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Introduction

This document is the Reference Manual of version 8.0 of the @roof assistant. A companion volume,
the CoQ Tutorial, is provided for the beginners. It is advised to read the Tutorial first. A new book [13]
on practical uses of thed®) system will be published in 2004 and is a good support for both the beginner
and the advanced user.

The CoqQ system is designed to develop mathematical proofs, and especially to write formal specifi-
cations, programs and to verify that programs are correct with respect to their specification. It provides a
specification language namedh@.INA . Terms of GALLINA can represent programs as well as proper-
ties of these programs and proofs of these properties. Using the so-€CallsdHoward isomorphism
programs, properties and proofs are formalized in the same languagealtedus of Inductive Con-
structions that is a\-calculus with a rich type system. All logical judgments im@are typing judg-
ments. The very heart of the Coq system is the type-checking algorithm that checks the correctness of
proofs, in other words that checks that a program complies to its specificatioQ.alSo provides an
interactive proof assistant to build proofs using specific programs dalttids

All services of the ©Q proof assistant are accessible by interpretation of a command language
calledthe vernacular

CoqQ has an interactive mode in which commands are interpreted as the user types them in from the
keyboard and a compiled mode where commands are processed from a file.

e The interactive mode may be used as a debugging mode in which the user can develop his theories
and proofs step by step, backtracking if needed and so on. The interactive mode is run with
thecoqtop command from the operating system (which we shall assume to be some variety of
UNIX in the rest of this document).

e The compiled mode acts as a proof checker taking a file containing a whole development in order
to ensure its correctness. MoreoveQ@s compiler provides an output file containing a compact
representation of its input. The compiled mode is run withcibgc command from the operating
system.

These two modes are documented in chapter 12.

Other modes of interaction with@@) are possible: through an emacs shell window, an emacs generic
user-interface for proof assistant (ProofGeneral [1]) or through a customized interface (PCoq [111]).
These facilities are not documented here. There is also@ IGtegrated Development Environment
described in Chapter 14.

How to read this book

This is a Reference Manual, not a User Manual, then it is not made for a continuous reading. However,
it has some structure that is explained below.

e The first part describes the specification language, Gallina. Chapters 1 and 2 describe the concrete
syntax as well as the meaning of programs, theorems and proofs in the Calculus of Inductive
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Constructions. Chapter 3 describes the standard libraryas. CChapter 4 is a mathematical
description of the formalism. Chapter 5 describes the module system.

e The second part describes the proof engine. It is divided in five chapters. Chapter 6 presents
all commands (we call themernacular commandghat are not directly related to interactive
proving: requests to the environment, complete or partial evaluation, loading and compiling files.
How to start and stop proofs, do multiple proofs in parallel is explained in Chapter 7. In Chapter 8,
all commands that realize one or more steps of the proof are presented: we catttiemnThe
language to combine these tactics into complex proof strategies is given in Chapter 9. Examples
of tactics are described in Chapter 10.

e The third part describes how to extend the syntax of)CIt corresponds to the Chapter 11.

¢ In the fourth part more practical tools are documented. First in Chapter 12, the useqgcof
(batch mode) andogtop (interactive mode) with their options is described. Then, in Chapter 13,
various utilities that come with thed® distribution are presented. Finally, Chapter 14 describes
the Coq integrated development environment.

At the end of the document, after the global index, the user can find specific indexes for tactics,
vernacular commands, and error messages.

List of additional documentation

This manual does not contain all the documentation the user may need abQuv&ious informations
can be found in the following documents:

Tutorial A companion volume to this reference manual, tr@QTutorial, is aimed at gently introduc-
ing new users to developing proofs i@ without assuming prior knowledge of type theory. In a
second step, the user can read also the tutorial on recursive types (do&eu€utorial.ps ).

Addendum The fifth part (the Addendum) of the Reference Manual is distributed as a separate docu-
ment. It contains more detailed documentation and examples about some specific aspects of the
system that may interest only certain users. It shares the indexes, the page numbers and the bibli-
ography with the Reference Manual. If you see in one of the indexes a page number that is outside
the Reference Manual, it refers to the Addendum.

Installation A text file INSTALL that comes with the sources explains how to instalqC

The CoQ standard library A commented version of sources of theo@Q standard library (includ-
ing only the specifications, the proofs are removed) is given in the additional document
Library.ps
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CoqQ is a proof assistant for higher-order logic, allowing the development of computer programs consis-
tent with their formal specification. It is the result of about ten years of research of the Coq project. We
shall briefly survey here three main aspects:ltigical languagen which we write our axiomatizations

and specifications, thproof assistantvhich allows the development of verified mathematical proofs,
and theprogram extractorwhich synthesizes computer programs obeying their formal specifications,
written as logical assertions in the language.

