ΓI := ΓC ) ∈ E j = 1 . . . k

(Ij : Aj) ∈ E

Ind(Γ)(ΓI := ΓC ) ∈ E i = 1..n

(ci : Ci) ∈ E

Inductive definitions with parameters

We have to slightly complicate the representation above in order to handle the delicate problem of
parameters. Let us explain that on the example ofList. As they were defined above, the typeList can
only be used in an environment where we have a variableA : Set. Generally one want to consider
lists of elements in different types. For constants this is easily done by abstracting the value over the
parameter. In the case of inductive definitions we have to handle the abstraction over several objects.

One possible way to do that would be to define the typeList inductively as being an inductive family
of typeSet→ Set:

Ind()(List : Set→ Set := nil : (A : Set)(List A), cons : (A : Set)A→ (List A)→ (List A) )
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There are drawbacks to this point of view. The information which says that(List nat) is an inductively
definedSet has been lost.

In the system, we keep track in the syntax of the context of parameters. The idea of these param-
eters is that they can be instantiated and still we have an inductive definition for which we know the
specification.

Formally the representation of an inductive declaration will beInd(Γ)[ΓP ](ΓI := ΓC ) for an in-
ductive definition valid in a contextΓ with parametersΓP , a context of definitionsΓI and a context of
constructorsΓC . The occurrences of the variables ofΓP in the contextsΓI andΓC are bound.

The definitionInd(Γ)[ΓP ](ΓI := ΓC ) will be well-formed exactly whenInd(Γ,ΓP )(ΓI := ΓC )
is. If ΓP is [p1 : P1; . . . ; pr : Pr], an object inInd(Γ)[ΓP ](ΓI := ΓC ) applied toq1, . . . , qr will behave
as the corresponding object ofInd(Γ)(ΓI{(pi/qi)i=1..r} := ΓC{(pi/qi)i=1..r} ) .

Examples The declaration for parameterized lists is:

Ind()[A : Set](List : Set := nil : List, cons : A→ List→ List )

The declaration for the length of lists is:

Ind()[A : Set](Length : (List A)→ nat→ Prop := Lnil : (Length (nil A) O),
Lcons : ∀a : A,∀l : (List A),∀n : nat, (Length l n)→ (Length (cons A a l) (S n)) )

The declaration for a mutual inductive definition of forests and trees is:

Ind()(tree : Set, forest : Set :=
node : forest→ tree, emptyf : forest, consf : tree→ forest→ forest )

These representations are the ones obtained as the result of the COQ declaration:

Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.

Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.

Coq < Inductive Length (A:Set) : list A -> nat -> Prop :=
Coq < | Lnil : Length A (nil A) O
Coq < | Lcons :
Coq < forall (a:A) (l:list A) (n:nat),
Coq < Length A l n -> Length A (cons A a l) (S n).

Coq < Inductive tree : Set :=
Coq < node : forest -> tree
Coq < with forest : Set :=
Coq < | emptyf : forest
Coq < | consf : tree -> forest -> forest.

The inductive declaration in COQ is slightly different from the one we described theoretically. The
difference is that in the type of constructors the inductive definition is explicitly applied to the parameters
variables. The COQ type-checker verifies that all parameters are applied in the correct manner in each
recursive call. In particular, the following definition will not be accepted because there is an occurrence
of List which is not applied to the parameter variable:

Coq < Inductive list’ (A:Set) : Set :=
Coq < | nil’ : list’ A
Coq < | cons’ : A -> list’ (A -> A) -> list’ A.
Coq < Coq < Error: The 1st argument of "list’" must be "A" in

A -> list’ (A -> A) -> list’ A
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4.5.2 Types of inductive objects

We have to give the type of constants in an environmentE which contains an inductive declaration.

Ind-Const AssumingΓP is [p1 : P1; . . . ; pr : Pr], ΓI is [I1 : A1; . . . ; Ik : Ak], andΓC is [c1 :
C1; . . . ; cn : Cn],

Ind(Γ)[ΓP ](ΓI := ΓC ) ∈ E j = 1 . . . k

(Ij : ∀ p1 : P1, . . .∀pr : Pr, Aj) ∈ E

Ind(Γ)[ΓP ](ΓI := ΓC ) ∈ E i = 1..n

(ci : ∀ p1 : P1, . . .∀pr : Pr, Ci{Ij/(Ij p1 . . . pr)}j=1...k) ∈ E

Example. We have(List : Set→ Set), (cons : ∀ A : Set, A→ (List A)→ (List A)),
(Length : ∀ A : Set, (List A)→ nat→ Prop), tree : Set andforest : Set.

From now on, we writeList_A instead of(List A) andLength_A for (Length A).

4.5.3 Well-formed inductive definitions

We cannot accept any inductive declaration because some of them lead to inconsistent systems. We
restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving the formal
rules, we need a few definitions:

Definitions A typeT is anarity of sorts if it converts to the sorts or to a product∀ x : T,U with U an
arity of sorts. (For instanceA→ Set or ∀ A : Prop, A→ Prop are arities of sort respectivelySet and
Prop). A type of constructor ofI is either a term(I t1 . . . tn) or ∀x : T,C with C a type of constructor
of I.

The type of constructorT will be said tosatisfy the positivity conditionfor a constantX in the
following cases:

• T = (X t1 . . . tn) andX does not occur free in anyti

• T = ∀ x : U, V andX occurs only strictly positively inU and the typeV satisfies the positivity
condition forX

The constantX occurs strictly positivelyin T in the following cases:

• X does not occur inT

• T converts to(X t1 . . . tn) andX does not occur in any ofti

• T converts to∀ x : U, V andX does not occur in typeU but occurs strictly positively in typeV

• T converts to(I a1 . . . am t1 . . . tp) whereI is the name of an inductive declaration of the form
Ind(Γ)[p1 : P1; . . . ; pm : Pm](I : A := c1 : C1; . . . ; cn : Cn ) (in particular, it is not mutually de-
fined and it hasm parameters) andX does not occur in any of theti, and the types of constructor
Ci{pj/aj}j=1...m of I satisfy the imbricated positivity condition forX

The type of constructorT of I satisfies the imbricated positivity conditionfor a constantX in the
following cases:

• T = (I t1 . . . tn) andX does not occur in anyti

• T = ∀ x : U, V andX occurs only strictly positively inU and the typeV satisfies the imbricated
positivity condition forX
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Example X occurs strictly positively inA → X or X ∗ A or (listX) but not in X → A or
(X → A) → A nor (neg A) assuming the notion of product and lists were already defined andneg is
an inductive definition with declarationInd()[A : Set](neg : Set := neg : (A→ False)→ neg ). As-
sumingX has aritynat→ Prop andex is the inductively defined existential quantifier, the occurrence
of X in (ex nat λ n : nat, (X n)) is also strictly positive.

Correctness rules. We shall now describe the rules allowing the introduction of a new inductive defi-
nition.

W-Ind Let E be an environment andΓ,ΓP ,ΓI ,ΓC are contexts such thatΓI is [I1 : A1; . . . ; Ik : Ak]
andΓC is [c1 : C1; . . . ; cn : Cn].

(E[Γ; ΓP ] ` Aj : s′j)j=1...k (E[Γ; ΓP ; ΓI ] ` Ci : spi)i=1...n

WF(E; Ind(Γ)[ΓP ](ΓI := ΓC ))[Γ]

providing the following side conditions hold:

• k > 0, Ij , ci are different names forj = 1 . . . k andi = 1 . . . n,

• for j = 1 . . . k we haveAj is an arity of sortsj andIj /∈ Γ ∪ E,

• for i = 1 . . . n we haveCi is a type of constructor ofIpi which satisfies the positivity
condition forI1 . . . Ik andci /∈ Γ ∪ E.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort
of the type of its constructors which will always be satisfied for the impredicative sort (Prop) but may
fail to define inductive definition on sortSet and generate constraints between universes for inductive
definitions in types.

Examples It is well known that existential quantifier can be encoded as an inductive definition. The
following declaration introduces the second-order existential quantifier∃X.P (X).

Coq < Inductive exProp (P:Prop->Prop) : Prop
Coq < := exP_intro : forall X:Prop, P X -> exProp P.

The same definition onSet is not allowed and fails :

Coq < Inductive exSet (P:Set->Prop) : Set
Coq < := exS_intro : forall X:Set, P X -> exSet P.
Coq < Coq < User error: Large non-propositional inductive types must be in Type

It is possible to declare the same inductive definition in the universeType. The exType inductive
definition has type(Typei → Prop)→ Typej with the constrainti < j.

Coq < Inductive exType (P:Type->Prop) : Type
Coq < := exT_intro : forall X:Type, P X -> exType P.

4.5.4 Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have
to say how to use an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them
are logically equivalent but not always equivalent from the computational point of view or from the user
point of view.
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From the computational point of view, we want to be able to define a function whose domain is an

inductively defined type by using a combination of case analysis over the possible constructors of the
object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalising
reduction, we cannot accept any sort of recursion (even terminating). So the basic idea is to restrict
ourselves to primitive recursive functions and functionals.

For instance, assuming a parameterA : Set exists in the context, we want to build a function
length of typeList_A → nat which computes the length of the list, so such that(length nil) = O and
(length (cons A a l)) = (S (length l)). We want these equalities to be recognized implicitly and taken
into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want
to capture the fact that we do not have any other way to build an object in this type. So when trying to
prove a property(P m) for m in an inductive definition it is enough to enumerate all the cases wherem
starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra prop-
erty that we have built the smallest fixed point of this recursive equation. This says that we are only
manipulating finite objects. This analysis provides induction principles.

For instance, in order to prove∀l : List_A, (Length_A l (length l)) it is enough to prove:
(Length_A nil (length nil)) and

∀a : A,∀l : List_A, (Length_A l (length l))→ (Length_A (cons A a l) (length (cons A a l))).

which given the conversion equalities satisfied bylength is the same as proving:(Length_A nil O) and
∀a : A,∀l : List_A, (Length_A l (length l))→ (Length_A (cons A a l) (S (length l))).

One conceptually simple way to do that, following the basic scheme proposed by Martin-Löf in his
Intuitionistic Type Theory, is to introduce for each inductive definition an elimination operator. At the
logical level it is a proof of the usual induction principle and at the computational level it implements a
generic operator for doing primitive recursion over the structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq to
factorize the operator for primitive recursion into two more primitive operations as was first suggested
by Th. Coquand in [25]. One is the definition by pattern-matching. The second one is a definition by
guarded fixpoints.

The match...with ...end construction.

The basic idea of this destructor operation is that we have an objectm in an inductive typeI and we
want to prove a property(P m) which in general depends onm. For this, it is enough to prove the
property form = (ci u1 . . . upi) for each constructor ofI.

The COQ term for this proof will be written :

match m with (c1 x11 ... x1p1)⇒ f1 | . . . | (cn xn1...xnpn)⇒ fn end

In this expression, ifm is a term built from a constructor(ci u1 . . . upi) then the expression will behave
as it is specified withi-th branch and will reduce tofi where thexi1. . .xipi are replaced by theu1 . . . up

according to theι-reduction.
Actually, for type-checking amatch. . . with. . . end expression we also need to know the predicate

P to be proved by case analysis. COQ can sometimes infer this predicate but sometimes not. The
concrete syntax for describing this predicate uses theas. . . return construction. The predicate will be
explicited using the syntax :

match m as x return (P x) with (c1 x11 ... x1p1)⇒ f1 | . . . | (cn xn1...xnpn)⇒ fnend
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For the purpose of presenting the inference rules, we use a more compact notation :

case(m, (λx, P ), λx11 ... x1p1 , f1 | . . . | λxn1...xnpn , fn)

This is the basic idea which is generalized to the case whereI is an inductively definedn-ary relation
(in which case the propertyP to be proved will be an + 1-ary relation).

Non-dependent elimination. When defining a function by case analysis, we build an object of type
I → C and the minimality principle on an inductively defined logical predicate of typeA → Prop
is often used to prove a property∀x : A, (I x) → (C x). This is a particular case of the dependent
principle that we stated before with a predicate which does not depend explicitly on the object in the
inductive definition.

For instance, a function testing whether a list is empty can be defined as:

λ l : List_A, case(l, bool, nil ⇒ true | (cons a m) ⇒ false)

Allowed elimination sorts. An important question for building the typing rule formatch is what can
be the type ofP with respect to the type of the inductive definitions.

We define now a relation[I : A|B] between an inductive definitionI of typeA, an arityB which
says that an object in the inductive definitionI can be eliminated for proving a propertyP of typeB.

The case of inductive definitions in sortsSet or Type is simple. There is no restriction on the sort of
the predicate to be eliminated.

Notations. The [I : A|B] is defined as the smallest relation satisfying the following rules: We write
[I|B] for [I : A|B] whereA is the type ofI.

Prod
[(I x) : A′|B′]

[I : (x : A)A′|(x : A)B′]

Set& Type
s1 ∈ {Set, Type(j)}, s2 ∈ S

[I : s1|I → s2]

The case of Inductive Definitions of sortProp is a bit more complicated, because of our interpre-
tation of this sort. The only harmless allowed elimination, is the one when predicateP is also of sort
Prop.

Prop
[I : Prop|I → Prop]

Prop is the type of logical propositions, the proofs of propertiesP in Prop could not be used for
computation and are consequentely ignored by the extraction mechanism. AssumeA andB are two
propositions, and the logical disjunctionA ∨B is defined inductively by :

Coq < Inductive or (A B:Prop) : Prop :=
Coq < lintro : A -> or A B | rintro : B -> or A B.

The following definition which computes a boolean value by case over the proof ofor A B is not
accepted :
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Coq < Definition choice (A B: Prop) (x:or A B) :=
Coq < match x with lintro a => true | rintro b => false end.
Coq < Coq < Error: Incorrect elimination of "x" in the inductive type

or
The elimination predicate "fun _ : or A B => bool" has type

"or A B -> Set"
It should be one of :

"Prop"
Elimination of an inductive object of sort : "Prop"
is not allowed on a predicate in sort : "Set"
because non-informative objects may not construct informative ones.

From the computational point of view, the structure of the proof of(or A B) in this term is needed
for computing the boolean value.

In general, ifI has typeProp thenP cannot have typeI → Set, because it will mean to build
an informative proof of type(P m) doing a case analysis over a non-computational object that will
disappear in the extracted program. But the other way is safe with respect to our interpretation we can
haveI a computational object andP a non-computational one, it just corresponds to proving a logical
property of a computational object.

In the same spirit, elimination onP of typeI → Type cannot be allowed because it trivially implies
the elimination onP of typeI → Set by cumulativity. It also implies that there is two proofs of the same
property which are provably different, contradicting the proof-irrelevance property which is sometimes
a useful axiom :

Coq < Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y.
proof_irrelevance is assumed

The elimination of an inductive definition of typeProp on a predicateP of typeI → Type leads to a
paradox when applied to impredicative inductive definition like the second-order existential quantifier
exProp defined above, because it give access to the two projections on this type.

Empty and singleton elimination There are special inductive definitions inProp for which more
eliminations are allowed.

Prop -extended
I is an empty or singleton definitions ∈ S

[I : Prop|I → s]

A singleton definitionhas only one constructor and all the arguments of this constructor have type
Prop. In that case, there is a canonical way to interpret the informative extraction on an object in that
type, such that the elimination on any sorts is legal. Typical examples are the conjunction of non-
informative propositions and the equality. If there is an hypothesish : a = b in the context, it can be
used for rewriting not only in logical propositions but also in any type.

Coq < Print eq_rec.
eq_rec =
fun (A : Type) (x : A) (P : A -> Set) => eq_rect x P

: forall (A : Type) (x : A) (P : A -> Set),
P x -> forall y : A, x = y -> P y

Argument A is implicit
Argument scopes are [type_scope _ _ _ _ _]

Coq < Extraction eq_rec.
(** val eq_rec : ’a1 -> ’a2 -> ’a1 -> ’a2 **)
let eq_rec x f y =

f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.
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Type of branches. Let c be a term of typeC, we assumeC is a type of constructor for an inductive
definitionI. Let P be a term that represents the property to be proved. We assumer is the number of
parameters.

We define a new type{c : C}P which represents the type of the branch corresponding to thec : C
constructor.

{c : (Ii p1 . . . pr t1 . . . tp)}P ≡ (P t1 . . . tp c)

{c : ∀ x : T,C}P ≡ ∀ x : T, {(c x) : C}P

We write{c}P for {c : C}P with C the type ofc.

Examples. For List_A the type ofP will be List_A→ s for s ∈ S.
{(cons A)}P ≡ ∀a : A,∀l : List_A, (P (cons A a l)).

For Length_A, the type ofP will be ∀l : List_A,∀n : nat, (Length_A l n) → Prop and the
expression{(Lcons A)}P is defined as:
∀a : A,∀l : List_A,∀n : nat,∀h : (Length_A l n), (P (cons A a l) (S n) (Lcons A a l n l)).
If P does not depend on its third argument, we find the more natural expression:
∀a : A,∀l : List_A,∀n : nat, (Length_A l n)→ (P (cons A a l) (S n)).

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

match

E[Γ] ` c : (I q1 . . . qr t1 . . . ts) E[Γ] ` P : B [(I q1 . . . qr)|B] (E[Γ] ` fi : {(cpi q1 . . . qr)}P )i=1...l

E[Γ] ` case(c, P, f1 . . . fl) : (P t1 . . . ts c)

providedI is an inductive type in a declarationInd(∆)[ΓP ](ΓI := ΓC ) with |ΓP | = r, ΓC =
[c1 : C1; . . . ; cn : Cn] andcp1 . . . cpl

are the only constructors ofI.

Example. For List andLength the typing rules for thematch expression are (writing justt : M
instead ofE[Γ] ` t : M , the environment and context being the same in all the judgments).

l : List_A P : List_A→ s f1 : (P (nil A)) f2 : ∀a : A,∀l : List_A, (P (cons A a l))
case(l, P, f1 f2) : (P l)

H : (Length_A L N)
P : ∀l : List_A,∀n : nat, (Length_A l n)→ Prop

f1 : (P (nil A) O Lnil)
f2 : ∀a : A,∀l : List_A,∀n : nat,∀h : (Length_A l n), (P (cons A a n) (S n) (Lcons A a l n h))

case(H,P, f1 f2) : (P L N H)

Definition of ι-reduction. We still have to define theι-reduction in the general case.
A ι-redex is a term of the following form:

case((cpi q1 . . . qr a1 . . . am), P, f1 . . . fl)

with cpi thei-th constructor of the inductive typeI with r parameters.
Theι-contraction of this term is(fi a1 . . . am) leading to the general reduction rule:

case((cpi q1 . . . qr a1 . . . am), P, f1 . . . fn) .ι (fi a1 . . . am)
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4.5.5 Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually
recursive definitions. The basic concrete syntax for a recursive set of mutually recursive declarations is
(with Γi contexts) :

fix f1(Γ1) : A1 := t1 with . . . with fn(Γn) : An := tn

The terms are obtained by projections from this set of declarations and are written

fix f1(Γ1) : A1 := t1 with . . . with fn(Γn) : An := tn for fi

In the inference rules, we represent such a term by

Fix fi{f1 : A′
1 := t′1 . . . fn : A′

n := t′n}

with t′i (resp.A′
i) representing the termti abstracted (resp. generalised) with respect to the bindings in

the contextΓi, namelyt′i = λΓi, ti andA′
i = ∀Γi, Ai.

Typing rule

The typing rule is the expected one for a fixpoint.

Fix
(E[Γ] ` Ai : si)i=1...n (E[Γ, f1 : A1, . . . , fn : An] ` ti : Ai)i=1...n

E[Γ] ` Fix fi{f1 : A1 := t1 . . . fn : An := tn} : Ai

Any fixpoint definition cannot be accepted because non-normalizing terms will lead to proofs of
absurdity.

The basic scheme of recursion that should be allowed is the one needed for defining primitive re-
cursive functionals. In that case the fixpoint enjoys a special syntactic restriction, namely one of the
arguments belongs to an inductive type, the function starts with a case analysis and recursive calls are
done on variables coming from patterns and representing subterms.

For instance in the case of natural numbers, a proof of the induction principle of type

∀P : nat→ Prop, (P O)→ ((n : nat)(P n)→ (P (S n)))→ ∀n : nat, (P n)

can be represented by the term:

λP : nat→ Prop, λf : (P O), λg : (∀n : nat, (P n)→ (P (S n))),
Fix h{h : ∀n : nat, (P n) := λn : nat, case(n, P, f λp : nat, (g p (h p)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is
“guarded”. A precise analysis of this notion can be found in [59].

The first stage is to precise on which argument the fixpoint will be decreasing. The type of this
argument should be an inductive definition.

For doing this the syntax of fixpoints is extended and becomes

Fix fi{f1/k1 : A1 := t1 . . . fn/kn : An := tn}

whereki are positive integers. EachAi should be a type (reducible to a term) starting with at leastki

products∀y1 : B1, . . .∀yki
: Bki

, A′
i andBki

being an instance of an inductive definition.
Now in the definitionti, if fj occurs then it should be applied to at leastkj arguments and thekj-th

argument should be syntactically recognized as structurally smaller thanyki
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The definition of being structurally smaller is a bit technical. One needs first to define the notion of

recursive arguments of a constructor. For an inductive definitionInd(Γ)[ΓP ](ΓI := ΓC ), the type of
a constructorc have the form∀p1 : P1, . . .∀pr : Pr,∀x1 : T1, . . .∀xr : Tr, (Ij p1 . . . pr t1 . . . ts) the
recursive arguments will correspond toTi in which one of theIl occurs.

The main rules for being structurally smaller are the following:
Given a variabley of type an inductive definition in a declarationInd(Γ)[ΓP ](ΓI := ΓC ) whereΓI is
[I1 : A1; . . . ; Ik : Ak], andΓC is [c1 : C1; . . . ; cn : Cn]. The terms structurally smaller thany are:

• (t u), λx : u, t whent is structurally smaller thany .

• case(c, P, f1 . . . fn) when eachfi is structurally smaller thany.
If c is y or is structurally smaller thany, its type is an inductive definitionIp part of the induc-
tive declaration corresponding toy. Eachfi corresponds to a type of constructorCq ≡ ∀y1 :
B1, . . .∀yk : Bk, (I a1 . . . ak) and can consequently be writtenλy1 : B′

1, . . . λyk : B′
k, gi. (B′

i

is obtained fromBi by substituting parameters variables) the variablesyj occurring ingi cor-
responding to recursive argumentsBi (the ones in which one of theIl occurs) are structurally
smaller thany.

The following definitions are correct, we enter them using theFixpoint command as described in
section 1.3.4 and show the internal representation.

Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S p => S (plus p m)
Coq < end.
plus is recursively defined

Coq < Print plus.
plus =
(fix plus (n m : nat) {struct n} : nat :=

match n with
| O => m
| S p => S (plus p m)
end)

: nat -> nat -> nat

Coq < Fixpoint lgth (A:Set) (l:list A) {struct l} : nat :=
Coq < match l with
Coq < | nil => O
Coq < | cons a l’ => S (lgth A l’)
Coq < end.
lgth is recursively defined

Coq < Print lgth.
lgth =
(fix lgth (A : Set) (l : list A) {struct l} : nat :=

match l with
| nil => O
| cons _ l’ => S (lgth A l’)
end)

: forall A : Set, list A -> nat
Argument scopes are [type_scope _]

Coq < Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
Coq < with sizef (f:forest) : nat :=
Coq < match f with
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Coq < | emptyf => O
Coq < | consf t f => plus (sizet t) (sizef f)
Coq < end.
sizet, sizef are recursively defined

Coq < Print sizet.
sizet =
fix sizet (t : tree) : nat :=

let (f) := t in S (sizef f)
with sizef (f : forest) : nat :=

match f with
| emptyf => O
| consf t f0 => plus (sizet t) (sizef f0)
end

for sizet
: tree -> nat

Reduction rule

Let F be the set of declarations:f1/k1 : A1 := t1 . . . fn/kn : An := tn. The reduction for fixpoints is:

(Fix fi{F} a1 . . . aki
) .ι ti{(fk/Fix fk{F})k=1...n}

whenaki
starts with a constructor. This last restriction is needed in order to keep strong normalization

and corresponds to the reduction for primitive recursive operators.
We can illustrate this behavior on examples.

Coq < Goal forall n m:nat, plus (S n) m = S (plus n m).
1 subgoal

============================
forall n m : nat, plus (S n) m = S (plus n m)

Coq < reflexivity.
Proof completed.

Coq < Abort.
Current goal aborted

Coq < Goal forall f:forest, sizet (node f) = S (sizef f).
1 subgoal

============================
forall f : forest, sizet (node f) = S (sizef f)

Coq < reflexivity.
Proof completed.

Coq < Abort.
Current goal aborted

But assuming the definition of a son function fromtree to forest:

Coq < Definition sont (t:tree) : forest
Coq < := let (f) := t in f.
sont is defined

The following is not a conversion but can be proved after a case analysis.
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Coq < Goal forall t:tree, sizet t = S (sizef (sont t)).
Coq < Coq < 1 subgoal

============================
forall t : tree, sizet t = S (sizef (sont t))

Coq < reflexivity. (** this one fails **)
Toplevel input, characters 0-11
> reflexivity.
> ^^^^^^^^^^^
Error: Impossible to unify "S (sizef (sont t))" with "sizet t"

Coq < destruct t.
1 subgoal

f : forest
============================

sizet (node f) = S (sizef (sont (node f)))

Coq < reflexivity.
Proof completed.

Mutual induction

The principles of mutual induction can be automatically generated using theScheme command de-
scribed in section 8.13.

4.6 Coinductive types

The implementation contains also coinductive definitions, which are types inhabited by infinite objects.
More information on coinductive definitions can be found in [60, 61].

4.7 CIC : the Calculus of Inductive Construction with impredicative Set

COQ can be used as a type-checker for CIC, the original Calculus of Inductive Constructions with an
impredicative sortSet by using the compiler option-impredicative-set .

For example, using the ordinarycoqtop command, the following is rejected.

Coq < Definition id: Set := forall X:Set,X->X.
Coq < Coq < Coq < Coq < Toplevel input, characters 192-202
> Definition id: Set := forall X:Set,X->X.
> ^^^^^^^^^^
Error: The term "forall X : Set, X -> X" has type "Type"

while it is expected to have type "Set"

while it will type-check, if one use instead thecoqtop -impredicative-set command.
The major change in the theory concerns the rule for product formation in the sortSet, which is

extended to a domain in any sort :

Prod
E[Γ] ` T : s s ∈ S E[Γ :: (x : T )] ` U : Set

E[Γ] ` ∀ x : T,U : Set
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This extension has consequences on the inductive definitions which are allowed. In the impredicative
system, one can build so-calledlarge inductive definitionslike the example of second-order existential
quantifier (exSet ).

There should be restrictions on the eliminations which can be performed on such definitions. The
eliminations rules in the impredicative system for sortSet become :

Set
s ∈ {Prop, Set}
[I : Set|I → s]

I is a small inductive definition s ∈ {Type(i)}
[I : Set|I → s]
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Chapter 5

The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to
structure large developments as well as a mean of massive abstraction.

5.1 Modules and module types

Access path. It is denoted byp, it can be either a module variableX or, if p′ is an access path andid
an identifier, thenp′.id is an access path.

Structure element. It is denoted byImpl and is either a definition of a constant, an assumption, a
definition of an inductive or a definition of a module or a module type abbreviation.

Module expression. It is denoted byM and can be:

• an access pathp

• a structureStruct Impl ;. . .;Impl End

• a functorFunctor(X : T ) M ′, whereX is a module variable,T is a module type andM ′ is a
module expression

• an application of access pathsp′p′′

Signature element. It is denoted bySpec, it is a specification of a constant, an assumption, an induc-
tive, a module or a module type abbreviation.

Module type, denoted byT can be:

• a module type name

• an access pathp

• a signatureSig Spec;. . .;SpecEnd

• a functor typeFunsig(X : T ′) T ′′, whereT ′ andT ′′ are module types

Module definition, written Mod(X : T := M) can be a structure element. It consists of a module
variableX, a module typeT and a module expressionM .
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Module specification, writtenModS(X : T ) or ModSEq(X : T == p) can be a signature element or
a part of an environment. It consists of a module variableX, a module typeT and, optionally, a module
pathp.

Module type abbreviation, written ModType(S := T ), whereS is a module type name andT is a
module type.

5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environ-
ments given in section 4.1. The environments, apart from definitions of constants and inductive types
now also hold any other signature elements. Terms, apart from variables, constants and complex terms,
include also access paths.

We also need additional typing judgments:

• E[] ` WF(T ), denoting that a module typeT is well-formed,

• E[] `M : T , denoting that a module expressionM has typeT in environmentE.

• E[] ` Impl : Spec, denoting that an implementationImpl verifies a specificationSpec

• E[] ` T1 <: T2, denoting that a module typeT1 is a subtype of a module typeT2.

• E[] ` Spec1 <: Spec2, denoting that a specificationSpec1 is more precise that a specification
Spec2.

The rules for forming module types are the following:

WF-SIG
WF(E;E′)[]

E[] ` WF(Sig E′ End)

WF-FUN
E;ModS(X : T )[] ` WF(T ′)
E[] ` WF(Funsig(X : T ) T ′)

Rules for typing module expressions:

MT-STRUCT
E[] ` WF(Sig Spec1; . . . ; Specn End)

E; Spec1; . . . ; Speci−1[] ` Impl i : Speci for i = 1 . . . n

E[] ` Struct Impl1; . . . ; Impln End : Sig Spec1; . . . ; Specn End

MT-FUN
E;ModS(X : T )[] `M : T ′

E[] ` Functor(X : T ) M : Funsig(X : T ) T ′

MT-APP
E[] ` p : Funsig(X1 : T1) . . .Funsig(Xn : Tn) T ′

E[] ` pi : Ti{X1/p1 . . . Xi−1/pi−1} for i = 1 . . . n

E[] ` p p1 . . . pn : T ′{X1/p1 . . . Xn/pn}

MT-SUB
E[] `M : T E[] ` T <: T ′

E[] `M : T ′
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MT-STR

E[] ` p : T

E[] ` p : T/p

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The
notationT/p has the following meaning:

• if T = Sig Spec1; . . . ; Specn End thenT/p = Sig Spec1/p; . . . ; Specn/p End whereSpec/p is
defined as follows:

– Def()(c := U : t)/p = Def()(c := U : t)

– Assum()(c : U)/p = Def()(c := p.c : U)

– ModS(X : T )/p = ModSEq(X : T/p.X == p.X)

– ModSEq(X : T == p′)/p = ModSEq(X : T/p == p′)

– Ind()[ΓP ](ΓC := ΓI )/p = Indp()[ΓP ](ΓC := ΓI )

– Indp′()[ΓP ](ΓC := ΓI ) /p = Indp′()[ΓP ](ΓC := ΓI )

• if T = Funsig(X : T ′) T ′′ thenT/p = T

• if T is an access path or a module type name, then we have to unfold its definition and proceed
according to the rules above.

The notation Indp()[ΓP ](ΓC := ΓI ) denotes an inductive definition that is definitionally equal
to the inductive definition in the module denoted by the pathp. All rules which have
Ind()[ΓP ](ΓC := ΓI ) as premises are also valid forIndp()[ΓP ](ΓC := ΓI ) . We give the formation
rule for Indp()[ΓP ](ΓC := ΓI ) below as well as the equality rules on inductive types and constructors.

The module subtyping rules:

MSUB-SIG
E; Spec1; . . . ; Specn[] ` Specσ(i) <: Spec′i for i = 1..m

σ : {1 . . .m} → {1 . . . n} injective

E[] ` Sig Spec1; . . . ; Specn End <: Sig Spec′1; . . . ; Spec′m End

MSUB-FUN
E[] ` T ′

1 <: T1 E;ModS(X : T ′
1)[] ` T2 <: T ′

2

E[] ` Funsig(X : T1) T2 <: Funsig(X : T ′
1) T ′

2

Specification subtyping rules:

ASSUM-ASSUM
E[] ` U1 ≤βδιζ U2

E[] ` Assum()(c : U1) <: Assum()(c : U2)

DEF-ASSUM
E[] ` U1 ≤βδιζ U2

E[] ` Def()(c := t : U1) <: Assum()(c : U2)

ASSUM-DEF
E[] ` U1 ≤βδιζ U2 E[] ` c =βδιζ t2

E[] ` Assum()(c : U1) <: Def()(c := t2 : U2)

DEF-DEF
E[] ` U1 ≤βδιζ U2 E[] ` t1 =βδιζ t2

E[] ` Def()(c := t1 : U1) <: Def()(c := t2 : U2)
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IND-IND

E[] ` ΓP =βδιζ Γ′
P E[ΓP ] ` ΓC =βδιζ Γ′

C E[ΓP ; ΓC ] ` ΓI =βδιζ Γ′
I

E[] ` Ind()[ΓP ](ΓC := ΓI ) <: Ind()[Γ′
P ](Γ′

C := Γ′
I )

INDP-IND

E[] ` ΓP =βδιζ Γ′
P E[ΓP ] ` ΓC =βδιζ Γ′

C E[ΓP ; ΓC ] ` ΓI =βδιζ Γ′
I

E[] ` Indp()[ΓP ](ΓC := ΓI ) <: Ind()[Γ′
P ](Γ′

C := Γ′
I )

INDP-INDP

E[] ` ΓP =βδιζ Γ′
P E[ΓP ] ` ΓC =βδιζ Γ′

C E[ΓP ; ΓC ] ` ΓI =βδιζ Γ′
I E[] ` p =βδιζ p′

E[] ` Indp()[ΓP ](ΓC := ΓI ) <: Indp′()[Γ′
P ](Γ′

C := Γ′
I )

MODS-MODS
E[] ` T1 <: T2

E[] ` ModS(m : T1) <: ModS(m : T2)

MODEQ-MODS
E[] ` T1 <: T2

E[] ` ModSEq(m : T1 == p) <: ModS(m : T2)

MODS-MODEQ
E[] ` T1 <: T2 E[] ` m =βδιζ p2

E[] ` ModS(m : T1) <: ModSEq(m : T2 == p2)

MODEQ-MODEQ

E[] ` T1 <: T2 E[] ` p1 =βδιζ p2

E[] ` ModSEq(m : T1 == p1) <: ModSEq(m : T2 == p2)

MODTYPE-MODTYPE

E[] ` T1 <: T2 E[] ` T2 <: T1

E[] ` ModType(S := T1) <: ModType(S := T2)

Verification of the specification

IMPL-SPEC
WF(E; Spec)[]

Specis one ofDef,Assum, Ind,ModType

E[] ` Spec: Spec

MOD-MODS
WF(E;ModS(m : T ))[] E[] `M : T

E[] ` Mod(m : T := M) : ModS(m : T )

MOD-MODEQ
WF(E;ModSEq(m : T == p))[] E[] ` p =βδιζ p′

E[] ` Mod(m : T := p′) : ModSEq(m : T == p′)

New environment formation rules
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WF-MODS

WF(E)[] E[] ` WF(T )
WF(E;ModS(m : T ))[]

WF-MODEQ
WF(E)[] E[] ` p : T

WF(E,ModSEq(m : T == p))[]

WF-MODTYPE
WF(E)[] E[] ` WF(T )
WF(E,ModType(S := T ))[]

WF-IND

WF(E; Ind()[ΓP ](ΓC := ΓI ))[]
E[] ` p : Sig Spec1; . . . ; Specn; Ind()[Γ′

P ](Γ′
C := Γ′

I ); . . . End :
E[] ` Ind()[Γ′

P ](Γ′
C := Γ′

I ){p.l/l}l∈labels(Spec1;...;Specn) <: Ind()[ΓP ](ΓC := ΓI )

WF(E; Indp()[ΓP ](ΓC := ΓI ) )[]

Component access rules

ACC-TYPE
E[Γ] ` p : Sig Spec1; . . . ;Speci; Assum()(c : U); . . . End

E[Γ] ` p.c : U{p.l/l}l∈labels(Spec1;...;Speci)

E[Γ] ` p : Sig Spec1; . . . ;Speci; Def()(c := t : U); . . . End

E[Γ] ` p.c : U{p.l/l}l∈labels(Spec1;...;Speci)

ACC-DELTA Notice that the following rule extends the delta rule defined in section 4.3

E[Γ] ` p : Sig Spec1; . . . ;Speci; Def()(c := t : U); . . . End

E[Γ] ` p.c .δ t{p.l/l}l∈labels(Spec1;...;Speci)

In the rules below we assumeΓP is [p1 : P1; . . . ; pr : Pr], ΓI is [I1 : A1; . . . ; Ik : Ak], andΓC is
[c1 : C1; . . . ; cn : Cn]

ACC-IND
E[Γ] ` p : Sig Spec1; . . . ; Speci; Ind()[ΓP ](ΓC := ΓI ); . . . End

E[Γ] ` p.Ij : (p1 : P1) . . . (pr : Pr)Aj{p.l/l}l∈labels(Spec1;...;Speci)

E[Γ] ` p : Sig Spec1; . . . ; Speci; Ind()[ΓP ](ΓC := ΓI ); . . . End

E[Γ] ` p.cm : (p1 : P1) . . . (pr : Pr)Cm{Ij/(Ij p1 . . . pr)}j=1...k{p.l/l}l∈labels(Spec1;...;Speci)

ACC-INDP
E[] ` p : Sig Spec1; . . . ; Specn; Indp′()[ΓP ](ΓC := ΓI ) ; . . . End

E[] ` p.Ii .δ p′.Ii

E[] ` p : Sig Spec1; . . . ; Specn; Indp′()[ΓP ](ΓC := ΓI ) ; . . . End

E[] ` p.ci .δ p′.ci
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ACC-MOD

E[Γ] ` p : Sig Spec1; . . . ;Speci;ModS(m : T ); . . . End

E[Γ] ` p.m : T{p.l/l}l∈labels(Spec1;...;Speci)

E[Γ] ` p : Sig Spec1; . . . ;Speci;ModSEq(m : T == p′); . . . End

E[Γ] ` p.m : T{p.l/l}l∈labels(Spec1;...;Speci)

ACC-MODEQ

E[Γ] ` p : Sig Spec1; . . . ;Speci;ModSEq(m : T == p′); . . . End

E[Γ] ` p.m .δ p′{p.l/l}l∈labels(Spec1;...;Speci)

ACC-MODTYPE

E[Γ] ` p : Sig Spec1; . . . ;Speci;ModType(S := T ); . . . End

E[Γ] ` p.S .δ T{p.l/l}l∈labels(Spec1;...;Speci)

The functionlabels() is used to calculate the set of label of the set of specifications. It is defined
by labels(Spec1; . . . ; Specn) = labels(Spec1) ∪ . . . ;∪labels(Specn) wherelabels(Spec) is defined as
follows:

• labels(Assum(Γ)(c : U)) = {c},

• labels(Def(Γ)(c := t : U)) = {c},

• labels(Ind(Γ)[ΓP ](ΓC := ΓI )) = dom(ΓC) ∪ dom(ΓI),

• labels(ModS(m : T )) = {m},

• labels(ModSEq(m : T == M)) = {m},

• labels(ModType(S := T )) = {S}

Environment access for modules and module types

ENV-MOD
WF(E;ModS(m : T );E′)[Γ]

E;ModS(m : T );E′[Γ] ` m : T

WF(E;ModSEq(m : T == p);E′)[Γ]
E;ModSEq(m : T == p);E′[Γ] ` m : T

ENV-MODEQ
WF(E;ModSEq(m : T == p);E′)[Γ]

E;ModSEq(m : T == p);E′[Γ] ` m .δ p

ENV-MODTYPE
WF(E;ModType(S := T );E′)[Γ]

E;ModType(S := T );E′[Γ] ` S .δ T

ENV-INDP
WF(E; Indp()[ΓP ](ΓC := ΓI ) )[]

E; Indp()[ΓP ](ΓC := ΓI ) [] ` Ii .δ p.Ii

WF(E; Indp()[ΓP ](ΓC := ΓI ) )[]
E; Indp()[ΓP ](ΓC := ΓI ) [] ` ci .δ p.ci
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Chapter 6

Vernacular commands

6.1 Displaying

6.1.1 Print qualid .

This command displays on the screen informations about the declared or defined object referred by
qualid .

Error messages:

1. qualid not a defined object

Variants:

1. Print Term qualid .
This is a synonym toPrint qualid whenqualid denotes a global constant.

2. About qualid .
This displays various informations about the object denoted byqualid : its kind (module, constant,
assumption, inductive, constructor, abbreviation. . . ), long name, type, implicit arguments and
argument scopes.

6.1.2 Print All.

This command displays informations about the current state of the environment, including sections and
modules.

Variants:

1. Inspect num.
This command displays thenum last objects of the current environment, including sections and
modules.

2. Print Section ident .
should correspond to a currently open section, this command displays the objects defined since
the beginning of this section.

6.2 Requests to the environment

6.2.1 Check term.

This command displays the type ofterm. When called in proof mode, the term is checked in the local
context of the current subgoal.
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6.2.2 Eval convtactic in term.

This command performs the specified reduction onterm, and displays the resulting term with its type.
The term to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in
progress).

See also:section 8.5.

6.2.3 Extraction term.

This command displays the extracted term fromterm. The extraction is processed according to the
distinction betweenSet andProp; that is to say, between logical and computational content (see section
4.1.1). The extracted term is displayed in Objective Caml syntax, where global identifiers are still
displayed as in COQ terms.

Variants:

1. Recursive Extraction qualid1 ... qualidn.
Recursively extracts all the material needed for the extraction of globalsqualid1 . . . qualidn.

See also:chapter 18.

6.2.4 Opaque qualid 1 ... qualidn.

This command tells not to unfold the the constantsqualid1 . . .qualidn in tactics usingδ-conversion.
Unfolding a constant is replacing it by its definition.Opaque can only apply on constants originally
defined asTransparent .

Constants defined by a proof ended byQed are automatically stamped asOpaque and can no
longer be considered asTransparent . This is to keep with the usual mathematical practice ofproof
irrelevance: what matters in a mathematical development is the sequence of lemma statements, not their
actual proofs. This distinguishes lemmas from the usual defined constants, whose actual values are of
course relevant in general.

See also:sections 8.5, 8.11, 7.1.4

Error messages:

1. The reference qualid was not found in the current environment
There is no constant referred byqualid in the environment. Nevertheless, if you askedOpaque
foo bar and ifbar does not exist,foo is set opaque.