The logical language used byoQ is a variety of type theory, called tigalculus of Inductive Con-
structions Without going back to Leibniz and Boole, we can date the creation of what is now called
mathematical logic to the work of Frege and Peano at the turn of the century. The discovery of anti-
nomies in the free use of predicates or comprehension principles prompted Russell to restrict predicate
calculus with a stratification diypes This effort culminated wittPrincipia Mathematicathe first sys-
tematic attempt at a formal foundation of mathematics. A simplification of this system along the lines of
simply typed\-calculus occurred with ChurchSimple Theory of Type3he A-calculus notation, orig-
inally used for expressing functionality, could also be used as an encoding of natural deduction proofs.
This Curry-Howard isomorphism was used by N. de Bruijn in Awgomathproject, the first full-scale
attempt to develop and mechanically verify mathematical proofs. This effort culminated with Jutting’s
verification of Landau’'sGrundlagenin the 1970’s. Exploiting this Curry-Howard isomorphism, no-
table achievements in proof theory saw the emergence of two type-theoretic frameworks; the first one,
Martin-L6f’s Intuitionistic Theory of Typesttempts a new foundation of mathematics on constructive
principles. The second one, Girard’s polymorphicalculusF,,, is a very strong functional system in
which we may represent higher-order logic proof structures. Combining both systems in a higher-order
extension of the Automath languages, T. Coquand presented in 1985 the first versioQalcthles of
ConstructionsCoC. This strong logical system allowed powerful axiomatizations, but direct inductive
definitions were not possible, and inductive notions had to be defined indirectly through functional en-
codings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989 by T.
Coquand and C. Paulin with primitive inductive definitions, leading to the cu@altulus of Inductive
Constructions This extended formalism is not rigorously defined here. Rather, numerous concrete ex-
amples are discussed. We refer the interested reader to relevant research papers for more information
about the formalism, its meta-theoretic properties, and semantics. However, it should not be necessary
to understand this theoretical material in order to write specifications. It is possible to understand the
Calculus of Inductive Constructions at a higher level, as a mixture of predicate calculus, inductive pred-
icate definitions presented as typed PROLOG, and recursive function definitions close to the language
ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional cal-
culus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-order logic
was proposed in 1965 by J.A. Robinson, with a single uniform inference rule caetution Reso-
lution relies on solving equations in free algebras (i.e. term structures), usingiffeation algorithm
Many refinements of resolution were studied in the 1970’s, but few convincing implementations were re-
alized, except of course that PROLOG is in some sense issued from this effort. A less ambitious approach
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to proof development is computer-aided proof-checking. The most notable proof-checkers developed in
the 1970's were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover,
an automation of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover
attempted to synthesize proofs by a combination of automated methods, LCF constructed its proofs
through the programming a@éctics written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and
Moore’s, is its possibility to extract programs from the constructive contents of proofs. This compu-
tational interpretation of proof objects, in the tradition of Bishop’s constructive mathematics, is based
on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user must just mark
his intention by separating in the logical statements the assertions stating the existence of a computa-
tional object from the logical assertions which specify its properties, but which may be considered as
just comments in the corresponding program. Given this information, the system automatically extracts
a functional term from a consistency proof of its specifications. This functional term may be in turn
compiled into an actual computer program. This methodology of extracting programs from proofs is a
revolutionary paradigm for software engineering. Program synthesis has long been a theme of research
in artificial intelligence, pioneered by R. Waldinger. The Tablog system of Z. Manna and R. Waldinger
allows the deductive synthesis of functional programs from proofs in tableau form of their specifica-
tions, written in a variety of first-order logic. Development of a systematigramming logi¢ based
on extensions of Martin-L6of’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by
R. Constable. The first actual program extractor, PX, was designed and implemented around 1985 by
S. Hayashi from Kyoto University. It allows the extraction of a LISP program from a proof in a logical
system inspired by the logical formalisms of S. Feferman. Interest in this methodology is growing in
the theoretical computer science community. We can foresee the day when actual computer systems
used in applications will contain certified modules, automatically generated from a consistency proof
of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time
systems taking advantage of special hardware, debuggers, and the like. We hopegican®e of use
to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation
language was CAML, a functional programming language from the ML family designed at INRIA
in Rocquencourt. The core of this system was a proof-checker for CoC seen as a\tgpkedilus,
called theConstructive EngineThis engine was operated through a high-level notation permitting the
declaration of axioms and parameters, the definition of mathematical types and objects, and the explicit
construction of proof objects encoded agerms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language
was called theMathematical Vernacular Furthermore, an interactivEheorem Provepermitted the
incremental construction of proof trees in a top-down manner, subgoaling recursively and backtracking
from dead-alleys. The theorem prover executed tactics written in CAML, in the LCF fashion. A basic set
of tactics was predefined, which the user could extend by his own specific tactics. This system (Version
4.10) was released in 1989. Then, the system was extended to deal with the new calculus with inductive
types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set of tactics
was streamlined, and the vernacular extended for tactics execution. A package to compile programs
extracted from proofs to actual computer programs in CAML or some other functional language was
designed and implemented by B. Werner. A new user-interface, relying on a CAML-X interface by D.
de Rauglaudre, was designed and implemented by A. Felty. It allowed operation of the theorem-prover
through the manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system
(Version 5.6) was released in 1991.