6.2.5 Transparent qualid 1 ... qualidn.

This command is the converse ofOpaque and can only apply on constants originally defined as
Transparent to restore their initial behaviour after anOpaque command.

The constants automatically declared transparent are the ones defined by a proof ended by
Defined , or by aDefinition or Local with an explicit body.

Warning: Transparent andOpaque are not synchronous with the reset mechanism. If a constant
was transparent at point A, if you set it opaque at point B and reset to point A, you return to state of point
A with the difference that the constant is still opaque. This can cause changes in tactic scripts behaviour.

At section or module closing, a constant recovers the status it got at the time of its definition.

Error messages:
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1. The reference qualid was not found in the current environment

There is no constant referred byqualid in the environment.

See also:sections 8.5, 8.11, 7.1.4

6.2.6 Search qualid .

This command displays the name and type of all theorems of the current context whose statement’s
conclusion has the form( qualid t1 .. tn) . This command is useful to remind the user of the
name of library lemmas.Error messages:

1. The reference qualid was not found in the current environment
There is no constant in the environment namedqualid .

Variants:

1. Search qualid inside module1 ... modulen.

This restricts the search to constructions defined in modulesmodule1 . . . modulen.

2. Search qualid outside module1 ... modulen.

This restricts the search to constructions not defined in modulesmodule1 . . . modulen.

Error messages:

(a) Module/section module not found No modulemodule has been required (see sec-
tion 6.4.1).

6.2.7 SearchAbout qualid .

This command displays the name and type of all objects (theorems, axioms, etc) of the current context
whose statement containsqualid . This command is useful to remind the user of the name of library
lemmas.

Error messages:

1. The reference qualid was not found in the current environment
There is no constant in the environment namedqualid .

Variants:

1. SearchAbout [ qualid-or-string ... qualid-or-string ].
wherequalid-or-string is aqualid or astring.

This extension ofSearchAbout searches for all objects whose statement mentions all ofqualid
of the list and whose name contains allstring of the list.

Example:

Coq < Require Import ZArith.

Coq < SearchAbout [ Zmult Zplus "distr" ].
weak_Zmult_plus_distr_r:

forall (p : positive) (n m : Z),
(Zpos p * (n + m))%Z = (Zpos p * n + Zpos p * m)%Z
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Zmult_plus_distr_r:

forall n m p : Z, (n * (m + p))%Z = (n * m + n * p)%Z
Zmult_plus_distr_l:

forall n m p : Z, ((n + m) * p)%Z = (n * p + m * p)%Z
OmegaLemmas.fast_Zmult_plus_distr:

forall (n m p : Z) (P : Z -> Prop),
P (n * p + m * p)%Z -> P ((n + m) * p)%Z

2. SearchAbout term inside module1 ... modulen.
SearchAbout [ qualid-or-string ... qualid-or-string ] inside module1 ... modulen.

This restricts the search to constructions defined in modulesmodule1 . . . modulen.

3. SearchAbout term outside module1... modulen.
SearchAbout [ qualid-or-string ... qualid-or-string ] outside module1... modulen.

This restricts the search to constructions not defined in modulesmodule1 . . . modulen.

6.2.8 SearchPattern term.

This command displays the name and type of all theorems of the current context whose statement’s
conclusion matches the expressionterm where holes in the latter are denoted by “_”.

Coq < Require Import Arith.

Coq < SearchPattern (_ + _ = _ + _).
plus_comm: forall n m : nat, n + m = m + n
plus_Snm_nSm: forall n m : nat, S n + m = n + S m
plus_assoc: forall n m p : nat, n + (m + p) = n + m + p
plus_permute: forall n m p : nat, n + (m + p) = m + (n + p)
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)
plus_permute_2_in_4:

forall n m p q : nat, n + m + (p + q) = n + p + (m + q)

Patterns need not be linear: you can express that the same expression must occur in two places by
using pattern variables ‘?ident”.

Coq < Require Import Arith.

Coq < SearchPattern (?X1 + _ = _ + ?X1).
plus_comm: forall n m : nat, n + m = m + n

Variants:

1. SearchPattern term inside module1 ... modulen.

This restricts the search to constructions defined in modulesmodule1 . . . modulen.

2. SearchPattern term outside module1 ... modulen.

This restricts the search to constructions not defined in modulesmodule1 . . . modulen.
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6.2.9 SearchRewrite term.

This command displays the name and type of all theorems of the current context whose statement’s
conclusion is an equality of which one side matches the expressionterm=. Holes interm are denoted by
“_”.

Coq < Require Import Arith.

Coq < SearchRewrite (_ + _ + _).
plus_assoc: forall n m p : nat, n + (m + p) = n + m + p
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)
plus_permute_2_in_4:

forall n m p q : nat, n + m + (p + q) = n + p + (m + q)

Variants:

1. SearchRewrite term inside module1 ... modulen.

This restricts the search to constructions defined in modulesmodule1 . . . modulen.

2. SearchRewrite term outside module1 ... modulen.

This restricts the search to constructions not defined in modulesmodule1 . . . modulen.

6.2.10 Locate qualid .

This command displays the full name of the qualified identifierqualid and consequently the COQ module
in which it is defined.

Coq < Locate nat.
Inductive Coq.Init.Datatypes.nat

Coq < Locate Datatypes.O.
Constructor Coq.Init.Datatypes.O (visible as O)

Coq < Locate Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O (visible as O)

Coq < Locate Coq.Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O (visible as O)

Coq < Locate I.Dont.Exist.
No object of suffix I.Dont.Exist

See also:Section 11.1.10

6.3 Loading files

COQ offers the possibility of loading different parts of a whole development stored in separate files.
Their contents will be loaded as if they were entered from the keyboard. This means that the loaded
files are ASCII files containing sequences of commands for COQ’s toplevel. This kind of file is called a
script for COQ. The standard (and default) extension of COQ’s script files is.v .
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6.3.1 Load ident .

This command loads the file namedident .v , searching successively in each of the directories specified
in the loadpath. (see section 6.5)

Variants:

1. Load string.
Loads the file denoted by the stringstring, wherestring is any complete filename. Then the~ and
.. abbreviations are allowed as well as shell variables. If no extension is specified, COQ will use
the default extension.v

2. Load Verbose ident . , Load Verbose string
Display, while loading, the answers of COQ to each command (including tactics) contained in the
loaded fileSee also:section 6.8.1

Error messages:

1. Can’t find file ident on loadpath

6.4 Compiled files

This feature allows to build files for a quick loading. When loaded, the commands contained in a
compiled file will not bereplayed. In particular, proofs will not be replayed. This avoids a useless waste
of time.

Remark: A module containing an opened section cannot be compiled.

6.4.1 Require dirpath .

This command looks in the loadpath for a file containing moduledirpath , then loads and opens (imports)
its contents. More precisely, ifdirpath splits into a library dirpathdirpath ’ and a module nameident ,
then the fileident .vo is searched in a physical path mapped to the logical pathdirpath ’.

TODO: effect on the name table.
If the module required has already been loaded, COQ simply opens it (asImport dirpath would

do it).
If a moduleA contains a commandRequire B then the commandRequire A loads the module

B but does not open it (See theRequire Export variant below).

Variants:

1. Require Export qualid .
This command acts asRequire qualid . But if a moduleA contains a commandRequire

Export B, then the commandRequire A opens the moduleB as if the user would have typed
Require B.

2. Require qualid string.
Specifies the file to load as beingstring but containing modulequalid which is then opened.

These different variants can be combined.

Error messages:

1. Cannot load ident : no physical path bound to dirpath
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2. Can’t find module toto on loadpath

The command did not find the filetoto.vo . Either toto.v exists but is not compiled or
toto.vo is in a directory which is not in yourLoadPath (see section 6.5).

3. Bad magic number

The fileident .vo was found but either it is not a COQ compiled module, or it was compiled with
an older and incompatible version of COQ.

See also:chapter 12

6.4.2 Print Modules.

This command shows the currently loaded and currently opened (imported) modules.

6.4.3 Declare ML Module string1 .. stringn.

This commands loads the Objective Caml compiled filesstring1 . . .stringn (dynamic link). It is mainly
used to load tactics dynamically. The files are searched into the current Objective Caml loadpath (see the
commandAdd ML Path in the section 6.5). Loading of Objective Caml files is only possible under
the bytecode version ofcoqtop (i.e. coqtop called with options-byte , see chapter 12).

Error messages:

1. File not found on loadpath : string

2. Loading of ML object file forbidden in a native Coq

6.4.4 Print ML Modules.

This print the name of all OBJECTIVE CAML modules loaded withDeclare ML Module . To know
from where these module were loaded, the user should use the commandLocate File (see page
117)

6.5 Loadpath

There are currently two loadpaths in COQ. A loadpath where seeking COQ files (extensions.v or .vo
or .vi ) and one where seeking Objective Caml files. The default loadpath contains the directory “. ”
denoting the current directory and mapped to the empty logical path (see section 2.5.2).

6.5.1 Pwd.

This command displays the current working directory.

6.5.2 Cd string.

This command changes the current directory according tostring which can be any valid path.

Variants:

1. Cd.
Is equivalent toPwd.
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6.5.3 Add LoadPath string as dirpath .

This command adds the pathstring to the current COQ loadpath and maps it to the logical directory
dirpath , which means that every fileM.v physically lying in directorystring becomes accessible through
logical name “dirpath .M”.

Remark: Add LoadPath also addsstring to the current ML loadpath.

Variants:

1. Add LoadPath string.
Performs asAdd LoadPath string as dirpath but for the empty directory path.

6.5.4 Add Rec LoadPath string as dirpath .

This command adds the directorystring and all its subdirectories to the current COQ loadpath. The
top directorystring is mapped to the logical directorydirpath while any subdirectorypdir is mapped to
logical directorydirpath .pdir and so on.

Remark: Add Rec LoadPath also recursively addsstring to the current ML loadpath.

Variants:

1. Add Rec LoadPath string.
Works asAdd Rec LoadPath string as dirpath but for the empty logical directory path.

6.5.5 Remove LoadPath string.

This command removes the pathstring from the current COQ loadpath.

6.5.6 Print LoadPath.

This command displays the current COQ loadpath.

6.5.7 Add ML Path string.

This command adds the pathstring to the current Objective Caml loadpath (see the commandDeclare
ML Module in the section 6.4).

Remark: This command is implied byAdd LoadPath string as dirpath .

6.5.8 Add Rec ML Path string.

This command adds the directorystring and all its subdirectories to the current Objective Caml loadpath
(see the commandDeclare ML Module in the section 6.4).

Remark: This command is implied byAdd Rec LoadPath string as dirpath .

6.5.9 Print ML Path string.

This command displays the current Objective Caml loadpath. This command makes sense only under
the bytecode version ofcoqtop , i.e. using option-byte (see the commandDeclare ML Module
in the section 6.4).
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6.5.10 Locate File string.

This command displays the location of filestring in the current loadpath. Typically,string is a.cmo or
.vo or .v file.

6.5.11 Locate Library dirpath .

This command gives the status of the COQ moduledirpath . It tells if the module is loaded and if not
searches in the load path for a module of logical namedirpath .

6.6 States and Reset

6.6.1 Reset ident .

This command removes all the objects in the environment sinceident was introduced, includingident .
ident may be the name of a defined or declared object as well as the name of a section. One cannot reset
over the name of a module or of an object inside a module.

Error messages:

1. ident : no such entry

6.6.2 Back.

This commands undoes all the effects of the last vernacular command. This does not include commands
that only access to the environment like those described in the previous sections of this chapter (for
instanceRequire andLoad can be undone, but notCheck andLocate ). Commands read from a
vernacular file are considered as a single command.

Variants:

1. Back n
Undoesn vernacular commands.

Error messages:

1. Reached begin of command history
Happens when there is vernacular command to undo.

6.6.3 Restore State string.

Restores the state contained in the filestring.

Variants:

1. Restore State ident
Equivalent toRestore State " ident .coq" .

2. Reset Initial.
Goes back to the initial state (like after the commandcoqtop , when the interactive session
began). This command is only available interactively.
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6.6.4 Write State string.

Writes the current state into a filestring for use in a further session. This file can be given as the
inputstate argument of the commandscoqtop andcoqc .

Variants:

1. Write State ident
Equivalent toWrite State " ident .coq" . The state is saved in the current directory (see
115).

6.7 Quitting and debugging

6.7.1 Quit.

This command permits to quit COQ.

6.7.2 Drop.

This is used mostly as a debug facility by COQ’s implementors and does not concern the casual user.
This command permits to leave COQ temporarily and enter the Objective Caml toplevel. The Objective
Caml command:

#use "include";;

add the right loadpaths and loads some toplevel printers for all abstract types of COQ- section_path,
identfifiers, terms, judgements, . . . . You can also use the filebase_include instead, that loads only
the pretty-printers for section_paths and identifiers. You can return back to COQ with the command:

go();;

Warnings:

1. It only works with the bytecode version of COQ (i.e. coqtop called with option-byte , see
page 213).

2. You must have compiled COQ from the source package and set the environment variableCOQTOP
to the root of your copy of the sources (see section 12.4).

6.7.3 Time command .

This command executes the vernac commandcommand and display the time needed to execute it.

6.8 Controlling display

6.8.1 Set Silent.

This command turns off the normal displaying.

6.8.2 Unset Silent.

This command turns the normal display on.
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6.8.3 Set Printing Width integer.

This command sets which left-aligned part of the width of the screen is used for display.

6.8.4 Unset Printing Width.

This command resets the width of the screen used for display to its default value (which is 78 at the time
of writing this documentation).

6.8.5 Test Printing Width.

This command displays the current screen width used for display.

6.8.6 Set Printing Depth integer.

This command sets the nesting depth of the formatter used for pretty-printing. Beyond this depth, display
of subterms is replaced by dots.

6.8.7 Unset Printing Depth.

This command resets the nesting depth of the formatter used for pretty-printing to its default value (at
the time of writing this documentation, the default value is 50).

6.8.8 Test Printing Depth.

This command displays the current nesting depth used for display.
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Chapter 7

Proof handling

In COQ’s proof editing mode all top-level commands documented in chapter 6 remain available and
the user has access to specialized commands dealing with proof development pragmas documented in
this section. He can also use some other specialized commands calledtactics. They are the very tools
allowing the user to deal with logical reasoning. They are documented in chapter 8.
When switching in editing proof mode, the promptCoq < is changed intoident < whereident is the
declared name of the theorem currently edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only
in the theorem itself. After having applied some tactics, the list of goals contains the subgoals generated
by the tactics.

To each subgoal is associated a number of hypotheses we call thelocal contextof the goal. Initially,
the local context is empty. It is enriched by the use of certain tactics (see mainly section 8.3.5).

When a proof is achieved the messageProof completed is displayed. One can then store this
proof as a defined constant in the environment. Because there exists a correspondence between proofs
and terms ofλ-calculus, known as theCurry-Howard isomorphism[68, 6, 64, 71], COQ stores proofs
as terms of CIC. Those terms are calledproof terms.

It is possible to edit several proofs at the same time: see section 7.1.8

Error message: When one attempts to use a proof editing command out of the proof editing mode,
COQ raises the error message :No focused proof .

7.1 Switching on/off the proof editing mode

7.1.1 Goal form.

This command switches COQ to editing proof mode and setsform as the original goal. It associates the
nameUnnamed_thm to that goal.

Error messages:

1. the term form has type ... which should be Set, Prop or Type

See also:section 7.1.4

7.1.2 Qed.

This command is available in interactive editing proof mode when the proof is completed. ThenQed
extracts a proof term from the proof script, switches back to COQ top-level and attaches the extracted
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proof term to the declared name of the original goal. This name is added to the environment as an
Opaque constant.

Error messages:

1. Attempt to save an incomplete proof

2. Sometimes an error occurs when building the proof term, because tactics do not enforce com-
pletely the term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this
point, one may have to wait a while when the proof is large. In some exceptional cases one may
even incur a memory overflow.

Variants:

1. Defined.

Defines the proved term as a transparent constant.

2. Save.

Is equivalent toQed.

3. Save ident .

Forces the name of the original goal to beident . This command (and the following ones) can only
be used if the original goal has been opened using theGoal command.

4. Save Theorem ident .
Save Lemma ident .
Save Remark ident .
Save Fact ident .

Are equivalent toSave ident .

7.1.3 Admitted.

This command is available in interactive editing proof mode to give up the current proof and declare the
initial goal as an axiom.

7.1.4 Theorem ident : form.

This command switches to interactive editing proof mode and declaresident as being the name of
the original goalform. When declared as aTheorem , the nameident is known at all section levels:
Theorem is aglobal lemma.

Error messages:

1. the term form has type ... which should be Set, Prop or Type

2. identalready exists

The name you provided already defined. You have then to choose another name.

Variants:

1. Lemma ident : form.

It is equivalent toTheorem ident : form.
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2. Remark ident : form.

Fact ident : form.

Used to have a different meaning, but are now equivalent toTheorem ident : form. They
are kept for compatibility.

3. Definition ident : form.

Analogous toTheorem , intended to be used in conjunction withDefined (see 1) in order to
define a transparent constant.

4. Local ident : form.

Analogous toDefinition except that the definition is turned into a local definition on objects
depending on it after closing the current section.

7.1.5 Proof term.

This command applies in proof editing mode. It is equivalent toexact term; Save. That is, you
have to give the full proof in one gulp, as a proof term (see section 8.2.1).

Variants:

1. Proof.

Is a noop which is useful to delimit the sequence of tactic commands which start a proof, after a
Theorem command. It is a good practice to useProof. as an opening parenthesis, closed in
the script with a closingQed.

2. Proof with tactic.

This command may be used to start a proof. It defines a default tactic to be used each time a tactic
command is ended by “... ”. In this case the tactic command typed by the user is equivalent to
command;tactic.

7.1.6 Abort.

This command cancels the current proof development, switching back to the previous proof develop-
ment, or to the COQ toplevel if no other proof was edited.

Error messages:

1. No focused proof (No proof-editing in progress)

Variants:

1. Abort ident .

Aborts the editing of the proof namedident .

2. Abort All.

Aborts all current goals, switching back to the COQ toplevel.

7.1.7 Suspend.

This command applies in proof editing mode. It switches back to the COQ toplevel, but without cancel-
ing the current proofs.
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7.1.8 Resume.

This commands switches back to the editing of the last edited proof.

Error messages:

1. No proof-editing in progress

Variants:

1. Resume ident .

Restarts the editing of the proof namedident . This can be used to navigate between currently
edited proofs.

Error messages:

1. No such proof

7.2 Navigation in the proof tree

7.2.1 Undo.

This command cancels the effect of the last tactic command. Thus, it backtracks one step.

Error messages:

1. No focused proof (No proof-editing in progress)

2. Undo stack would be exhausted

Variants:

1. Undo num.

RepeatsUndo num times.

7.2.2 Set Undo num.

This command changes the maximum number ofUndo’s that will be possible when doing a proof. It
only affects proofs started after this command, such that if you want to change the current undo limit
inside a proof, you should first restart this proof.

7.2.3 Unset Undo.

This command resets the default number of possibleUndo commands (which is currently 12).

7.2.4 Restart.

This command restores the proof editing process to the original goal.

Error messages:

1. No focused proof to restart
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7.2.5 Focus.

Will focus the attention on the first subgoal to prove, the remaining subgoals will no more be printed
after the application of a tactic. This is useful when there are many current subgoals which clutter your
screen.

7.2.6 Unfocus.

Turns off the focus mode.

7.3 Displaying information

7.3.1 Show.

This command displays the current goals.

Variants:

1. Show num.
Displays only thenum-th subgoal.
Error messages:

(a) No such goal

(b) No focused proof

2. Show Implicits.
Displays the current goals, printing the implicit arguments of constants.

3. Show Implicits num.
Same as above, only displaying thenum-th subgoal.

4. Show Script.
Displays the whole list of tactics applied from the beginning of the current proof. This tac-
tics script may contain some holes (subgoals not yet proved). They are printed under the form
<Your Tactic Text here> .

5. Show Tree.
This command can be seen as a more structured way of displaying the state of the proof than that
provided byShow Script . Instead of just giving the list of tactics that have been applied, it
shows the derivation tree constructed by then. Each node of the tree contains the conclusion of
the corresponding sub-derivation (i.e. a goal with its corresponding local context) and the tactic
that has generated all the sub-derivations. The leaves of this tree are the goals which still remain
to be proved.

6. Show Proof.
It displays the proof term generated by the tactics that have been applied. If the proof is not
completed, this term contain holes, which correspond to the sub-terms which are still to be con-
structed. These holes appear as a question mark indexed by an integer, and applied to the list of
variables in the context, since it may depend on them. The types obtained by abstracting away the
context from the type of each hole-placer are also printed.

7. Show Conjectures.
It prints the list of the names of all the theorems that are currently being proved. As it is possible to
start proving a previous lemma during the proof of a theorem, this list may contain several names.
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8. Show Intro.

If the current goal begins by at least one product, this command prints the name of the first product,
as it would be generated by an anonymousIntro . The aim of this command is to ease the writing
of more robust scripts. For example, with an appropriate Proof General macro, it is possible to
transform any anonymousIntro into a qualified one such asIntro y13 . In the case of a
non-product goal, it prints nothing.

9. Show Intros.
This command is similar to the previous one, it simulates the naming process of anIntros .

7.3.2 Set Hyps Limit num.

This command sets the maximum number of hypotheses displayed in goals after the application of a
tactic. All the hypotheses remains usable in the proof development.

7.3.3 Unset Hyps Limit.

This command goes back to the default mode which is to print all available hypotheses.
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Chapter 8

Tactics

A deduction rule is a link between some (unique) formula, that we call theconclusionand (several)
formulæ that we call thepremises. Indeed, a deduction rule can be read in two ways. The first one has
the shape:“if I know this and this then I can deduce this”. For instance, if I have a proof ofA and a proof
of B then I have a proof ofA ∧ B. This is forward reasoning from premises to conclusion. The other
way says:“to prove this I have to prove this and this”. For instance, to proveA ∧B, I have to proveA
and I have to proveB. This is backward reasoning which proceeds from conclusion to premises. We say
that the conclusion isthe goalto prove and premises arethe subgoals. The tactics implementbackward
reasoning. When applied to a goal, a tactic replaces this goal with the subgoals it generates. We say that
a tactic reduces a goal to its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is
applied to the current goal, but one can address a particular goal in the list by writingn:tactic which
means“apply tactic tactic to goal numbern” . We can show the list of subgoals by typingShow (see
Section 7.3.1).

Since not every rule applies to a given statement, every tactic cannot be used to reduce any goal.
In other words, before applying a tactic to a given goal, the system checks that somepreconditionsare
satisfied. If it is not the case, the tactic raises an error message.

Tactics are build from atomic tactics and tactic expressions (which extends the folklore notion of
tactical) to combine those atomic tactics. This chapter is devoted to atomic tactics. The tactic language
will be described in chapter 9.

There are, at least, three levels of atomic tactics. The simplest one implements basic rules of the
logical framework. The second level is the one ofderived ruleswhich are built by combination of other
tactics. The third one implements heuristics or decision procedures to build a complete proof of a goal.

8.1 Invocation of tactics

A tactic is applied as an ordinary command. If the tactic does not address the first subgoal, the command
may be preceded by the wished subgoal number as shown below:

tactic_invocation ::= num : tactic .
| tactic .

8.2 Explicit proof as a term

8.2.1 exact term

This tactic applies to any goal. It gives directly the exact proof term of the goal. LetT be our goal, letp
be a term of typeU thenexact p succeeds iffT andUare convertible (see Section 4.3).
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Error messages:

1. Not an exact proof

8.2.2 refine term

This tactic allows to give an exact proof but still with some holes. The holes are noted “_”.

Error messages:

1. invalid argument : the tacticrefine doesn’t know what to do with the term you gave.

2. Refine passed ill-formed term : the term you gave is not a valid proof (not easy to
debug in general). This message may also occur in higher-level tactics, which callrefine
internally.

3. Cannot infer a term for this placeholder there is a hole in the term you gave
which type cannot be inferred. Put a cast around it.

An example of use is given in section 10.1.

8.3 Basics

Tactics presented in this section implement the basic typing rules of CIC given in Chapter 4.

8.3.1 assumption

This tactic applies to any goal. It implements the “Var” rule given in Section 4.2. It looks in the
local context for an hypothesis which type is equal to the goal. If it is the case, the subgoal is proved.
Otherwise, it fails.

Error messages:

1. No such assumption

8.3.2 clear ident

This tactic erases the hypothesis namedident in the local context of the current goal. Thenident is no
more displayed and no more usable in the proof development.

Variants:

1. clear ident1 ... identn.

This is equivalent toclear ident1. ... clear identn.

2. clearbody ident .

This tactic expectsident to be a local definition then clears its body. Otherwise said, this tactic
turns a definition into an assumption.

Error messages:

1. ident not found

2. ident is used in the conclusion

3. ident is used in the hypothesis ident ’
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8.3.3 move ident1 after ident2

This moves the hypothesis namedident1 in the local context after the hypothesis namedident2.
If ident1 comes beforeident2 in the order of dependences, then all hypotheses betweenident1 and

ident2 which (possibly indirectly) depend onident1 are moved also.
If ident1 comes afterident2 in the order of dependences, then all hypotheses betweenident1 and

ident2 which (possibly indirectly) occur inident1 are moved also.

Error messages:

1. ident i not found

2. Cannot move ident1 after ident2: it occurs in ident2

3. Cannot move ident1 after ident2: it depends on ident2

8.3.4 rename ident1 into ident2

This renames hypothesisident1 into ident2 in the current context1

Error messages:

1. ident2 not found

2. ident2 is already used

8.3.5 intro

This tactic applies to a goal which is either a product or starts with a let binder. If the goal is a product,
the tactic implements the “Lam” rule given in Section 4.22. If the goal starts with a let binder then the
tactic implements a mix of the “Let” and “Conv”.

If the current goal is a dependent productforall x: T , U (resp let x:= t in U ) then
intro putsx: T (respx:= t) in the local context. The new subgoal isU .

If the goal is a non dependent productT -> U , then it puts in the local context eitherHn: T (if T
is of typeSet or Prop ) or Xn: T (if the type ofT is Type ). The optional indexn is such thatHn or Xn
is a fresh identifier. In both cases the new subgoal isU .

If the goal is neither a product nor starting with a let definition, the tacticintro applies the tactic
red until the tacticintro can be applied or the goal is not reducible.

Error messages:

1. No product even after head-reduction

2. ident is already used

Variants:

1. intros

Repeatsintro until it meets the head-constant. It never reduces head-constants and it never fails.

1but it does not rename the hypothesis in the proof-term...
2Actually, only the second subgoal will be generated since the other one can be automatically checked.
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2. intro ident

Applies intro but forcesident to be the name of the introduced hypothesis.

Error message:name ident is already used

Remark: If a name used byintro hides the base name of a global constant then the latter can
still be referred to by a qualified name (see 2.5.2).

3. intros ident1 ... identn

Is equivalent to the composed tacticintro ident1; ... ; intro identn.

More generally, theintros tactic takes a pattern as argument in order to introduce names for
components of an inductive definition or to clear introduced hypotheses; This is explained in 8.7.3.

4. intros until ident

Repeatsintro until it meets a premise of the goal having form( ident : term ) and discharges
the variable namedident of the current goal.

Error message:No such hypothesis in current goal

5. intros until num

Repeatsintro until the num-th non-dependent premise. For instance, on the subgoal
forall x y:nat, x=y -> forall z:nat,z=x->z=y the tacticintros until 2
is equivalent tointros x y H z H0 (assumingx, y, H, z andH0 do not already occur
in context).

Error message:No such hypothesis in current goal

Happens whennum is 0 or is greater than the number of non-dependent products of the goal.

6. intro after ident

Applies intro but puts the introduced hypothesis after the hypothesisident in the hypotheses.

Error messages:

(a) No product even after head-reduction

(b) No such hypothesis : ident

7. intro ident1 after ident2

Behaves as previously butident1 is the name of the introduced hypothesis. It is equivalent to
intro ident1; move ident1 after ident2.

Error messages:

(a) No product even after head-reduction

(b) No such hypothesis : ident
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8.3.6 apply term

This tactic applies to any goal. The argumentterm is a term well-formed in the local context. The tactic
apply tries to match the current goal against the conclusion of the type ofterm. If it succeeds, then the
tactic returns as many subgoals as the number of non dependent premises of the type ofterm. The tactic
apply relies on first-order pattern-matching with dependent types. Seepattern in section 8.5.7 to
transform a second-order pattern-matching problem into a first-order one.

Error messages:

1. Impossible to unify ... with ...

The apply tactic failed to match the conclusion ofterm and the current goal. You can help
the apply tactic by transforming your goal with thechange or pattern tactics (see sec-
tions 8.5.7, 8.3.10).

2. generated subgoal term ’ has metavariables in it

This occurs when some instantiations of premises ofterm are not deducible from the unification.
This is the case, for instance, when you want to apply a transitivity property. In this case, you
have to use one of the variants below:

Variants:

1. apply term with term1 ... termn

Providesapply with explicit instantiations for all dependent premises of the type ofterm which
do not occur in the conclusion and consequently cannot be found by unification. Notice thatterm1

. . . termn must be given according to the order of these dependent premises of the type ofterm.

Error message:Not the right number of missing arguments

2. apply term with ( ref1 := term1) ... ( refn := termn)

This also providesapply with values for instantiating premises. But variables are referred by
names and non dependent products by order (see syntax in Section 8.3.11).

3. eapply term

The tacticeapply behaves asapply but does not fail when no instantiation are deducible for
some variables in the premises. Rather, it turns these variables into so-called existential variables
which are variables still to instantiate. An existential variable is identified by a name of the form
?n wheren is a number. The instantiation is intended to be found later in the proof.

An example of use ofeapply is given in Section 10.2.

4. lapply term

This tactic applies to any goal, sayG. The argumentterm has to be well-formed in the current
context, its type being reducible to a non-dependent productA -> B with B possibly contain-
ing products. Then it generates two subgoalsB->G andA. Applying lapply H (whereH has
type A->B andB does not start with a product) does the same as giving the sequencecut B.
2:apply H. wherecut is described below.

Warning: When term contains more than one non dependent product the tacticlapply only
takes into account the first product.
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8.3.7 set ( ident := term )

Warning: V8 updating to do

This replacesterm by ident in the conclusion or in the hypotheses of the current goal and adds the
new definitionident := term to the local context. The default is to make this replacement only in the
conclusion.

Variants:

1. set ( ident := term ) in *

This is equivalent to the above form but applies everywhere in the goal (both in conclusion and
hypotheses).

2. set ( ident := term ) in * |-

This is equivalent to the above form but applies everywhere in the hypotheses.

3. set ( ident := term ) in |- *

This is equivalent to the default behaviour ofset .

4. set ( ident0 := term ) in ident1

This behaves the same but substitutesterm not in the goal but in the hypothesis namedident1.

5. set ( ident0 := term ) in ident1 at num1 . . . numn

This notation allows to specify which occurrences of the hypothesis namedident1 (or the goal if
ident1 is the wordGoal ) should be substituted. The occurrences are numbered from left to right.
A negative occurrence number means an occurrence which should not be substituted.

6. set ( ident0 := term ) in ident1 at num1
1 . . . num1

n1
, . . .identm at numm

1 . . .numm
nm

It substitutesterm at occurrencesnumi
1 . . . numi

ni
of hypothesisident i. One of theident ’s may

be the wordGoal .

7. pose ( ident := term )

This adds the local definitionident := term to the current context without performing any replace-
ment in the goal or in the hypotheses.

8. pose term

This behaves aspose ( ident := term ) but ident is generated by COQ.

8.3.8 assert ( ident : form )

This tactic applies to any goal.assert (H : U) adds a new hypothesis of nameHassertingU to the
current goal and opens a new subgoalU3. The subgoalUcomes first in the list of subgoals remaining to
prove.

Error messages:

1. Not a proposition or a type

Arises when the argumentform is neither of typeProp , Set norType .

3This corresponds to the cut rule of sequent calculus.
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Variants:

1. assert form

This behaves asassert ( ident : form ) but ident is generated by COQ.

2. assert ( ident := term )

This behaves asassert ( ident : type);[exact term|idtac] wheretype is the type
of term.

3. cut form

This tactic applies to any goal. It implements the non dependent case of the “App” rule given in
Section 4.2. (This is Modus Ponens inference rule.)cut U transforms the current goalT into the
two following subgoals:U -> T andU. The subgoalU -> T comes first in the list of remaining
subgoal to prove.

8.3.9 generalize term

This tactic applies to any goal. It generalizes the conclusion w.r.t. one subterm of it. For example:

Coq < Show.
1 subgoal

x : nat
y : nat
============================

0 <= x + y + y

Coq < generalize (x + y + y).
1 subgoal

x : nat
y : nat
============================

forall n : nat, 0 <= n

If the goal isG andt is a subterm of typeT in the goal, thengeneralize t replaces the goal by
forall (x: T ), G′ whereG′ is obtained fromG by replacing all occurrences oft by x . The name
of the variable (heren) is chosen accordingly toT .

Variants:

1. generalize term1 ... termn

Is equivalent togeneralize termn; ... ; generalize term1. Note that the sequence
of termi’s are processed fromn to 1.

2. generalize dependent term

This generalizesterm but alsoall hypotheses which depend onterm. It clears the generalized
hypotheses.
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8.3.10 change term

This tactic applies to any goal. It implements the rule “Conv” given in section 4.3.change U replaces
the current goalT with Uproviding thatU is well-formed and thatT andUare convertible.

Error messages:

1. Not convertible

Variants:

1. change term1 with term2

This replaces the occurrences ofterm1 by term2 in the current goal. The termsterm1 andterm2

must be convertible.

2. change term1 at num1 ... numi with term2

This replaces the occurrences numberednum1 . . . numi of term1 by term2 in the current goal.
The termsterm1 andterm2 must be convertible.

Error message:Too few occurrences

3. change term in ident

4. change term1 with term2 in ident

5. change term1 at num1 ... numi with term2 in ident

This applies thechange tactic not to the goal but to the hypothesisident .

See also:8.5

8.3.11 Bindings list

A bindings list is generally used after the keywordwith in tactics. The general shape of a bindings
list is ( ref1 := term1) ... ( refn := termn) whereref is either anident or anum. It is used to
provide a tactic with a list of values (term1, . . . , termn) that have to be substituted respectively toref1,
. . . , refn. For all i ∈ [1 . . . n], if ref i is ident i then it references the dependent productident i:T (for
some typeT); if ref i is numi then it references thenumi-th non dependent premise.

A bindings list can also be a simple list of termsterm1 term2 ... termn. In that case the references
to which these terms correspond are determined by the tactic. In case ofelim (see section 4) the terms
should correspond to all the dependent products in the type ofterm while in the case ofapply only the
dependent products which are not bound in the conclusion of the type are given.

8.4 Negation and contradiction

8.4.1 absurd term

This tactic applies to any goal. The argumentterm is any propositionP of typeProp . This tactic applies
False elimination, that is it deduces the current goal fromFalse , and generates as subgoals∼P and
P. It is very useful in proofs by cases, where some cases are impossible. In most cases,P or∼P is one
of the hypotheses of the local context.
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8.4.2 contradiction

This tactic applies to any goal. Thecontradiction tactic attempts to find in the current context
(after allintros ) one which is equivalent toFalse . It permits to prune irrelevant cases. This tactic is
a macro for the tactics sequenceintros; elimtype False; assumption .

Error messages:

1. No such assumption

8.5 Conversion tactics

This set of tactics implements different specialized usages of the tacticchange .
All conversion tactics (includingchange ) can be parameterised by the parts of the goal where the

conversion can occur. The specification of such parts are calledclauses. It can be either the conclusion,
or an hypothesis. In the case of a defined hypothesis it is possible to specify if the conversion should
occur on the type part, the body part or both (default).

Clauses are written after a conversion tactic (tacticset 8.3.7 also uses clasues) and are introduced by
the keywordin . If no clause is provided, the default is to perform the conversion only in the conclusion.

The syntax and description of the various clauses follows:

in H 1 . . . Hn |- only in hypothesesH1. . .Hn

in H 1 . . . Hn |- * in hypothesesH1 . . .Hn and in the conclusion

in * |- in every hypothesis

in * (equivalent toin * |- * ) everywhere

in (type of H 1) (value of H 2) . . . |- in type part ofH1, in the value part ofH2, etc.

For backward compatibility, the notationin H1 . . .Hn performs the conversion in hypotheses
H1 . . .Hn.

8.5.1 cbv flag1 ... flagn, lazy flag1 ... flagn and compute

These parameterized reduction tactics apply to any goal and perform the normalization of the goal ac-
cording to the specified flags. Since the reduction considered in COQ includeβ (reduction of functional
application),δ (unfolding of transparent constants, see 6.2.5),ι (reduction ofCases , Fix andCoFix
expressions) andζ (removal of local definitions), every flag is one ofbeta , delta , iota , zeta ,
[ qualid1... qualidk] and-[ qualid1... qualidk] . The last two flags give the list of constants to un-
fold, or the list of constants not to unfold. These two flags can occur only after thedelta flag. If alone
(i.e. not followed by[ qualid1... qualidk] or -[ qualid1... qualidk] ), the delta flag means that
all constants must be unfolded. However, thedelta flag does not apply to variables bound by a let-in
construction whose unfolding is controlled by thezeta flag only. In addition, there is a flagEvar to
perform instantiation of existential variables (“?”) when an instantiation actually exists.

The goal may be normalized with two strategies:lazy (lazy tactic), orcall-by-value(cbv tactic).
The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call
are partially evaluated only when necessary, but if an argument is used several times, it is computed only
once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a
proposition∃T x.P (x) reduce to a pair of a witnesst, and a proof thatt verifies the predicateP . Most
of the time,t may be computed without computing the proof ofP (t), thanks to the lazy strategy.
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The call-by-value strategy is the one used in ML languages: the arguments of a function call are

evaluated first, using a weak reduction (no reduction under theλ-abstractions). Despite the lazy strat-
egy always performs fewer reductions than the call-by-value strategy, the latter should be preferred for
evaluating purely computational expressions (i.e. with few dead code).

Variants:

1. compute

This tactic is an alias forcbv beta delta evar iota zeta .

Error messages:

1. Delta must be specified before

A list of constants appeared before thedelta flag.

8.5.2 red

This tactic applies to a goal which has the formforall (x:T1)...(xk:Tk), c t1 ... tn
wherec is a constant. Ifc is transparent then it replacesc with its definition (sayt ) and then reduces
(t t1 ... tn) according toβι-reduction rules.

Error messages:

1. Not reducible

8.5.3 hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the
βδι-reduction rules.hnf does not produce a real head normal form but either a product or an applicative
term in head normal form or a variable.

Example: The termforall n:nat, (plus (S n) (S n)) is not reduced byhnf .

Remark: Theδ rule only applies to transparent constants (see section 6.2.4 on transparency and opac-
ity).

8.5.4 simpl

This tactic applies to any goal. The tacticsimpl first appliesβι-reduction rule. Then it expands
transparent constants and tries to reduceT’ according, once more, toβι rules. But when theι rule is
not applicable then possibleδ-reductions are not applied. For instance trying to usesimpl on (plus
n O)=n does change nothing.

Variants:

1. simpl term

This appliessimpl only to the occurrences ofterm in the current goal.

2. simpl term at num1 ... numi

This appliessimpl only to thenum1, . . . ,numi occurrences ofterm in the current goal.

Error message:Too few occurrences

Coq Reference Manual, V8.0, June 27, 2004



8.5 Conversion tactics 137
3. simpl ident

This appliessimpl only to the applicative subterms whose head occurrence isident .

4. simpl ident at num1 ... numi

This appliessimpl only to thenum1, . . . , numi applicative subterms whose head occurrence is
ident .

8.5.5 unfold qualid

This tactic applies to any goal. The argumentqualid must denote a defined transparent constant or local
definition (see Sections 1.3.2 and 6.2.5). The tacticunfold applies theδ rule to each occurrence of the
constant to whichqualid refers in the current goal and then replaces it with itsβι-normal form.

Error messages:

1. qualid does not denote an evaluable constant

Variants:

1. unfold qualid1, ..., qualidn

Replacessimultaneouslyqualid1, . . . ,qualidn with their definitions and replaces the current goal
with its βι normal form.

2. unfold qualid1 at num1
1, ..., num1

i , ..., qualidn at numn
1 ... numn

j

The listsnum1
1, . . . ,num1

i andnumn
1 , . . . ,numn

j specify the occurrences ofqualid1, . . . ,qualidn

to be unfolded. Occurrences are located from left to right.

Error message:bad occurrence number of qualid i

Error message:qualid i does not occur

8.5.6 fold term

This tactic applies to any goal. The termterm is reduced using thered tactic. Every occurrence of the
resulting term in the goal is then substituted forterm.

Variants:

1. fold term1 . . . termn

Equivalent tofold term1; . . .; fold termn.

8.5.7 pattern term

This command applies to any goal. The argumentterm must be a free subterm of the current goal. The
commandpattern performsβ-expansion (the inverse ofβ-reduction) of the current goal (sayT) by

1. replacing all occurrences ofterm in T with a fresh variable

2. abstracting this variable

3. applying the abstracted goal toterm

Coq Reference Manual, V8.0, June 27, 2004



138 8 Tactics
For instance, if the current goalT is expressible hasφ(t) where the notation captures all the instances

of t in φ(t), thenpattern t transforms it into(fun x: A => φ(x)) t. This command can be used,
for instance, when the tacticapply fails on matching.

Variants:

1. pattern term at num1 ... numn

Only the occurrencesnum1 . . . numn of term will be considered forβ-expansion. Occurrences
are located from left to right.

2. pattern term1, ..., termm

Starting from a goalφ(t1 . . . tm), the tacticpattern t1, ..., tm generates the equivalent
goal(fun (x 1: A1) ... (x m: Am) => φ(x1... x m)) t1 ... tm.
If ti occurs in one of the generated typesAj these occurrences will also be considered and possibly
abstracted.

3. pattern term1 at num1
1 ... num1

n1
, ..., termm at numm

1 ... numm
nm

This behaves as above but processing only the occurrencesnum1
1, . . . ,num1

i of term1, . . . ,numm
1 ,

. . . , numm
j of termm starting fromtermm.

8.5.8 Conversion tactics applied to hypotheses

conv_tactic in ident1 . . . identn

Applies the conversion tacticconv_tactic to the hypothesesident1, . . . , identn. The tactic
conv_tactic is any of the conversion tactics listed in this section.

If ident i is a local definition, thenident i can be replaced by (Type ofident i) to address not the
body but the type of the local definition. Example:unfold not in (Type of H1) (Type of
H3).

Error messages:

1. No such hypothesis : ident .

8.6 Introductions

Introduction tactics address goals which are inductive constants. They are used when one guesses that
the goal can be obtained with one of its constructors’ type.

8.6.1 constructor num

This tactic applies to a goal such that the head of its conclusion is an inductive constant (sayI ). The
argumentnum must be less or equal to the numbers of constructor(s) ofI . Letci be thei -th constructor
of I , thenconstructor i is equivalent tointros; apply ci .

Error messages:

1. Not an inductive product

2. Not enough constructors

Variants:
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1. constructor

This triesconstructor 1 thenconstructor 2 , . . . , thenconstructor n wheren if
the number of constructors of the head of the goal.

2. constructor num with bindings_list

Let ci be thei -th constructor ofI , thenconstructor i with bindings_list is equivalent
to intros; apply ci with bindings_list .

Warning: the terms in thebindings_list are checked in the context whereconstructor is
executed and not in the context whereapply is executed (the introductions are not taken into
account).

3. split

Applies if I has only one constructor, typically in the case of conjunctionA ∧ B. Then, it is
equivalent toconstructor 1 .

4. exists bindings_list

Applies if I has only one constructor, for instance in the case of existential quantification∃x·P (x).
Then, it is equivalent tointros; constructor 1 with bindings_list .

5. left , right

Apply if I has two constructors, for instance in the case of disjunctionA ∨ B. Then, they are
respectively equivalent toconstructor 1 andconstructor 2 .

6. left bindings_list , right bindings_list , split bindings_list

As soon as the inductive type has the right number of constructors, these expressions are equivalent
to the correspondingconstructor i with bindings_list .

8.7 Eliminations (Induction and Case Analysis)

Elimination tactics are useful to prove statements by induction or case analysis. Indeed, they make use
of the elimination (or induction) principles generated with inductive definitions (see Section 4.5).

8.7.1 induction term

This tactic applies to any goal. The type of the argumentterm must be an inductive constant. Then, the
tacticinduction generates subgoals, one for each possible form ofterm, i.e. one for each constructor
of the inductive type.

The tacticinduction automatically replaces every occurrences ofterm in the conclusion and the
hypotheses of the goal. It automatically adds induction hypotheses (using names of the formIHn1 ) to
the local context. If some hypothesis must not be taken into account in the induction hypothesis, then it
needs to be removed first (you can also use the tacticselim or simple induction , see below).

There are particular cases:

• If term is an identifierident denoting a quantified variable of the conclusion of the goal, then
induction ident behaves asintros until ident ; induction ident

• If term is a num, then induction num behaves asintros until num followed by
induction applied to the last introduced hypothesis.

Remark: For simple induction on a numeral, use syntaxinduction ( num) (not very inter-
esting anyway).
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Example:

Coq < Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal

============================
forall n : nat, n = n -> n <= n

Coq < intros n H.
1 subgoal

n : nat
H : n = n
============================

n <= n

Coq < induction n.
2 subgoals

H : 0 = 0
============================

0 <= 0
subgoal 2 is:

S n <= S n

Error messages:

1. Not an inductive product

2. Cannot refine to conclusions with meta-variables

As induction usesapply , see Section 8.3.6 and the variantelim ... with ... below.

Variants:

1. induction term as intro_pattern

This behaves asinduction term but uses the names inintro_pattern to names the variables
introduced in the context. Theintro_pattern must have the form[ p11 . . .p1n1 | . . . | pm1

. . .pmnm ] with m being the number of constructors of the type ofterm. Each variable introduced
by induction in the context of theith goal gets its name from the listpi1 . . .pini in order. If
there are not enough names,induction invents names for the remaining variables to introduce.
More generally, thep’s can be any introduction patterns (see Section 8.7.3). This provides a
concise notation for nested induction.

Remark: for an inductive type with one constructeur, the pattern notation( p1,..., pn) can be
used instead of[ p1 . . .pn ] .

2. induction term using qualid

This behaves asinduction term but using the induction scheme of namequalid . It does not
expect that the type ofterm is inductive.

3. induction term using qualid as intro_pattern

This combinesinduction term using qualid andinduction term as intro_pattern.
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4. elim term

This is a more basic induction tactic. Again, the type of the argumentterm must be an inductive
constant. Then according to the type of the goal, the tacticelim chooses the right destructor and
applies it (as in the case of theapply tactic). For instance, assume that our proof context contains
n:nat , assume that our current goal isT of typeProp , thenelim n is equivalent toapply
nat_ind with (n:=n) . The tacticelim does not affect the hypotheses of the goal, neither
introduces the induction loading into the context of hypotheses.

5. elim term

also works when the type ofterm starts with products and the head symbol is an inductive defi-
nition. In that case the tactic tries both to find an object in the inductive definition and to use this
inductive definition for elimination. In case of non-dependent products in the type, subgoals are
generated corresponding to the hypotheses. In the case of dependent products, the tactic will try
to find an instance for which the elimination lemma applies.

6. elim term with term1 ... termn

Allows the user to give explicitly the values for dependent premises of the elimination schema.
All arguments must be given.

Error message:Not the right number of dependent arguments

7. elim term with ref1 := term1 ... refn := termn

Provides alsoelim with values for instantiating premises by associating explicitly variables (or
non dependent products) with their intended instance.

8. elim term1 using term2

Allows the user to give explicitly an elimination predicateterm2 which is not the standard one for
the underlying inductive type ofterm1. Each of theterm1 andterm2 is either a simple term or a
term with a bindings list (see 8.3.11).

9. elimtype form

The argumentform must be inductively defined.elimtype I is equivalent tocut I. intro
Hn; elim H n; clear H n. Therefore the hypothesisHn will not appear in the context(s) of
the subgoal(s). Conversely, ift is a term of (inductive) typeI and which does not occur in the
goal thenelim t is equivalent toelimtype I; 2: exact t.

Error message:Impossible to unify ... with ...

Arises whenform needs to be applied to parameters.

10. simple induction ident

This tactic behaves asintros until ident ; elim ident whenident is a quantified variable
of the goal.

11. simple induction num

This tactic behaves asintros until num; elim ident whereident is the name given by
intros until num to thenum-th non-dependent premise of the goal.
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8.7.2 destruct term

The tacticdestruct is used to perform case analysis without recursion. Its behavior is similar to
induction except that no induction hypothesis is generated. It applies to any goal and the type of
term must be inductively defined. There are particular cases:

• If term is an identifierident denoting a quantified variable of the conclusion of the goal, then
destruct ident behaves asintros until ident ; destruct ident

• If term is a num, then destruct num behaves asintros until num followed by
destruct applied to the last introduced hypothesis.

Remark: For destruction of a numeral, use syntaxdestruct ( num) (not very interesting
anyway).

Variants:

1. destruct term as intro_pattern

This behaves asdestruct term but uses the names inintro_pattern to names the variables
introduced in the context. Theintro_pattern must have the form[ p11 . . .p1n1 | . . . | pm1

. . .pmnm ] with m being the number of constructors of the type ofterm. Each variable introduced
by destruct in the context of theith goal gets its name from the listpi1 . . .pini in order. If there
are not enough names,destruct invents names for the remaining variables to introduce. More
generally, thep’s can be any introduction patterns (see Section 8.7.3). This provides a concise
notation for nested destruction.

Remark: for an inductive type with one constructeur, the pattern notation( p1,..., pn) can be
used instead of[ p1. . .pn ] .

2. destruct term using qualid

This is a synonym ofinduction term using qualid .

3. destruct term as intro_pattern using qualid

This is a synonym ofinduction term using qualid as intro_pattern.

4. case term

The tacticcase is a more basic tactic to perform case analysis without recursion. It behaves as
elim term but using a case-analysis elimination principle and not a recursive one.

5. case term with term1 ... termn

Analogous toelim ... with above.

6. simple destruct ident

This tactic behaves asintros until ident ; case ident whenident is a quantified variable
of the goal.

7. simple destruct num

This tactic behaves asintros until num; case ident whereident is the name given by
intros until num to thenum-th non-dependent premise of the goal.
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8.7.3 intros intro_pattern ... intro_pattern

The tacticintros applied to introduction patterns performs both introduction of variables and case
analysis in order to give names to components of an hypothesis.

An introduction pattern is either:

• the wildcard:_

• a variable

• a disjunction of lists of patterns:[ p11 ... p1m1 | ... | p11 ... pnmn ]

• a conjunction of patterns:( p1 , . . . , pn )

The behavior ofintros is defined inductively over the structure of the pattern given as argument:

• introduction on the wildcard do the introduction and then immediately clear (cf 8.3.2) the corre-
sponding hypothesis;

• introduction on a variable behaves like described in 8.3.5;

• introduction over a list of patternsp1 . . . pn is equivalent to the sequence of introductions over the
patterns namely:intros p1;...; intros pn, the goal should start with at leastn products;

• introduction over a disjunction of list of patterns[ p11 ... p1m1 | ... | p11 ...
pnmn ] . It introduces a new variableX, its type should be an inductive definition withn con-
structors, then it performs a case analysis overX (which generatesn subgoals), it clearsX and
performs on each generated subgoals the correspondingintros pi1 . . . pimi tactic;

• introduction over a conjunction of patterns(p1, . . . , pn), it introduces a new variableX, its type
should be an inductive definition with1 constructor with (at least)n arguments, then it performs
a case analysis overX (which generates1 subgoal with at leastn products), it clearsX and
performs an introduction over the list of patternsp1 . . . pn.

Remark: The pattern( p1, ..., pn) is a synonym for the pattern[ p1 ... pn] , i.e. it corre-
sponds to the decomposition of an hypothesis typed by an inductive type with a single constructor.

Coq < Lemma intros_test : forall A B C:Prop, A \/ B /\ C -> (A -> C) -> C.
1 subgoal

============================
forall A B C : Prop, A \/ B /\ C -> (A -> C) -> C

Coq < intros A B C [a| [_ c]] f.
2 subgoals

A : Prop
B : Prop
C : Prop
a : A
f : A -> C
============================

C
subgoal 2 is:

C

Coq < apply (f a).
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1 subgoal

A : Prop
B : Prop
C : Prop
c : C
f : A -> C
============================

C

Coq < Proof c.
intros_test is defined

8.7.4 double induction ident1 ident2

This tactic applies to any goal. If the variablesident1 and ident2 of the goal have an inductive type,
then this tactic performs double induction on these variables. For instance, if the current goal is
forall n m:nat, P n m then,double induction n m yields the four cases with their re-
spective inductive hypotheses. In particular the case for(P (S n) (S m)) with the induction hy-
potheses(P (S n) m) and(m:nat)(P n m) (hence(P n m) and(P n (S m)) ).

Remark: When the induction hypothesis(P (S n) m) is not needed,induction ident1;
destruct ident2 produces more concise subgoals.

Variant:

1. double induction num1 num2

This applies double induction on thenumth
1 andnumth

2 non dependentpremises of the goal. More
generally, any combination of anident and annum is valid.

8.7.5 decompose [ qualid 1 ... qualidn ] term

This tactic allows to recursively decompose a complex proposition in order to obtain atomic ones. Ex-
ample:

Coq < Lemma ex1 : forall A B C:Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C.
1 subgoal

============================
forall A B C : Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C

Coq < intros A B C H; decompose [and or] H; assumption.
Proof completed.

Coq < Qed.

decompose does not work on right-hand sides of implications or products.

Variants:

1. decompose sum term This decomposes sum types (likeor ).

2. decompose record term This decomposes record types (inductive types with one construc-
tor, like and andexists and those defined with theRecord macro, see p. 43).
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8.7.6 functional induction ident term1 ... termn.

The experimentaltactic functional induction performs case analysis and induction following
the definition of a (not mutually recursive) function.

Coq < Lemma le_minus : forall n m:nat, (n - m <= n).
1 subgoal

============================
forall n m : nat, n - m <= n

Coq < intros n m.
1 subgoal

n : nat
m : nat
============================

n - m <= n

Coq < functional induction minus n m; simpl; auto.
Proof completed.

Coq < Qed.

functional induction is a shorthand for the more general commandFunctional
Scheme which builds induction principles following the recursive structure of (possibly mutually re-
cursive) functions.See also:10.4 for the difference between using one or the other.

Remark: functional induction may fail on functions built by tactics. In particular case analysis
of a function are considered only if they are not inside an application.

Remark: Arguments of the function must be given, including implicits. If the function is recursive,
arguments must be variables, otherwise they may be any term.

See also:8.14,10.4

8.8 Equality

These tactics use the equalityeq:forall A:Type, A->A->Prop defined in fileLogic.v (see
Section 3.1.2). The notation foreq T t u is simplyt=u dropping the implicit type oft andu.

8.8.1 rewrite term

This tactic applies to any goal. The type ofterm must have the form
(x 1:A 1) ... (x n:A n) term1=term2.

Thenrewrite term replaces every occurrence ofterm1 by term2 in the goal. Some of the variables
x1 are solved by unification, and some of the typesA1, . . . ,An become new subgoals.

Remark: In case the type ofterm1 contains occurrences of variables bound in the type ofterm, the
tactic tries first to find a subterm of the goal which matches this term in order to find a closed instance
term ′

1 of term1, and then all instances ofterm ′
1 will be replaced.

Error messages:

1. The term provided does not end with an equation
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2. Tactic generated a subgoal identical to the original goal

This happens ifterm1 does not occur in the goal.

Variants:

1. rewrite -> term
Is equivalent torewrite term

2. rewrite <- term
Uses the equalityterm1=term2 from right to left

3. rewrite term in ident
Analogous torewrite term but rewriting is done in the hypothesis namedident .

4. rewrite -> term in ident
Behaves asrewrite term in ident .

5. rewrite <- term in ident
Uses the equalityterm1=term2 from right to left to rewrite in the hypothesis namedident .

8.8.2 cutrewrite -> term1 = term2

This tactic acts likereplace term1 with term2 (see below).

8.8.3 replace term1 with term2

This tactic applies to any goal. It replaces all free occurrences ofterm1 in the current goal withterm2

and generates the equalityterm2=term1 as a subgoal. It is equivalent tocut term2=term1; intro
Hn; rewrite <- H n; clear H n.

Variants:

1. replace term1 with term2 in ident
This replacesterm1 with term2 in the hypothesis namedident , and generates the subgoal
term2=term1.

Error messages:

(a) No such hypothesis : ident

(b) Nothing to rewrite in ident

8.8.4 reflexivity

This tactic applies to a goal which has the formt=u . It checks thatt andu are convertible and then
solves the goal. It is equivalent toapply refl_equal .

Error messages:

1. The conclusion is not a substitutive equation

2. Impossible to unify ... with ..
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8.8.5 symmetry

This tactic applies to a goal which has the formt=u and changes it intou=t .

Variant: symmetry in ident
If the statement of the hypothesisident has the formt=u , the tactic changes it tou=t .

8.8.6 transitivity term

This tactic applies to a goal which has the formt=u and transforms it into the two subgoalst= term and
term=u.

8.8.7 subst ident

This tactic applies to a goal which hasident in its context and (at least) one hypothesis, sayH, of type
ident=t or t= ident . Then it replacesident by t everywhere in the goal (in the hypotheses and in the
conclusion) and clearsident andH from the context.

Remark: When several hypotheses have the formident=t or t= ident , the first one is used.

Variants:

1. subst ident1 ... identn

Is equivalent tosubst ident1; ...; subst identn.

2. subst
Appliessubst repeatedly to all identifiers from the context for which an equality exists.

8.8.8 stepl term

This tactic is for chaining rewriting steps. It assumes a goal of the form “R term1 term2” whereR is a
binary relation and relies on a database of lemmas of the formforall x y z, R x y -> eq x z -> R z
y whereeq is typically a setoid equality. The application ofstepl term then replaces the goal by “R
term term2” and adds a new goal stating “eq term term1”.

Lemmas are added to the database using the command

Declare Left Step qualid .

wherequalid is the name of the lemma.
The tactic is especially useful for parametric setoids which are not accepted as regular setoids for

rewrite andsetoid_replace (see chapter 20).

Variants:

1. stepl term by tactic
This appliesstepl term then appliestactic to the second goal.

2. stepr term
stepr term by tactic
This behaves asstepl but on the right-hand-side of the binary relation. Lemmas are expected to
be of the form “forall x y z, R x y -> eq y z -> R x z” and are registered using the command

Declare Right Step qualid .
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8.9 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or
types. These tactics use the equalityeq:forall (A:Type), A->A->Prop , simply written with
the infix symbol=.

8.9.1 decide equality

This tactic solves a goal of the formforall x y: R, { x=y}+{~ x=y} , whereR is an inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent
types.

Variants:

1. decide equality term1 term2 .
Solves a goal of the form{ term1=term2}+{~ term1=term2} .

8.9.2 compare term1 term2

This tactic compares two given objectsterm1 and term2 of an inductive datatype. IfG is the current
goal, it leaves the sub-goalsterm1=term2 -> G and~term1=term2 -> G. The type ofterm1 andterm2

must satisfy the same restrictions as in the tacticdecide equality .

8.9.3 discriminate ident

This tactic proves any goal from an absurd hypothesis stating that two structurally different terms of
an inductive set are equal. For example, from the hypothesis(S (S O))=(S O) we can derive by
absurdity any proposition. Letident be a hypothesis of typeterm1 = term2 in the local context,term1

andterm2 being elements of an inductive set. To build the proof, the tactic traverses the normal forms4

of term1 andterm2 looking for a couple of subtermsu andw (u subterm of the normal form ofterm1

andw subterm of the normal form ofterm2), placed at the same positions and whose head symbols
are two different constructors. If such a couple of subterms exists, then the proof of the current goal is
completed, otherwise the tactic fails.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usingintros until ident .

Error messages:

1. ident Not a discriminable equality
occurs when the type of the specified hypothesis is not an equation.

Variants:

1. discriminate num
This does the same thing asintros until num thendiscriminate ident whereident is
the identifier for the last introduced hypothesis.

2. discriminate
It applies to a goal of the form~term1=term2 and it is equivalent to:unfold not; intro
ident ; discriminate ident .

Error messages:
4Recall: opaque constants will not be expanded byδ reductions
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(a) No discriminable equalities

occurs when the goal does not verify the expected preconditions.

8.9.4 injection ident

Theinjection tactic is based on the fact that constructors of inductive sets are injections. That means
that if c is a constructor of an inductive set, and if(c ~t1) and(c ~t2) are two terms that are equal then~t1
and ~t2 are equal too.

If ident is an hypothesis of typeterm1 = term2, theninjection behaves as applying injection
as deep as possible to derive the equality of all the subterms ofterm1 and term2 placed in the same
positions. For example, from the hypothesis(S (S n))=(S (S (S m)) we may deriven=(S
m). To use this tacticterm1 andterm2 should be elements of an inductive set and they should be neither
explicitly equal, nor structurally different. We mean by this that, ifn1 andn2 are their respective normal
forms, then:

• n1 andn2 should not be syntactically equal,

• there must not exist any couple of subtermsu andw, u subterm ofn1 andwsubterm ofn2 , placed
in the same positions and having different constructors as head symbols.

If these conditions are satisfied, then, the tactic derives the equality of all the subterms ofterm1 and
term2 placed in the same positions and puts them as antecedents of the current goal.

Example: Consider the following goal:

Coq < Inductive list : Set :=
Coq < | nil : list
Coq < | cons : nat -> list -> list.

Coq < Variable P : list -> Prop.

Coq < Show.
1 subgoal

l : list
n : nat
H : P nil
H0 : cons n l = cons 0 nil
============================

P l

Coq < injection H0.
1 subgoal

l : list
n : nat
H : P nil
H0 : cons n l = cons 0 nil
============================

l = nil -> n = 0 -> P l

Beware thatinjection yields always an equality in a sigma type whenever the injected object
has a dependent type.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usingintros until ident .

Error messages:
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1. ident is not a projectable equality occurs when the type of the hypothesisid does

not verify the preconditions.

2. Not an equation occurs when the type of the hypothesisid is not an equation.

Variants:

1. injection num

This does the same thing asintros until num theninjection ident whereident is the
identifier for the last introduced hypothesis.

2. injection

If the current goal is of the formterm1 <> term2, the tactic computes the head normal form of the
goal and then behaves as the sequence:unfold not; intro ident ; injection ident .

Error message:goal does not satisfy the expected preconditions

8.9.5 simplify_eq ident

Let ident be the name of an hypothesis of typeterm1=term2 in the local context. Ifterm1 and
term2 are structurally different (in the sense described for the tacticdiscriminate ), then the tac-
tic simplify_eq behaves asdiscriminate ident otherwise it behaves asinjection ident .

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usingintros until ident .

Variants:

1. simplify_eq num

This does the same thing asintros until num thensimplify_eq ident whereident is
the identifier for the last introduced hypothesis.

2. simplify_eq If the current goal has form~t1 = t2, then this tactic doeshnf; intro ident ;
simplify_eq ident .

8.9.6 dependent rewrite -> ident

This tactic applies to any goal. Ifident has type(existS A B a b)=(existS A B a’ b’) in
the local context (i.e. each term of the equality has a sigma type{a : A & (B a)}) this tactic rewritesa
into a’ andb into b’ in the current goal. This tactic works even ifB is also a sigma type. This kind of
equalities between dependent pairs may be derived by the injection and inversion tactics.

Variants:

1. dependent rewrite <- ident
Analogous todependent rewrite -> but uses the equality from right to left.
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8.10 Inversion

8.10.1 inversion ident

Let the type ofident in the local context be(I ~t), whereI is a (co)inductive predicate. Then,
inversion applied toident derives for each possible constructorci of (I ~t), all the necessary condi-
tions that should hold for the instance(I ~t) to be proved byci.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usingintros until ident .

Variants:

1. inversion num

This does the same thing asintros until num theninversion ident whereident is the
identifier for the last introduced hypothesis.

2. inversion_clear ident

This behaves asinversion and then erasesident from the context.

3. inversion ident as intro_pattern

This behaves asinversion but using names inintro_pattern for naming hypotheses. Thein-
tro_pattern must have the form[ p11 . . .p1n1 | . . . | pm1 . . .pmnm ] with m being the number of
constructors of the type ofident . Be careful that the list must be of lengthm even ifinversion
discards some cases (which is precisely one of its roles): for the discarded cases, just use an empty
list (i.e. ni = 0).

The arguments of theith constructor and the equalities thatinversion introduces in the context
of the goal corresponding to theith constructor, if it exists, get their names from the listpi1

. . .pini in order. If there are not enough names,induction invents names for the remaining
variables to introduce. In case an equation splits into several equations (becauseinversion
appliesinjection on the equalities it generates), the corresponding namepij in the list must be
replaced by a sublist of the form[ pij1 ... pijq] (or, equivalently,( pij1, ..., pijq) ) where
q is the number of subequations obtained from splitting the original equation. Here is an example.

Coq < Inductive contains0 : list nat -> Prop :=
Coq < | in_hd : forall l, contains0 (0 :: l)
Coq < | in_tl : forall l b, contains0 l -> contains0 (b :: l).
contains0 is defined
contains0_ind is defined

Coq < Goal forall l:list nat, contains0 (1 :: l) -> contains0 l.
1 subgoal

============================
forall l : list nat, contains0 (1 :: l) -> contains0 l

Coq < intros l H; inversion H as [ | l’ p Hl’ [Heqp Heql’] ].
1 subgoal

l : list nat
H : contains0 (1 :: l)
l’ : list nat
p : nat
Hl’ : contains0 l
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Heqp : p = 1
Heql’ : l’ = l
============================

contains0 l

4. inversion num as intro_pattern

This allows to name the hypotheses introduced byinversion num in the context.

5. inversion_clear ident as intro_pattern

This allows to name the hypotheses introduced byinversion_clear in the context.

6. inversion ident in ident1 . . . identn

Let ident1 . . . identn, be identifiers in the local context. This tactic behaves as generalizingident1
. . . identn, and then performinginversion .

7. inversion ident as intro_pattern in ident1 . . . identn

This allows to name the hypotheses introduced in the context byinversion ident in ident1 . . .
identn.

8. inversion_clear ident in ident1 . . .identn

Let ident1 . . . identn, be identifiers in the local context. This tactic behaves as generalizingident1
. . . identn, and then performinginversion_clear .

9. inversion_clear ident as intro_pattern in ident1 . . .identn

This allows to name the hypotheses introduced in the context byinversion_clear ident in
ident1 . . .identn.

10. dependent inversion ident

That must be used whenident appears in the current goal. It acts likeinversion and then
substitutesident for the corresponding term in the goal.

11. dependent inversion ident as intro_pattern

This allows to name the hypotheses introduced in the context bydependent inversion
ident .

12. dependent inversion_clear ident

Like dependent inversion , except thatident is cleared from the local context.

13. dependent inversion_clear identas intro_pattern

This allows to name the hypotheses introduced in the context bydependent
inversion_clear ident

14. dependent inversion ident with term

This variant allow to give the good generalization of the goal. It is useful when the system fails
to generalize the goal automatically. Ifident has type(I ~t) andI has typeforall(~x : ~T ), s, then
term must be of typeI : forall(~x : ~T ), I ~x→ s′ wheres′ is the type of the goal.

15. dependent inversion ident as intro_pattern with term

This allows to name the hypotheses introduced in the context bydependent inversion
ident with term.
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16. dependent inversion_clear ident with term

Like dependent inversion ... with but clearsident from the local context.

17. dependent inversion_clear ident as intro_pattern with term

This allows to name the hypotheses introduced in the context bydependent
inversion_clear ident with term.

18. simple inversion ident

It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify
the constraints asinversion do.

19. simple inversion ident as intro_pattern

This allows to name the hypotheses introduced in the context bysimple inversion .

20. inversion ident using ident ′

Let ident have type(I ~t) (I an inductive predicate) in the local context, andident ′ be a (dependent)
inversion lemma. Then, this tactic refines the current goal with the specified lemma.

21. inversion ident using ident ′ in ident1. . . identn

This tactic behaves as generalizingident1. . . identn, then doinginversion identusing ident ′.

See also:10.5 for detailed examples

8.10.2 Derive Inversion ident with forall(~x:~T ),I ~t Sort sort

This command generates an inversion principle for theinversion ... using tactic. LetI be
an inductive predicate and~x the variables occurring in~t. This command generates and stocks the in-
version lemma for the sortsort corresponding to the instanceforall(~x : ~T ), I ~t with the nameident
in the global environment. When applied it is equivalent to have inverted the instance with the tactic
inversion .

Variants:

1. Derive Inversion_clear ident with forall(~x : ~T ), I ~t Sort sort
When applied it is equivalent to having inverted the instance with the tacticinversion replaced
by the tacticinversion_clear .

2. Derive Dependent Inversion ident with forall(~x : ~T ), I ~t Sort sort
When applied it is equivalent to having inverted the instance with the tacticdependent

inversion .

3. Derive Dependent Inversion_clear ident with forall(~x : ~T ), I ~t Sort sort
When applied it is equivalent to having inverted the instance with the tacticdependent

inversion_clear .

See also:10.5 for examples
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8.10.3 quote ident

This kind of inversion has nothing to do with the tacticinversion above. This tactic doeschange
( ident t) , wheret is a term build in order to ensure the convertibility. In other words, it does inversion
of the functionident . This function must be a fixpoint on a simple recursive datatype: see 10.7 for the
full details.

Error messages:

1. quote: not a simple fixpoint
Happens whenquote is not able to perform inversion properly.

Variants:

1. quote ident [ ident1 ... identn ]
All terms that are build only withident1 . . .identn will be considered byquote as constants
rather than variables.

8.11 Automatizing

8.11.1 auto

This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve
the goal using theassumption tactic, then it reduces the goal to an atomic one usingintros and
introducing the newly generated hypotheses as hints. Then it looks at the list of tactics associated to the
head symbol of the goal and tries to apply one of them (starting from the tactics with lower cost). This
process is recursively applied to the generated subgoals.

By default,auto only uses the hypotheses of the current goal and the hints of the database named
core .

Variants:

1. auto num

Forces the search depth to benum. The maximal search depth is 5 by default.

2. auto with ident1 ... identn

Uses the hint databasesident1 . . . identn in addition to the databasecore . See Section 8.12 for
the list of pre-defined databases and the way to create or extend a database. This option can be
combined with the previous one.

3. auto with *

Uses all existing hint databases, minus the special databasev62 . See Section 8.12

4. trivial

This tactic is a restriction ofauto that is not recursive and tries only hints which cost is 0.
Typically it solves trivial equalities likeX = X.

5. trivial with ident1 ... identn

6. trivial with *

Remark: auto either solves completely the goal or else leave it intact.auto andtrivial never fail.

See also:Section 8.12
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8.11.2 eauto

This tactic generalizesauto . In contrast with the latter,eauto uses unification of the goal against
the hints rather than pattern-matching (in other words, it useseapply instead ofapply ). As a conse-
quence,eauto can solve such a goal:

Coq < Hint Resolve ex_intro.
Warning: the hint: EApply ex_intro will only be used by EAuto

Coq < Goal forall P:nat -> Prop, P 0 -> exists n, P n.
1 subgoal

============================
forall P0 : nat -> Prop, P0 0 -> exists n : nat, P0 n

Coq < eauto.
Proof completed.

Note thatex_intro should be declared as an hint.

See also:Section 8.12

8.11.3 tauto

This tactic implements a decision procedure for intuitionistic propositional calculus based on the
contraction-free sequent calculi LJT* of Roy Dyckhoff [49]. Note thattauto succeeds on any in-
stance of an intuitionistic tautological proposition.tauto unfolds negations and logical equivalence
but does not unfold any other definition.

The following goal can be proved bytauto whereasauto would fail:

Coq < Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x.
1 subgoal

============================
forall (x : nat) (P0 : nat -> Prop), x = 0 \/ P0 x -> x <> 0 -> P0 x

Coq < intros.
1 subgoal

x : nat
P0 : nat -> Prop
H : x = 0 \/ P0 x
H0 : x <> 0
============================

P0 x

Coq < tauto.
Proof completed.

Moreover, if it has nothing else to do,tauto performs introductions. Therefore, the use ofintros
in the previous proof is unnecessary.tauto can for instance prove the following:

Coq < (* auto would fail *)
Coq < Goal forall (A:Prop) (P:nat -> Prop),
Coq < A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ A -> P x.
1 subgoal

============================
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forall (A : Prop) (P0 : nat -> Prop),
A \/ (forall x : nat, ~ A -> P0 x) -> forall x : nat, ~ A -> P0 x

Coq <
Coq < tauto.
Proof completed.

Remark: In contrast,tauto cannot solve the following goal

Coq < Goal forall (A:Prop) (P:nat -> Prop),
Coq < A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x).

because(forall x:nat, ~ A -> P x) cannot be treated as atomic and an instantiation of
x is necessary.

8.11.4 intuition tactic

The tacticintuition takes advantage of the search-tree builded by the decision procedure involved
in the tactictauto . It uses this information to generate a set of subgoals equivalent to the original one
(but simpler than it) and applies the tactictactic to them [89]. If this tactic fails on some goals then
intuition fails. In fact,tauto is simply intuition fail .

For instance, the tacticintuition auto applied to the goal

(forall (x:nat), P x)/\B -> (forall (y:nat),P y)/\ P O \/B/\ P O

internally replaces it by the equivalent one:

(forall (x:nat), P x), B |- P O

and then usesauto which completes the proof.
Originally due to César Muñoz, these tactics (tauto and intuition ) have been completely

reenginered by David Delahaye using mainly the tactic language (see chapter 9). The code is now quite
shorter and a significant increase in performances has been noticed. The general behavior with respect
to dependent types, unfolding and introductions has slightly changed to get clearer semantics. This may
lead to some incompatibilities.

Variants:

1. intuition
Is equivalent tointuition auto with * .

8.11.5 firstorder

The tacticfirstorder is anexperimentalextension oftauto to first-order reasoning, written by
Pierre Corbineau. It is not restricted to usual logical connectives but instead may reason about any
first-order class inductive definition.

Variants:

1. firstorder tactic

Tries to solve the goal withtactic when no logical rule may apply.

2. firstorder with ident1 ... identn

Adds lemmataident1 . . . identn to the proof-search environment.
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3. firstorder using ident1 ... identn

Adds lemmata inauto hints basesident1 . . . identn to the proof-search environment.

Proof-search is bounded by a depth parameter which can be set by typing theSet Firstorder
Depth n vernacular command.

8.11.6 congruence

The tacticcongruence , by Pierre Corbineau, implements the standard Nelson and Oppen congru-
ence closure algorithm, which is a decision procedure for ground equalities with uninterpreted symbols.
It also include the constructor theory (see 8.9.4 and 8.9.3). If the goal is a non-quantified equality,
congruence tries to prove it with non-quantified equalities in the context. Otherwise it tries to infer a
discriminable equality from those in the context.

Coq < Theorem T:
Coq < a=(f a) -> (g b (f a))=(f (f a)) -> (g a b)=(f (g b a)) -> (g a b)=a.
1 subgoal

============================
a = f a -> g b (f a) = f (f a) -> g a b = f (g b a) -> g a b = a

Coq < intros.
1 subgoal

H : a = f a
H0 : g b (f a) = f (f a)
H1 : g a b = f (g b a)
============================

g a b = a

Coq < congruence.
Proof completed.

Coq < Theorem inj : f = pair a -> Some (f c) = Some (f d) -> c=d.
1 subgoal

============================
f = pair (B:=A) a -> Some (f c) = Some (f d) -> c = d

Coq < intros.
1 subgoal

H : f = pair (B:=A) a
H0 : Some (f c) = Some (f d)
============================

c = d

Coq < congruence.
Proof completed.

Error messages:

1. I don’t know how to handle dependent equality
The decision procedure managed to find a proof of the goal or of a discriminable equality but this
proof couldn’t be built in Coq because of dependently-typed functions.

2. I couldn’t solve goal
The decision procedure didn’t managed to find a proof of the goal or of a discriminable equality.
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8.11.7 omega

The tacticomega, due to Pierre Crégut, is an automatic decision procedure for Prestburger arithmetic.
It solves quantifier-free formulae build with~, \/ , /\ , -> on top of equations and inequations on both
the typenat of natural numbers andZ of binary integers. This tactic must be loaded by the command
Require Import Omega . See the additional documentation aboutomega (chapter 17).

8.11.8 ring term1 ... termn

This tactic, written by Samuel Boutin and Patrick Loiseleur, applies associative commutative rewriting
on every ring. The tactic must be loaded byRequire Import Ring . The ring must be declared in
theAdd Ring command (see 19). The ring of booleans is predefined; if one wants to use the tactic on
nat one must first require the moduleArithRing ; for Z, do Require Import ZArithRing ;
for N, doRequire Import NArithRing .

The termsterm1, . . . , termn must be subterms of the goal conclusion. The tacticring normalizes
these terms w.r.t. associativity and commutativity and replace them by their normal form.

Variants:

1. ring When the goal is an equalityt1 = t2, it acts likering t1 t2 and then simplifies or solves
the equality.

2. ring_nat is a tactic macro forrepeat rewrite S_to_plus_one; ring . The theorem
S_to_plus_one is a proof thatforall (n:nat), S n = plus (S O) n .

Example:

Coq < Require Import ZArithRing.

Coq < Goal forall a b c:Z,
Coq < (a + b + c) * (a + b + c) =
Coq < a * a + b * b + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
1 subgoal

============================
forall a b c : Z,
(a + b + c) * (a + b + c) =
a * a + b * b + c * c + 2 * a * b + 2 * a * c + 2 * b * c

Coq < intros; ring.
Proof completed.

You can have a look at the filesRing.v , ArithRing.v , ZArithRing.v to see examples of the
Add Ring command.

See also:Chapter 19 for more detailed explanations about this tactic.

8.11.9 field

This tactic written by David Delahaye and Micaela Mayero solves equalities using commutative field
theory. Denominators have to be non equal to zero and, as this is not decidable in general, this tactic
may generate side conditions requiring some expressions to be non equal to zero. This tactic must
be loaded byRequire Import Field . Field theories are declared (as forring ) with the Add
Field command.

Example:
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Coq < Require Import Reals.

Coq < Goal forall x y:R,
Coq < (x * y > 0)%R ->
Coq < (x * (1 / x + x / (x + y)))%R =
Coq < ((- 1 / y) * y * (- x * (x / (x + y)) - 1))%R.

Coq < intros; field.
1 subgoal

x : R
y : R
H : (x * y > 0)%R
============================

(x * ((x + y) * y))%R <> 0%R

8.11.10 Add Field

This vernacular command adds a commutative field theory to the database for the tacticfield . You
must provide this theory as follows:

Add Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl

whereA is a term of typeType , Aplusis a term of typeA->A->A , Amult is a term of typeA->A->A ,
Aone is a term of typeA, Azero is a term of typeA, Aopp is a term of typeA->A , Aeq is a term of
type A->bool , Ainv is a term of typeA->A , Rth is a term of type(Ring_Theory A Aplus Amult
Aone Azero Ainv Aeq) , andTinvl is a term of typeforall n: A, ˜(n= Azero)->( Amult ( Ainv n)
n)= Aone. To build a ring theory, refer to Chapter 19 for more details.

This command adds also an entry in the ring theory table if this theory is not already declared. So, it
is useless to keep, for a given type, theAdd Ring command if you declare a theory withAdd Field ,
except if you plan to use specific features ofring (see Chapter 19). However, the modulering is
not loaded byAdd Field and you have to make aRequire Import Ring if you want to call the
ring tactic.

Variants:

1. Add Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl
with minus:= Aminus

Adds also the termAminuswhich must be a constant expressed by means ofAopp.

2. Add Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl
with div:= Adiv

Adds also the termAdivwhich must be a constant expressed by means ofAinv.

See also:file theories/Reals/Rbase.v for an example of instantiation,
theorytheories/Reals for many examples of use offield .

See also:[37] for more details regarding the implementation offield .

8.11.11 fourier

This tactic written by Loïc Pottier solves linear inequations on real numbers using Fourier’s method [58].
This tactic must be loaded byRequire Import Fourier .

Example:
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Coq < Require Import Reals.

Coq < Require Import Fourier.

Coq < Goal forall x y:R, (x < y)%R -> (y + 1 >= x - 1)%R.

Coq < intros; fourier.
Proof completed.

8.11.12 autorewrite with ident1 ... identn.

This tactic5 carries out rewritings according the rewriting rule basesident1 ... identn.
Each rewriting rule of a baseident i is applied to the main subgoal until it fails. Once all the rules

have been processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal)
then the rules of this base are processed again. If the main subgoal has not progressed then the next base
is processed. For the bases, the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with theHint Rewrite vernacular command.

Warning: This tactic may loop if you build non terminating rewriting systems.

Variant:

1. autorewrite with ident1 ... identn using tactic
Performs, in the same way, all the rewritings of the basesident1 ... identn applying tactic to
the main subgoal after each rewriting step.

8.11.13 Hint Rewrite term1 ... termn : ident

This vernacular command adds the termsterm1 ... termn (their types must be equalities) in the rewrit-
ing baseident with the default orientation (left to right). Notice that the rewriting bases are distinct from
theauto hint bases and thatauto does not take them into account.

This command is synchronous with the section mechanism (see 2.3): when closing a section, all
aliases created byHint Rewrite in that section are lost. Conversely, when loading a module, all
Hint Rewrite declarations at the global level of that module are loaded.

Variants:

1. Hint Rewrite -> term1 ... termn : ident
This is strictly equivalent to the command above (we only make explicit the orientation which
otherwise defaults to-> ).

2. Hint Rewrite <- term1 ... termn : ident
Adds the rewriting rulesterm1 ... termn with a right-to-left orientation in the baseident .

3. Hint Rewrite term1 ... termn using tactic : ident
When the rewriting rulesterm1 ... termn in ident will be used, the tactictactic will be applied
to the generated subgoals, the main subgoal excluded.

See also:10.6 for examples showing the use of this tactic.

5The behavior of this tactic has much changed compared to the versions available in the previous distributions (V6). This
may cause significant changes in your theories to obtain the same result. As a drawback of the reenginering of the code, this
tactic has also been completely revised to get a very compact and readable version.
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8.12 The hints databases forauto and eauto

The hints forauto andeauto are stored in databases. Each databases maps head symbols to list of
hints. One can use the commandPrint Hint ident to display the hints associated to the head symbol
ident (see 8.12.2). Each hint has a cost that is an nonnegative integer, and a pattern. The hint is tried by
auto if the conclusion of current goal matches its pattern, and after hints with a lower cost. The general
command to add a hint to some databasesident1, . . . , identn is:

Hint hint_definition : ident1 . . . identn

wherehint_definition is one of the following expressions:
wherehint_definition is one of the following expressions:

• Resolve term

This command addsapply term to the hint list with the head symbol of the type ofterm. The
cost of that hint is the number of subgoals generated byapply term.

In case the inferred type ofterm does not start with a product the tactic added in the hint list is
exact term. In case this type can be reduced to a type starting with a product, the tacticapply
term is also stored in the hints list.

If the inferred type ofterm does contain a dependent quantification on a predicate, it is added to
the hint list ofeapply instead of the hint list ofapply . In this case, a warning is printed since
the hint is only used by the tacticeauto (see 8.11.2). A typical example of hint that is used only
by eauto is a transitivity lemma.

Error messages:

1. Bound head variable

The head symbol of the type ofterm is a bound variable such that this tactic cannot be
associated to a constant.

2. term cannot be used as a hint

The type ofterm contains products over variables which do not appear in the conclusion.
A typical example is a transitivity axiom. In that case theapply tactic fails, and thus is
useless.

Variants:

1. Resolve term1 . . .termm

Adds eachResolve termi.

• Immediate term

This command addsapply term; trivial to the hint list associated with the head symbol of
the type ofident in the given database. This tactic will fail if all the subgoals generated byapply
term are not solved immediately by thetrivial tactic which only tries tactics with cost0.

This command is useful for theorems such that the symmetry of equality orn + 1 = m + 1 →
n = m that we may like to introduce with a limited use in order to avoid useless proof-search.

The cost of this tactic (which never generates subgoals) is always 1, so that it is not used by
trivial itself.

Error messages:
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1. Bound head variable

2. term cannot be used as a hint

Variants:

1. Immediate term1 . . .termm

Adds eachImmediate termi.

• Constructors ident

If ident is an inductive type, this command adds all its constructors as hints of typeResolve .
Then, when the conclusion of current goal has the form( ident ...) , auto will try to apply
each constructor.

Error messages:

1. ident is not an inductive type

2. ident not declared

Variants:

1. Constructors ident1 . . .identm

Adds eachConstructors ident i.

• Unfold qualid

This adds the tacticunfold qualid to the hint list that will only be used when the head constant
of the goal isident . Its cost is 4.

Variants:

1. Unfold ident1 . . .identm

Adds eachUnfold ident i.

• Extern num pattern => tactic

This hint type is to extendauto with tactics other thanapply andunfold . For that, we must
specify a cost, a pattern and a tactic to execute. Here is an example:

Hint Extern 4 ~(?=?) => discriminate.

Now, when the head of the goal is a disequality,auto will try discriminate if it does not
succeed to solve the goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question
mark followed by an ident, like?X1 or ?X2. Here is an example:

Coq < Require Import List.

Coq < Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) =>
Coq < generalize X1 X2; decide equality : eqdec.

Coq < Goal
Coq < forall a b:list (nat * nat), {a = b} + {a <> b}.
1 subgoal
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============================

forall a b : list (nat * nat), {a = b} + {a <> b}

Coq < info auto with eqdec.
== intro a; intro b; generalize a b; decide equality;

generalize a0 p; decide equality.
generalize b0 n0; decide equality.

generalize a1 n; decide equality.

Proof completed.

Remark: There is currently (in the 8.0 release) no way to do pattern-matching on hypotheses.

Variants:

1. Hint hint_definition

No database name is given : the hint is registered in thecore database.

2. Hint Local hint_definition : ident1 . . . identn

This is used to declare hints that must not be exported to the other modules that require and import
the current module. Inside a section, the optionLocal is useless since hints do not survive
anyway to the closure of sections.

3. Hint Local hint_definition

Idem for thecore database.

8.12.1 Hint databases defined in the COQ standard library

Several hint databases are defined in the COQ standard library. There is no systematic relation between
the directories of the library and the databases.

core This special database is automatically used byauto . It contains only basic lemmas about nega-
tion, conjunction, and so on from. Most of the hints in this database come from theInit and
Logic directories.

arith This database contains all lemmas about Peano’s arithmetic proven in the directoriesInit and
Arith

zarith contains lemmas about binary signed integers from the directoriestheories/ZArith and
contrib/omega . It contains also a hint with a high cost that callsomega.

bool contains lemmas about booleans, mostly from directorytheories/Bool .

datatypes is for lemmas about lists, streams and so on that are mainly proven in theLists subdi-
rectory.

sets contains lemmas about sets and relations from the directoriesSets andRelations .

There is also a special database calledv62 . It collects all hints that were declared in the versions of
COQ prior to version 6.2.4 when the databasescore , arith , and so on were introduced. The purpose
of the databasev62 is to ensure compatibility with further versions of Coq for developments done in
versions prior to 6.2.4 (auto being replaced byauto with v62 ). The databasev62 is intended not
to be extended (!). It is not included in the hint databases list used in theauto with * tactic.

Furthermore, you are advised not to put your own hints in thecore database, but use one or several
databases specific to your development.
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8.12.2 Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while
the two variants can be used at every moment.

Variants:

1. Print Hint ident

This command displays only tactics associated withident in the hints list. This is independent of
the goal being edited, to this command will not fail if no goal is being edited.

2. Print Hint *

This command displays all declared hints.

3. Print HintDb ident

This command displays all hints from databaseident .

8.12.3 Hints and sections

Hints provided by theHint commands are erased when closing a section. Conversely, all hints of a
moduleA that are not defined inside a section (and not defined with optionLocal ) become available
when the moduleA is imported (using e.g.Require Import A. ).

8.13 Generation of induction principles withScheme

The Scheme command is a high-level tool for generating automatically (possibly mutual) induction
principles for given types and sorts. Its syntax follows the schema:

Scheme ident1 := Induction for ident ’ 1 Sort sort1with . . .

ident ’1 . . . ident ’m are different inductive type identifiers belonging to the same package of mutual
inductive definitions. This command generatesident1. . . identm to be mutually recursive definitions.
Each termident i proves a general principle of mutual induction for objects in typetermi.

Variants:

1. Scheme ident1 := Minimality for ident ’ 1 Sort sort1
with

...
with identm := Minimality for ident ’ m Sort sortm

Same as before but defines a non-dependent elimination principle more natural in case of induc-
tively defined relations.

See also:10.3

See also:Section 10.3
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8.14 Generation of induction principles withFunctional Scheme

TheFunctional Scheme command is a high-level experimental tool for generating automatically
induction principles corresponding to (possibly mutually recursive) functions. Its syntax follows the
schema:

Functional Scheme ident i := Induction for ident ’ i with ident ’ 1 ... ident ’ m.

ident ’1 . . . ident ’m are the names of mutually recursive functions (they must be in the same order as
when they were defined),ident ’ i being one of them. This command generates the induction principle
ident i, following the recursive structure and case analyses of the functionsident ’1 . . . ident ’m, and
havingident ’ i as entry point.

Variants:

1. Functional Scheme ident1 := Induction for ident ’ 1.

This command is a shortcut for:

Functional Scheme ident1 := Induction for ident ’ 1 with ident ’ 1.

This variant can be used for non mutually recursive functions only.

See also:Section 10.4

8.15 Simple tactic macros

A simple example has more value than a long explanation:

Coq < Ltac Solve := simpl; intros; auto.
Solve is defined

Coq < Ltac ElimBoolRewrite b H1 H2 :=
Coq < elim b; [ intros; rewrite H1; eauto | intros; rewrite H2; eauto ].
ElimBoolRewrite is defined

The tactics macros are synchronous with the COQ section mechanism: a tactic definition is deleted
from the current environment when you close the section (see also 2.3) where it was defined. If you
want that a tactic macro defined in a module is usable in the modules that require it, you should put it
outside of any section.

The chapter 9 gives examples of more complex user-defined tactics.
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Chapter 9

The tactic language

This chapter gives a compact documentation of Ltac, the tactic language available in COQ. We start by
giving the syntax, and next, we present the informal semantics. If you want to know more regarding
this language and especially about its fundations, you can refer to [36]. Chapter 10 is devoted to giving
examples of use of this language on small but also with non-trivial problems.

9.1 Syntax

The syntax of the tactic language is given Figures 9.1 and 9.2. See page 25 for a description of the BNF
metasyntax used in these grammar rules. Various already defined entries will be used in this chapter:
entriesnatural , integer, ident , qualid , term, cpattern andatomic_tactic represent respectively the natural
and integer numbers, the authorized identificators and qualified names, COQ’s terms and patterns and
all the atomic tactics described in chapter 8. The syntax ofcpattern is the same as that of terms, but
there can be specific variables like?id whereid is a ident or _, which are metavariables for pattern
matching.?id allows us to keep instantiations and to make constraints whereas_ shows that we are not
interested in what will be matched. On the right hand side, they are used without the question mark.

The main entry of the grammar isexpr. This language is used in proof mode but it can also be used
in toplevel definitions as shown in Figure 9.3.

Remarks:

1. The infix tacticals “. . .|| . . . ” and “. . . ; . . . ” are associative.

2. As shown by the figure, tactical|| binds more than the prefix tacticalstry , repeat , do , info
andabstract which themselves bind more than the postfix tactical “... ;[ ... ] ” which
binds more than “. . .; . . . ”.

For instance

try repeat tactic1 || tactic2; tactic3;[ tactic31|...| tactic3n]; tactic4.

is understood as

(try (repeat ( tactic1 || tactic2)));
(( tactic3;[ tactic31|...| tactic3n]); tactic4).
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expr ::= expr ; expr
| expr ; [ expr | . . . | expr ]
| tacexpr3

tacexpr3 ::= do (natural | ident) tacexpr3
| info tacexpr3
| progress tacexpr3
| repeat tacexpr3
| try tacexpr3
| tacexpr2

tacexpr2 ::= tacexpr1 || tacexpr3
| tacexpr1

tacexpr1 ::= fun name . . . name => atom
| let let_clause with . . . with let_clause in atom
| let rec rec_clause with . . . with rec_clause in expr
| match goal with context_rule | . . . | context_rule end
| match reverse goal with context_rule | . . . | context_rule end
| match expr with match_rule | . . . | match_rule end
| abstract atom
| abstract atom using ident
| first [ expr | . . . | expr ]
| solve [ expr | . . . | expr ]
| idtac | idtac string
| fail | fail natural string
| fresh | fresh string
| context ident [ term ]
| eval redexpr in term
| type of term
| constr : term
| atomic_tactic
| qualid tacarg . . . tacarg
| atom

atom ::= qualid
| ()
| ( expr )

Figure 9.1: Syntax of the tactic language

9.2 Semantics

Tactic expressions can only be applied in the context of a goal. The evaluation yields either a term, an
integer or a tactic. Intermediary results can be terms or integers but the final result must be a tactic which
is then applied to the current goal.

There is a special case formatch goal expressions of which the clauses evaluate to tactics. Such
expressions can only be used as end result of a tactic expression (never as argument of a local definition
or of an application).
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tacarg ::= qualid
| ()
| ltac : atom
| term

let_clause ::= ident [name . . . name] := expr

rec_clause ::= ident name . . . name := expr

context_rule ::= context_hyps , . . . , context_hyps |- cpattern => expr
| |- cpattern => expr
| _ => expr

context_hyps ::= name : cpattern

match_rule ::= cpattern => expr
| context [ ident] [ cpattern ] => expr
| _ => expr

Figure 9.2: Syntax of the tactic language (continued)

top ::= Ltac ltac_def with . . . with ltac_def

ltac_def ::= ident [ ident . . . ident] := expr

Figure 9.3: Tactic toplevel definitions

The rest of this section explains the semantics of every construction of Ltac.

Sequence

A sequence is an expression of the following form:

expr1 ; expr2

expr1 andexpr2 are evaluated tov1 andv2. v1 andv2 must be tactic values.v1 is then applied andv2 is
applied to every subgoal generated by the application ofv1. Sequence is left associating.

General sequence

We can generalize the previous sequence operator as

expr0 ; [ expr1 | ... | exprn ]

expri is evaluated tovi, for i = 0, ..., n. v0 is applied andvi is applied to thei-th generated subgoal by
the application ofv0, for = 1, ..., n. It fails if the application ofv0 does not generate exactlyn subgoals.

For loop

There is a for loop that repeats a tacticnum times:

do num expr
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expr is evaluated tov. v must be a tactic value.v is appliednum times. Supposingnum > 1, after
the first application ofv, v is applied, at least once, to the generated subgoals and so on. It fails if the
application ofv fails before thenum applications have been completed.

Repeat loop

We have a repeat loop with:

repeat expr

expr is evaluated tov. v must be a tactic value.v is applied until it fails. Supposingn > 1, after the first
application ofv, v is applied, at least once, to the generated subgoals and so on. It stops when it fails for
all the generated subgoals. It never fails.

Error catching

We can catch the tactic errors with:

try expr

expr is evaluated tov. v must be a tactic value.v is applied. If the application ofv fails, it catches
the error and leaves the goal unchanged. If the level of the exception is positive, then the exception is
re-raised with its level decremented.

Detecting progress

We can check if a tactic made progress with:

progress expr

expr is evaluated tov. v must be a tactic value.v is applied. If the application ofv produced one subgoal
equal to the initial goal (up to syntactical equality), then an error of level 0 is raised.

Error message:Failed to progress

Branching

We can easily branch with the following structure:

expr1 || expr2

expr1 andexpr2 are evaluated tov1 andv2. v1 andv2 must be tactic values.v1 is applied and if it fails
thenv2 is applied. Branching is left associating.

First tactic to work

We may consider the first tactic to work (i.e. which does not fail) among a panel of tactics:

first [ expr1 | ... | exprn ]

expri are evaluated tovi andvi must be tactic values, fori = 1, ..., n. Supposingn > 1, it appliesv1, if
it works, it stops else it tries to applyv2 and so on. It fails when there is no applicable tactic.

Error message:No applicable tactic
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Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:

solve [ expr1 | ... | exprn ]

expri are evaluated tovi andvi must be tactic values, fori = 1, ..., n. Supposingn > 1, it appliesv1, if
it solves, it stops else it tries to applyv2 and so on. It fails if there is no solving tactic.

Error message:Cannot solve the goal

Identity

The constantidtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

idtac andidtac "message"

The latter variant prints the string on the standard output.

Failing

The tacticfail is the always-failing tactic: it does not solve any goal. It is useful for defining other
tacticals since it can be catched bytry or match goal . There are three variants:

fail n, fail "message" andfail n "message"

The numbern is the failure level. If no level is specified, it defaults to0. The level is used bytry and
match goal . If 0, it makesmatch goal considering the next clause (backtracking). If non zero,
the currentmatch goal block ortry command is aborted and the level is decremented.

Error message:Tactic Failure "message" (level n) .

Local definitions

Local definitions can be done as follows:

let ident1 := expr1

with ident2 := expr2

...
with identn := exprn in
expr

eachexpri is evaluated tovi, then,expr is evaluated by substitutingvi to each occurrence ofident i, for
i = 1, ..., n. There is no dependencies between theexpri and theident i.

Local definitions can be recursive by usinglet rec instead oflet . Only functions can be defined
by recursion, so at least one argument is required.

Application

An application is an expression of the following form:

qualid tacarg1 ... tacargn

The referencequalid must be bound to some defined tactic definition expecting at leastn arguments.
The expressionsexpri are evaluated tovi, for i = 1, ..., n.
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Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:

fun ident1 ... identn => expr

Indeed, local definitions of functions are a syntactic sugar for binding afun tactic to an identifier.

Pattern matching on terms

We can carry out pattern matching on terms with:

match expr with
cpattern1 => expr1

| cpattern2 => expr2

...
| cpatternn => exprn

| _ => exprn+1

end

Theexpr is evaluated and should yield a term which is matched (non-linear first order unification) against
cpattern1 thenexpr1 is evaluated into some value by substituting the pattern matching instantiations to
the metavariables. If the matching withcpattern1 fails, cpattern2 is used and so on. The pattern _
matches any term and shunts all remaining patterns if any. Ifexpr1 evaluates to a tactic, this tactic is not
immediately applied to the current goal (in contrast withmatch goal ). If all clauses fail (in particular,
there is no pattern _) then a no-matching error is raised.

Error messages:

1. No matching clauses for match

No pattern can be used and, in particular, there is no_ pattern.

2. Argument of match does not evaluate to a term

This happens whenexpr does not denote a term.

There is a special form of patterns to match a subterm against the pattern:

context ident [ cpattern ]

It matches any term which one subterm matchescpattern. If there is a match, the optionalident is assign
the “matched context”, that is the initial term where the matched subterm is replaced by a hole. The
definition ofcontext in expressions below will show how to use such term contexts.

This operator never makes backtracking. If there are several subterms matching the pattern, only the
first match is considered. Note that the order of matching is left unspecified.

Pattern matching on goals

We can make pattern matching on goals using the following expression:

match goal with
| hyp1,1, ..., hyp1,m1 |- cpattern1=> expr1

| hyp2,1, ..., hyp2,m2 |- cpattern2=> expr2

...
| hypn,1, ..., hypn,mn |- cpatternn=> exprn

|_ => exprn+1

end
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If each hypothesis patternhyp1,i, with i = 1, ...,m1 is matched (non-linear first order unification)

by an hypothesis of the goal and ifcpattern1 is matched by the conclusion of the goal, thenexpr1 is
evaluated tov1 by substituting the pattern matching to the metavariables and the real hypothesis names
bound to the possible hypothesis names occurring in the hypothesis patterns. Ifv1 is a tactic value, then
it is applied to the goal. If this application fails, then another combination of hypotheses is tried with the
same proof context pattern. If there is no other combination of hypotheses then the second proof context
pattern is tried and so on. If the next to last proof context pattern fails thenexprn+1 is evaluated tovn+1

andvn+1 is applied.

Error message:No matching clauses for match goal
No goal pattern can be used and, in particular, there is no_ goal pattern.

It is important to know that each hypothesis of the goal can be matched by at most one hypothesis
pattern. The order of matching is the following: hypothesis patterns are examined from the right to the
left (i.e. hypi,mi beforehypi,1). For each hypothesis pattern, the goal hypothesis are matched in order
(fresher hypothesis first), but it possible to reverse this order (older first) with thematch reverse
goal with variant.

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a
term to be used in tactic expressions:

context ident [ expr ]

ident must denote a context variable bound by acontext pattern of amatch expression. This expres-
sion evaluates replaces the hole of the value ofident by the value ofexpr.

Error message:not a context variable

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with
the intro tactic is not so good since it is very awkward to retrieve the name the system gave.

As before, the following expression returns a term:

fresh string

It evaluates to an identifier unbound in the goal, which is obtained by paddingstring with a number if
necessary. If no name is given, the prefix isH.

type of term

This tactic computes the type ofterm.

Computing in a constr

Evaluation of a term can be performed with:

eval redexpr in term

whereredexpr is a reduction tactic amongred , hnf , compute , simpl , cbv , lazy , unfold , fold ,
pattern .
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Accessing tactic decomposition

Tactical “info expr” is not really a tactical. For elementary tactics, this is equivalent toexpr. For
complex tactic likeauto , it displays the operations performed by the tactic.

Proving a subgoal as a separate lemma

From the outside “abstract expr” is the same assolve expr. Internally it saves an auxiliary
lemma calledident_subproof n whereident is the name of the current goal andn is chosen so that
this is a fresh name.

This tactical is useful with tactics such asomega or discriminate that generate huge proof
terms. With that tool the user can avoid the explosion at time of theSave command without having to
cut manually the proof in smaller lemmas.

Variants:

1. abstract expr using ident .
Give explicitly the name of the auxiliary lemma.

Error message:Proof is not complete

9.3 Tactic toplevel definitions

Basically, tactics toplevel definitions are made as follows:

Ltac ident ident1 ... identn := expr

This defines a new tactic that can be used in any tactic script or new tactic toplevel definition.

Remark: The preceding definition can equivalently be written:

Ltac ident := fun ident1 ... identn => expr

Recursive and mutual recursive function definitions are also possible with the syntax:

Ltac ident1 ident1,1 ... ident1,m1 := expr1

with ident2 ident2,1 ... ident2,m2 := expr2

...
with identn identn,1 ... identn,mn := exprn
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Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

10.1 refine

This tactic applies to any goal. It behaves likeexact with a big difference : the user can leave some
holes (denoted by_ or (_: type) ) in the term. refine will generate as many subgoals as they are
holes in the term. The type of holes must be either synthesized by the system or declared by an explicit
cast like(\_:nat->Prop) . This low-level tactic can be useful to advanced users.

Example:

Coq < Inductive Option : Set :=
Coq < | Fail : Option
Coq < | Ok : bool -> Option.

Coq < Definition get : forall x:Option, x <> Fail -> bool.
1 subgoal

============================
forall x : Option, x <> Fail -> bool

Coq < refine
Coq < (fun x:Option =>
Coq < match x return x <> Fail -> bool with
Coq < | Fail => _
Coq < | Ok b => fun _ => b
Coq < end).
1 subgoal

x : Option
============================

Fail <> Fail -> bool

Coq < intros; absurd (Fail = Fail); trivial.
Proof completed.

Coq < Defined.

10.2 eapply

Example: Assume we have a relation onnat which is transitive:
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Coq < Variable R : nat -> nat -> Prop.

Coq < Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z.

Coq < Variables n m p : nat.

Coq < Hypothesis Rnm : R n m.

Coq < Hypothesis Rmp : R m p.

Consider the goal(R n p) provable using the transitivity ofR:

Coq < Goal R n p.

The direct application ofRtrans with apply fails because no value fory in Rtrans is found by
apply :

Coq < apply Rtrans.
Unnamed_thm < Unnamed_thm < Toplevel input, characters 144-156
> apply Rtrans.
> ^^^^^^^^^^^^
Error: generated subgoal "R n ?17" has metavariables in it

A solution is to rather apply(Rtrans n m p) .

Coq < apply (Rtrans n m p).
2 subgoals

============================
R n m

subgoal 2 is:
R m p

More elegantly,apply Rtrans with (y:=m) allows to only mention the unknownm:

Coq <
Coq < apply Rtrans with (y := m).
2 subgoals

============================
R n m

subgoal 2 is:
R m p

Another solution is to mention the proof of(R x y) in Rtrans ...

Coq <
Coq < apply Rtrans with (1 := Rnm).
1 subgoal

============================
R m p

... or the proof of(R y z) :

Coq <
Coq < apply Rtrans with (2 := Rmp).
1 subgoal

============================
R n m
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On the opposite, one can useeapply which postpone the problem of findingm. Then one can apply

the hypothesesRnmandRmp. This instantiates the existential variable and completes the proof.

Coq < eapply Rtrans.
2 subgoals

============================
R n ?5

subgoal 2 is:
R ?5 p

Coq < apply Rnm.
1 subgoal

============================
R m p

Coq < apply Rmp.
Proof completed.

10.3 Scheme

Example 1: Induction scheme fortree andforest
The definition of principle of mutual induction fortree andforest over the sortSet is defined

by the command:

Coq < Inductive tree : Set :=
Coq < node : A -> forest -> tree
Coq < with forest : Set :=
Coq < | leaf : B -> forest
Coq < | cons : tree -> forest -> forest.

Coq <
Coq < Scheme tree_forest_rec := Induction for tree Sort Set
Coq < with forest_tree_rec := Induction for forest Sort Set.

You may now look at the type oftree_forest_rec :

Coq < Check tree_forest_rec.
tree_forest_rec

: forall (P : tree -> Set) (P0 : forest -> Set),
(forall (a : A) (f : forest), P0 f -> P (node a f)) ->
(forall b : B, P0 (leaf b)) ->
(forall t : tree, P t -> forall f : forest, P0 f -> P0 (cons t f)) ->
forall t : tree, P t

This principle involves two different predicates fortrees andforests ; it also has three premises
each one corresponding to a constructor of one of the inductive definitions.

The principletree_forest_rec shares exactly the same premises, only the conclusion now
refers to the property of forests.

Coq < Check forest_tree_rec.
forest_tree_rec

: forall (P : tree -> Set) (P0 : forest -> Set),
(forall (a : A) (f : forest), P0 f -> P (node a f)) ->
(forall b : B, P0 (leaf b)) ->
(forall t : tree, P t -> forall f : forest, P0 f -> P0 (cons t f)) ->
forall f2 : forest, P0 f2
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Example 2: Predicatesodd andeven on naturals

Let odd andeven be inductively defined as:

Coq < Inductive odd : nat -> Prop :=
Coq < oddS : forall n:nat, even n -> odd (S n)
Coq < with even : nat -> Prop :=
Coq < | evenO : even 0
Coq < | evenS : forall n:nat, odd n -> even (S n).

The following command generates a powerful elimination principle:

Coq < Scheme odd_even := Minimality for odd Sort Prop
Coq < with even_odd := Minimality for even Sort Prop.
odd_even, even_odd are recursively defined

The type ofodd_even for instance will be:

Coq < Check odd_even.
odd_even

: forall P P0 : nat -> Prop,
(forall n : nat, even n -> P0 n -> P (S n)) ->
P0 0 ->
(forall n : nat, odd n -> P n -> P0 (S n)) ->
forall n : nat, odd n -> P n

The type ofeven_odd shares the same premises but the conclusion is(n:nat)(even n)->(Q
n) .

10.4 Functional Scheme and functional induction

Example 1: Induction scheme fordiv2
We define the functiondiv2 as follows:

Coq < Require Import Arith.

Coq < Fixpoint div2 (n:nat) : nat :=
Coq < match n with
Coq < | O => 0
Coq < | S n0 => match n0 with
Coq < | O => 0
Coq < | S n’ => S (div2 n’)
Coq < end
Coq < end.

The definition of a principle of induction corresponding to the recursive structure ofdiv2 is defined
by the command:

Coq < Functional Scheme div2_ind := Induction for div2.

You may now look at the type ofdiv2_ind :
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Coq < Check div2_ind.
div2_ind

: forall Q0 : nat -> Prop,
(forall n : nat, n = 0 -> Q0 0) ->
(forall n n0 : nat, n = S n0 -> n0 = 0 -> Q0 1) ->
(forall n n0 : nat,

n = S n0 -> forall n’ : nat, n0 = S n’ -> Q0 n’ -> Q0 (S (S n’))) ->
forall n : nat, Q0 n

We can now prove the following lemma using this principle:

Coq < Lemma div2_le’ : forall n:nat, div2 n <= n.

Coq < intro n.

Coq < pattern n.

Coq < apply div2_ind; intros.
3 subgoals

n : nat
n0 : nat
H_eq_ : n0 = 0
============================

div2 0 <= 0
subgoal 2 is:

div2 1 <= 1
subgoal 3 is:

div2 (S (S n’)) <= S (S n’)

Coq < auto with arith.

Coq < auto with arith.

Coq < simpl; auto with arith.

Coq < Qed.

Sincediv2 is not mutually recursive, we can use directly thefunctional induction tactic
instead of building the principle:

Coq < Reset div2_ind.

Coq < Lemma div2_le : forall n:nat, div2 n <= n.

Coq < intro n.

Coq < functional induction div2 n.
3 subgoals

n : nat
H_eq_ : n = 0
============================

0 <= 0
subgoal 2 is:

0 <= 1
subgoal 3 is:

S (div2 n’) <= S (S n’)

Coq < auto with arith.

Coq < auto with arith.

Coq < auto with arith.

Coq < Qed.
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remark: functional induction makes no use of an induction principle, so be warned that
each time it is applied, a term mimicking the structure ofdiv2 (roughly the size ofdiv2_ind ) is
built. Using Functional Scheme is generally faster and less memory consuming. On the other
handfunctional induction performs some extra simplifications thatFunctional Scheme
does not, and as it is a tactic it can be used in tactic definitions.

Example 2: Induction scheme fortree_size
We define trees by the following mutual inductive type:

Coq < Variable A : Set.

Coq < Inductive tree : Set :=
Coq < node : A -> forest -> tree
Coq < with forest : Set :=
Coq < | empty : forest
Coq < | cons : tree -> forest -> forest.

We define the functiontree_size that computes the size of a tree or a forest.

Coq < Fixpoint tree_size (t:tree) : nat :=
Coq < match t with
Coq < | node A f => S (forest_size f)
Coq < end
Coq < with forest_size (f:forest) : nat :=
Coq < match f with
Coq < | empty => 0
Coq < | cons t f’ => (tree_size t + forest_size f’)
Coq < end.

The definition of principle of mutual induction following the recursive structure oftree_size is
defined by the command:

Coq < Functional Scheme treeInd := Induction for tree_size
Coq < with tree_size forest_size.

You may now look at the type oftreeInd :

Coq < Check treeInd.
treeInd

: forall (Q1 : forest -> Prop) (Q0 : tree -> Prop),
(forall (t : tree) (A : A) (f : forest),

t = node A f -> Q1 f -> Q0 (node A f)) ->
(forall f : forest, f = empty -> Q1 empty) ->
(forall (f : forest) (t : tree) (f’ : forest),

f = cons t f’ -> Q0 t -> Q1 f’ -> Q1 (cons t f’)) ->
forall t : tree, Q0 t

10.5 inversion

Generalities about inversion

When working with (co)inductive predicates, we are very often faced to some of these situations:

• we have an inconsistent instance of an inductive predicate in the local context of hypotheses. Thus,
the current goal can be trivially proved by absurdity.
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• we have a hypothesis that is an instance of an inductive predicate, and the instance has some

variables whose constraints we would like to derive.

The inversion tactics are very useful to simplify the work in these cases. Inversion tools can be
classified in three groups:

1. tactics for inverting an instance without stocking the inversion lemma in the context; this includes
the tactics (dependent ) inversion and (dependent ) inversion_clear .

2. commands for generating and stocking in the context the inversion lemma corresponding to
an instance; this includesDerive (Dependent ) Inversion and Derive (Dependent )
Inversion_clear .

3. tactics for inverting an instance using an already defined inversion lemma; this includes the tactic
inversion ...using .

As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the
same instance needs to be inverted several times.

Example 1: Non-dependent inversion
Let’s consider the relationLe over natural numbers and the following variables:

Coq < Inductive Le : nat -> nat -> Set :=
Coq < | LeO : forall n:nat, Le 0 n
Coq < | LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Coq < Variable P : nat -> nat -> Prop.

Coq < Variable Q : forall n m:nat, Le n m -> Prop.

For example, consider the goal:

Coq < Show.
1 subgoal

n : nat
m : nat
H : Le (S n) m
============================

P n m

To prove the goal we may need to reason by cases onHand to derive thatmis necessarily of the form
(S m0) for certainm0 and that(Le n m0). Deriving these conditions corresponds to prove that the only
possible constructor of(Le (S n) m) is LeS and that we can invert the-> in the type ofLeS. This
inversion is possible becauseLe is the smallest set closed by the constructorsLeO andLeS.

Coq < inversion_clear H.
1 subgoal

n : nat
m : nat
m0 : nat
H0 : Le n m0
============================

P n (S m0)
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Note thatmhas been substituted in the goal for(S m0) and that the hypothesis(Le n m0) has

been added to the context.
Sometimes it is interesting to have the equalitym=(S m0) in the context to use it after. In that case

we can useinversion that does not clear the equalities:

Coq < Undo.

Coq < inversion H.
1 subgoal

n : nat
m : nat
H : Le (S n) m
n0 : nat
m0 : nat
H1 : Le n m0
H0 : n0 = n
H2 : S m0 = m
============================

P n (S m0)

Example 2: Dependent Inversion
Let us consider the following goal:

Coq < Show.
1 subgoal

n : nat
m : nat
H : Le (S n) m
============================

Q (S n) m H

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like
inversion tactics to substituteH by the corresponding term in constructor form. NeitherInversion
nor Inversion_clear make such a substitution. To have such a behavior we use the dependent
inversion tactics:

Coq < dependent inversion_clear H.
1 subgoal

n : nat
m : nat
m0 : nat
l : Le n m0
============================

Q (S n) (S m0) (LeS n m0 l)

Note thatHhas been substituted by(LeS n m0 l) andmby (S m0) .

Example 3: using already defined inversion lemmas
For example, to generate the inversion lemma for the instance(Le (S n) m) and the sortProp

we do:

Coq < Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
Coq < Prop.
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Coq < Check leminv.
leminv

: forall (n m : nat) (P : nat -> nat -> Prop),
(forall m0 : nat, Le n m0 -> P n (S m0)) -> Le (S n) m -> P n m

Then we can use the proven inversion lemma:

Coq < Show.
1 subgoal

n : nat
m : nat
H : Le (S n) m
============================

P n m

Coq < inversion H using leminv.
1 subgoal

n : nat
m : nat
H : Le (S n) m
============================

forall m0 : nat, Le n m0 -> P n (S m0)

10.6 autorewrite

Here are two examples ofautorewrite use. The first one (Ackermann function) shows actually a
quite basic use where there is no conditional rewriting. The second one (Mac Carthy function) involves
conditional rewritings and shows how to deal with them using the optional tactic of theHint Rewrite
command.

Example 1: Ackermann function

Coq < Require Import Arith.

Coq < Variable Ack :
Coq < nat -> nat -> nat.

Coq < Axiom Ack0 :
Coq < forall m:nat, Ack 0 m = S m.

Coq < Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.

Coq < Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).

Coq < Hint Rewrite Ack0 Ack1 Ack2 : base0.

Coq < Lemma ResAck0 :
Coq < Ack 3 2 = 29.
1 subgoal

============================
Ack 3 2 = 29

Coq < autorewrite with base0 using try reflexivity.
Proof completed.
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Example 2: Mac Carthy function

Coq < Require Import Omega.

Coq < Variable g :
Coq < nat -> nat -> nat.

Coq < Axiom g0 :
Coq < forall m:nat, g 0 m = m.

Coq < Axiom
Coq < g1 :
Coq < forall n m:nat,
Coq < (n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10).

Coq < Axiom
Coq < g2 :
Coq < forall n m:nat,
Coq < (n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11).

Coq < Hint Rewrite g0 g1 g2 using omega : base1.

Coq < Lemma Resg0 :
Coq < g 1 110 = 100.
1 subgoal

============================
g 1 110 = 100

Coq < autorewrite with base1 using reflexivity || simpl.
Proof completed.

Coq < Lemma Resg1 : g 1 95 = 91.
1 subgoal

============================
g 1 95 = 91

Coq < autorewrite with base1 using reflexivity || simpl.
Proof completed.

10.7 quote

The tacticquote allows to use Barendregt’s so-called 2-level approach without writing any ML code.
Suppose you have a languageL of ’abstract terms’ and a typeA of ’concrete terms’ and a functionf :
L -> A . If L is a simple inductive datatype andf a simple fixpoint,quote f will replace the head of
current goal by a convertible term of the form(f t) . L must have a constructor of type:A -> L .

Here is an example:

Coq < Require Import Quote.

Coq < Parameters A B C : Prop.
A is assumed
B is assumed
C is assumed

Coq < Inductive formula : Type :=
Coq < | f_and : formula -> formula -> formula (* binary constructor *)
Coq < | f_or : formula -> formula -> formula
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Coq < | f_not : formula -> formula (* unary constructor *)
Coq < | f_true : formula (* 0-ary constructor *)
Coq < | f_const : Prop -> formula (* contructor for constants *).
formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined

Coq < Fixpoint interp_f (f:
Coq < formula) : Prop :=
Coq < match f with
Coq < | f_and f1 f2 => interp_f f1 /\ interp_f f2
Coq < | f_or f1 f2 => interp_f f1 \/ interp_f f2
Coq < | f_not f1 => ~ interp_f f1
Coq < | f_true => True
Coq < | f_const c => c
Coq < end.
interp_f is recursively defined

Coq < Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
1 subgoal

============================
A /\ (A \/ True) /\ ~ B /\ (A <-> A)

Coq < quote interp_f.
1 subgoal

============================
interp_f

(f_and (f_const A)
(f_and (f_or (f_const A) f_true)

(f_and (f_not (f_const B)) (f_const (A <-> A)))))

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of
f . If there is a match, apply the corresponding left-hand side and call yourself recursively on sub-terms.
If there is no match, we are at a leaf: return the corresponding constructor (heref_const ) applied to
the term.

Error messages:

1. quote: not a simple fixpoint
Happens whenquote is not able to perform inversion properly.

10.7.1 Introducing variables map

The normal use ofquote is to make proofs by reflection: one defines a functionsimplify :
formula -> formula and proves a theoremsimplify_ok: (f:formula)(interp_f
(simplify f)) -> (interp_f f) . Then, one can simplify formulas by doing:

quote interp_f.
apply simplify_ok.
compute.

But there is a problem with leafs: in the example above one cannot write a function that implements,
for example, the logical simplificationsA ∧A→ A or A ∧ ¬A→ False . This is because theProp is
impredicative.

It is better to use that type of formulas:
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Coq < Inductive formula : Set :=
Coq < | f_and : formula -> formula -> formula
Coq < | f_or : formula -> formula -> formula
Coq < | f_not : formula -> formula
Coq < | f_true : formula
Coq < | f_atom : index -> formula.
formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined

index is defined in modulequote . Equality on that type is decidable so we are able to simplify
A ∧A into A at the abstract level.

When there are variables, there are bindings, andquote provides also a type(varmap A) of
bindings fromindex to any setA, and a functionvarmap_find to search in such maps. The inter-
pretation function has now another argument, a variables map:

Coq < Fixpoint interp_f (vm:
Coq < varmap Prop) (f:formula) {struct f} : Prop :=
Coq < match f with
Coq < | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
Coq < | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
Coq < | f_not f1 => ~ interp_f vm f1
Coq < | f_true => True
Coq < | f_atom i => varmap_find True i vm
Coq < end.
interp_f is recursively defined

quote handles this second case properly:

Coq < Goal A /\ (B \/ A) /\ (A \/ ~ B).
1 subgoal

============================
A /\ (B \/ A) /\ (A \/ ~ B)

Coq < quote interp_f.
1 subgoal

============================
interp_f

(Node_vm B (Node_vm A (Empty_vm Prop) (Empty_vm Prop)) (Empty_vm Prop))
(f_and (f_atom (Left_idx End_idx))

(f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
(f_or (f_atom (Left_idx End_idx)) (f_not (f_atom End_idx)))))

It buildsvmandt such that(f vm t) is convertible with the conclusion of current goal.

10.7.2 Combining variables and constants

One can have both variables and constants in abstracts terms; that is the case, for example, for thering
tactic (chapter 19). Then one must provide toquote a list of constructors of constants. For example,
if the list is [O S] then closed natural numbers will be considered as constants and other terms as
variables.

Example:
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Coq < Inductive formula : Type :=
Coq < | f_and : formula -> formula -> formula
Coq < | f_or : formula -> formula -> formula
Coq < | f_not : formula -> formula
Coq < | f_true : formula
Coq < | f_const : Prop -> formula (* constructor for constants *)
Coq < | f_atom : index -> formula.

Coq < Fixpoint interp_f
Coq < (vm: (* constructor for variables *)
Coq < varmap Prop) (f:formula) {struct f} : Prop :=
Coq < match f with
Coq < | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
Coq < | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
Coq < | f_not f1 => ~ interp_f vm f1
Coq < | f_true => True
Coq < | f_const c => c
Coq < | f_atom i => varmap_find True i vm
Coq < end.

Coq < Goal
Coq < A /\ (A \/ True) /\ ~ B /\ (C <-> C).

Coq < quote interp_f [ A B ].
1 subgoal

============================
interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))

(f_and (f_const A)
(f_and (f_or (f_const A) f_true)

(f_and (f_not (f_const B)) (f_atom End_idx))))

Coq < Undo.
1 subgoal

============================
A /\ (A \/ True) /\ ~ B /\ (C <-> C)

Coq < quote interp_f [ B C iff ].
1 subgoal

============================
interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))

(f_and (f_atom End_idx)
(f_and (f_or (f_atom End_idx) f_true)

(f_and (f_not (f_const B)) (f_const (C <-> C)))))

Warning: Since function inversion is undecidable in general case, don’t expect miracles from it!

See also:comments of source filetactics/contrib/polynom/quote.ml

See also:thering tactic (Chapter 19)

10.8 Using the tactical language

10.8.1 About the cardinality of the set of natural numbers

A first example which shows how to use the pattern matching over the proof contexts is the proof that
natural numbers have more than two elements. The proof of such a lemma can be done as follows:
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Coq < Section Sort.

Coq < Variable A : Set.

Coq < Inductive permut : list A -> list A -> Prop :=
Coq < | permut_refl : forall l, permut l l
Coq < | permut_cons :
Coq < forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
Coq < | permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
Coq < | permut_trans :
Coq < forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.

Coq < End Sort.

Figure 10.1: Definition of the permutation predicate

Coq < Lemma card_nat :
Coq < ~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z).

Coq < Proof.

Coq < red; intros (x, (y, Hy)).

Coq < elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
Coq < match goal with
Coq < | [_:(?a = ?b),_:(?a = ?c) |- _ ] =>
Coq < cut (b = c); [ discriminate | apply trans_equal with a; auto ]
Coq < end.

Coq < Qed.

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct
natural numbers) are successfully solved by amatch goal structure and, in particular, with only one
pattern (use of non-linear matching).

10.8.2 Permutation on closed lists

Another more complex example is the problem of permutation on closed lists. The aim is to show that a
closed list is a permutation of another one.

First, we define the permutation predicate as shown in table 10.1.
A more complex example is the problem of permutation on closed lists. The aim is to show that

a closed list is a permutation of another one. First, we define the permutation predicate as shown on
Figure 10.1.

Next, we can write naturally the tactic and the result can be seen on Figure 10.2. We can no-
tice that we use two toplevel definitionsPermutProve andPermut . The function to be called is
PermutProve which computes the lengths of the two lists and callsPermut with the length if the
two lists have the same length.Permut works as expected. If the two lists are equal, it concludes. Oth-
erwise, if the lists have identical first elements, it appliesPermut on the tail of the lists. Finally, if the
lists have different first elements, it puts the first element of one of the lists (here the second one which
appears in thepermut predicate) at the end if that is possible, i.e., if the new first element has been at
this place previously. To verify that all rotations have been done for a list, we use the length of the list
as an argument forPermut and this length is decremented for each rotation down to, but not including,
1 because for a list of lengthn, we can make exactlyn− 1 rotations to generate at mostn distinct lists.
Here, it must be noticed that we use the natural numbers of COQ for the rotation counter. On Figure 9.1,
we can see that it is possible to use usual natural numbers but they are only used as arguments for prim-
itive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a
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Coq < Ltac Permut n :=
Coq < match goal with
Coq < | |- (permut _ ?l ?l) => apply permut_refl
Coq < | |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
Coq < let newn := eval compute in (length l1) in
Coq < (apply permut_cons; Permut newn)
Coq < | |- (permut ?A (?a :: ?l1) ?l2) =>
Coq < match eval compute in n with
Coq < | 1 => fail
Coq < | _ =>
Coq < let l1’ := constr:(l1 ++ a :: nil) in
Coq < (apply (permut_trans A (a :: l1) l1’ l2);
Coq < [ apply permut_append | compute; Permut (pred n) ])
Coq < end
Coq < end.
Permut is defined

Coq < Ltac PermutProve :=
Coq < match goal with
Coq < | |- (permut _ ?l1 ?l2) =>
Coq < match eval compute in (length l1 = length l2) with
Coq < | (?n = ?n) => Permut n
Coq < end
Coq < end.
PermutProve is defined

Figure 10.2: Permutation tactic

natural choice is to use COQ data structures so that COQ makes the computations (reductions) byeval
compute in and we can get the terms back bymatch .

With PermutProve , we can now prove lemmas as follows:

Coq < Lemma permut_ex1 :
Coq < permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).

Coq < Proof. PermutProve. Qed.

Coq < Lemma permut_ex2 :
Coq < permut nat
Coq < (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
Coq < (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).

Coq < Proof. PermutProve. Qed.

Coq < Ltac Axioms :=
Coq < match goal with
Coq < | |- True => trivial
Coq < | _:False |- _ => elimtype False; assumption
Coq < | _:?A |- ?A => auto
Coq < end.
Axioms is defined

Figure 10.3: Deciding intuitionistic propositions (1)
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Coq < Ltac DSimplif :=
Coq < repeat
Coq < (intros;
Coq < match goal with
Coq < | id:(~ _) |- _ => red in id
Coq < | id:(_ /\ _) |- _ =>
Coq < elim id; do 2 intro; clear id
Coq < | id:(_ \/ _) |- _ =>
Coq < elim id; intro; clear id
Coq < | id:(?A /\ ?B -> ?C) |- _ =>
Coq < cut (A -> B -> C);
Coq < [ intro | intros; apply id; split; assumption ]
Coq < | id:(?A \/ ?B -> ?C) |- _ =>
Coq < cut (B -> C);
Coq < [ cut (A -> C);
Coq < [ intros; clear id
Coq < | intro; apply id; left; assumption ]
Coq < | intro; apply id; right; assumption ]
Coq < | id0:(?A -> ?B),id1:?A |- _ =>
Coq < cut B; [ intro; clear id0 | apply id0; assumption ]
Coq < | |- (_ /\ _) => split
Coq < | |- (~ _) => red
Coq < end).
DSimplif is defined

Coq < Ltac TautoProp :=
Coq < DSimplif;
Coq < Axioms ||
Coq < match goal with
Coq < | id:((?A -> ?B) -> ?C) |- _ =>
Coq < cut (B -> C);
Coq < [ intro; cut (A -> B);
Coq < [ intro; cut C;
Coq < [ intro; clear id | apply id; assumption ]
Coq < | clear id ]
Coq < | intro; apply id; intro; assumption ]; TautoProp
Coq < | id:(~ ?A -> ?B) |- _ =>
Coq < cut (False -> B);
Coq < [ intro; cut (A -> False);
Coq < [ intro; cut B;
Coq < [ intro; clear id | apply id; assumption ]
Coq < | clear id ]
Coq < | intro; apply id; red; intro; assumption ]; TautoProp
Coq < | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
Coq < end.
TautoProp is defined

Figure 10.4: Deciding intuitionistic propositions (2)

10.8.3 Deciding intuitionistic propositional logic

The pattern matching on goals allows a complete and so a powerful backtracking when returning tactic
values. An interesting application is the problem of deciding intuitionistic propositional logic. Consid-
ering the contraction-free sequent calculiLJT* of Roy Dyckhoff ([49]), it is quite natural to code such a
tactic using the tactic language as shown on Figures 10.3 and 10.4. The tacticAxioms tries to conclude
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Coq < Open Scope type_scope.

Coq < Section Iso_axioms.

Coq < Variables A B C : Set.

Coq < Axiom Com : A * B = B * A.

Coq < Axiom Ass : A * (B * C) = A * B * C.

Coq < Axiom Cur : (A * B -> C) = (A -> B -> C).

Coq < Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).

Coq < Axiom P_unit : A * unit = A.

Coq < Axiom AR_unit : (A -> unit) = unit.

Coq < Axiom AL_unit : (unit -> A) = A.

Coq < Lemma Cons : B = C -> A * B = A * C.

Coq < Proof.

Coq < intro Heq; rewrite Heq; apply refl_equal.

Coq < Qed.

Coq < End Iso_axioms.

Figure 10.5: Type isomorphism axioms

using usual axioms. The tacticDSimplif applies all the reversible rules of Dyckhoff’s system. Finally,
the tacticTautoProp (the main tactic to be called) simplifies withDSimplif , tries to conclude with
Axioms and tries several paths using the backtracking rules (one of the four Dyckhoff’s rules for the
left implication to get rid of the contraction and the right or).

For example, withTautoProp , we can prove tautologies like those:

Coq < Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.

Coq < Proof. TautoProp. Qed.

Coq < Lemma tauto_ex2 :
Coq < forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.

Coq < Proof. TautoProp. Qed.

10.8.4 Deciding type isomorphisms

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose
to use the isomorphisms of the simply typedλ-calculus with Cartesian product andunit type (see, for
example, [38]). The axioms of thisλ-calculus are given by table 10.5.

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we
choose to use the isomorphisms of the simply typedλ-calculus with Cartesian product andunit type
(see, for example, [38]). The axioms of thisλ-calculus are given on Figure 10.5.

The tactic to judge equalities modulo this axiomatization can be written as shown on Figures 10.6
and 10.7. The algorithm is quite simple. Types are reduced using axioms that can be oriented (this
done byMainSimplif ). The normal forms are sequences of Cartesian products without Cartesian
product in the left component. These normal forms are then compared modulo permutation of the com-
ponents (this is done byCompareStruct ). The main tactic to be called and realizing this algorithm
is IsoProve .

Here are examples of what can be solved byIsoProve .
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Coq < Ltac DSimplif trm :=
Coq < match trm with
Coq < | (?A * ?B * ?C) =>
Coq < rewrite <- (Ass A B C); try MainSimplif
Coq < | (?A * ?B -> ?C) =>
Coq < rewrite (Cur A B C); try MainSimplif
Coq < | (?A -> ?B * ?C) =>
Coq < rewrite (Dis A B C); try MainSimplif
Coq < | (?A * unit) =>
Coq < rewrite (P_unit A); try MainSimplif
Coq < | (unit * ?B) =>
Coq < rewrite (Com unit B); try MainSimplif
Coq < | (?A -> unit) =>
Coq < rewrite (AR_unit A); try MainSimplif
Coq < | (unit -> ?B) =>
Coq < rewrite (AL_unit B); try MainSimplif
Coq < | (?A * ?B) =>
Coq < (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq < | (?A -> ?B) =>
Coq < (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq < end
Coq < with MainSimplif :=
Coq < match goal with
Coq < | |- (?A = ?B) => try DSimplif A; try DSimplif B
Coq < end.
DSimplif is defined
MainSimplif is defined

Coq < Ltac Length trm :=
Coq < match trm with
Coq < | (_ * ?B) => let succ := Length B in constr:(S succ)
Coq < | _ => constr:1
Coq < end.
Length is defined

Coq < Ltac assoc := repeat rewrite <- Ass.
assoc is defined

Figure 10.6: Type isomorphism tactic (1)

Coq < Lemma isos_ex1 :
Coq < forall A B:Set, A * unit * B = B * (unit * A).

Coq < Proof.

Coq < intros; IsoProve.

Coq < Qed.

Coq <
Coq < Lemma isos_ex2 :
Coq < forall A B C:Set,
Coq < (A * unit -> B * (C * unit)) =
Coq < (A * unit -> (C -> unit) * C) * (unit -> A -> B).

Coq < Proof.

Coq < intros; IsoProve.

Coq < Qed.

Coq Reference Manual, V8.0, June 27, 2004



10.8 Using the tactical language 193

Coq < Ltac DoCompare n :=
Coq < match goal with
Coq < | [ |- (?A = ?A) ] => apply refl_equal
Coq < | [ |- (?A * ?B = ?A * ?C) ] =>
Coq < apply Cons; let newn := Length B in
Coq < DoCompare newn
Coq < | [ |- (?A * ?B = ?C) ] =>
Coq < match eval compute in n with
Coq < | 1 => fail
Coq < | _ =>
Coq < pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
Coq < end
Coq < end.
DoCompare is defined

Coq < Ltac CompareStruct :=
Coq < match goal with
Coq < | [ |- (?A = ?B) ] =>
Coq < let l1 := Length A
Coq < with l2 := Length B in
Coq < match eval compute in (l1 = l2) with
Coq < | (?n = ?n) => DoCompare n
Coq < end
Coq < end.
CompareStruct is defined

Coq < Ltac IsoProve := MainSimplif; CompareStruct.
IsoProve is defined

Figure 10.7: Type isomorphism tactic (2)
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Chapter 11

Syntax extensions and interpretation
scopes

In this chapter, we introduce advanced commands to modify the way COQ parses and prints objects, i.e.
the translations between the concrete and internal representations of terms and commands. The main
commands areNotation and Infix which are described in section 11.1. It also happens that the
same symbolic notation is expected in different contexts. To achieve this form of overloading, COQ

offers a notion of interpretation scope. This is described in section 11.2.

Remark: The commandsGrammar, Syntax andDistfix which were present for a while in COQ

are no longer available from COQ version 8.0. The underlying AST structure is also no longer available.
The functionalities of the commandSyntactic Definition are still available, see section 11.3.

11.1 Notations

11.1.1 Basic notations

A notationis a symbolic abbreviation denoting some term or term pattern.
A typical notation is the use of the infix symbol/\ to denote the logical conjunction (and ). Such a

notation is declared by

Coq < Notation "A /\ B" := (and A B).

The expression(and A B) is the abbreviated term and the string"A /\ B" (called anotation)
tells how it is symbolically written.

A notation is always surrounded by double quotes (excepted when the abbreviation is a single ident,
see 11.3). The notation is composed oftokensseparated by spaces. Identifiers in the string (such asA
andB) are theparametersof the notation. They must occur at least once each in the denoted term. The
other elements of the string (such as/\ ) are thesymbols.

An identifier can be used as a symbol but it must be surrounded by simple quotes to avoid the
confusion with a parameter. Similarly, every symbol of at least 3 characters and starting with a simple
quote must be quoted (then it starts by two single quotes). Here is an example.

Coq < Notation "’IF’ c1 ’then’ c2 ’else’ c3" := (IF_then_else c1 c2 c3).

A notation binds a syntactic expression to a term. Unless the parser and pretty-printer of COQ already
know how to deal with the syntactic expression (see 11.1.7), explicit precedences and associativity rules
have to be given.
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11.1.2 Precedences and associativity

Mixing different symbolic notations in a same text may cause serious parsing ambiguity. To deal with
the ambiguity of notations, COQ uses precedence levels ranging from 0 to 100 (plus one extra level
numbered 200) and associativity rules.

Consider for example the new notation

Coq < Notation "A \/ B" := (or A B).

Clearly, an expression such as(A:Prop)True /\ A \/ A \/ False is ambiguous. To tell
the COQ parser how to interpret the expression, a priority between the symbols/\ and \/ has to be
given. Assume for instance that we want conjunction to bind more than disjunction. This is expressed
by assigning a precedence level to each notation, knowing that a lower level binds more than a higher
level. Hence the level for disjunction must be higher than the level for conjunction.

Since connectives are the less tight articulation points of a text, it is reasonable to choose levels not
so far from the higher level which is 100, for example 85 for disjunction and 80 for conjunction1.

Similarly, an associativity is needed to decide whetherTrue /\ False /\ False defaults to
True /\ (False /\ False) (right associativity) or to(True /\ False) /\ False (left
associativity). We may even consider that the expression is not well-formed and that parentheses are
mandatory (this is a “no associativity”)2. We don’t know of a special convention of the associativity of
disjunction and conjunction, let’s apply for instance a right associativity (which is the choice of COQ).

Precedence levels and associativity rules of notations have to be given between parentheses in a list
of modifiers that theNotation command understands. Here is how the previous examples refine.

Coq < Notation "A /\ B" := (and A B) (at level 80, right associativity).

Coq < Notation "A \/ B" := (or A B) (at level 85, right associativity).

By default, a notation is considered non associative, but the precedence level is mandatory (except
for special cases whose level is canonical). The level is either a number or the mentionnext level
whose meaning is obvious. The list of levels already assigned is on Figure 3.1.

11.1.3 Complex notations

Notations can be made from arbitraly complex symbols. One can for instance define prefix notations.

Coq < Notation "~ x" := (not x) (at level 75, right associativity).

One can also define notations for incomplete terms, with the hole expected to be inferred at typing
time.

Coq < Notation "x = y" := (@eq _ x y) (at level 70, no associativity).

One can defineclosednotations whose both sides are symbols. In this case, the default precedence
level for inner subexpression is 200.

Coq < Notation "( x , y )" := (@pair _ _ x y) (at level 0).

One can also define notations for binders.
1which are the levels effectively chosen in the current implementation of COQ
2COQ accepts notations declared as no associative but the parser on which COQ is built, namely CAMLP4, currently does

not implement the no-associativity and replace it by a left associativity; hence it is the same for COQ: no-associativity is in fact
left associativity
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Coq < Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0).

In the last case though, there is a conflict with the notation for type casts. This last notation, as
shown by the commandPrint Grammar constr is at level 100. To avoidx : A being parsed as
a type cast, it is necessary to putx at a level below 100, typically 99. Hence, a correct definition is

Coq < Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0, x at level 99).

See the next section for more about factorisation.

11.1.4 Simple factorisation rules

COQ extensible parsing is performed by Camlp4 which is essentially a LL1 parser. Hence, some care
has to be taken not to hide already existing rules by new rules. Some simple left factorisation work has
to be done. Here is an example.

Coq < Notation "x < y" := (lt x y) (at level 70).

Coq < Notation "x < y < z" := (x < y /\ y < z) (at level 70).

In order to factorise the left part of the rules, the subexpression referred byy has to be at the same
level in both rules. However the default behavior putsy at the next level below 70 in the first rule (no
associativity is the default), and at the level 200 in the second rule (level 200 is the default for inner
expressions). To fix this, we need to force the parsing level ofy , as follows.

Coq < Notation "x < y" := (lt x y) (at level 70).

Coq < Notation "x < y < z" := (x < y /\ y < z) (at level 70, y at next level).

For the sake of factorisation with COQ predefined rules, simple rules have to be observed for nota-
tions starting with a symbol: e.g. rules starting with “{” or “(” should be put at level 0. The list of COQ

predefined notations can be found in chapter 3.
The command to display the current state of the COQ term parser is

Print Grammar constr.

11.1.5 Displaying symbolic notations

The commandNotation has an effect both on the COQ parser and on the COQ printer. For example:

Coq < Check (and True True).
True /\ True

: Prop

However, printing, especially pretty-printing, requires more care than parsing. We may want specific
indentations, line breaks, alignment if on several lines, etc.

The default printing of notations is very rudimentary. For printing a notation, aformatting boxis
opened in such a way that if the notation and its arguments cannot fit on a single line, a line break is
inserted before the symbols of the notation and the arguments on the next lines are aligned with the
argument on the first line.

A first, simple control that a user can have on the printing of a notation is the insertion of spaces at
some places of the notation. This is performed by adding extra spaces between the symbols and param-
eters: each extra space (other than the single space needed to separate the components) is interpreted as
a space to be inserted by the printer. Here is an example showing how to add spaces around the bar of
the notation.
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Coq < Notation "{{ x : A | P }}" := (sig (fun x : A => P))
Coq < (at level 0, x at level 99).

Coq < Check (sig (fun x : nat => x=x)).
{{x : nat | x = x}}

: Set

The second, more powerful control on printing is by using theformat modifier. Here is an example

Coq < Notation "’If’ c1 ’then’ c2 ’else’ c3" := (IF_then_else c1 c2 c3)
Coq < (at level 200, right associativity, format
Coq < "’[v ’ ’If’ c1 ’/’ ’[’ ’then’ c2 ’]’ ’/’ ’[’ ’else’ c3 ’]’ ’]’").
Defining ’If’ as keyword

A format is an extension of the string denoting the notation with the possible following elements
delimited by single quotes:

• extra spaces are translated into simple spaces

• tokens of the form’/ ’ are translated into breaking point, in case a line break occurs, an
indentation of the number of spaces after the “/ ” is applied (2 spaces in the given example)

• token of the form’//’ force writing on a new line

• well-bracketed pairs of tokens of the form’[ ’ and’]’ are translated into printing boxes;
in case a line break occurs, an extra indentation of the number of spaces given after the “[ ” is
applied (4 spaces in the example)

• well-bracketed pairs of tokens of the form’[hv ’ and ’]’ are translated into horizontal-
orelse-vertical printing boxes; if the content of the box does not fit on a single line, then every
breaking point forces a newline and an extra indentation of the number of spaces given after the
“ [ ” is applied at the beginning of each newline (3 spaces in the example)

• well-bracketed pairs of tokens of the form’[v ’ and ’]’ are translated into vertical printing
boxes; every breaking point forces a newline, even if the line is large enough to display the whole
content of the box, and an extra indentation of the number of spaces given after the “[ ” is applied
at the beginning of each newline

Thus, for the previous example, we get
Notations do not survive the end of sections. No typing of the denoted expression is performed at

definition time. Type-checking is done only at the time of use of the notation.

Coq < Check
Coq < (IF_then_else (IF_then_else True False True)
Coq < (IF_then_else True False True)
Coq < (IF_then_else True False True)).
If If True

then False
else True

then If True
then False
else True

else If True
then False
else True

: Prop

Remark: Sometimes, a notation is expected only for the parser. To do so, the optiononly parsingis
allowed in the list of modifiers ofNotation .
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11.1.6 TheInfix command

TheInfix command is a shortening for declaring notations of infix symbols. Its syntax is

Infix " symbol " := qualid ( modifier, . . . , modifier) .

and it is equivalent to

Notation "x symbol y" := ( qualid x y) ( modifier, . . . , modifier) .

wherex andy are fresh names distinct fromqualid . Here is an example.

Coq < Infix "/\" := and (at level 80, right associativity).

11.1.7 Reserving notations

A given notation may be used in different contexts. COQ expects all uses of the notation to be defined at
the same precedence and with the same associativity. To avoid giving the precedence and associativity
every time, it is possible to declare a parsing rule in advance without giving its interpretation. Here is an
example from the initial state of COQ.

Coq < Reserved Notation "x = y" (at level 70, no associativity).

Reserving a notation is also useful for simultaneously defined an inductive type or a recursive con-
stant and a notation for it.

Remark: The notations mentioned on Figure 3.1 are reserved. Hence their precedence and associativity
cannot be changed.

11.1.8 Simultaneous definition of terms and notations

Thanks to reserved notations, the inductive, coinductive, recursive and corecursive definitions can ben-
efit of customized notations. To do this, insert awhere notation clause after the definition of the
(co)inductive type or (co)recursive term (or after the definition of each of them in case of mutual defini-
tions). The exact syntax is given on Figure 11.1. Here are examples:

Coq < Inductive and (A B:Prop) : Prop := conj : A -> B -> A /\ B
Coq < where "A /\ B" := (and A B).

Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S p => S (p+m)
Coq < end
Coq < where "n + m" := (plus n m).

11.1.9 Displaying informations about notations

To deactivate the printing of all notations, use the command

Unset Printing Notations.

To reactivate it, use the command

Set Printing Notations.

The default is to use notations for printing terms wherever possible.

See also:Set Printing All in section 2.8.
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sentence ::= Notation [Local ] string := term [modifiers] [: scope] .
| Infix [Local ] string := qualid [modifiers] [: scope] .
| Reserved Notation [Local ] string [modifiers] .
| Inductive ind_body [decl_notation] with . . . with ind_body [decl_notation].
| CoInductive ind_body [decl_notation] with . . . with ind_body [decl_notation].
| Fixpoint fix_body [decl_notation] with . . . with fix_body [decl_notation] .
| CoFixpoint cofix_body [decl_notation] with . . . with cofix_body [decl_notation] .

decl_notation ::= [where string := term [:scope]] .

modifiers ::= ident , . . . , ident at level natural
| ident , . . . , ident at next level
| at level natural
| left associativity
| right associativity
| no associativity
| ident ident
| ident global
| ident bigint
| only parsing
| format string

Figure 11.1: Syntax of the variants ofNotation

11.1.10 Locating notations

To know to which notations a given symbol belongs to, use the command

Locate symbol

where symbol is any (composite) symbol surrounded by quotes. To locate a particular notation, use a
string where the variables of the notation are replaced by “_”.

Example:

Coq < Locate "exists".
Notation Scope
"’exists’ x : t , p" := ex (fun x : t => p)

: type_scope
(default interpretation)

"’exists’ x , p" := ex (fun x => p)
: type_scope
(default interpretation)

Coq < Locate "’exists’ _ , _".
Notation Scope
"’exists’ x , p" := ex (fun x => p)

: type_scope
(default interpretation)

See also:Section 6.2.10.
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11.1.11 Notations with recursive patterns

An experimental mechanism is provided for declaring elementary notations including recursive patterns.
The basic syntax is

Coq < Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).

On the right-hand-side, an extra construction of the form.. (f t1 . . . tn) .. can be used. Notice
that .. is part of the COQ syntax while. . . is just a meta-notation of this manual to denote a sequence
of terms of arbitrary size.

This extra construction enclosed within.. , let’s call it t, must be one of the argument of an applica-
tive term of the form( f u1 . . . un) . The sequencest1 . . . tn andu1 . . . un must coincide everywhere
but in two places. In one place, say the terms of indicei, we must haveui = t. In the other place, say the
terms of indicej, bothuj andtj must be variables, sayx andy which are bound by the notation string
on the left-hand-side of the declaration. The variablesx andy in the string must occur in a substring of
the form "x s .. s y" where.. is part of the syntax ands is two times the same sequence of terminal
symbols (i.e. symbols which are not variables).

These invariants must be satisfied in order the notation to be correct. The termti is theterminating
expression of the notation and the pattern( f u1 . . . ui−1 [I] ui+1 . . . uj−1 [E] uj+1 . . . un)
is the iterating pattern. The hole [I] is theiterative place and the hole [E] is theenumeratingplace.
Remark that ifj < i, the iterative place comes after the enumerating place accordingly.

The notation parses sequences of tokens such that the subpart "x s .. s y" parses any number
of time (but at least one time) a sequence of expressions separated by the sequence of tokenss. The
parsing phase produces a list of expressions which are used to fill in order the holes [E] of the iterating
pattern which is nested as many time as the length of the list, the hole [I] being the nesting point. In
the innermost occurrence of the nested iterating pattern, the hole [I] is finally filled with the terminating
expression.

In the example above,f is cons , n = 3 (becausecons has a hidden implicit argument!),i = 3
andj = 2. The terminatingexpression isnil and theiterating patternis cons [E] [I]. Finally, the
sequences is made of the single token “; ”. Here is another example.

Coq < Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) (at level 0).

Notations with recursive patterns can be reserved like standard notations, they can also be declared
within interpretation scopes (see section 11.2).

11.1.12 Summary

Syntax of notations The different syntactic variants of the commandNotation are given on Figure
11.1. The optional: scope is described in the section 11.2.

Remark: No typing of the denoted expression is performed at definition time. Type-checking is done
only at the time of use of the notation.

Remark: Many examples ofNotation may be found in the files composing the initial state of COQ

(see directory$COQLIB/theories/Init ).

Remark: The notation"{ x }" has a special status in such a way that complex notations of the form
"x + { y }" or "x * { y }" can be nested with correct precedences. Especially, every notation
involving a pattern of the form"{ x }" is parsed as a notation where the pattern"{ x }" has been
simply replaced by"x" and the curly brackets are parsed separately. E.g."y + { z }" is not parsed
as a term of the given form but as a term of the form"y + z" wherez has been parsed using the rule
parsing"{ x }" . Especially, level and precedences for a rule including patterns of the form"{ x }"

Coq Reference Manual, V8.0, June 27, 2004



204 11 Syntax extensions and interpretation scopes
are relative not to the textual notation but to the notation where the curly brackets have been removed
(e.g. the level and the associativity given to some notation, say"{ y } & { z }" in fact applies to
the underlying"{ x }" -free rule which is"y & z" ).

Persistence of notations Notations do not survive the end of sections. They survive modules unless
the commandNotation Local is used instead ofNotation .

11.2 Interpretation scopes

An interpretation scopeis a set of notations for terms with their interpretation. Interpretation scopes
provides with a weak, purely syntactical form of notations overloading: a same notation, for instance
the infix symbol+ can be used to denote distinct definitions of an additive operator. Depending on which
interpretation scopes is currently open, the interpretation is different. Interpretation scopes can include
an interpretation for numerals. However, this is only made possible at the OBJECTIVE CAML level.

See Figure 11.1 for the syntax of notations including the possibility to declare them in a given scope.
Here is a typical example which declares the notation for conjunction in the scopetype_scope .

Notation "A /\ B" := (and A B) : type_scope.

Remark: A notation not defined in a scope is called alonelynotation.

11.2.1 Global interpretation rules for notations

At any time, the interpretation of a notation for term is done within astackof interpretation scopes and
lonely notations. In case a notation has several interpretations, the actual interpretation is the one defined
by (or in) the more recently declared (or open) lonely notation (or interpretation scope) which defines
this notation. Typically if a given notation is defined in some scopescope but has also an interpretation
not assigned to a scope, then, ifscope is open before the lonely interpretation is declared, then the lonely
interpretation is used (and this is the case even if the interpretation of the notation inscope is given after
the lonely interpretation: otherwise said, only the order of lonely interpretations and opening of scopes
matters, and not the declaration of interpretations within a scope).

The initial state of COQ declares three interpretation scopes and no lonely notations. These scopes,
in opening order, arecore_scope , type_scope andnat_scope .

The command to add a scope to the interpretation scope stack is

Open Scope scope.

It is also possible to remove a scope from the interpretation scope stack by using the command

Close Scope scope.

Notice that this command does not only cancel the lastOpen Scope scope but all the invocation of
it.

Remark: Open Scope and Close Scope do not survive the end of sections where they occur.
When defined outside of a section, they are exported to the modules that import the module where they
occur.

Variants:

1. Open Local Scope scope.

2. Close Local Scope scope.

These variants are not exported to the modules that import the module where they occur, even if
outside a section.

Coq Reference Manual, V8.0, June 27, 2004



11.2 Interpretation scopes 205
11.2.2 Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of
subterms are available.

Local opening of an interpretation scope

It is possible to locally extend the interpretation scope stack using the syntax (term)%key (or simply
term%key for atomic terms), wherekey is a special identifier calleddelimiting keyand bound to a given
scope.

In such a situation, the termterm, and all its subterms, are interpreted in the scope stack extended
with the scope bound tokey.

To bind a delimiting key to a scope, use the command

Delimit Scope scope with ident

Binding arguments of a constant to an interpretation scope

It is possible to set in advance that some arguments of a given constant have to be interpreted in a given
scope. The command is

Arguments Scope qualid [ opt_scope ... opt_scope ]

where the list is a list made either of_ or of a scope name. Each scope in the list is bound to the
corresponding parameter ofqualid in order. When interpreting a term, if some of the arguments of
qualid are built from a notation, then this notation is interpreted in the scope stack extended by the
scopes bound (if any) to these arguments.

See also:The command to show the scopes bound to the arguments of a function is described in section
2.

Binding types of arguments to an interpretation scope

When an interpretation scope is naturally associated to a type (e.g. the scope of operations on the natural
numbers), it may be convenient to bind it to this type. The effect of this is that any argument of a
function that syntactically expects a parameter of this type is interpreted using scope. More precisely,
it applies only if this argument is built from a notation, and if so, this notation is interpreted in the
scope stack extended by this particular scope. It does not apply to the subterms of this notation (unless
the interpretation of the notation itself expects arguments of the same type that would trigger the same
scope).

More generally, anyclass (see chapter 16) can be bound to an interpretation scope. The command
to do it is

Bind Scope scope with class

Example:

Coq < Parameter U : Set.
U is assumed

Coq < Bind Scope U_scope with U.

Coq < Parameter Uplus : U -> U -> U.
Uplus is assumed
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Coq < Parameter P : forall T:Set, T -> U -> Prop.
P is assumed

Coq < Parameter f : forall T:Set, T -> U.
f is assumed

Coq < Infix "+" := Uplus : U_scope.

Coq < Unset Printing Notations.

Coq < Open Scope nat_scope. (* Define + on the nat as the default for + *)

Coq < Check (fun x y1 y2 z t => P _ (x + t) ((f _ (y1 + y2) + z))).
fun (x y1 y2 : nat) (z : U) (t : nat) =>
P nat (plus x t) (Uplus (f nat (plus y1 y2)) z)

: nat -> nat -> nat -> U -> nat -> Prop

Remark: The scopetype_scope has also a local effect on interpretation. See the next section.

See also:The command to show the scopes bound to the arguments of a function is described in section
2.

11.2.3 Thetype_scope interpretation scope

The scopetype_scope has a special status. It is a primitive interpretation scope which is temporar-
ily activated each time a subterm of an expression is expected to be a type. This includes goals and
statements, types of binders, domain and codomain of implication, codomain of products, and more
generally any type argument of a declared or defined constant.

11.2.4 Interpretation scopes used in the standard library of COQ

We give an overview of the scopes used in the standard library of COQ. For a complete list of notations
in each scope, use the commandsPrint Scopes or Print Scopes scope.

type_scope

This includes infix* for product types and infix+ for sum types. It is delimited by keytype .

nat_scope

This includes the standard arithmetical operators and relations on typenat . Positive numerals in this
scope are mapped to their canonical representent built fromOandS. The scope is delimited by keynat .

N_scope

This includes the standard arithmetical operators and relations on typeN (binary natural numbers). It is
delimited by keyNand comes with an interpretation for numerals as closed term of typeZ.

Z_scope

This includes the standard arithmetical operators and relations on typeZ (binary integer numbers). It is
delimited by keyZ and comes with an interpretation for numerals as closed term of typeZ.
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positive_scope

This includes the standard arithmetical operators and relations on typepositive (binary strictly pos-
itive numbers). It is delimited by keypositive and comes with an interpretation for numerals as
closed term of typepositive .

real_scope

This includes the standard arithmetical operators and relations on typeR (axiomatic real numbers). It is
delimited by keyR and comes with an interpretation for numerals as term of typeR. The interpretation
is based on the binary decomposition. The numeral 2 is represented by1 + 1. The interpretationφ(n)
of an odd positive numerals greatern than 3 is1+(1+1)* φ((n − 1)/2). The interpretationφ(n) of
an even positive numerals greatern than 4 is(1+1)* φ(n/2). Negative numerals are represented as
the opposite of the interpretation of their absolute value. E.g. the syntactic object-11 is interpreted as
-(1+(1+1)*((1+1)*(1+(1+1)))) where the unit1 and all the operations are those ofR.

bool_scope

This includes notations for the boolean operators. It is delimited by keybool .

list_scope

This includes notations for the list operators. It is delimited by keylist .

core_scope

This includes the notation for pairs. It is delimited by keycore .

11.2.5 Displaying informations about scopes

Print Visibility

This displays the current stack of notations in scopes and lonely notations that is used to interpret a
notation. The top of the stack is displayed last. Notations in scopes whose interpretation is hidden by
the same notation in a more recently open scope are not displayed. Hence each notation is displayed
only once.

Variant:
Print Visibility scope

This displays the current stack of notations in scopes and lonely notations assuming thatscope is
pushed on top of the stack. This is useful to know how a subterm locally occurring in the scope ofscope
is interpreted.

Print Scope scope

This displays all the notations defined in interpretation scopescope. It also displays the delimiting key
if any and the class to which the scope is bound, if any.

Print Scopes

This displays all the notations, delimiting keys and corresponding class of all the existing interpretation
scopes. It also displays the lonely notations.
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11.3 Abbreviations

An abbreviationis a name denoting a (presumably) more complex expression. An abbreviation is a
special form of notation with no parameter and only one symbol which is an identifier. This identifier is
given with no quotes around. Example:

Coq < Notation List := (list nat).

An abbreviation expects no precedence nor associativity, since it can always be put at the lower level
of atomic expressions, and associativity is irrelevant. Abbreviations are used as much as possible by the
COQ printers unless the modifier(only parsing) is given.

Abbreviations are bound to an absolute name like for an ordinary definition, and can be referred by
partially qualified names too.

Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at
the time of the definition of the abbreviation but at the time it is used. Especially, abbreviation can be
bound to terms with holes (i.e. with “_”). The general syntax for abbreviations is

Notation [Local ] ident := term [(only parsing) ] .

Example:

Coq < Definition explicit_id (A:Set) (a:A) := a.
explicit_id is defined

Coq < Notation id := (explicit_id _).

Coq < Check (id 0).
id 0

: nat

Abbreviations do not survive the end of sections. No typing of the denoted expression is performed
at definition time. Type-checking is done only at the time of use of the abbreviation.

Remark: compatibility Abbreviations are similar to thesyntactic definitionsavailable in versions
of COQ prior to version 8.0, except that abbreviations are used for printing (unless the modifier
(only parsing) is given) while syntactic definitions were not.

11.4 Tactic Notations

Tactic notations allow to customize the syntax of the tactics of the tactic language3. Tactic notations
obey the following syntax

sentence ::= Tactic Notation string [production_item . . . production_item]
:= tactic .

production_item ::= string | tactic_argument_type( ident)
tactic_argument_type ::= ident | simple_intropattern | hyp

| reference | constr
| integer
| int_or_var | tactic |

A tactic notationTactic Notation string [production_item ... production_item]
:= tactic extends the parser and pretty-printer of tactics with a new rule made of the juxtaposition
of the head name of the tacticstring and the list of its production items (in the syntax of production

3Tactic notations are just a simplification of theGrammar tactic simple_tactic command that existed in versions
prior to version 8.0.
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items,string stands for a terminal symbol andtactic_argument_type( ident) for non terminal
entries . It then evaluates into the tactic expressiontactic.

Each type of tactic argument has a specific semantic regarding how it is parsed and how it is inter-
preted. The semantic is described in the following table. The last command gives examples of tactics
which use the corresponding kind of argument.

Tactic argument type parsed as interpreted as as in tactic

ident identifier a user-given name intro
simple_intropattern intro_pattern an intro_pattern intros
hyp identifier an hypothesis defined in contextclear
reference qualified identifier a global reference of term unfold
constr term a term exact
integer integer an integer
int_or_var identifier or integer an integer do
tactic tactic a tactic

Remark: In order to be bound in tactic definitions, each syntactic entry for argument type must in-
clude the case of simpleLtac identifier as part of what it parses. This is naturally the case forident ,
simple_intropattern , reference , constr , ... but not forinteger . This is the reason
for introducing a special entryint_or_var which evaluates to integers only but which syntactically
includes identifiers in order to be usable in tactic definitions.
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Chapter 12

The COQ commands

There are two COQ commands:

• coqtop : The COQ toplevel (interactive mode) ;

• coqc : The COQ compiler (batch compilation).

The options are (basically) the same for the two commands, and roughly described below. You can also
look at themanpages ofcoqtop andcoqc for more details.

12.1 Interactive use (coqtop )

In the interactive mode, also known as the COQ toplevel, the user can develop his theories and proofs
step by step. The COQ toplevel is run by the commandcoqtop .

They are two different binary images of COQ: the byte-code one and the native-code one (if Objec-
tive Caml provides a native-code compiler for your platform, which is supposed in the following). When
invoking coqtop or coqc , the native-code version of the system is used. The command-line options
-byte and-opt explicitly select the byte-code and the native-code versions, respectively.

The byte-code toplevel is based on a Caml toplevel (to allow the dynamic link of tactics). You can
switch to the Caml toplevel with the commandDrop. , and come back to the COQ toplevel with the
commandToplevel.loop();; .

12.2 Batch compilation (coqc )

The coqc command takes a namefile as argument. Then it looks for a vernacular file namedfile.v ,
and tries to compile it into afile.vo file (See 6.4).

Warning: The namefile must be a regular COQ identifier, as defined in the section 1.1. It must
only contain letters, digits or underscores (_). Thus it can be/bar/foo/toto.v but cannot be
/bar/foo/to-to.v .

Notice that the-byte and-opt options are still available withcoqc and allow you to select the
byte-code or native-code versions of the system.

12.3 Resource file

When COQ is launched, with eithercoqtop or coqc , the resource file$HOME/.coqrc.7.0 is
loaded, where$HOMEis the home directory of the user. If this file is not found, then the file
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$HOME/.coqrc is searched. You can also specify an arbitrary name for the resource file (see op-
tion -init-file below), or the name of another user to load the resource file of someone else (see
option-user ).

This file may contain, for instance,Add LoadPath commands to add directories to the load path
of COQ. It is possible to skip the loading of the resource file with the option-q .

12.4 Environment variables

There are three environment variables used by the COQ system.$COQBINfor the directory where the
binaries are,$COQLIB for the directory whrer the standard library is, and$COQTOPfor the directory
of the sources. The latter is useful only for developers that are writing their own tactics and are using
coq_makefile (see 13.3). If$COQBINor $COQLIBare not defined, COQ will use the default values
(defined at installation time). So these variables are useful only if you move the COQ binaries and library
after installation.

12.5 Options

The following command-line options are recognized by the commandscoqc andcoqtop :

-byte

Run the byte-code version of COQ.

-opt

Run the native-code version of COQ.

-I directory, -include directory

Add directoryto the searched directories when looking for a file.

-R directorydirpath

This maps the subdirectory structure of physicaldirectory to logical dirpath and addsdirectory
and its subdirectories to the searched directories when looking for a file.

-is file, -inputstate file

Cause COQ to use the state put in the filefile as its input state. The default state isinitial.coq.
Mainly useful to build the standard input state.

-nois

Cause COQ to begin with an empty state. Mainly useful to build the standard input state.

-notactics

Forbid the dynamic loading of tactics.

-init-file file

Takefile as the resource file.

-q

Cause COQ not to load the resource file.
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-user username

Take resource file of userusername(that is~username/.coqrc.7.0 ) instead of yours.

-load-ml-source file

Load the Caml source filefile.

-load-ml-object file

Load the Caml object filefile.

-load-vernac-source file

Load COQ file file.v

-load-vernac-object file

Load COQ compiled filefile.vo

-require file

Load COQ compiled filefile.vo and import it (Require file).

-compile file

This compiles filefile.v into file.vo . This option implies options-batch and-silent . It is
only available forcoqtop .

-batch

Batch mode : exit just after arguments parsing. This option is only used bycoqc .

-debug

Switch on the debug flag.

-xml

This option is for use withcoqc . It tells COQ to export on the standard output the content of the
compiled file into XML format.

-emacs

Tells COQ it is executed under Emacs.

-db

Launch COQ under the Objective Caml debugger (provided that COQ has been compiled for de-
bugging; see next chapter).

-impredicative-set

Change the logical theory of COQ by declaring the sortSet impredicative; warning: this is known
to be inconsistent with some standard axioms of classical mathematics such as the functional
axiom of choice or the principle of description

-dont-load-proofs

This avoids loading in memory the proofs of opaque theorems resulting in a smaller memory
requirement and faster compilation; warning: this invalidates some features such as the extraction
tool.
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-image file

This option sets the binary image to be used to befile instead of the standard one. Not of general
use.

-bindir directory

Set the directory containing COQ binaries. It is equivalent to doexport COQBIN= directory
before lauching COQ.

-libdir file

Set the directory containing COQ libraries. It is equivalent to doexport COQLIB= directory
before lauching COQ.

-where

Print the COQ’s standard library location and exit.

-v

Print the COQ’s version and exit.

-h , -help

Print a short usage and exit.
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Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics
writing or documentation.

13.1 Building a toplevel extended with user tactics

The native-code version of COQ cannot dynamically load user tactics using Objective Caml code.
It is possible to build a toplevel of COQ, with Objective Caml code statically linked, with the tool
coqmktop .

For example, one can build a native-code COQ toplevel extended with a tactic which source is in
tactic.ml with the command

% coqmktop -opt -o mytop.out tactic.cmx

where tactic.ml has been compiled with the native-code compilerocamlopt . This command
generates an executable calledmytop.out . To use this executable to compile your COQ files, use
coqc -image mytop.out .

A basic example is the native-code version of COQ (coqtop.opt ), which can be generated by
coqmktop -opt -o coqopt.opt .

Application: how to use the Objective Caml debugger with Coq. One useful application of
coqmktop is to build a COQ toplevel in order to debug your tactics with the Objective Caml debugger.
You need to have configured and compiled COQ for debugging (see the fileINSTALL included in the
distribution). Then, you must compile the Caml modules of your tactic with the option-g (with the
bytecode compiler) and build a stand-alone bytecode toplevel with the following command:

% coqmktop -g -o coq-debug <your .cmo files>

To launch the OBJECTIVE CAML debugger with the image you need to execute it in an environment
which correctly sets theCOQLIB variable. Moreover, you have to indicate the directories in which
ocamldebug should search for Caml modules.

A possible solution is to use a wrapper aroundocamldebug which detects the executables con-
taining the wordcoq . In this case, the debugger is called with the required additional arguments. In
other cases, the debugger is simply called without additional arguments. Such a wrapper can be found
in thedev/ subdirectory of the sources.
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13.2 Modules dependencies

In order to compute modules dependencies (so to usemake), COQ comes with an appropriate tool,
coqdep .

coqdep computes inter-module dependencies for COQ and OBJECTIVE CAML programs, and
prints the dependencies on the standard output in a format readable by make. When a directory is
given as argument, it is recursively looked at.

Dependencies of COQ modules are computed by looking atRequire commands (Require ,
Require Export , Require Import , Require Implementation ), but also at the command
Declare ML Module .

Dependencies of OBJECTIVE CAML modules are computed by looking atopen commands and
the dot notationmodule.value. However, this is done approximatively and you are advised to use
ocamldep instead for the OBJECTIVE CAML modules dependencies.

See the man page ofcoqdep for more details and options.

13.3 Creating aMakefile for C OQ modules

When a proof development becomes large and is split into several files, it becomes crucial to use a tool
like make to compile COQ modules.

The writing of a generic and completeMakefile may be a tedious work and that’s why COQ

provides a tool to automate its creation,coq_makefile . Given the files to compile, the command
coq_makefile prints aMakefile on the standard output. So one has just to run the command:

% coq_makefile file1.v . . . filen.v > Makefile

The resultedMakefile has a targetdepend which computes the dependencies and puts them in
a separate file.depend , which is included by theMakefile . Therefore, you should create such a file
before the first invocation of make. You can for instance use the command

% touch .depend

Then, to initialize or update the modules dependencies, type in:

% make depend

There is a targetall to compile all the filesfile1 . . . filen, and a generic target to produce a.vo file
from the corresponding.v file (so you can domake file.vo to compile the filefile.v ).

coq_makefile can also handle the case of ML files and subdirectories. For more options type

% coq_makefile -help

Warning: To compile a project containing OBJECTIVE CAML files you must keep the sources of COQ

somewhere and have an environment variable namedCOQTOPthat points to that directory.

13.4 Documenting COQ files with coqdoc

coqdoc is a documentation tool for the proof assistant COQ, similar tojavadoc or ocamldoc. The task
of coqdoc is

1. to produce a nice LATEX and/or HTML document from the COQ sources, readable for a human and
not only for the proof assistant;

2. to help the user navigating in his own (or third-party) sources.
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13.4.1 Principles

Documentation is inserted into COQ files asspecial comments. Thus your files will compile as usual,
whether you usecoqdoc or not.coqdoc presupposes that the given COQ files are well-formed (at least
lexically). Documentation starts with(** , followed by a space, and ends with the pending*) . The
documentation format is inspired by Todd A. Coram’sAlmost Free Text (AFT)tool: it is mainly ASCII
text with some syntax-light controls, described below.coqdoc is robust: it shouldn’t fail, whatever the
input is. But remember: “garbage in, garbage out”.

COQ material inside documentation. COQ material is quoted between the delimiters[ and] . Square
brackets may be nested, the inner ones being understood as being part of the quoted code (thus you can
quote a term like[x : T ]u by writing [[x:T]u] ). Inside quotations, the code is pretty-printed in the
same way as it is in code parts.

Pre-formatted vernacular is enclosed by[[ and]] . The former must be followed by a newline and
the latter must follow a newline.

Pretty-printing. coqdoc uses different faces for identifiers and keywords. The pretty-printing of COQ

tokens (identifiers or symbols) can be controlled using one of the following commands:

(** printing token %...L ATEX...% #...HTML...# *)

or

(** printing token $...L ATEX math...$ #...HTML...# *)

It gives the LATEX and HTML texts to be produced for the given COQ token. One of the LATEX or HTML
text may be ommitted, causing the default pretty-printing to be used for this token.

The printing for one token can be removed with

(** remove printing token *)

Initially, the pretty-printing table contains the following mapping:

-> → <- ← * ×
<= ≤ >= ≥ => ⇒
<> 6= <-> ↔ |- `
\/ ∨ /\ ∧ ~ ¬

Any of these can be overwritten or suppressed using theprinting commands.
Important note: the recognition of tokens is done by a (ocaml)lex automaton and thus applies the

longest-match rule. For instance,->~ is recognized as a single token, where COQ sees two tokens. It
is the responsability of the user to insert space between tokensor to give pretty-printing rules for the
possible combinations, e.g.

(** printing ->~ %\ensuremath{\rightarrow\lnot}% *)

Sections. Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the line). One star is
a section, two stars a sub-section, etc. The section title is given on the remaining of the line. Example:

(** * Well-founded relations

In this section, we introduce... *)
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Lists. List items are introduced by 1 to 4 leading dashes. Deepness of the list is indicated by the
number of dashes. List ends with a blank line. Example:

This module defines
- the predecessor [pred]
- the addition [plus]
- order relations:

-- less or equal [le]
-- less [lt]

Rules. More than 4 leading dashes produce an horizontal rule.

Escapings to LATEX and HTML. Pure LATEX or HTML material can be inserted using the following
escape sequences:

• $...LaTeX stuff...$ inserts some LATEX material in math mode. Simply discarded in
HTML output.

• %...LaTeX stuff...% inserts some LATEX material. Simply discarded in HTML output.

• #...HTML stuff...# inserts some HTML material. Simply discarded in LATEX output.

Verbatim. Verbatim material is introduced by a leading<< and closed by>>. Example:

Here is the corresponding caml code:
<<

let rec fact n =
if n <= 1 then 1 else n * fact (n-1)

>>

Hyperlinks. Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the
place of its definition.

In order to get hyperlinks you need to first compile your COQ file usingcoqc --dump-glob
file ; this appends COQ names resolutions done during the compilation to filefile . Take care of
erasing this file, if any, when starting the whole compilation process.

Then invokecoqdoc --glob-from file to tell coqdoc to look for name resolutions into the
file file .

Identifiers from the COQ standard library are linked to the COQ web site athttp://coq.inria.
fr/library/ . This behavior can be changed using command line options--no-externals and
--coqlib ; see below.

Hiding / Showing parts of the source. Some parts of the source can be hidden using command line
options-g and-l (see below), or using such comments:

(* begin hide *)
some Coq material
(* end hide *)

Conversely, some parts of the source which would be hidden can be shown using such comments:

(* begin show *)
some Coq material
(* end show *)

The latter cannot be used around some inner parts of a proof, but can be used around a whole proof.
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13.4.2 Usage

coqdoc is invoked on a shell command line as follows:

coqdoc < options and files>

Any command line argument which is not an option is considered to be a file (even if it starts with a- ).
COQ files are identified by the suffixes.v and.g and LATEX files by the suffix.tex .

HTML output

This is the default output. One HTML file is created for each COQ file given on the command
line, together with a fileindex.html (unless option-no-index is passed). The HTML pages
use a style sheet namedstyle.css . Such a file is distributed withcoqdoc.

LATEX output

A single LATEX file is created, on standard output. It can be redirected to a file with option-o . The
order of files on the command line is kept in the final document. LATEX files given on the command
line are copied ‘as is’ in the final document . DVI and PostScript can be produced directly with
the options-dvi and-ps respectively.

TEXmacs output

To translate the input files to TEXmacs format, to be used by the TEXmacs Coq interface (see
http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/ ).

Command line options

Overall options

--html

Select a HTML output.

--latex

Select a LATEX output.

--dvi

Select a DVI output.

--ps

Select a PostScript output.

--texmacs

Select a TEXmacs output.

-o file, --output file

Redirect the output into the file ‘file’ (meaningless with-html ).

-d dir, --directory dir

Output files into directory ‘dir ’ instead of current directory (option-d does not change the file-
name specified with option-o , if any).
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-s , --short

Do not insert titles for the files. The default behavior is to insert a title like “Library Foo” for each
file.

-t string, --title string

Set the document title.

--body-only

Suppress the header and trailer of the final document. Thus, you can insert the resulting document
into a larger one.

-p string, --preamble string

Insert some material in the LATEX preamble, right before\begin{document} (meaningless
with -html ).

--vernac-file file, --tex-file file

Considers the file ‘file’ respectively as a.v (or .g ) file or a.tex file.

--files-from file

Read file names to process in file ‘file’ as if they were given on the command line. Useful for
program sources splitted in several directories.

-q , --quiet

Be quiet. Do not print anything except errors.

-h , --help

Give a short summary of the options and exit.

-v , --version

Print the version and exit.

Index options
Default behavior is to build an index, for the HTML output only, intoindex.html .

--no-index

Do not output the index.

--multi-index

Generate one page for each category and each letter in the index, together with a top page
index.html .

Table of contents option

-toc , --table-of-contents

Insert a table of contents. For a LATEX output, it inserts a\tableofcontents at the beginning
of the document. For a HTML output, it builds a table of contents intotoc.html .
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Hyperlinks options

--glob-from file

Make references using COQ globalizations from filefile. (Such globalizations are obtained with
COQ option-dump-glob ).

--no-externals

Do not insert links to the COQ standard library.

--coqlib url

Set base URL for the COQ standard library (default ishttp://coq.inria.fr/library/ ).

-R dir coqdir

Map physical directorydir to COQ logical directorycoqdir (similarly to COQ option-R ).

Note: option-R only has effect on the filesfollowing it on the command line, so you will probably
need to put this option first.

Contents options

-g , --gallina

Do not print proofs.

-l , --light

Light mode. Suppress proofs (as with-g ) and the following commands:

• [Recursive ] Tactic Definition

• Hint / Hints

• Require

• Transparent / Opaque

• Implicit Argument / Implicits

• Section / Variable / Hypothesis / End

The behavior of options-g and-l can be locally overridden using the(* begin show *) . . . (*
end show *) environment (see above).

Language options
Default behavior is to assume ASCII 7 bits input files.

-latin1 , --latin1

Select ISO-8859-1 input files. It is equivalent to-inputenc latin1 -charset
iso-8859-1 .

-utf8 , --utf8

Select UTF-8 (Unicode) input files. It is equivalent to-inputenc utf8 -charset utf-8 .
LATEX UTF-8 support can be found athttp://www.ctan.org/tex-archive/macros/
latex/contrib/supported/unicode/ .

--inputenc string

Give a LATEX input encoding, as an option to LATEX packageinputenc .

--charset string

Specify the HTML character set, to be inserted in the HTML header.
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13.4.3 The coqdoc LATEX style file

In case you choose to produce a document without the default LATEX preamble (by using option
--no-preamble ), then you must insert into your own preamble the command

\usepackage{coqdoc}

Then you may alter the rendering of the document by redefining some macros:

coqdockw , coqdocid

The one-argument macros for typesetting keywords and identifiers. Defaults are sans-serif for
keywords and italic for identifiers.

For example, if you would like a slanted font for keywords, you may insert

\renewcommand{\coqdockw}[1]{\textsl{#1}}

anywhere between\usepackage{coqdoc} and\begin{document} .

coqdocmodule

One-argument macro for typesetting the title of a.v file. Default is

\newcommand{\coqdocmodule}[1]{\section*{Module #1}}

and you may redefine it using\renewcommand .

13.5 Exporting COQ theories to XML

This section describes the exportation of COQ theories to XML that has been contributed by Claudio
Sacerdoti Coen. Currently, the main applications are the rendering and searching tool developed within
the HELM1 and MoWGLI2 projects mainly at the University of Bologna and partly at INRIA-Sophia
Antipolis.

13.5.1 Practical use of the XML exportation tool

The basic way to export the logical content of a file into XML format is to usecoqc with option
-xml . When the-xml flag is set, every definition or declaration is immediately exported to XML once
concluded. The system environment variableCOQ_XML_LIBRARY_ROOTmust be previously set to a
directory in which the logical structure of the exported objects is reflected.

For Makefile files generated bycoq_makefile (see section 13.3), it is sufficient to compile
the files using

make COQ_XML=-xml

(or, equivalently, setting the environment variableCOQ_XML)
To export a development to XML, the suggested procedure is then:

1. add to your own contribution a validMake file and usecoq_makefile to generate the
Makefile from theMake file.

Warning: Since logical names are used to structure the XML hierarchy, always add to theMake
file at least one"-R" option to map physical file names to logical module paths.

1Hypertextual Electronic Library of Mathematics
2Mathematics on the Web, Get it by Logic and Interfaces
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2. set theCOQ_XML_LIBRARY_ROOTenvironment variable to the directory where the XML file

hierarchy must be physically rooted.

3. compile your contribution with"make COQ_XML=-xml"

Remark: In case the system variableCOQ_XML_LIBRARY_ROOTis not set, the output is done on the
standard output. Also, the files are compressed usinggzip after creation. This is to save disk space
since the XML format is very verbose.

13.5.2 Reflection of the logical structure into the file system

For each COQ logical object, several independent files associated to this object are created. The structure
of the long name of the object is reflected in the directory structure of the file system. E.g. an object
of long nameident1..... identn. ident is exported to files in the subdirectoryident1/. . . /identn of the
directory bound to the environment variableCOQ_XML_LIBRARY_ROOT.

13.5.3 What is exported?

The XML exportation tool exports the logical content of COQ theories. This covers global definitions
(including lemmas, theorems, ...), global assumptions (parameters and axioms), local assumptions or
definitions, and inductive definitions.

Vernacular files are exported to.theory.xml files. Comments are pre-processed withcoqdoc
(see section 13.4). Especially, they have to be enclosed within(** and*) to be exported.

For each inductive definition of nameident1.. . . .identn.ident , a file namedident .ind.xml is cre-
ated in the subdirectoryident1/.../ identn of the xml library root directory. It contains the arities and
constructors of the type. For mutual inductive definitions, the file is named after the name of the first
inductive type of the block.

For each global definition of base nameident1..... identn. ident , files named
ident .con.body.xml and ident .con.xml are created in the subdirectoryident1/.../ identn.
They respectively contain the body and the type of the definition.

For each global assumption of base nameident1. ident2..... identn. ident , a file named
ident .con.xml is created in the subdirectoryident1/.../ identn. It contains the type of the global
assumption.

For each local assumption or definition of base nameident located in sectionsident ′1, . . . , ident ′p of
the moduleident1. ident2..... identn. ident , a file namedident .var.xml is created in the subdi-
rectoryident1/.../ identn/ ident ′1/.../ ident ′p. It contains its type and, if a definition, its body.

In order to do proof-rendering (for example in natural language), some redundant typing information
is required, i.e. the type of at least some of the subterms of the bodies and types of the CIC objects. These
types are called inner types and are exported to files of suffix.types.xml by the exportation tool.

13.5.4 Inner types

The type of a subterm of a construction is called aninner typeif it respects the following conditions.

1. Its sort isProp 3.

2. It is not a type cast nor an atomic term (variable, constructor or constant).

3or CProp which is the "sort"-like definition used in C-CoRN (seehttp://vacuumcleaner.cs.kun.nl/
c-corn ) to type computationally relevant predicative propositions.
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3. If it’s root is an abstraction, then the root’s parent node is not an abstraction, i.e. only the type of

the outer abstraction of a block of nested abstractions is printed.

The rationale for the 3rd condition is that the type of the inner abstractions could be easily computed
starting from the type of the outer ones; moreover, the types of the inner abstractions requires a lot of
disk/memory space: removing the 3rd condition leads to XML file that are two times as big as the ones
exported applying the 3rd condition.

13.5.5 Interactive exportation commands

There are also commands to be used interactively incoqtop .

Print XML qualid

If the variableCOQ_XML_LIBRARY_ROOTis set, this command creates files containing the logical
content in XML format ofqualid . If the variable is not set, the result is displayed on the standard output.

Variants:

1. Print XML File string qualid
This writes the logical content ofqualid in XML format to files whose prefix isstring.

Show XML Proof

If the variableCOQ_XML_LIBRARY_ROOTis set, this command creates files containing the current
proof in progress in XML format. It writes also an XML file made of inner types. If the variable is not
set, the result is displayed on the standard output.

Variants:

1. Show XML File string Proof
This writes the logical content ofqualid in XML format to files whose prefix isstring.

13.5.6 Applications: rendering, searching and publishing

The HELM team at the University of Bologna has developed tools exploiting the XML exportation of
COQ libraries. This covers rendering, searching and publishing tools.

All these tools require a running http server and, if possible, a MathML compliant browser. The
procedure to install the suite of tools ultimately allowing rendering and searching can be found on the
HELM web sitehttp://helm.cs.unibo.it/library.html .

It may be easier though to upload your developments on the HELM http server and to re-use the
infrastructure running on it. This requires publishing your development. To this aim, follow the instruc-
tions onhttp://mowgli.cs.unibo.it .

Notice that the HELM server already hosts a copy of the standard library of COQ and of the COQ

user contributions.

13.5.7 Technical informations

CIC with Explicit Named Substitutions

The exported files are XML encoding of the lambda-terms used by the COQ system. The implementative
details of the COQ system are hidden as much as possible, so that the XML DTD is a straightforward
encoding of the Calculus of (Co)Inductive Constructions.
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Nevertheless, there is a feature of the COQ system that can not be hidden in a completely satisfactory

way: discharging (see Sect.2.3). In COQ it is possible to open a section, declare variables and use them in
the rest of the section as if they were axiom declarations. Once the section is closed, every definition and
theorem in the section is discharged by abstracting it over the section variables. Variable declarations
as well as section declarations are entirely dropped. Since we are interested in an XML encoding of
definitions and theorems as close as possible to those directly provided the user, we do not want to export
discharged forms. Exporting non-discharged theorem and definitions together with theorems that rely
on the discharged forms obliges the tools that work on the XML encoding to implement discharging to
achieve logical consistency. Moreover, the rendering of the files can be misleading, since hyperlinks can
be shown between occurrences of the discharge form of a definition and the non-discharged definition,
that are different objects.

To overcome the previous limitations, Claudio Sacerdoti Coen developed in his PhD. thesis an ex-
tension of CIC, called Calculus of (Co)Inductive Constructions with Explicit Named Substitutions, that
is a slight extension of CIC where discharging is not necessary. The DTD of the exported XML files
describes constants, inductive types and variables of the Calculus of (Co)Inductive Constructions with
Explicit Named Substitutions. The conversion to the new calculus is performed during the exportation
phase.

The following example shows a very small COQ development together with its version in CIC with
Explicit Named Substitutions.

# CIC version: #
Section S.

Variable A : Prop.

Definition impl := A -> A.

Theorem t : impl. (* uses the undischarged form of impl *)
Proof.

exact (fun (a:A) => a).
Qed.

End S.

Theorem t’ : (impl False). (* uses the discharged form of impl *)
Proof.

exact (t False). (* uses the discharged form of t *)
Qed.

# Corresponding CIC with Explicit Named Substitutions version: #
Section S.

Variable A : Prop.

Definition impl(A) := A -> A. (* theorems and definitions are
explicitly abstracted over the
variables. The name is sufficient to
completely describe the abstraction *)

Theorem t(A) : impl. (* impl where A is not instantiated *)
Proof.

exact (fun (a:A) => a).
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Qed.

End S.

Theorem t’() : impl{False/A}. (* impl where A is instantiated with False
Notice that t’ does not depend on A *)

Proof.
exact t{False/A}. (* t where A is instantiated with False *)

Qed.

Further details on the typing and reduction rules of the calculus can be found in Claudio Sacerdoti
Coen PhD. dissertation, where the consistency of the calculus is also proved.

The CIC with Explicit Named Substitutions XML DTD

A copy of the DTD can be found in the file “cic.dtd ” in the contrib/xml source directory of
COQ. The following is a very brief overview of the elements described in the DTD.

<ConstantType> is the root element of the files that correspond to constant types.

<ConstantBody> is the root element of the files that correspond to constant bodies. It is used only
for closed definitions and theorems (i.e. when no metavariable occurs in the body or type of the
constant)

<CurrentProof> is the root element of the file that correspond to the body of a constant that de-
pends on metavariables (e.g. unfinished proofs)

<Variable> is the root element of the files that correspond to variables

<InductiveTypes> is the root element of the files that correspond to blocks of mutually defined
inductive definitions

The elements<LAMBDA>, <CAST>, <PROD>, <REL>, <SORT>, <APPLY>, <VAR>, <META>,
<IMPLICIT> , <CONST>, <LETIN> , <MUTIND>, <MUTCONSTRUCT>, <MUTCASE>, <FIX> and
<COFIX> are used to encode the constructors of CIC. Thesort or type attribute of the element, if
present, is respectively the sort or the type of the term, that is a sort because of the typing rules of CIC.

The element<instantiate> correspond to the application of an explicit named substitution to
its first argument, that is a reference to a definition or declaration in the environment.

All the other elements are just syntactic sugar.

13.6 Embedded COQ phrases inside LATEX documents

When writing a documentation about a proof development, one may want to insert COQ phrases inside
a LATEX document, possibly together with the corresponding answers of the system. We provide a me-
chanical way to process such COQ phrases embedded in LATEX files: thecoq-tex filter. This filter
extracts Coq phrases embedded in LaTeX files, evaluates them, and insert the outcome of the evaluation
after each phrase.

Starting with a filefile.tex containing COQ phrases, thecoq-tex filter produces a file named
file.v.tex with the COQ outcome.

There are options to produce the COQ parts in smaller font, italic, between horizontal rules, etc. See
the man page ofcoq-tex for more details.

Remark. This Reference Manual and the Tutorial have been completely produced withcoq-tex .
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13.7 COQ and GNU EMACS

13.7.1 The COQ Emacs mode

COQ comes with a Major mode for GNU EMACS, coq.el . This mode provides syntax highlight-
ing (assuming your GNU EMACS library provideshilit19.el ) and also a rudimentary indentation
facility in the style of the Caml GNU EMACS mode.

Add the following lines to your.emacs file:

(setq auto-mode-alist (cons ’("\\.v$" . coq-mode) auto-mode-alist))
(autoload ’coq-mode "coq" "Major mode for editing Coq vernacular." t)

The COQ major mode is triggered by visiting a file with extension.v , or manually with the com-
mandM-x coq-mode . It gives you the correct syntax table for the COQ language, and also a rudi-
mentary indentation facility:

• pressing TAB at the beginning of a line indents the line like the line above;

• extra TABs increase the indentation level (by 2 spaces by default);

• M-TAB decreases the indentation level.

An inferior mode to run COQ under Emacs, by Marco Maggesi, is also included in the distribution,
in file coq-inferior.el . Instructions to use it are contained in this file.

13.7.2 Proof General

Proof General is a generic interface for proof assistants based on Emacs (or XEmacs). The main idea
is that the COQ commands you are editing are sent to a COQ toplevel running behind Emacs and the
answers of the system automatically inserted into other Emacs buffers. Thus you don’t need to copy-
paste the COQ material from your files to the COQ toplevel or conversely from the COQ toplevel to some
files.

Proof General is developped and distributed independently of the system COQ. It is freely available
atproofgeneral.inf.ed.ac.uk .

13.8 Module specification

Given a COQ vernacular file, thegallina filter extracts its specification (inductive types declarations,
definitions, type of lemmas and theorems), removing the proofs parts of the file. The COQ file file.v
gives birth to the specification filefile.g (where the suffix.g stands for GALLINA ).

See the man page ofgallina for more details and options.

13.9 Man pages

There are man pages for the commandscoqdep , gallina andcoq-tex . Man pages are installed at
installation time (see installation instructions in fileINSTALL , step 6).
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Chapter 14

COQ Integrated Development
Environment

The COQ Integrated Development Environment is a graphical tool, to be used as a user-friendly replace-
ment tocoqtop . Its main purpose is to allow the user to navigate forward and backward into a COQ

vernacular file, executing corresponding commands or undoing them respectively.
COQIDE is run by typing the commandcoqide on the command line. Without argument, the

main screen is displayed with an “unnamed buffer”, and with a file name as argument, another buffer
displaying the contents of that file. Additionally, coqide accepts the same options as coqtop, given in
Chapter 12, the ones having obviously no meaning for COQIDE being ignored.

A sample COQIDE main screen, while navigating into a fileFermat.v , is shown on Figure 14.1.
At the top is a menu bar, and a tool bar below it. The large window on the left is displaying the various
script buffers. The upper right window is thegoal window, where goals to prove are displayed. The lower
right window is themessage window, where various messages resulting from commands are displayed.
At the bottom is the status bar.

14.1 Managing files and buffers, basic edition

In the script window, you may open arbitrarily many buffers to edit. TheFile menu allows you to open
files or create some, save them, print or export them into various formats. Among all these buffers, there
is always one which is the currentrunning buffer, whose name is displayed on a green background,
which is the one where Coq commands are currently executed.

Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, . . . )
are available in theEdit menu. COQIDE offers only basic editing commands, so if you need more
complex editing commands, you may launch your favorite text editor on the current buffer, using the
Edit/External Editormenu.

14.2 Interactive navigation into COQ scripts

The running buffer is the one where navigation takes place. The toolbar proposes five basic commands
for this. The first one, represented by a down arrow icon, is for going forward executing one command.
If that command is successful, the part of the script that has been executed is displayed on a green
background. If that command fails, the error message is displayed in the message window, and the
location of the error is emphasized by a red underline.

On Figure 14.1, the running buffer isFermat.v , all commands until theTheorem have been
already executed, and the user tried to go forward executingInduction n . That command failed
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Figure 14.1: COQIDE main screen

because no such tactic exist (tactics are now in lowercase. . . ), and the wrong word is underlined.
Notice that the green part of the running buffer is not editable. If you ever want to modify something

you have to go backward using the up arrow tool, or even better, put the cursor where you want to go
back and use thegoto button. Unlike withcoqtop , you should never useUndo to go backward.

Two additional tool buttons exist, one to go directly to the end and one to go back to the beginning.
If you try to go to the end, or in general to run several commands using thegoto button, the execution
will stop whenever an error is found.

If you ever try to execute a command which happens to run during a long time, and would like to
abort it before its termination, you may use the interrupt button (the white cross on a red circle).

Finally, notice that these navigation buttons are also available in the menu, where their keyboard
shortcuts are given.

14.3 Try tactics automatically

The menuTry Tactics provides some features for automatically trying to solve the current goal
using simple tactics. If such a tactic succeeds in solving the goal, then its text is automatically inserted
into the script. There is finally a combination of these tactics, called theproof wizardwhich will try each
of them in turn. This wizard is also available as a tool button (the light bulb). The set of tactics tried by
the wizard is customizable in the preferences.

These tactics are general ones, in particular they do not refer to particular hypotheses. You may also
try specific tactics related to the goal or one of the hypotheses, by clicking with the right mouse button
one the goal or the considered hypothesis. This is the “contextual menu on goals” feature, that may be
disabled in the preferences if undesirable.
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Figure 14.2: COQIDE: the query window

14.4 Vernacular commands, templates

The Templates menu allows to use shortcuts to insert vernacular commands. This is a nice way to
proceed if you are not sure of the spelling of the command you want.

Moreover, this menu offers sometemplateswhich will automatic insert a complex command like
Fixpoint with a convenient shape for its arguments.

14.5 Queries

We call query any vernacular command that do not change the current state, such asCheck ,
SearchAbout , etc. Those commands are of course useless during compilation of a file, hence should
not be included in scripts. To run such commands without writing them in the script, COQIDE offers
another input window called thequery window. This window can be displayed on demand, either by us-
ing theWindow menu, or directly using shortcuts given in theQueries menu. Indeed, with COQIDE
the simplest way to perform aSearchAbout on some identifier is to select it using the mouse, and
pressingF2. This will both make appear the query window and run theSearchAbout in it, displaying
the result. ShortcutsF3 andF4 are forCheck andPrint respectively. Figure 14.2 displays the query
window after selection of the word “mult” in the script windows, and pressingF4 to print its definition.

14.6 Compilation

TheCompile menu offers direct commands to:

• compile the current buffer
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• run a compilation usingmake

• go to the last compilation error

• create amakefile usingcoq_makefile .

14.7 Customizations

You may customize your environment using menuEdit/Preferences . A new window will be
displayed, with several customization sections presented as a notebook.

The first section is for selecting the text font used for scripts, goal and message windows.
The second section is devoted to file management: you may configure automatic saving of files, by

periodically saving the contents into files named#f# for each opened filef . You may also activate the
revert feature: in case a opened file is modified on the disk by a third party, COQIDE may read it again
for you. Note that in the case you edited that same file, you will be prompt to choose to either discard
your changes or not. TheFile charset encoding choice is described below in Section 14.8.3

The Externals section allows to customize the external commands for compilation, printing,
web browsing. In the browser command, you may use%s to denote the URL to open, for example:
mozilla -remote "OpenURL(%s)" .

TheTactics Wizard section allows to defined the set of tactics that should be tried, in sequence,
to solve the current goal.

The last section is for miscellaneous boolean settings, such as the “contextual menu on goals” feature
presented in Section 14.3.

Notice that these settings are saved in the file.coqiderc of your home directory.
A gtk2 accelerator keymap is saved under the name.coqide.keys . This file should not be edited

manually: to modify a given menu shortcut, go to the corresponding menu item without releasing the
mouse button, press the key you want for the new shortcut, and release the mouse button afterwards.

For experts: it is also possible to set up a specific gtk resource file, under the name
.coqide-gtk2rc , following the gtk2 resources syntaxhttp://developer.gnome.org/
doc/API/2.0/gtk/gtk-Resource-Files.html . Such a default resource file exists in the
COQ library, you may copy this file into your home directory, and edit it using any text editor, COQIDE
itself for example.

14.8 Using unicode symbols

COQIDE supports unicode character encoding in its text windows, consequently a large set of symbols
is available for notations.

14.8.1 Displaying unicode symbols

You just need to define suitable notations as described in Chapter 11. For example, to use the mathemat-
ical symbols∀ and∃, you may define

Notation " ∀ x : t, P" :=
(forall x:t, P) (at level 200, x ident).
Notation " ∃ x : t, P" :=
(exists x:t, P) (at level 200, x ident).

There exists a small set of such notations already defined, in the fileutf8.v of COQ library, so you
may enable them just byRequire utf8 inside COQIDE, or equivalently, by starting COQIDE with
coqide -l utf8 .
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However, there are some issues when using such unicode symbols: you of course need to use a

character font which supports them. In the Fonts section of the preferences, the Preview line displays
some unicode symbols, so you could figure out if the selected font is OK. Related to this, one thing you
may need to do is choose whether Gtk should use antialiased fonts or not, by setting the environment
variableGDK_USE_XFTto 1 or 0 respectively.

14.8.2 Defining an input method for non ASCII symbols

To input an Unicode symbol, a general method is to press both the CONTROL and the SHIFT keys, and
type the hexadecimal code of the symbol required, for example2200 for the∀ symbol. A list of symbol
codes is available athttp://www.unicode.org .

Of course, this method is painful for symbols you use often. There is always the possibility to copy-
paste a symbol already typed in. Another method is to bind some key combinations for frequently used
symbols. For example, to bind keysF11 andF12 to ∀ and∃ respectively, you may add

bind "F11" "insert-at-cursor" (" ∀")
bind "F12" "insert-at-cursor" (" ∃")

to yourbinding "text" section in.coqiderc-gtk2rc .

14.8.3 Character encoding for saved files

In theFiles section of the preferences, the encoding option is related to the way files are saved.
If you have no need to exchange files with non UTF-8 aware applications, it is better to choose the

UTF-8 encoding, since it guarantees that your files will be read again without problems. (This is because
when COQIDE reads a file, it tries to automatically detect its character encoding.)

If you choose something else than UTF-8, then missing characters will be written encoded by
\x{....} or \x{........} where each dot is an hexadecimal digit: the number between braces is
the hexadecimal UNICODE index for the missing character.

14.9 Building a custom COQIDE with user ML code

You can do this as described in Section 13.1 for a custom coq text toplevel, simply by adding option
-ide to coqmktop , that is something like

coqmktop -ide -byte m1.cmo ... mn.cmo

or

coqmktop -ide -opt m1.cmx ... mn.cmx
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Presentation of the Addendum

Here you will find several pieces of additional documentation for the COQ Reference Manual. Each of
this chapters is concentrated on a particular topic, that should interest only a fraction of the COQ users:
that’s the reason why they are apart from the Reference Manual.

Extended pattern-matching This chapter details the use of generalized pattern-matching. It is con-
tributed by Cristina Cornes and Hugo Herbelin.

Implicit coercions This chapter details the use of the coercion mechanism. It is contributed by
Amokrane Saïbi.

Program extraction This chapter explains how to extract in practice ML files fromFω terms. It is
contributed by Jean-Christophe Filliâtre and Pierre Letouzey.

omega omega, written by Pierre Crégut, solves a whole class of arithmetic problems.

The ring tactic This is a tactic to do AC rewriting. This chapter explains how to use it and how it
works. The chapter is contributed by Patrick Loiseleur.

The Setoid_replace tactic This is a tactic to do rewriting on types equipped with specific (only
partially substitutive) equality. The chapter is contributed by Clément Renard.
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Chapter 15

Extended pattern-matching

Cristina Cornes

This section describes the full form of pattern-matching in COQ terms.

15.1 Patterns

The full syntax ofmatch is presented in figures 1.1 and 1.2. Identifiers in patterns are either constructor
names or variables. Any identifier that is not the constructor of an inductive or coinductive type is
considered to be a variable. A variable name cannot occur more than once in a given pattern. It is
recommended to start variable names by a lowercase letter.

If a pattern has the form(c ~x) wherec is a constructor symbol and~x is a linear vector of variables,
it is calledsimple: it is the kind of pattern recognized by the basic version ofmatch . If a pattern is not
simple we call itnested.

A variable pattern matches any value, and the identifier is bound to that value. The pattern “_”
(called “don’t care” or “wildcard” symbol) also matches any value, but does not bind anything. It may
occur an arbitrary number of times in a pattern. Alias patterns written( pattern as identifier) are also
accepted. This pattern matches the same values aspattern does andidentifier is bound to the matched
value. A list of patterns separated with commas is also considered as a pattern and is calledmultiple
pattern.

Since extendedmatch expressions are compiled into the primitive ones, the expressiveness of the
theory remains the same. Once the stage of parsing has finished only simple patterns remain. An easy
way to see the result of the expansion is by printing the term withPrint if the term is a constant, or
using the commandCheck .

The extendedmatch still accepts an optionalelimination predicategiven after the keyword
return . Given a pattern matching expression, if all the right hand sides of=> (rhs in short) have
the same type, then this type can be sometimes synthesized, and so we can omit thereturn part.
Otherwise the predicate afterreturn has to be provided, like for the basicmatch .

Let us illustrate through examples the different aspects of extended pattern matching. Consider for
example the function that computes the maximum of two natural numbers. We can write it in primitive
syntax by:

Coq < Fixpoint max (n m:nat) {struct m} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S n’ => match m with
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Coq < | O => S n’
Coq < | S m’ => S (max n’ m’)
Coq < end
Coq < end.
max is recursively defined

Using multiple patterns in the definition allows to write:

Coq < Reset max.

Coq < Fixpoint max (n m:nat) {struct m} : nat :=
Coq < match n, m with
Coq < | O, _ => m
Coq < | S n’, O => S n’
Coq < | S n’, S m’ => S (max n’ m’)
Coq < end.
max is recursively defined

which will be compiled into the previous form.
The pattern-matching compilation strategy examines patterns from left to right. Amatch expression

is generatedonly when there is at least one constructor in the column of patterns. E.g. the following
example does not build amatch expression.

Coq < Check (fun x:nat => match x return nat with
Coq < | y => y
Coq < end).
fun x : nat => x

: nat -> nat

We can also use “as patterns” to associate a name to a sub-pattern:

Coq < Reset max.

Coq < Fixpoint max (n m:nat) {struct n} : nat :=
Coq < match n, m with
Coq < | O, _ => m
Coq < | S n’ as p, O => p
Coq < | S n’, S m’ => S (max n’ m’)
Coq < end.
max is recursively defined

Here is now an example of nested patterns:

Coq < Fixpoint even (n:nat) : bool :=
Coq < match n with
Coq < | O => true
Coq < | S O => false
Coq < | S (S n’) => even n’
Coq < end.
even is recursively defined

This is compiled into:

Coq < Print even.
even =
(fix even (n : nat) : bool :=

match n with
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| O => true
| S n0 => match n0 with

| O => false
| S n’ => even n’
end

end)
: nat -> bool

Argument scope is [nat_scope]

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write
patterns that admit a non trivial superposition. Consider the boolean functionlef that given two natural
numbers yieldstrue if the first one is less or equal than the second one andfalse otherwise. We can
write it as follows:

Coq < Fixpoint lef (n m:nat) {struct m} : bool :=
Coq < match n, m with
Coq < | O, x => true
Coq < | x, O => false
Coq < | S n, S m => lef n m
Coq < end.
lef is recursively defined

Note that the first and the second multiple pattern superpose because the couple of valuesO O
matches both. Thus, what is the result of the function on those values? To eliminate ambiguity we use
the textual priority rule: we consider patterns ordered from top to bottom, then a value is matched by
the pattern at theith row if and only if it is not matched by some pattern of a previous row. Thus in the
example,O Ois matched by the first pattern, and so(lef O O) yieldstrue .

Another way to write this function is:

Coq < Reset lef.

Coq < Fixpoint lef (n m:nat) {struct m} : bool :=
Coq < match n, m with
Coq < | O, x => true
Coq < | S n, S m => lef n m
Coq < | _, _ => false
Coq < end.
lef is recursively defined

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will
be used only for values that do not match neither the first nor the second one.

Terms with useless patterns are not accepted by the system. Here is an example:

Coq < Check (fun x:nat =>
Coq < match x with
Coq < | O => true
Coq < | S _ => false
Coq < | x => true
Coq < end).
Coq < Coq < Toplevel input, characters 246-255
> | x => true
> ^^^^^^^^^
Error: This clause is redundant
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15.2 About patterns of parametric types

When matching objects of a parametric type, constructors in patternsdo not expectthe parameter argu-
ments. Their value is deduced during expansion.

Consider for example the polymorphic lists:

Coq < Inductive List (A:Set) : Set :=
Coq < | nil : List A
Coq < | cons : A -> List A -> List A.
List is defined
List_rect is defined
List_ind is defined
List_rec is defined

We can check the functiontail:

Coq < Check
Coq < (fun l:List nat =>
Coq < match l with
Coq < | nil => nil nat
Coq < | cons _ l’ => l’
Coq < end).
fun l : List nat => match l with

| nil => nil nat
| cons _ l’ => l’
end

: List nat -> List nat

When we use parameters in patterns there is an error message:

Coq < Check
Coq < (fun l:List nat =>
Coq < match l with
Coq < | nil A => nil nat
Coq < | cons A _ l’ => l’
Coq < end).
Coq < Coq < Toplevel input, characters 220-231
> | cons A _ l’ => l’
> ^^^^^^^^^^^
Error: The constructor cons expects 2 arguments.

15.3 Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non-dependent types, but we can also
use the expansion strategy to destructure objects of dependent type. Consider the typelistn of lists of
a certain length:

Coq < Inductive listn : nat -> Set :=
Coq < | niln : listn 0
Coq < | consn : forall n:nat, nat -> listn n -> listn (S n).
listn is defined
listn_rect is defined
listn_ind is defined
listn_rec is defined
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15.3.1 Understanding dependencies in patterns

We can define the functionlength over listn by:

Coq < Definition length (n:nat) (l:listn n) := n.
length is defined

Just for illustrating pattern matching, we can define it by case analysis:

Coq < Reset length.

Coq < Definition length (n:nat) (l:listn n) :=
Coq < match l with
Coq < | niln => 0
Coq < | consn n _ _ => S n
Coq < end.
length is defined

We can understand the meaning of this definition using the same notions of usual pattern matching.

15.3.2 When the elimination predicate must be provided

The examples given so far do not need an explicit elimination predicate because all the rhs have the same
type and the strategy succeeds to synthesize it. Unfortunately when dealing with dependent patterns
it often happens that we need to write cases where the type of the rhs are different instances of the
elimination predicate. The functionconcat for listn is an example where the branches have different
type and we need to provide the elimination predicate:

Coq < Fixpoint concat (n:nat) (l:listn n) (m:nat) (l’:listn m) {struct l} :
Coq < listn (n + m) :=
Coq < match l in listn n return listn (n + m) with
Coq < | niln => l’
Coq < | consn n’ a y => consn (n’ + m) a (concat n’ y m l’)
Coq < end.
concat is recursively defined

The elimination predicate isfun (n:nat) (l:listn n) => listn (n+m) . In general ifm
has type(I q1 . . . qr t1 . . . ts) whereq1 . . . qr are parameters, the elimination predicate should be of the
form : fun y1... ys x:( I q1... qr y1... ys) => P .

In the concrete syntax, it should be written :

match m as x in (I _ . . . _ y1 . . . ys) return Q with . . . end

The variables which appear in thein andas clause are new and bounded in the propertyQ in the
return clause. The parameters of the inductive definitions should not be mentioned and are replaced by
_.

Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same
time and the branches have different type we need to provide the elimination predicate for this multiple
pattern. It is done using the same scheme, each term may be associated to anas andin clause in order
to introduce a dependent product.

For example, an equivalent definition forconcat (even though the matching on the second term is
trivial) would have been:
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Coq < Reset concat.

Coq < Fixpoint concat (n:nat) (l:listn n) (m:nat) (l’:listn m) {struct l} :
Coq < listn (n + m) :=
Coq < match l in listn n, l’ return listn (n + m) with
Coq < | niln, x => x
Coq < | consn n’ a y, x => consn (n’ + m) a (concat n’ y m x)
Coq < end.
concat is recursively defined

When the arity of the predicate (i.e. number of abstractions) is not correct Coq raises an error
message. For example:

Coq < Fixpoint concat
Coq < (n:nat) (l:listn n) (m:nat)
Coq < (l’:listn m) {struct l} : listn (n + m) :=
Coq < match l, l’ with
Coq < | niln, x => x
Coq < | consn n’ a y, x => consn (n’ + m) a (concat n’ y m x)
Coq < end.
Coq < Coq < Coq < Toplevel input, characters 342-343
> | niln, x => x
> ^
Error:
In environment
concat : forall n : nat,

listn n -> forall m : nat, listn m -> listn (n + m)
n : nat
l : listn n
m : nat
l’ : listn m
The term "l’" has type "listn m" while it is expected to have type

"listn (?31 + ?32)"

15.4 Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But
it may depend and the typical case is when we write a proof by induction or a function that yields an
object of dependent type. An example of proof usingmatch in given in section 10.1

For example, we can write the functionbuildlist that given a natural numbern builds a list of
lengthn containing zeros as follows:

Coq < Fixpoint buildlist (n:nat) : listn n :=
Coq < match n return listn n with
Coq < | O => niln
Coq < | S n => consn n 0 (buildlist n)
Coq < end.
buildlist is recursively defined

We can also use multiple patterns. Consider the following definition of the predicate less-equalLe :

Coq < Inductive LE : nat -> nat -> Prop :=
Coq < | LEO : forall n:nat, LE 0 n
Coq < | LES : forall n m:nat, LE n m -> LE (S n) (S m).
LE is defined
LE_ind is defined
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We can use multiple patterns to write the proof of the lemma(n,m:nat) (LE n m)\/(LE m

n) :

Coq < Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n :=
Coq < match n, m return LE n m \/ LE m n with
Coq < | O, x => or_introl (LE x 0) (LEO x)
Coq < | x, O => or_intror (LE x 0) (LEO x)
Coq < | S n as n’, S m as m’ =>
Coq < match dec n m with
Coq < | or_introl h => or_introl (LE m’ n’) (LES n m h)
Coq < | or_intror h => or_intror (LE n’ m’) (LES m n h)
Coq < end
Coq < end.
dec is recursively defined

In the example ofdec , the firstmatch is dependent while the second is not.
The user can also usematch in combination with the tacticrefine (see section 8.2.2) to build

incomplete proofs beginning with amatch construction.

15.5 Pattern-matching on inductive objects involving local definitions

If local definitions occur in the type of a constructor, then there are two ways to match on this con-
structor. Either the local definitions are skipped and matching is done only on the true arguments of the
constructors, or the bindings for local definitions can also be caught in the matching.

Example.

Coq < Inductive list : nat -> Set :=
Coq < | nil : list 0
Coq < | cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)).

In the next example, the local definition is not caught.

Coq < Fixpoint length n (l:list n) {struct l} : nat :=
Coq < match l with
Coq < | nil => 0
Coq < | cons n l0 => S (length (2 * n) l0)
Coq < end.
length is recursively defined

But in this example, it is.

Coq < Fixpoint length’ n (l:list n) {struct l} : nat :=
Coq < match l with
Coq < | nil => 0
Coq < | cons _ m l0 => S (length’ m l0)
Coq < end.
length’ is recursively defined

Remark: for a given matching clause, either none of the local definitions or all of them can be caught.
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15.6 Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from
constructors is sought. If such a coercion can be found, it is automatically inserted around the pattern.

Example:

Coq < Inductive I : Set :=
Coq < | C1 : nat -> I
Coq < | C2 : I -> I.
I is defined
I_rect is defined
I_ind is defined
I_rec is defined

Coq < Coercion C1 : nat >-> I.
C1 is now a coercion

Coq < Check (fun x => match x with
Coq < | C2 O => 0
Coq < | _ => 0
Coq < end).
fun x : I =>
match x with
| C1 _ => 0
| C2 i =>

match i with
| C1 n => match n with

| O => 0
| S _ => 0
end

| C2 _ => 0
end

end
: I -> nat

15.7 When does the expansion strategy fail ?

The strategy works very like in ML languages when treating patterns of non-dependent type. But there
are new cases of failure that are due to the presence of dependencies.

The error messages of the current implementation may be sometimes confusing. When the tactic
fails because patterns are somehow incorrect then error messages refer to the initial expression. But
the strategy may succeed to build an expression whose sub-expressions are well typed when the whole
expression is not. In this situation the message makes reference to the expanded expression. We en-
courage users, when they have patterns with the same outer constructor in different equations, to name
the variable patterns in the same positions with the same name. E.g. to write(cons n O x) => e1

and(cons n _ x) => e2 instead of(cons n O x) => e1 and(cons n’ _ x’) => e2 . This
helps to maintain certain name correspondence between the generated expression and the original.

Here is a summary of the error messages corresponding to each situation:

Error messages:

1. The constructor ident expects num arguments

The variable ident is bound several times in pattern term
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Found a constructor of inductive type term while a constructor of
term is expected

Patterns are incorrect (because constructors are not applied to the correct number of the arguments,
because they are not linear or they are wrongly typed)

2. Non exhaustive pattern-matching

the pattern matching is not exhaustive

3. The elimination predicate term should be of arity num (for non
dependent case) or num (for dependent case)

The elimination predicate provided tomatch has not the expected arity

4. Unable to infer a match predicate
Either there is a type incompatiblity or the problem involves
dependencies

There is a type mismatch between the different branches

Then the user should provide an elimination predicate.
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Chapter 16

Implicit Coercions

Amokrane Saïbi

16.1 General Presentation

This section describes the inheritance mechanism of COQ. In COQ with inheritance, we are not inter-
ested in adding any expressive power to our theory, but only convenience. Given a term, possibly not
typable, we are interested in the problem of determining if it can be well typed modulo insertion of
appropriate coercions. We allow to write:

• f a wheref : forall x : A,B anda : A′ whenA′ can be seen in some sense as a subtype ofA.

• x : A whenA is not a type, but can be seen in a certain sense as a type: set, group, category etc.

• f a whenf is not a function, but can be seen in a certain sense as a function: bijection, functor,
any structure morphism etc.

16.2 Classes

A class withn parameters is any defined name with a typeforall (x1 : A1)..(xn : An), s wheres is
a sort. Thus a class with parameters is considered as a single class and not as a family of classes. An
object of a classC is any term of typeC t1..tn. In addition to these user-classes, we have two abstract
classes:

• Sortclass , the class of sorts; its objects are the terms whose type is a sort.

• Funclass , the class of functions; its objects are all the terms with a functional type, i.e. of form
forall x : A,B.

Formally, the syntax of a classes is defined on Figure 16.1.
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class ::= qualid
| Sortclass
| Funclass

Figure 16.1: Syntax of classes

16.3 Coercions

A namef can be declared as a coercion between a source user-classC with n parameters and a target
classD if one of these conditions holds:

• D is a user-class, then the type off must have the formforall (x1 : A1)..(xn : An)(y :
C x1..xn), D u1..um wherem is the number of parameters ofD.

• D is Funclass , then the type off must have the formforall (x1 : A1)..(xn : An)(y :
C x1..xn)(x : A), B.

• D is Sortclass , then the type off must have the formforall (x1 : A1)..(xn : An)(y :
C x1..xn), s with s a sort.

We then writef : C>-> D. The restriction on the type of coercions is calledthe uniform inheritance
condition. Remark that the abstract classesFunclass andSortclass cannot be source classes.

To coerce an objectt : C t1..tn of C towardsD, we have to apply the coercionf to it; the obtained
termf t1..tn t is then an object ofD.

16.4 Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition.
Let C andD be two classes with respectivelyn andm parameters andf : forall (x1 : T1)..(xk :
Tk)(y : C u1..un), D v1..vm a function which does not verify the uniform inheritance condition. To
declaref as coercion, one has first to declare a subclassC ′ of C:

C ′ := fun (x1 : T1)..(xk : Tk) => C u1..un

We then define anidentity coercionbetweenC ′ andC:

Id_C ′_C := fun (x1 : T1)..(xk : Tk)(y : C ′ x1..xk) => (y : C u1..un)

We can now declaref as coercion fromC ′ to D, since we can “cast” its type asforall (x1 :
T1)..(xk : Tk)(y : C ′ x1..xk), D v1..vm.
The identity coercions have a special status: to coerce an objectt : C ′ t1..tk of C ′ towardsC, we
does not have to insert explicitlyId_C ′_C sinceId_C ′_C t1..tk t is convertible witht. However we
“rewrite” the type oft to become an object ofC; in this case, it becomesC u∗1..u

∗
k where eachu∗i is the

result of the substitution inui of the variablesxj by tj .

16.5 Inheritance Graph

Coercions form an inheritance graph with classes as nodes. We callcoercion pathan ordered list of
coercions between two nodes of the graph. A classC is said to be a subclass ofD if there is a coercion
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path in the graph fromC to D; we also say thatC inherits fromD. Our mechanism supports multiple
inheritance since a class may inherit from several classes, contrary to simple inheritance where a class
inherits from at most one class. However there must be at most one path between two classes. If this
is not the case, only theoldestone is valid and the others are ignored. So the order of declaration of
coercions is important.

We extend notations for coercions to coercion paths. For instance[f1; ..; fk] : C>-> D is the coer-
cion path composed by the coercionsf1..fk. The application of a coercion path to a term consists of the
successive application of its coercions.

16.6 Declaration of Coercions

16.6.1 Coercion qualid : class1 >-> class2.

Declares the construction denoted byqualid as a coercion betweenclass1 andclass2.

Error messages:

1. qualid not declared

2. qualid is already a coercion

3. Funclass cannot be a source class

4. Sortclass cannot be a source class

5. qualid is not a function

6. Cannot find the source class of qualid

7. Cannot recognize class1 as a source class of qualid

8. qualid does not respect the inheritance uniform condition

9. Found target class class instead of class2

When the coercionqualid is added to the inheritance graph, non valid coercion paths are ignored;
they are signaled by a warning.

Warning :

1. Ambiguous paths: [f1
1 ; ..; f1

n1
] : C1>-> D1

...
[fm

1 ; ..; fm
nm

] : Cm>-> Dm

Variants:

1. Coercion Local qualid : class1 >-> class2.
Declares the construction denoted byqualid as a coercion local to the current section.

2. Coercion ident := term
This definesident just likeDefinition ident := term, and then declaresident as a coercion
between it source and its target.

3. Coercion ident := term : type
This definesident just likeDefinition ident : type := term, and then declaresident as
a coercion between it source and its target.
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4. Coercion Local ident := term

This definesident just like Local ident := term, and then declaresident as a coercion be-
tween it source and its target.

5. Assumptions can be declared as coercions at declaration time. This extends the grammar of dec-
larations from Figure 1.3 as follows:

declaration ::= declaration_keyword assums .

assums ::= simple_assums
| ( simple_assums) . . . ( simple_assums)

simple_assums ::= ident . . . ident : [>] term

If the extra> is present before the type of some assumptions, these assumptions are declared as
coercions.

6. Constructors of inductive types can be declared as coercions at definition time of the inductive
type. This extends and modifies the grammar of inductive types from Figure 1.3 as follows:

inductive ::= Inductive ind_body with . . . with ind_body .
| CoInductive ind_body with . . . with ind_body .

ind_body ::= ident [binderlet . . . binderlet] : term :=
[[| ] constructor | ... | constructor]

constructor ::= ident [binderlet . . . binderlet] [: [>] term]

Especially, if the extra> is present in a constructor declaration, this constructor is declared as a
coercion.

16.6.2 Identity Coercion ident : class1 >-> class2.

We check thatclass1 is a constant with a value of the formfun (x1 : T1)..(xn : Tn) => (class2 t1..tm)
wherem is the number of parameters ofclass2. Then we define an identity function with the type
forall (x1 : T1)..(xn : Tn)(y : class1 x1..xn), class2 t1..tm, and we declare it as an identity coercion
betweenclass1 andclass2.

Error messages:

1. class1 must be a transparent constant

Variants:

1. Identity Coercion Local ident : ident1 >-> ident2.
Idem but locally to the current section.

2. SubClass ident := type.
If type is a classident ’ applied to some arguments thenident is defined and an identity coercion

of nameId_ ident_ident ’ is declared. Otherwise said, this is an abbreviation for

Definition ident := type.

followed by

Identity Coercion Id_ ident_ident ’: ident >-> ident ’ .
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3. Local SubClass ident := type.

Same as before but locally to the current section.

16.7 Displaying Available Coercions

16.7.1 Print Classes.

Print the list of declared classes in the current context.

16.7.2 Print Coercions.

Print the list of declared coercions in the current context.

16.7.3 Print Graph.

Print the list of valid coercion paths in the current context.

16.7.4 Print Coercion Paths class1 class2.

Print the list of valid coercion paths fromclass1 to class2.

16.8 Activating the Printing of Coercions

16.8.1 Set Printing Coercions.

This command forces all the coercions to be printed. Conversely, to skip the printing of coercions, use
Unset Printing Coercions . By default, coercions are not printed.

16.8.2 Set Printing Coercion qualid .

This command forces coercion denoted byqualid to be printed. To skip the printing of coercionqualid ,
useUnset Printing Coercion qualid . By default, a coercion is never printed.

16.9 Classes as Records

We allow the definition ofStructures with Inheritance(or classes as records) by extending the existing
Record macro (see section 2.1). Its new syntax is:

Record [>] ident binderlet : sort := [ ident0] {
ident1 [: |:> ] term1 ;
...
identn [: |:> ] termn }.

The identifierident is the name of the defined record andsort is its type. The identifierident0 is
the name of its constructor. The identifiersident1, .., identn are the names of its fields andterm1, ..,
termn their respective types. The alternative[: |:> ] is “: ” or “ :> ”. If ident i:> termi, thenident i is
automatically declared as coercion fromident to the class oftermi. Remark thatident i always verifies
the uniform inheritance condition. If the optional “>” beforeident is present, thenident0 (or the default
nameBuild_ ident if ident0 is omitted) is automatically declared as a coercion from the class oftermn

to ident (this may fail if the uniform inheritance condition is not satisfied).

Remark: The keywordStructure is a synonym ofRecord .
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16.10 Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions
defined inside a section are redefined after its closing, using their new value and new type. The classes
and coercions which are local to the section are simply forgotten. Coercions with a local source class or
a local target class, and coercions which do not verify the uniform inheritance condition any longer are
also forgotten.

16.11 Examples

There are three situations:

• f a is ill-typed wheref : forall x : A,B anda : A′. If there is a coercion path betweenA′ and
A, f a is transformed intof a′ wherea′ is the result of the application of this coercion path toa.

We first give an example of coercion between atomic inductive types

Coq < Definition bool_in_nat (b:bool) := if b then 0 else 1.
bool_in_nat is defined

Coq < Coercion bool_in_nat : bool >-> nat.
bool_in_nat is now a coercion

Coq < Check (0 = true).
0 = true

: Prop

Coq < Set Printing Coercions.

Coq < Check (0 = true).
0 = bool_in_nat true

: Prop

Warning: “Check true=O. ” fails. This is “normal” behaviour of coercions. To validate
true=O , the coercion is searched fromnat to bool . There is none.

We give an example of coercion between classes with parameters.

Coq < Parameters
Coq < (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
C is assumed
D is assumed
E is assumed

Coq < Parameter f : forall n:nat, C n -> D (S n) true.
f is assumed

Coq < Coercion f : C >-> D.
f is now a coercion

Coq < Parameter g : forall (n:nat) (b:bool), D n b -> E b.
g is assumed

Coq < Coercion g : D >-> E.
g is now a coercion

Coq < Parameter c : C 0.
c is assumed
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Coq < Parameter T : E true -> nat.
T is assumed

Coq < Check (T c).
T c

: nat

Coq < Set Printing Coercions.

Coq < Check (T c).
T (g 1 true (f 0 c))

: nat

We give now an example using identity coercions.

Coq < Definition D’ (b:bool) := D 1 b.
D’ is defined

Coq < Identity Coercion IdD’D : D’ >-> D.

Coq < Print IdD’D.
IdD’D =
(fun (b : bool) (x : D’ b) => x):forall b : bool, D’ b -> D 1 b

: forall b : bool, D’ b -> D 1 b

Coq < Parameter d’ : D’ true.
d’ is assumed

Coq < Check (T d’).
T d’

: nat

Coq < Set Printing Coercions.

Coq < Check (T d’).
T (g 1 true d’)

: nat

In the case of functional arguments, we use the monotonic rule of sub-typing. Approximatively,
to coercet : forall x : A,B towardsforall x : A′, B′, one have to coerceA′ towardsA andB
towardsB′. An example is given below:

Coq < Parameters (A B : Set) (h : A -> B).
A is assumed
B is assumed
h is assumed

Coq < Coercion h : A >-> B.
h is now a coercion

Coq < Parameter U : (A -> E true) -> nat.
U is assumed

Coq < Parameter t : B -> C 0.
t is assumed

Coq < Check (U t).
U (fun x : A => t x)

: nat

Coq < Set Printing Coercions.

Coq < Check (U t).
U (fun x : A => g 1 true (f 0 (t (h x))))

: nat
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Remark the changes in the result following the modification of the previous example.

Coq < Parameter U’ : (C 0 -> B) -> nat.
U’ is assumed

Coq < Parameter t’ : E true -> A.
t’ is assumed

Coq < Check (U’ t’).
U’ (fun x : C 0 => t’ x)

: nat

Coq < Set Printing Coercions.

Coq < Check (U’ t’).
U’ (fun x : C 0 => h (t’ (g 1 true (f 0 x))))

: nat

• An assumptionx : A whenA is not a type, is ill-typed. It is replaced byx : A′ whereA′ is the
result of the application toA of the coercion path between the class ofA andSortclass if it
exists. This case occurs in the abstractionfun x : A => t, universal quantificationforall x :
A,B, global variables and parameters of (co-)inductive definitions and functions. Inforall x :
A,B, such a coercion path may be applied toB also if necessary.

Coq < Parameter Graph : Type.
Graph is assumed

Coq < Parameter Node : Graph -> Type.
Node is assumed

Coq < Coercion Node : Graph >-> Sortclass.
Node is now a coercion

Coq < Parameter G : Graph.
G is assumed

Coq < Parameter Arrows : G -> G -> Type.
Arrows is assumed

Coq < Check Arrows.
Arrows

: G -> G -> Type

Coq < Parameter fg : G -> G.
fg is assumed

Coq < Check fg.
fg

: G -> G

Coq < Set Printing Coercions.

Coq < Check fg.
fg

: Node G -> Node G

• f a is ill-typed becausef : A is not a function. The termf is replaced by the term obtained by
applying tof the coercion path betweenA andFunclass if it exists.
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Coq < Parameter bij : Set -> Set -> Set.
bij is assumed

Coq < Parameter ap : forall A B:Set, bij A B -> A -> B.
ap is assumed

Coq < Coercion ap : bij >-> Funclass.
ap is now a coercion

Coq < Parameter b : bij nat nat.
b is assumed

Coq < Check (b 0).
ap nat nat b 0

: nat

Coq < Set Printing Coercions.

Coq < Check (b 0).
ap nat nat b 0

: nat

Let us see the resulting graph of this session.

Coq < Print Graph.
[bool_in_nat] : bool >-> nat
[f] : C >-> D
[f; g] : C >-> E
[g] : D >-> E
[IdD’D] : D’ >-> D
[IdD’D;
g] : D’ >-> E
[h] : A >-> B
[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass
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Chapter 17

Omega: a solver of quantifier-free
problems in Presburger Arithmetic

Pierre Crégut

17.1 Description ofomega

omega solves a goal in Presburger arithmetic, i.e. a universally quantified formula made of equations
and inequations. Equations may be specified either on the typenat of natural numbers or on the typeZ
of binary-encoded integer numbers. Formulas onnat are automatically injected intoZ. The procedure
may use any hypothesis of the current proof session to solve the goal.

Multiplication is handled byomega but only goals where at least one of the two multiplicands of
products is a constant are solvable. This is the restriction meaned by “Presburger arithmetic”.

If the tactic cannot solve the goal, it fails with an error message. In any case, the computation
eventually stops.

17.1.1 Arithmetical goals recognized byomega

omega applied only to quantifier-free formulas built from the connectors

/\, \/, ~, ->

on atomic formulas. Atomic formulas are built from the predicates

=, le, lt, gt, ge

onnat or from the predicates

=, <, <=, >, >=

onZ. In expressions of typenat , omega recognizes

plus, minus, mult, pred, S, O

and in expressions of typeZ, omega recognizes

+, -, *, Zsucc , and constants.

All expressions of typenat or Z not built on these operators are considered abstractly as if they
were arbitrary variables of typenat or Z.
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17.1.2 Messages fromomega

Whenomega does not solve the goal, one of the following errors is generated:

Error messages:

1. omega can’t solve this system

This may happen if your goal is not quantifier-free (if it is universally quantified, tryintros
first; if it contains existentials quantifiers too,omega is not strong enough to solve your goal).
This may happen also if your goal contains arithmetical operators unknown fromomega. Finally,
your goal may be really wrong!

2. omega: Not a quantifier-free goal

If your goal is universally quantified, you should first applyintro as many time as needed.

3. omega: Unrecognized predicate or connective: ident

4. omega: Unrecognized atomic proposition: prop

5. omega: Can’t solve a goal with proposition variables

6. omega: Unrecognized proposition

7. omega: Can’t solve a goal with non-linear products

8. omega: Can’t solve a goal with equality on type

17.2 Usingomega

Theomega tactic does not belong to the core system. It should be loaded by

Coq < Require Import Omega.

Coq < Open Scope Z_scope.

Example 3:

Coq < Goal forall m n:Z, 1 + 2 * m <> 2 * n.
1 subgoal

============================
forall m n : Z, 1 + 2 * m <> 2 * n

Coq < intros; omega.
Proof completed.

Example 4:

Coq < Goal forall z:Z, z > 0 -> 2 * z + 1 > z.
1 subgoal

============================
forall z : Z, z > 0 -> 2 * z + 1 > z

Coq < intro; omega.
Proof completed.
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17.3 Technical data

17.3.1 Overview of the tactic

• The goal is negated twice and the first negation is introduced as an hypothesis.

• Hypothesis are decomposed in simple equations or inequations. Multiple goals may result from
this phase.

• Equations and inequations overnat are translated overZ, multiple goals may result from the
translation of substraction.

• Equations and inequations are normalized.

• Goals are solved by theOMEGAdecision procedure.

• The script of the solution is replayed.

17.3.2 Overview of theOMEGAdecision procedure

TheOMEGAdecision procedure involved in theomega tactic uses a small subset of the decision pro-
cedure presented in

"The Omega Test: a fast and practical integer programming algorithm for dependence anal-
ysis", William Pugh, Communication of the ACM , 1992, p 102-114.

Here is an overview, look at the original paper for more information.

• Equations and inequations are normalized by division by the GCD of their coefficients.

• Equations are eliminated, using the Banerjee test to get a coefficient equal to one.

• Note that each inequation defines a half space in the space of real value of the variables.

• Inequations are solved by projecting on the hyperspace defined by cancelling one of the variable.
They are partitioned according to the sign of the coefficient of the eliminated variable. Pairs of
inequations from different classes define a new edge in the projection.

• Redundant inequations are eliminated or merged in new equations that can be eliminated by the
Banerjee test.

• The last two steps are iterated until a contradiction is reached (success) or there is no more variable
to eliminate (failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure
(dark shadow) are not implemented, so the decision procedure is only partial.

17.4 Bugs

• The simplification procedure is very dumb and this results in many redundant cases to explore.

• Much too slow.

• Certainly other bugs! You can report them to

Pierre.Cregut@cnet.francetelecom.fr
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Chapter 18

Extraction of programs in Objective Caml
and Haskell

Jean-Christophe Filliâtre and Pierre Letouzey

The status of extraction is experimental.

We present here the COQ extraction commands, used to build certified and relatively efficient functional
programs, extracting them from the proofs of their specifications. The functional languages available as
output are currently OBJECTIVE CAML , HASKELL and SCHEME. In the following, “ML” will be used
(abusively) to refer to any of the three.

Differences with old versions. The current extraction mechanism is new for version 7.0 of COQ. In
particular, theFω toplevel used as an intermediate step between COQ and ML has been withdrawn. It
is also not possible any more to import ML objects in thisFω toplevel. The current mechanism also
differs from the one in previous versions of COQ: there is no more an explicit toplevel for the language
(formerly called FML ).

18.1 Generating ML code

The next two commands are meant to be used for rapid preview of extraction. They both display ex-
tracted term(s) inside COQ.

Extraction qualid .

Extracts one constant or module in the COQ toplevel.

Recursive Extraction qualid1 ... qualidn.

Recursive extraction of all the globals (or modules)qualid1 . . . qualidn and all their dependencies
in the COQ toplevel.

All the following commands produce real ML files. User can choose to produce one monolithic file
or one file per COQ library.
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Extraction " file " qualid1 . . . qualidn.

Recursive extraction of all the globals (or modules)qualid1 . . . qualidn and all their dependencies
in one monolithic filefile. Global and local identifiers are renamed according to the choosen ML
language to fullfill its syntactic conventions, keeping original names as much as possible.

Extraction Library ident .

Extraction of the whole COQ library ident .v to an ML moduleident .ml . In case of name
clash, identifiers are here renamed using prefixescoq_ or Coq_ to ensure a session-independent
renaming.

Recursive Extraction Library ident .

Extraction of the COQ library ident .v and all other modulesident .v depends on.

The list of globalsqualid i does not need to be exhaustive: it is automatically completed into a
complete and minimal environment.

18.2 Extraction options

18.2.1 Setting the target language

The ability to fix target language is the first and more important of the extraction options. Default is
Ocaml. Besides Haskell and Scheme, another language called Toplevel is provided. It is a pseudo-
Ocaml, with no renaming on global names: so names are printed as in COQ. This third language is
available only at the COQ Toplevel.

Extraction Language Ocaml .

Extraction Language Haskell .

Extraction Language Scheme .

Extraction Language Toplevel .

18.2.2 Inlining and optimizations

Since Objective Caml is a strict language, the extracted code has to be optimized in order to be efficient
(for instance, when using induction principles we do not want to compute all the recursive calls but only
the needed ones). So the extraction mechanism provides an automatic optimization routine that will be
called each time the user want to generate Ocaml programs. Essentially, it performs constants inlining
and reductions. Therefore some constants may not appear in resulting monolithic Ocaml program (a
warning is printed for each such constant). In the case of modular extraction, even if some inlining is
done, the inlined constant are nevertheless printed, to ensure session-independent programs.

Concerning Haskell, such optimizations are less useful because of lazyness. We still make some
optimizations, for example in order to produce more readable code.

All these optimizations are controled by the following COQ options:

Set Extraction Optimize.

Unset Extraction Optimize.

Default is Set. This control all optimizations made on the ML terms (mostly reduction of dummy
beta/iota redexes, but also simplications on Cases, etc). Put this option to Unset if you want a ML
term as close as possible to the Coq term.
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Set Extraction AutoInline.

Unset Extraction AutoInline.

Default is Set, so by default, the extraction mechanism feels free to inline the bodies of some
defined constants, according to some heuristics like size of bodies, useness of some arguments,
etc. Those heuristics are not always perfect, you may want to disable this feature, do it by Unset.

Extraction Inline qualid1 . . . qualidn.

Extraction NoInline qualid1 . . . qualidn.

In addition to the automatic inline feature, you can now tell precisely to inline some more constants
by theExtraction Inline command. Conversely, you can forbid the automatic inlining of
some specific constants by theExtraction NoInline command. Those two commands
enable a precise control of what is inlined and what is not.

Print Extraction Inline .

Prints the current state of the table recording the custom inlinings declared by the two previous
commands.

Reset Extraction Inline .

Puts the table recording the custom inlinings back to empty.

Inlining and printing of a constant declaration. A user can explicitely asks a constant to be extracted
by two means:

• by mentioning it on the extraction command line

• by extracting the whole COQ module of this constant.

In both cases, the declaration of this constant will be present in the produced file. But this same con-
stant may or may not be inlined in the following terms, depending on the automatic/custom inlining
mechanism.

For the constants non-explicitely required but needed for dependancy reasons, there are two cases:

• If an inlining decision is taken, wether automatically or not, all occurences of this constant are
replaced by its extracted body, and this constant is not declared in the generated file.

• If no inlining decision is taken, the constant is normally declared in the produced file.

18.2.3 Realizing axioms

Extraction will fail if it encounters an informative axiom not realized (see section 18.2.3). A warning
will be issued if it encounters an logical axiom, to remind user that inconsistant logical axioms may lead
to incorrect or non-terminating extracted terms.

It is possible to assume some axioms while developing a proof. Since these axioms can be any
kind of proposition or object or type, they may perfectly well have some computational content. But a
program must be a closed term, and of course the system cannot guess the program which realizes an
axiom. Therefore, it is possible to tell the system what ML term corresponds to a given axiom.

Extract Constant qualid => string.

Give an ML extraction for the given constant. Thestring may be an identifier or a quoted string.
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Extract Inlined Constant qualid => string.

Same as the previous one, except that the given ML terms will be inlined everywhere instead of
being declared via a let.

Note that theExtract Inlined Constant command is sugar for anExtract Constant
followed by aExtraction Inline . Hence aReset Extraction Inline will have an effect
on the realized and inlined xaxiom.

Of course, it is the responsability of the user to ensure that the ML terms given to realize the axioms
do have the expected types. In fact, the strings containing realizing code are just copied in the extracted
files. The extraction recognize whether the realized axiom should become a ML type constant or a ML
object declaration.

Example:

Coq < Axiom X:Set.
X is assumed

Coq < Axiom x:X.
x is assumed

Coq < Extract Constant X => "int".

Coq < Extract Constant x => "0".

Notice that in the case of type scheme axiom (i.e. whose type is an arity, that is a sequence of product
finished by a sort), then some type variables has to be given. The syntax is then:

Extract Constant qualid string1 ... stringn => string.

The number of type variable given is checked by the system.

Example:

Coq < Axiom Y : Set -> Set -> Set.
Y is assumed

Coq < Extract Constant Y "’a" "’b" => " ’a*’b ".

Realizing an axiom viaExtract Constant is only useful in the case of an informative axiom
(of sort Type or Set). A logical axiom have no computational content and hence will not appears in
extracted terms. But a warning is nonetheless issued if extraction encounters a logical axiom. This
warning reminds user that inconsistant logical axioms may lead to incorrect or non-terminating extracted
terms.

If an informative axiom has not been realized before an extraction, a warning is also issued and the
definition of the axiom is filled with an exception labelledAXIOM TO BE REALIZED. The user must
then search these exceptions inside the extracted file and replace them by real code.

The system also provides a mechanism to specify ML terms for inductive types and constructors.
For instance, the user may want to use the ML native boolean type instead of COQ one. The syntax is
the following:

Extract Inductive qualid => string [ string ... string ].

Give an ML extraction for the given inductive type. You must specify extractions for the type
itself (first string) and all its constructors (between square brackets). The ML extraction must be
an ML recursive datatype.

Example: Typical examples are the following:

Coq < Extract Inductive unit => "unit" [ "()" ].

Coq < Extract Inductive bool => "bool" [ "true" "false" ].

Coq < Extract Inductive sumbool => "bool" [ "true" "false" ].
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18.3 Differences between COQ and ML type systems

Due to differences between COQ and ML type systems, some extracted programs are not directly typable
in ML. We now solve this problem (at least in Ocaml) by adding when needed some unsafe casting
Obj.magic , which give a generic type’a to any term.

For example, Here are two kinds of problem that can occur:

• If some part of the program isverypolymorphic, there may be no ML type for it. In that case the
extraction to ML works all right but the generated code may be refused by the ML type-checker.
A very well known example is thedistr-pair function:

Definition dp :=
fun (A B:Set)(x:A)(y:B)(f:forall C:Set, C->C) => (f A x, f B y).

In Ocaml, for instance, the direct extracted term would be:

let dp x y f = Pair((f () x),(f () y))

and would have type:

dp : ’a -> ’a -> (unit -> ’a -> ’b) -> (’b,’b) prod

which is not its original type, but a restriction.

We now produce the following correct version:

let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))

• Some definitions of COQ may have no counterpart in ML. This happens when there is a quantifi-
cation over types inside the type of a constructor; for example:

Inductive anything : Set := dummy : forall A:Set, A -> anything.

which corresponds to the definition of an ML dynamic type. In Ocaml, we must cast any argument
of the constructor dummy.

Even with those unsafe castings, you should never get error like “segmentation fault”. In fact even
if your program may seem ill-typed to the Ocaml type-checker, it can’t go wrong: it comes from a Coq
well-typed terms, so for example inductives will always have the correct number of arguments, etc.

More details about the correctness of the extracted programs can be found in [84].
We have to say, though, that in most “realistic” programs, these problems do not occur. For exam-

ple all the programs of Coq library are accepted by Caml type-checker without anyObj.magic (see
examples below).

18.4 Some examples

We present here two examples of extractions, taken from the COQ Standard Library. We choose OB-
JECTIVE CAML as target language, but all can be done in the other dialects with slight modifications.
We then indicate where to find other examples and tests of Extraction.
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18.4.1 A detailed example: Euclidean division

The fileEuclid contains the proof of Euclidean division (theoremeucl_dev ). The natural numbers
defined in the example files are unary integers defined by two constructorsO andS:

Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.

This module contains a theoremeucl_dev , and its extracted term is of type

forall b:nat, b > 0 -> forall a:nat, diveucl a b

wherediveucl is a type for the pair of the quotient and the modulo. We can now extract this program
to OBJECTIVE CAML :

Coq < Require Import Euclid.

Coq < Extraction Inline Wf_nat.gt_wf_rec Wf_nat.lt_wf_rec.

Coq < Recursive Extraction eucl_dev.
type nat =

| O
| S of nat

type sumbool =
| Left
| Right

(** val minus : nat -> nat -> nat **)
let rec minus n m =

match n with
| O -> O
| S k -> (match m with

| O -> S k
| S l -> minus k l)

(** val le_lt_dec : nat -> nat -> sumbool **)
let rec le_lt_dec n m =

match n with
| O -> Left
| S n0 -> (match m with

| O -> Right
| S n1 -> le_lt_dec n0 n1)

(** val le_gt_dec : nat -> nat -> sumbool **)
let le_gt_dec n m =

le_lt_dec n m
type diveucl =

| Divex of nat * nat
(** val eucl_dev : nat -> nat -> diveucl **)
let rec eucl_dev b a =

match le_gt_dec b a with
| Left -> let Divex (x, x0) = eucl_dev b (minus a b) in Divex ((S x), x0)
| Right -> Divex (O, a)

The inlining of gt_wf_rec and lt_wf_rec is not mandatory. It only enhances readability of
extracted code. You can then copy-paste the output to a fileeuclid.ml or let COQ do it for you with
the following command:

Coq < Extraction "euclid" eucl_dev.
The file euclid.ml has been created by extraction.
The file euclid.mli has been created by extraction.
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Let us play the resulting program:

# #use "euclid.ml";;
type sumbool = Left | Right
type nat = O | S of nat
type diveucl = Divex of nat * nat
val minus : nat -> nat -> nat = <fun>
val le_lt_dec : nat -> nat -> sumbool = <fun>
val le_gt_dec : nat -> nat -> sumbool = <fun>
val eucl_dev : nat -> nat -> diveucl = <fun>
# eucl_dev (S (S O)) (S (S (S (S (S O)))));;
- : diveucl = Divex (S (S O), S O)

It is easier to test on OBJECTIVE CAML integers:

# let rec i2n = function 0 -> O | n -> S (i2n (n-1));;
val i2n : int -> nat = <fun>
# let rec n2i = function O -> 0 | S p -> 1+(n2i p);;
val n2i : nat -> int = <fun>
# let div a b =

let Divex (q,r) = eucl_dev (i2n b) (i2n a) in (n2i q, n2i r);;
div : int -> int -> int * int = <fun>
# div 173 15;;
- : int * int = 11, 8

18.4.2 Another detailed example: Heapsort

The file Heap.v contains the proof of an efficient list sorting algorithm described by Bjerner. Is is
an adaptation of the well-knownheapsortalgorithm to functional languages. The main function is
treesort , whose type is shown below:

Coq < Require Import Heap.

Coq < Check treesort.
treesort

: forall (A : Set) (leA eqA : relation A),
(forall x y : A, {leA x y} + {leA y x}) ->
forall eqA_dec : forall x y : A, {eqA x y} + {~ eqA x y},
(forall x y z : A, leA x y -> leA y z -> leA x z) ->
forall l : list A,
{m : list A | sort leA m & permutation eqA eqA_dec l m}

Let’s now extract this function:

Coq < Extraction Inline sort_rec is_heap_rec.

Coq < Extraction NoInline list_to_heap.

Coq < Extraction "heapsort" treesort.
The file heapsort.ml has been created by extraction.
The file heapsort.mli has been created by extraction.

One more time, theExtraction Inline andNoInline directives are cosmetic. Without it,
everything goes right, but the output is less readable. Here is the produced fileheapsort.ml :
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type nat =

| O
| S of nat

type ’a sig2 =
’a
(* singleton inductive, whose constructor was exist2 *)

type sumbool =
| Left
| Right

type ’a list =
| Nil
| Cons of ’a * ’a list

type ’a multiset =
’a -> nat
(* singleton inductive, whose constructor was Bag *)

type ’a merge_lem =
’a list
(* singleton inductive, whose constructor was merge_exist *)

(** val merge : (’a1 -> ’a1 -> sumbool) -> (’a1 -> ’a1 -> sumbool) ->
’a1 list -> ’a1 list -> ’a1 merge_lem **)

let rec merge leA_dec eqA_dec l1 l2 =
match l1 with

| Nil -> l2
| Cons (a, l) ->

let rec f = function
| Nil -> Cons (a, l)
| Cons (a0, l3) ->

(match leA_dec a a0 with
| Left -> Cons (a,

(merge leA_dec eqA_dec l (Cons (a0, l3))))
| Right -> Cons (a0, (f l3)))

in f l2

type ’a tree =
| Tree_Leaf
| Tree_Node of ’a * ’a tree * ’a tree

type ’a insert_spec =
’a tree
(* singleton inductive, whose constructor was insert_exist *)

(** val insert : (’a1 -> ’a1 -> sumbool) -> (’a1 -> ’a1 -> sumbool) ->
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’a1 tree -> ’a1 -> ’a1 insert_spec **)

let rec insert leA_dec eqA_dec t a =
match t with

| Tree_Leaf -> Tree_Node (a, Tree_Leaf, Tree_Leaf)
| Tree_Node (a0, t0, t1) ->

let h3 = fun x -> insert leA_dec eqA_dec t0 x in
(match leA_dec a0 a with

| Left -> Tree_Node (a0, t1, (h3 a))
| Right -> Tree_Node (a, t1, (h3 a0)))

type ’a build_heap =
’a tree
(* singleton inductive, whose constructor was heap_exist *)

(** val list_to_heap : (’a1 -> ’a1 -> sumbool) -> (’a1 -> ’a1 ->
sumbool) -> ’a1 list -> ’a1 build_heap **)

let rec list_to_heap leA_dec eqA_dec = function
| Nil -> Tree_Leaf
| Cons (a, l0) ->

insert leA_dec eqA_dec (list_to_heap leA_dec eqA_dec l0) a

type ’a flat_spec =
’a list
(* singleton inductive, whose constructor was flat_exist *)

(** val heap_to_list : (’a1 -> ’a1 -> sumbool) -> (’a1 -> ’a1 ->
sumbool) -> ’a1 tree -> ’a1 flat_spec **)

let rec heap_to_list leA_dec eqA_dec = function
| Tree_Leaf -> Nil
| Tree_Node (a, t0, t1) -> Cons (a,

(merge leA_dec eqA_dec (heap_to_list leA_dec eqA_dec t0)
(heap_to_list leA_dec eqA_dec t1)))

(** val treesort : (’a1 -> ’a1 -> sumbool) -> (’a1 -> ’a1 -> sumbool)
-> ’a1 list -> ’a1 list sig2 **)

let treesort leA_dec eqA_dec l =
heap_to_list leA_dec eqA_dec (list_to_heap leA_dec eqA_dec l)

Let’s test it:

# #use "heapsort.ml";;
type sumbool = Left | Right
type nat = O | S of nat
type ’a tree = Tree_Leaf | Tree_Node of ’a * ’a tree * ’a tree
type ’a list = Nil | Cons of ’a * ’a list
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val merge :

(’a -> ’a -> sumbool) -> ’b -> ’a list -> ’a list -> ’a list = <fun>
val heap_to_list :

(’a -> ’a -> sumbool) -> ’b -> ’a tree -> ’a list = <fun>
val insert :

(’a -> ’a -> sumbool) -> ’b -> ’a tree -> ’a -> ’a tree = <fun>
val list_to_heap :

(’a -> ’a -> sumbool) -> ’b -> ’a list -> ’a tree = <fun>
val treesort :

(’a -> ’a -> sumbool) -> ’b -> ’a list -> ’a list = <fun>

One can remark that the argument oftreesort corresponding toeqAdec is never used in the
informative part of the terms, only in the logical parts. So the extractedtreesort never use it, hence
this ’b argument. We will use() for this argument. Only remains theleAdec argument (of type’a
-> ’a -> sumbool ) to really provide.

# let leAdec x y = if x <= y then Left else Right;;
val leAdec : ’a -> ’a -> sumbool = <fun>
# let rec listn = function 0 -> Nil

| n -> Cons(Random.int 10000,listn (n-1));;
val listn : int -> int list = <fun>
# treesort leAdec () (listn 9);;
- : int list = Cons (160, Cons (883, Cons (1874, Cons (3275, Cons

(5392, Cons (7320, Cons (8512, Cons (9632, Cons (9876, Nil)))))))))

Some tests on longer lists (10000 elements) show that the program is quite efficient for Caml code.

18.4.3 The Standard Library

As a test, we propose an automatic extraction of the Standard Library of COQ. In particu-
lar, we will find back the two previous examples,Euclid and Heapsort . Go to directory
contrib/extraction/test of the sources of COQ, and run commands:

make tree; make

This will extract all Standard Library files and compile them. It is done via manyExtraction
Module , with some customization (see subdirectorycustom ).

The result of this extraction of the Standard Library can be browsed at URL

http://www.lri.fr/~letouzey/extraction .

This test works also with Haskell. In the same directory, run:

make tree; make -f Makefile.haskell

The haskell compiler currently used ishbc . Any other should also work, just adapt the
Makefile.haskell . In particularghc is known to work.

18.4.4 Extraction’s horror museum

Some pathological examples of extraction are grouped in the file

contrib/extraction/test_extraction.v

of the sources of COQ.
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18.4.5 Users’ Contributions

Several of the COQ Users’ Contributions use extraction to produce certified programs. In particular the
following ones have an automatic extraction test (just runmake in those directories):

• Bordeaux/Additions

• Bordeaux/EXCEPTIONS

• Bordeaux/SearchTrees

• Dyade/BDDS

• Lannion

• Lyon/CIRCUITS

• Lyon/FIRING-SQUAD

• Marseille/CIRCUITS

• Muenchen/Higman

• Nancy/FOUnify

• Rocq/ARITH/Chinese

• Rocq/COC

• Rocq/GRAPHS

• Rocq/HIGMAN

• Sophia-Antipolis/Stalmarck

• Suresnes/BDD

Lannion, Rocq/HIGMAN and Lyon/CIRCUITS are a bit particular. They are the only examples of
developments whereObj.magic are needed. This is probably due to an heavy use of impredicativity.
After compilation those two examples run nonetheless, thanks to the correction of the extraction [84].
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Chapter 19

The ring tactic

Patrick Loiseleur and Samuel Boutin

This chapter presents thering tactic.

19.1 What does this tactic?

ring does associative-commutative rewriting in ring and semi-ring structures. Assume you have two
binary functions⊕ and⊗ that are associative and commutative, with⊕ distributive on⊗, and two con-
stants 0 and 1 that are unities for⊕ and⊗. A polynomialis an expression built on variablesV0, V1, . . .
and constants by application of⊕ and⊗.

Let anordered productbe a product of variablesVi1 ⊗ . . . ⊗ Vin verifying i1 ≤ i2 ≤ · · · ≤ in.
Let a monomialbe the product of a constant (possibly equal to 1, in which case we omit it) and an
ordered product. We can order the monomials by the lexicographic order on products of variables. Let
a canonical sumbe an ordered sum of monomials that are all different, i.e. each monomial in the sum
is strictly less than the following monomial according to the lexicographic order. It is an easy theorem
to show that every polynomial is equivalent (modulo the ring properties) to exactly one canonical sum.
This canonical sum is called thenormal formof the polynomial. So what doesring ? It normalizes
polynomials over any ring or semi-ring structure. The basic use ofring is to simplify ring expressions,
so that the user does not have to deal manually with the theorems of associativity and commutativity.

Examples:

1. In the ring of integers, the normal form ofx(3 + yx + 25(1− z)) + zx is 28x + (−24)xz + xxy.

2. For the classical propositional calculus (or the boolean rings) the normal form is what logicians
calldisjunctive normal form: every formula is equivalent to a disjunction of conjunctions of atoms.
(Here⊕ is∨,⊗ is∧, variables are atoms and the only constants are T and F)

19.2 The variables map

It is frequent to have an expression built with + and×, but rarely on variables only. Let us associate a
number to each subterm of a ring expression in the GALLINA language. For example in the ringnat ,
consider the expression:

(plus (mult (plus (f (5)) x) x)
(mult (if b then (4) else (f (3))) (2)))
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As a ring expression, is has 3 subterms. Give each subterm a number in an arbitrary order:

0 7→ if b then (4) else (f (3))
1 7→ (f (5))
2 7→ x

Then normalize the “abstract” polynomial

((V1 ⊗ V2)⊕ V2)⊕ (V0 ⊗ 2)

In our example the normal form is:

(2⊗ V0)⊕ (V1 ⊗ V2)⊕ (V2 ⊗ V2)

Then substitute the variables by their values in the variables map to get the concrete normal polynomial:

(plus (mult (2) (if b then (4) else (f (3))))
(plus (mult (f (5)) x) (mult x x)))

19.3 Is it automatic?

Yes, building the variables map and doing the substitution after normalizing is automatically done by
the tactic. So you can just forget this paragraph and use the tactic according to your intuition.

19.4 Concrete usage in COQ

Under a session launched bycoqtop or coqtop -full , load thering files with the command:

Require Ring.

It does not work undercoqtop -opt because the compiled ML objects used by the tactic are not
linked in this binary image, and dynamic loading of native code is not possible in OBJECTIVE CAML .

In order to usering on naturals, loadArithRing instead; for binary integers, load the module
ZArithRing .

Then, to normalize the termsterm1, . . . , termn in the current subgoal, use the tactic:

ring term1 . . . termn

Then the tactic guesses the type of given terms, the ring theory to use, the variables map, and replace
each term with its normal form. The variables map is common to all terms

Warning: ring term1; ring term2 is not equivalent toring term1 term2. In the latter case
the variables map is shared between the two terms, and common subtermt of term1 andterm2 will
have the same associated variable number.

Error messages:

1. All terms must have the same type

2. Don’t know what to do with this goal

3. No Declared Ring Theory for term.

Use Add [Semi] Ring to declare it

That happens when all terms have the same typeterm, but there is no declared ring theory for this
set. See below.
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Variants:

1. ring

That works if the current goal is an equality between two polynomials. It will normalize both sides
of the equality, solve it if the normal forms are equal and in other cases try to simplify the equality
usingcongr_eqT andrefl_equal to reducex + y = x + z to y = z andx ∗ z = x ∗ y to
y = z.

Error message:This goal is not an equality

19.5 Add a ring structure

It can be done in the COQtoplevel (No ML file to edit and to link with COQ). First, ring can handle
two kinds of structure: rings and semi-rings. Semi-rings are like rings without an opposite to addition.
Their precise specification (in GALLINA ) can be found in the file

contrib/ring/Ring_theory.v

The typical example of ring isZ, the typical example of semi-ring isnat .
The specification of a ring is divided in two parts: first the record of constants (⊕, ⊗, 1, 0,	) and

then the theorems (associativity, commutativity, etc.).

Section Theory_of_semi_rings.

Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
(* There is also a "weakly decidable" equality on A. That means

that if (A_eq x y)=true then x=y but x=y can arise when
(A_eq x y)=false. On an abstract ring the function [x,y:A]false
is a good choice. The proof of A_eq_prop is in this case easy. *)

Variable Aeq : A -> A -> bool.

Record Semi_Ring_Theory : Prop :=
{ SR_plus_sym : (n,m:A)[| n + m == m + n |];

SR_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |];

SR_mult_sym : (n,m:A)[| n*m == m*n |];
SR_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |];
SR_plus_zero_left :(n:A)[| 0 + n == n|];
SR_mult_one_left : (n:A)[| 1*n == n |];
SR_mult_zero_left : (n:A)[| 0*n == 0 |];
SR_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |];
SR_plus_reg_left : (n,m,p:A)[| n + m == n + p |] -> m==p;
SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y

}.

Section Theory_of_rings.

Variable A : Type.

Variable Aplus : A -> A -> A.
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Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.

Record Ring_Theory : Prop :=
{ Th_plus_sym : (n,m:A)[| n + m == m + n |];

Th_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |];
Th_mult_sym : (n,m:A)[| n*m == m*n |];
Th_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |];
Th_plus_zero_left :(n:A)[| 0 + n == n|];
Th_mult_one_left : (n:A)[| 1*n == n |];
Th_opp_def : (n:A) [| n + (-n) == 0 |];
Th_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |];
Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y

}.

To define a ring structure on A, you must provide an addition, a multiplication, an opposite function
and two unities 0 and 1.

You must then prove all theorems that make (A,Aplus,Amult,Aone,Azero,Aeq) a ring structure, and
pack them with theBuild_Ring_Theory constructor.

Finally to register a ring the syntax is:

Add Ring A Aplus Amult Aone Azero Ainv Aeq T[ c1 . . . cn].

whereA is a term of typeSet , Aplus is a term of typeA->A->A , Amult is a term of typeA->A->A ,
Aoneis a term of typeA, Azerois a term of typeA, Ainv is a term of typeA->A , Aeqis a term of type
A->bool , T is a term of type(Ring_Theory A Aplus Amult Aone Azero Ainv Aeq) . The arguments
c1 . . . cn, are the names of constructors which define closed terms: a subterm will be considered as a
constant if it is either one of the termsc1 . . . cnor the application of one of these terms to closed terms.
For nat , the given constructors areS andO, and the closed terms areO, (S O) , (S (S O)) , . . .

Variants:

1. Add Semi Ring A Aplus Amult Aone Azero Aeq T[ c1 . . . cn].

There are two differences with theAdd Ring command: there is no inverse function and the
termT must be of type(Semi_Ring_Theory A Aplus Amult Aone Azero Aeq) .

2. Add Abstract Ring A Aplus Amult Aone Azero Ainv Aeq T.

This command should be used for when the operations of rings are not computable; for example
the real numbers oftheories/REALS/ . Here0 + 1 is not beta-reduced to1 but you still may
want torewrite it to 1 using the ring axioms. The argumentAeq is not used; a good choice for
that function is[x:A]false .

3. Add Abstract Semi Ring A Aplus Amult Aone Azero Aeq T.

Error messages:

1. Not a valid (semi)ring theory .

That happens when the typing condition does not hold.

Coq Reference Manual, V8.0, June 27, 2004



19.6 How does it work? 283
Currently, the hypothesis is made than no more than one ring structure may be declared for a given

type inSet or Type . This allows automatic detection of the theory used to achieve the normalization.
On popular demand, we can change that and allow several ring structures on the same set.

The table of ring theories is compatible with the COQ sectioning mechanism. If you declare a ring
inside a section, the declaration will be thrown away when closing the section. And when you load a
compiled file, all theAdd Ring commands of this file that are not inside a section will be loaded.

The typical example of ring isZ, and the typical example of semi-ring isnat . Another ring structure
is defined on the booleans.

Warning: Only the ring of booleans is loaded by default with theRing module. To load the ring
structure fornat , load the moduleArithRing , and forZ, load the moduleZArithRing .

19.6 How does it work?

The code ofring is a good example of tactic written usingreflection(or internalization, it is syn-
onymous). What is reflection? Basically, it is writing COQ tactics in COQ, rather than in OBJECTIVE

CAML . From the philosophical point of view, it is using the ability of the Calculus of Constructions to
speak and reason about itself. For thering tactic we used COQ as a programming language and also
as a proof environment to build a tactic and to prove it correctness.

The interested reader is strongly advised to have a look at the fileRing_normalize.v . Here a
type for polynomials is defined:

Inductive Type polynomial :=
Pvar : idx -> polynomial

| Pconst : A -> polynomial
| Pplus : polynomial -> polynomial -> polynomial
| Pmult : polynomial -> polynomial -> polynomial
| Popp : polynomial -> polynomial.

There is also a type to represent variables maps, and an interpretation function, that maps a variables
map and a polynomial to an element of the concrete ring:

Definition polynomial_simplify := [...]
Definition interp : (varmap A) -> (polynomial A) -> A := [...]

A function to normalize polynomials is defined, and the big theorem is its correctness w.r.t interpre-
tation, that is:

Theorem polynomial_simplify_correct : forall (v:(varmap A))(p:polynomial)
(interp v (polynomial_simplify p))
=(interp v p).

(The actual code is slightly more complex: for efficiency, there is a special datatype to represent
normalized polynomials, i.e. “canonical sums”. But the idea is still the same).

So now, what is the scheme for a normalization proof? Letp be the polynomial expression that the
user wants to normalize. First a little piece of ML code guesses the type ofp, the ring theoryT to use,
an abstract polynomialap and a variables mapv such thatp is βδι-equivalent to(interp v ap) .
Then we replace it by(interp v (polynomial_simplify ap)) , using the main correctness
theorem and we reduce it to a concrete expressionp’ , which is the concrete normal form ofp. This is
summarized in this diagram:
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p →βδι (interp v ap)

=(by the main correctness theorem)

p’ ←βδι (interp v (polynomial_simplify ap))

The user do not see the right part of the diagram. From outside, the tactic behaves like aβδι sim-
plification extended with AC rewriting rules. Basically, the proof is only the application of the main
correctness theorem to well-chosen arguments.

19.7 History of ring

First Samuel Boutin designed the tacticACDSimpl . This tactic did lot of rewriting. But the proofs
terms generated by rewriting were too big for COQ’s type-checker. Let us see why:

Coq < Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y.
1 subgoal

============================
forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y

Coq < intros; rewrite (Zmult_comm y z); reflexivity.

Coq < Save toto.

Coq < Print toto.
toto =
fun x y z : Z =>
eq_ind_r (fun z0 : Z => x + 3 + y + z0 = x + 3 + y + z * y)

(refl_equal (x + 3 + y + z * y)) (Zmult_comm y z)
: forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y

Argument scopes are [Z_scope Z_scope Z_scope]

At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that
does hundreds of rewriting generates huge proof terms. SinceACDSimpl was too slow, Samuel Boutin
rewrote it using reflection (see his article in TACS’97 [17]). Later, the stuff was rewritten by Patrick
Loiseleur: the new tactic does not any more requireACDSimpl to compile and it makes use ofβδι-
reduction not only to replace the rewriting steps, but also to achieve the interleaving of computation and
reasoning (see 19.8). He also wrote a few ML code for theAdd Ring command, that allow to register
new rings dynamically.

Proofs terms generated byring are quite small, they are linear in the number of⊕ and⊗ operations
in the normalized terms. Type-checking those terms requires some time because it makes a large use of
the conversion rule, but memory requirements are much smaller.

19.8 Discussion

Efficiency is not the only motivation to use reflection here.ring also deals with constants, it rewrites for
example the expression34+2∗x−x+12 to the expected resultx+46. For the tacticACDSimpl , the only
constants were 0 and 1. So the expression34+2∗(x−1)+12 is interpreted asV0⊕V1⊗(V2	1)⊕V3, with
the variables mapping{V0 7→ 34;V1 7→ 2;V2 7→ x;V3 7→ 12}. Then it is rewritten to34−x+2∗x+12,
very far from the expected result. Here rewriting is not sufficient: you have to do some kind of reduction
(some kind ofcomputation) to achieve the normalization.

The tacticring is not only faster than a classical one: using reflection, we get for free integration
of computation and reasoning that would be very complex to implement in the classic fashion.
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Is it the ultimate way to write tactics? The answer is: yes and no. Thering tactic uses intensively

the conversion rule of pCIC, that is replaces proof by computation the most as it is possible. It can be
useful in all situations where a classical tactic generates huge proof terms. Symbolic Processing and
Tautologies are in that case. But there are also tactics likeAuto or Linear : that do many complex
computations, using side-effects and backtracking, and generate a small proof term. Clearly, it would be
a non-sense to replace them by tactics using reflection.

Another argument against the reflection is that COQ, as a programming language, has many nice
features, like dependent types, but is very far from the speed and the expressive power of OBJECTIVE

CAML . Wait a minute! With COQ it is possible to extract ML code from pCIC terms, right? So, why
not to link the extracted code with COQ to inherit the benefits of the reflection and the speed of ML
tactics? That is calledtotal reflection, and is still an active research subject. With these technologies it
will become possible to bootstrap the type-checker of pCIC, but there is still some work to achieve that
goal.

Another brilliant idea from Benjamin Werner: reflection could be used to couple a external tool (a
rewriting program or a model checker) with COQ. We define (in COQ) a type of terms, a type oftraces,
and prove a correction theorem that states thatreplaying tracesis safe w.r.t some interpretation. Then we
let the external tool do every computation (using side-effects, backtracking, exception, or others features
that are not available in pure lambda calculus) to produce the trace: now we replay the trace in Coq, and
apply the correction lemma. So internalization seems to be the best way to import . . . external proofs!
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Chapter 20

The setoid_replace tactic

Clément Renard

This chapter presents thesetoid_replace tactic.

20.1 Description ofsetoid_replace

Working on user-defined structures in COQ is not very easy if Leibniz equality does not denote the in-
tended equality. For example using lists to denote finite sets drive to difficulties since two non convertible
terms can denote the same set.

We present here a COQ module,setoid_replace , which allows to structure and automate some
parts of the work. In particular, if everything has been registered a simple tactic can do replacement just
as if the two terms were equal.

20.2 Adding new setoid or morphisms

Under the toplevel load thesetoid_replace files with the command:

Coq < Require Setoid.

A setoid is just a typeA and an equivalence relation onA.
The specification of a setoid can be found in the file

theories/Setoids/Setoid.v

It looks like :

Section Setoid.

Variable A : Type.
Variable Aeq : A -> A -> Prop.

Record Setoid_Theory : Prop :=
{ Seq_refl : (x:A) (Aeq x x);

Seq_sym : (x,y:A) (Aeq x y) -> (Aeq y x);
Seq_trans : (x,y,z:A) (Aeq x y) -> (Aeq y z) -> (Aeq x z)

}.
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To define a setoid structure onA, you must provide a relationAeq on A and prove thatAeq is an

equivalence relation. That is, you have to define an object of type(Setoid_Theory A Aeq) .
Finally to register a setoid the syntax is:

Add Setoid A Aeq ST

whereAeqis a term of typeA->A->Prop andST is a term of type(Setoid_Theory A Aeq) .

Error messages:

1. Not a valid setoid theory .
That happens when the typing condition does not hold.

2. A Setoid Theory is already declared for A.
That happens when you try to declare a second setoid theory for the same type.

Currently, only one setoid structure may be declared for a given type. This allows automatic detec-
tion of the theory used to achieve the replacement.

The table of setoid theories is compatible with the COQ sectioning mechanism. If you declare a
setoid inside a section, the declaration will be thrown away when closing the section. And when you
load a compiled file, all theAdd Setoid commands of this file that are not inside a section will be
loaded.

Warning: Only the setoid onProp is loaded by default with thesetoid_replace module. The
equivalence relation used isiff i.e. the logical equivalence.

20.3 Adding new morphisms

A morphism is nothing else than a function compatible with the equivalence relation. You can only
replace a term by an equivalent in position of argument of a morphism. That’s why each morphism has
to be declared to the system, which will ask you to prove the accurate compatibility lemma.

The syntax is the following :

Add Morphism f : ident

where f is the name of a term which type is a non dependent product (the term you want to declare as a
morphism) andident is a new identifier which will denote the compatibility lemma.

Error messages:

1. The term term is already declared as a morphism

2. The term term is not a product

3. The term term should not be a dependent product

The compatibility lemma generated depends on the setoids already declared.

20.4 The tactic itself

After having registered all the setoids and morphisms you need, you can use the tactic called
setoid_replace . The syntax is

setoid_replace term1 with term2
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The effect is similar to the one ofreplace .
You also have a tactic calledsetoid_rewrite which is the equivalent ofrewrite for setoids.

The syntax is

setoid_rewrite term

Variants:

1. setoid_rewrite -> term

2. setoid_rewrite <- term

The arrow tells the system in which direction the rewriting has to be done. Moreover, you can use
rewrite for setoid rewriting. In that case the system will check if the term you give is an equality or
a setoid equivalence and do the appropriate work.
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||, 170
* , 71, 76
+, 71, 76
- , 76
/ , 76
; , 169
;[... |... |...] , 169
<, 76
<=, 76
>, 76
>=, 76
?, 128
?=, 76
%, 205
&, 72
_, 30
{A}+{B} , 72
{x:A & (P x)} , 72
{x:A | (P x)}, 71
|, 71
2-level approach, 154

A*B, 71
A+{B} , 72
A+B, 71
Abbreviations, 208
Abort , 123
About , 109
Absolute names, 57
abstract , 174
abstractions, 29
absurd , 70, 134
absurd_set , 73
Acc , 74
Acc_inv , 74
Acc_rec , 74
Add Abstract Ring , 282
Add Abstract Semi Ring , 282
Add Field , 159
Add LoadPath , 116
Add ML Path , 116
Add Morphism , 288

Add Printing If ident , 48
Add Printing Let ident , 48
Add Rec LoadPath , 116
Add Rec ML Path , 116
Add Ring , 158, 282
Add Semi Ring , 158, 282
Add Setoid , 288
Admitted , 41, 122
all , 69
and , 68
and_rec , 73
app , 79
applications, 29
apply , 131
apply ... with , 131
Arguments Scope , 205
Arithmetical notations, 76
Arity, 90
assert , 132
Associativity, 198
assumption , 128
auto , 154
autorewrite , 160
Axiom , 32
Axiom (and coercions), 256

Back , 117
Bad Magic Number , 115
Begin Silent , 118
β-reduction, 85, 86
Bind Scope , 205
binders, 29
Binding list, 134
BNF metasyntax, 25
bool , 70
bool_choice , 72
byte-code, 213

Calculus of (Co)Inductive Constructions, 81
Canonical Structure , 62
case , 142
case ... with , 142
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Cases , 243
Cast, 30
cbv , 135
Cd, 115
change , 134
change ... in , 134
Check , 109
Choice , 72
Choice2 , 72
CIC, 81
Clauses, 135
clear , 128
clearbody , 128
Close Scope , 204
Coercion , 64, 255
Coercion Local , 255, 256
Coercions, 64

and records, 257
and sections, 258
classes, 253
Funclass, 254
identity, 254
inheritance graph, 254
presentation, 253
Sortclass, 254

CoFixpoint , 40
CoFixpoint ... where ... , 201
CoInductive , 37
CoInductive (and coercions), 256
Comments, 25
compare , 148
Compiled files, 114
compute , 135, 136
congruence , 157
conj , 68
Conjecture , 32
Connectives, 68
Constant, 33
constructor , 138
constructor ... with , 139
Context, 83
context

in expression, 173
in pattern, 172

contradiction , 135
Contributions, 79
Conversion rules, 85
Conversion tactics, 135
coqc , 213

coqdep , 218
coqdoc, 218
coqide , 231
coq_Makefile , 218
coqmktop , 217
coq-tex , 228
coqtop , 213
cut , 133
cutrewrite , 146

Datatypes, 70
Debugger, 217
decide equality , 148
Declarations, 31
Declare Left Step , 147
Declare ML Module , 115
Declare Right Step , 147
decompose , 144
decompose record , 144
decompose sum , 144
Defined , 41, 122
Definition , 33, 123
Definitions, 33
Delimit Scope , 205
δ-reduction, 33, 85, 86
Dependencies, 218
dependent inversion , 152
dependent inversion ... as , 152
dependent inversion ... as ...

with , 152
dependent inversion ... with , 152
dependent inversion_clear , 152
dependent inversion_clear ...

as , 152
dependent inversion_clear ...

as ... with , 153
dependent inversion_clear ...

with , 153
dependent rewrite -> , 150
dependent rewrite <- , 150
Derive Dependent Inversion , 153
Derive Dependent

Inversion_clear , 153
Derive Inversion , 153
Derive Inversion_clear , 153
Derive Inversion_clear . . . with, 153
destruct , 142
discriminate , 148
discrR , 78
do , 169
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double induction , 144
Drop , 118

eapply , 131, 175
eauto , 155
elim ... using , 141
elim ... with , 141
Elimination

Empty elimination, 94
Singleton elimination, 94

Elimination sorts, 93
elimtype , 141
Emacs, 229
End, 49, 51, 52
End Silent , 118
Environment, 33, 84
Environment variables, 214
eq , 69
eq_add_S , 73
eq_ind_r , 70
eq_rec , 73
eq_rec_r , 70
eq_rect , 70
eq_rect_r , 70
eq_S, 73
Equality, 69
error , 72
η-conversion, 86
η-reduction, 86
Eval , 110
eval

in Ltac, 173
ex , 69
ex2 , 69
ex_intro , 69
ex_intro2 , 69
exact , 127
Exc , 72
Except , 73
exist , 71
exist2 , 71
existS , 72
exists , 69, 139
existS2 , 72
exists2 , 69
Explicitation of implicit arguments, 62
Export , 56
Extract Constant , 269
Extract Inductive , 270
Extraction, 267

Extraction , 110, 267
Extraction Inline , 269
Extraction Language , 268
Extraction Module , 267
Extraction NoInline , 269

f_equal , 70
f_equal i, 70
Fact , 41, 123
fail , 171
False , 68
false , 70
False_rec , 73
field , 158
first , 170
firstorder , 156
firstorder using , 157
firstorder with , 156
firstorder tactic, 156
Fix , 96
fix ident i{. . . }, 30
fix_eq , 75
Fix_F , 75
Fix_F_eq , 75
Fix_F_inv , 75
Fixpoint , 38
Fixpoint ... where ... , 201
flat_map , 79
Focus , 125
fold , 137
fold_left , 79
fold_right , 79
form, 29
fourier , 159
fresh

in Ltac, 173
fst , 71
fun

in Ltac, 172
functional induction , 145, 178
Functional Scheme , 165, 178

Gallina, 25, 43
gallina , 229
ge , 74
generalize , 133
generalize dependent , 133
Goal , 41, 121
goal, 127
gt , 74
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head , 79
Head normal form, 86
Hint , 161
Hint Constructors , 162
Hint Extern , 162
Hint Immediate , 161
Hint Resolve , 161
Hint Rewrite , 160
Hint Unfold , 162
Hints databases, 161
hnf , 136
Hypotheses , 32
Hypothesis , 32
Hypothesis (and coercions), 256

I , 68
ident , 25
identity , 70
Identity Coercion , 256
idtac , 171
if ... then ... else , 46
IF_then_else , 69
iff , 69
Implicit Arguments , 59
Implicit arguments, 58
Import , 55
induction , 139
Inductive , 34
Inductive (and coercions), 256
Inductive definitions, 34
Inductive ... where ... , 201
Infix , 201
info , 174
injection , 149, 150
inl , 71
inleft , 72
inr , 71
inright , 72
Inspect , 109
integer, 26
Interpretation scopes, 204
intro , 129
intro ... after , 130
intro after , 130
intros , 129
intros intro_pattern, 143
intros until , 130
intuition , 156
inversion , 151, 180
inversion ... as , 151

inversion ... as ... in , 152
inversion ... in , 152
inversion ... using , 153
inversion ... using ... in , 153
inversion_clear , 151
inversion_clear ... as ... in ,

152
inversion_clear ... in , 152
inversion_cleardots as , 152
ι-reduction, 85, 86, 95, 98
IsSucc , 73

λ-calculus, 83
lapply , 131
LATEX, 228
lazy , 135
le , 74
le_n , 74
le_S , 74
left , 72, 139
Lemma, 41, 122
length , 79
Let , 33
let

in Ltac, 171
let ... in , 46
let rec

in Ltac, 171
let-in, 30
Lexical conventions, 25
Libraries, 56
Load , 114
Load Verbose , 114
Loadpath, 115
Local , 123
local context, 121
Local definitions, 30
Locate , 113, 202
Locate File , 117
Locate Library , 117
Logical paths, 56
lt , 74
Ltac

eval, 173
fresh, 173
fun, 172
let, 171
let rec, 171
match, 172
match goal, 172
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match reverse goal, 172
type of, 173

Ltac , 174

Makefile , 218
Man pages, 229
map, 79
match

in Ltac, 172
match...with...end , 30, 45, 92
match goal

in Ltac, 172
match reverse goal

in Ltac, 172
ML-like patterns, 45, 243
mod, 76
Module , 50, 51
Module Type , 51
Modules, 50
move, 129
mult , 73
mult_n_O , 73
mult_n_Sm , 73
Mutual Inductive , 36

n_Sn, 73
nat , 70
nat_case , 74
nat_double_ind , 74
nat_scope , 76
native code, 213
None, 70
Normal form, 86
not , 68
not_eq_S , 73
Notation , 197, 208
Notations for lists, 79
Notations for real numbers, 77
notT , 75
nth , 79
num, 26

O, 70
O_S, 73
omega, 158, 263
Opaque, 110
Open Scope , 204
option , 70
Options of the command line, 214
or , 69

or_introl , 69
or_intror , 69

pair , 71
pairT , 75
Parameter , 32
Parameter (and coercions), 256
Parameters , 32
pattern , 137
pCIC, 81
Peano’s arithmetic, 76
plus , 73
plus_n_O , 73
plus_n_Sm , 73
pose , 132
Positivity, 90
Precedences, 198
pred , 73
pred_Sn , 73
Predicative Calculus of (Co)Inductive Construc-

tions, 81
Print , 109
Print All , 109
Print Classes , 257
Print Coercion Paths , 257
Print Coercions , 257
Print Extraction Inline , 269
Print Grammar constr , 199
Print Graph , 257
Print Hint , 164
Print HintDb , 164
Print Implicit , 62
Print LoadPath , 116
Print ML Modules , 115
Print ML Path , 116
Print Module , 56
Print Module Type , 56
Print Modules , 115
Print Section , 109
Print Table Printing If , 48
Print Table Printing Let , 48
Print Term , 109
Print XML , 226
prod , 71
prodT , 75
products, 29
Programming, 70
progress , 170
proj1 , 68
proj2 , 68
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projS1 , 72
projS2 , 72
Prompt, 121
Proof , 41, 123
Proof editing, 121
Proof General, 229
Proof rendering, 224
Proof term, 121
Prop, 28, 82
Pwd, 115

Qed, 41, 121
qualid , 62
Qualified identifiers, 57
Quantifiers, 69
Quit , 118
quote , 154, 184

Record , 43
Recursion, 74
Recursive arguments, 97
Recursive Extraction , 267
Recursive Extraction Module , 267
red , 136
refine , 128, 175
refl_equal , 69
refl_identity , 70
reflexivity , 146
Remark , 41, 123
Remove LoadPath , 116
Remove Printing If ident , 48
Remove Printing Let ident , 48
rename , 129
repeat , 170
replace ... with , 146
Require , 114
Require Export , 114
ReservedNotation , 201
Reset , 117
Reset Extraction Inline , 269
Reset Initial , 117
Resource file, 213
Restart , 124
Restore State , 117
Resume, 124
rev , 79
rewrite , 145
rewrite -> , 146
rewrite -> ... in , 146
rewrite <- , 146

rewrite <- ... in , 146
rewrite ... in , 146
right , 72, 139
ring , 158, 279, 280

S, 70
Save , 41, 122
Scheme, 164, 177
Script file, 113
Search , 111
SearchAbout , 111
SearchPattern , 112
SearchPattern ... inside ... ,

112
SearchPattern ... outside ... ,

112
SearchRewrite , 113
Section , 49
Sections, 49
Set, 28, 82
set , 132
Set Contextual Implicit , 61
Set Extraction AutoInline , 269
Set Extraction Optimize , 268
Set Firstorder Depth , 157
Set Hyps Limit , 126
Set Implicit Arguments , 61
Set Printing All , 64
Set Printing Coercion , 257
Set Printing Coercions , 257
Set Printing Depth , 119
Set Printing Implicit , 62
Set Printing Notations , 201
Set Printing Synth , 47
Set Printing Width , 119
Set Printing Wildcard , 47
Set Strict Implicit , 61
Set Undo , 124
setoid_replace , 287, 288
setoid_rewrite , 288
Show, 125
Show Conjectures , 125
Show Implicits , 125
Show Intro , 126
Show Intros , 126
Show Proof , 125
Show Script , 125
Show Tree , 125
Show XML Proof , 226
sig , 71
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sig2 , 71
sigS , 72
sigS2 , 72
Silent mode, 118
simpl , 136
simpl ... in , 136
simple destruct , 142
simple induction , 141
simple inversion , 153
simple inversion ... as , 153
simplify_eq , 150
snd , 71
solve , 171
Some, 70
sort , 27
Sorts, 28, 82
specif , 29
split , 139
split_Rabs , 78
split_Rmult , 79
stepl , 147
stepr , 147
string, 26
Structure , 257
SubClass , 256
subgoal, 127
subst , 147
Substitution, 83
sum, 71
sumbool , 72
sumor , 72
Suspend , 123
sym_eq , 70
sym_not_eq , 70
symmetry , 147
symmetry in , 147
Syntactic Definition, 208

tactic, 127
Tactic Definition , 165
tactic macros, 165
Tacticals, 168

tactic1; tactic2, 169
abstract , 174
do , 169
fail , 171
first , 170
idtac , 171
info , 174
||, 170

repeat , 170
solve , 171
try , 170

Tactics, 127
tail , 79
tauto , 155
term, 27
Terms, 26
Test Printing Depth , 119
Test Printing If ident , 48
Test Printing Let ident , 48
Test Printing Synth , 47
Test Printing Width , 119
Test Printing Wildcard , 47
Theorem , 41, 122
Theories, 67
Time , 118
trans_eq , 70
transitivity , 147
Transparent , 110
trivial , 154
True , 68
true , 70
try , 170
tt , 70
Type, 28, 82
type, 27, 29
type of

in Ltac, 173
Type of constructor, 90
type_scope, 206
Typing rules, 84, 128

App, 85, 133
Ax, 84
Const, 84
Conv, 86, 129, 134
Fix, 96
Lam, 85, 129
Let, 85, 129
match, 95
Prod, 85
Prod (impredicative Set), 99
Var, 84, 128

Undo, 124
Unfocus , 125
unfold , 137
unfold ... in , 137
unit , 70
Unset Contextual Implicit , 61

Coq Reference Manual, V8.0, June 27, 2004



Global Index 305
Unset Extraction AutoInline , 269
Unset Extraction Optimize , 268
Unset Hyps Limit , 126
Unset Implicit Arguments , 61
Unset Printing All , 64
Unset Printing Coercion , 257
Unset Printing Coercions , 257
Unset Printing Depth , 119
Unset Printing Implicit , 62
Unset Printing Notations , 201
Unset Printing Synth , 47
Unset Printing Width , 119
Unset Printing Wildcard , 47
Unset Strict Implicit , 61
Unset Undo , 124

value , 72
Variable , 32
Variable (and coercions), 256
Variables , 32

Well founded induction, 74
Well foundedness, 74
well_founded , 74
Write State , 118

XML exportation, 224

ζ-reduction, 86
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||, 170
; , 169
;[... |... |...] , 169

abstract , 174
absurd , 134
apply , 131
apply ... with , 131
assert , 132
assumption , 128
auto , 154
autorewrite , 160

case , 142
case ... with , 142
cbv , 135
change , 134
change ... in , 134
clear , 128
clearbody , 128
compare , 148
compute , 135, 136
congruence , 157
constructor , 138
constructor ... with , 139
contradiction , 135
cut , 133
cutrewrite , 146

decide equality , 148
decompose , 144
decompose record , 144
decompose sum , 144
dependent inversion , 152
dependent inversion ... as , 152
dependent inversion ... as ...

with , 152
dependent inversion ... with , 152
dependent inversion_clear , 152
dependent inversion_clear ...

as , 152
dependent inversion_clear ...

as ... with , 153

dependent inversion_clear ...
with , 153

dependent rewrite -> , 150
dependent rewrite <- , 150
destruct , 142
discriminate , 148
discrR , 78
do , 169
double induction , 144

eapply , 131, 175
eauto , 155
elim ... using , 141
elim ... with , 141
elimtype , 141
exact , 127
exists , 139

fail , 171
field , 158
first , 170
firstorder , 156
firstorder using , 157
firstorder with , 156
firstorder tactic, 156
fold , 137
fourier , 159
functional induction , 145, 178

generalize , 133
generalize dependent , 133

hnf , 136

idtac , 171
induction , 139
info , 174
injection , 149, 150
intro , 129
intro ... after , 130
intro after , 130
intros , 129
intros intro_pattern, 143
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intros until , 130
intuition , 156
inversion , 151, 180
inversion ... as , 151
inversion ... as ... in , 152
inversion ... in , 152
inversion ... using , 153
inversion ... using ... in , 153
inversion_clear , 151
inversion_clear ... as ... in ,

152
inversion_clear ... in , 152
inversion_cleardots as , 152

lapply , 131
lazy , 135
left , 139

move, 129

omega, 158, 263

pattern , 137
pose , 132
progress , 170

quote , 154, 184

red , 136
refine , 128, 175
reflexivity , 146
rename , 129
repeat , 170
replace ... with , 146
rewrite , 145
rewrite -> , 146
rewrite -> ... in , 146
rewrite <- , 146
rewrite <- ... in , 146
rewrite ... in , 146
right , 139
ring , 158, 279, 280

set , 132
setoid_replace , 287, 288
setoid_rewrite , 288
simpl , 136
simpl ... in , 136
simple destruct , 142
simple induction , 141
simple inversion , 153

simple inversion ... as , 153
simplify_eq , 150
solve , 171
split , 139
split_Rabs , 78
split_Rmult , 79
stepl , 147
stepr , 147
subst , 147
symmetry , 147
symmetry in , 147

tauto , 155
transitivity , 147
trivial , 154
try , 170

unfold , 137
unfold ... in , 137
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Abort , 123
About , 109
Add Abstract Ring , 282
Add Abstract Semi Ring , 282
Add Field , 159
Add LoadPath , 116
Add ML Path , 116
Add Morphism , 288
Add Printing If ident , 48
Add Printing Let ident , 48
Add Rec LoadPath , 116
Add Rec ML Path , 116
Add Ring , 158, 282
Add Semi Ring , 158, 282
Add Setoid , 288
Admitted , 41, 122
Arguments Scope , 205
Axiom , 32
Axiom (and coercions), 256

Back , 117
Begin Silent , 118
Bind Scope , 205

Canonical Structure , 62
Cd, 115
Check , 109
Close Scope , 204
Coercion , 64, 255
Coercion Local , 255, 256
CoFixpoint , 40
CoFixpoint ... where ... , 201
CoInductive , 37
CoInductive (and coercions), 256
Conjecture , 32

Declare Left Step , 147
Declare ML Module , 115
Declare Right Step , 147
Defined , 41, 122
Definition , 33, 123
Delimit Scope , 205

Derive Dependent Inversion , 153
Derive Dependent

Inversion_clear , 153
Derive Inversion , 153
Derive Inversion_clear , 153
Drop , 118

End, 49, 51, 52
End Silent , 118
Eval , 110
Export , 56
Extract Constant , 269
Extract Inductive , 270
Extraction , 110, 267
Extraction Inline , 269
Extraction Language , 268
Extraction Module , 267
Extraction NoInline , 269

Fact , 41, 123
Fixpoint , 38
Fixpoint ... where ... , 201
Focus , 125
Functional Scheme , 165, 178

Goal , 41, 121

Hint , 161
Hint Constructors , 162
Hint Extern , 162
Hint Immediate , 161
Hint Resolve , 161
Hint Rewrite , 160
Hint Unfold , 162
Hypotheses , 32
Hypothesis , 32
Hypothesis (and coercions), 256

Identity Coercion , 256
Implicit Arguments , 59
Import , 55
Inductive , 34
Inductive (and coercions), 256
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Inductive ... where ... , 201
Infix , 201
Inspect , 109

Lemma, 41, 122
Let , 33
Load , 114
Load Verbose , 114
Local , 123
Locate , 113, 202
Locate File , 117
Locate Library , 117
Ltac , 174

Module , 50, 51
Module Type , 51
Mutual Inductive , 36

Notation , 197, 208

Opaque, 110
Open Scope , 204

Parameter , 32
Parameter (and coercions), 256
Parameters , 32
Print , 109
Print All , 109
Print Classes , 257
Print Coercion Paths , 257
Print Coercions , 257
Print Extraction Inline , 269
Print Grammar constr , 199
Print Graph , 257
Print Hint , 164
Print HintDb , 164
Print Implicit , 62
Print LoadPath , 116
Print ML Modules , 115
Print ML Path , 116
Print Module , 56
Print Module Type , 56
Print Modules , 115
Print Section , 109
Print Table Printing If , 48
Print Table Printing Let , 48
Print Term , 109
Print XML , 226
Proof , 41, 123
Pwd, 115

Qed, 41, 121
Quit , 118

Record , 43
Recursive Extraction , 267
Recursive Extraction Module , 267
Remark , 41, 123
Remove LoadPath , 116
Remove Printing If ident , 48
Remove Printing Let ident , 48
Require , 114
Require Export , 114
ReservedNotation , 201
Reset , 117
Reset Extraction Inline , 269
Reset Initial , 117
Restart , 124
Restore State , 117
Resume, 124

Save , 41, 122
Scheme, 164, 177
Search , 111
SearchAbout , 111
SearchPattern , 112
SearchPattern ... inside ... ,

112
SearchPattern ... outside ... ,

112
SearchRewrite , 113
Section , 49
Set Contextual Implicit , 61
Set Extraction AutoInline , 269
Set Extraction Optimize , 268
Set Firstorder Depth , 157
Set Hyps Limit , 126
Set Implicit Arguments , 61
Set Printing All , 64
Set Printing Coercion , 257
Set Printing Coercions , 257
Set Printing Depth , 119
Set Printing Implicit , 62
Set Printing Notations , 201
Set Printing Synth , 47
Set Printing Width , 119
Set Printing Wildcard , 47
Set Strict Implicit , 61
Set Undo , 124
Show, 125
Show Conjectures , 125
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Show Implicits , 125
Show Intro , 126
Show Intros , 126
Show Proof , 125
Show Script , 125
Show Tree , 125
Show XML Proof , 226
Structure , 257
SubClass , 256
Suspend , 123

Tactic Definition , 165
Test Printing Depth , 119
Test Printing If ident , 48
Test Printing Let ident , 48
Test Printing Synth , 47
Test Printing Width , 119
Test Printing Wildcard , 47
Theorem , 41, 122
Time , 118
Transparent , 110

Undo, 124
Unfocus , 125
Unset Contextual Implicit , 61
Unset Extraction AutoInline , 269
Unset Extraction Optimize , 268
Unset Hyps Limit , 126
Unset Implicit Arguments , 61
Unset Printing All , 64
Unset Printing Coercion , 257
Unset Printing Coercions , 257
Unset Printing Depth , 119
Unset Printing Implicit , 62
Unset Printing Notations , 201
Unset Printing Synth , 47
Unset Printing Width , 119
Unset Printing Wildcard , 47
Unset Strict Implicit , 61
Unset Undo , 124

Variable , 32
Variable (and coercions), 256
Variables , 32

Write State , 118
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ident2 not found, 129
ident i not found, 129
ident already exists, 32, 33, 42
ident not found, 128

A record cannot be recursive, 45
A Setoid Theory is already declared forA, 288
All terms must have the same type, 280
already exists, 122
Argument of match does not evaluate to a term,

172
Attempt to save an incomplete proof, 122

Bad magic number, 115
Bound head variable, 161, 162

Can’t find fileident on loadpath, 114
Can’t find module toto on loadpath, 115
cannot be used as a hint, 161, 162
Cannot find the source class ofqualid , 255
Cannot infer a term for this placeholder, 59, 128
Cannot loadident : no physical path bound to

dirpath , 114
Cannot moveident1 after ident2: it depends on

ident2, 129
Cannot moveident1 after ident2: it occurs in

ident2, 129
Cannot recognizeclass1 as a source class of

qualid , 255
Cannot refine to conclusions with meta-

variables, 140
Cannot solve the goal, 171

Delta must be specified before, 136
does not denote an evaluable constant, 137
does not respect the inheritance uniform condi-

tion, 255
Don’t know what to do with this goal, 280

Failed to progress, 170
File not found on loadpath :string, 115
Found target classclass instead ofclass2, 255
Funclass cannot be a source class, 255

generated subgoalterm ’ has metavariables in it,
131

goal does not satisfy the expected preconditions,
150

I couldn’t solve goal, 157
I don’t know how to handle dependent equality,

157
Impossible to unify . . . with .., 146
Impossible to unify . . . with . . . , 131, 141
In environment . . . the term:term2 does not

have typeterm1, 33
invalid argument, 128
is already a coercion, 255
is already used, 129
is not a function, 255
is not a module, 56
is not a projectable equality, 150
is not an inductive type, 162
is used in the conclusion, 128
is used in the hypothesis, 128

Loading of ML object file forbidden in a native
Coq, 115

Module/sectionmodule not found, 111
must be a transparent constant, 256

nameident is already used, 130
No applicable tactic, 170
No Declared Ring Theory forterm., 280
No discriminable equalities, 149
No focused proof, 121, 125
No focused proof (No proof-editing in

progress), 123, 124
No focused proof to restart, 124
No matching clauses for match, 172
No matching clauses for match goal, 173
No product even after head-reduction, 129, 130
No proof-editing in progress, 124
No such assumption, 128, 135
no such entry, 117
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No such goal, 125
No such hypothesis, 130, 138, 146
No such hypothesis in current goal, 130
No such labelident , 51
No such proof, 124
Non exhaustive pattern-matching, 251
Non strictly positive occurrence ofident in

type, 35
not a context variable, 173
not a defined object, 109
Not a discriminable equality, 148
Not a proposition or a type, 132
Not a valid (semi)ring theory, 282
Not a valid setoid theory, 288
Not an equation, 150
Not an exact proof, 128
Not an inductive product, 138, 140
Not convertible, 134
not declared, 162, 255
Not enough constructors, 138
Not reducible, 136
Not the right number of dependent arguments,

141
Not the right number of missing arguments, 131
Nothing to rewrite inident , 146

omega can’t solve this system, 264
omega: Can’t solve a goal with equality ontype,

264
omega: Can’t solve a goal with non-linear prod-

ucts, 264
omega: Can’t solve a goal with proposition vari-

ables, 264
omega: Not a quantifier-free goal, 264
omega: Unrecognized atomic proposition:

prop, 264
omega: Unrecognized predicate or connective:

ident, 264
omega: Unrecognized proposition, 264

Proof is not complete, 174

quote: not a simple fixpoint, 154, 185

Reached begin of command history, 117

Signature components for labelident do not
match, 51

Sortclass cannot be a source class, 255

Tactic Failure message (leveln), 171

Tactic generated a subgoal identical to the orig-
inal goal, 146

The conclusion is not a substitutive equation,
146

The conclusion oftype is not valid; it must be
built from ident , 35

The referencequalid was not found in the cur-
rent environment, 110, 111

the termform has type . . . which should be Set,
Prop or Type, 121, 122

The term term is already declared as a mor-
phism, 288

The termterm is not a product, 288
The termterm should not be a dependent prod-

uct, 288
The term provided does not end with an equa-

tion, 145
Thenumth argument ofident must beident ’ in

type, 36
This goal is not an equality, 281
This is not the last opened module, 51
This is not the last opened module type, 52
This is not the last opened section, 50

Undo stack would be exhausted, 124
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