CoqQ was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de
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Rauglaudre (Version 5.7) in 1992. A new version ab@was then coordinated by C. Murthy, with

new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to pro-
gram extraction) and a new user-interaction loop. This system (Version 5.8) was released in May 1993.
A Centaur interface CTGQ was then developed by Y. Bertot from the Croap project from INRIA-
Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manip-
ulation of existential variables consistently with dependent types in an experimental versi@Qof C
(v5.9).

The version V5.10 of ©Q is based on a generic system for manipulating terms with binding op-
erators due to Chet Murthy. A new proof engine allows the parallel development of partial proofs for
independent subgoals. The structure of these proof trees is a mixed representation of derivation trees
for the Calculus of Inductive Constructions with abstract syntax trees for the tactics scripts, allowing the
navigation in a proof at various levels of details. The proof engine allows generic environment items
managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

e User-programmable tactics are allowed

e Itis possible to separately verify development modules, and to load their compiled images without
verifying them again - a quick relocation process allows their fast loading

e A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-
printer

e Syntactic definitions allow convenient abbreviations

¢ A limited facility of meta-variables allows the automatic synthesis of certain type expressions,
allowing generic notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and fam-
ilies by a new structure, allowing the mutually recursive definitions. P. Manoury implemented a trans-
lation of recursive definitions into the primitive recursive style imposed by the internal recursion oper-
ators, in the style of the ProPre system. C. Mufioz implemented a decision procedure for intuitionistic
propositional logic, based on results of R. Dyckhoff. J.C. Fillidtre implemented a decision procedure
for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inver-
sion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

Credits: addendum for version 6.1

The present version 6.1 ofd® is based on the V5.10 architecture. It was ported to the new language
Objective Caml by Bruno Barras. The underlying framework has slightly changed and allows more
conversions between sorts.

The new version provides powerful tools for easier developments.

Cristina Cornes designed an extension of tle@yntax to allow definition of terms using a pow-
erful pattern-matching analysis in the style of ML programs.

Amokrane Saibi wrote a mechanism to simulate inheritance between types families extending a
proposal by Peter Aczel. He also developed a mechanism to automatically compute which arguments of
a constant may be inferred by the system and consequently do not need to be explicitly written.
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Yann Coscoy designed a command which explains a proof term using natural language. Pierre
Crégut built a new tactic which solves problems in quantifier-free Presburger Arithmetic. Both function-
alities have been integrated to the @system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of
rewriting rules and equality modulo associativity and commutativity.

Finally the organisation of the @ distribution has been supervised by Jean-Christophe Filliatre
with the help of Judicaél Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

Credits: addendum for version 6.2

In version 6.2 of @Q, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML
designed by Daniel de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptatioQ of C

for camlp4, this work was continued by Bruno Barras who also changed the structumQadiStract

syntax trees and the primitives to manipulate them. The result of these changes is a faster parsing
procedure with greatly improved syntax-error messages. The user-interface to introduce grammar or
pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions
corresponding to 6Q tactic names.

Bruno Barras wrote new more efficient reductions functions.

Hugo Herbelin introduced more uniform notations in the@specification language: the definitions
by fixpoints and pattern-matching have a more readable syntax. Patrick Loiseleur introduced user-
friendly notations for arithmetic expressions.

New tactics were introduced: Eduardo Giménez improved a mechanism to introduce macros for
tactics, and designed special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to
simplify polynomial expressions in an arbitrary commutative ring which generalizes the previous tactic
implemented by Samuel Boutin. Jean-Christophe Filliatre introduced a tactic for refining a goal, using
a proof term with holes as a proof scheme.

David Delahaye designed tlsearchlsos tool to search an object in the library given its type (up to
isomorphism).

Henri Laulhére produced thed® distribution for the Windows environment.

Finally, Hugo Herbelin was the main coordinator of the@&documentation with principal contri-
butions by Bruno Barras, David Delahaye, Jean-Christophe Filliatre, Eduardo Giménez, Hugo Herbelin
and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

Credits: addendum for version 6.3

The main changes in version V6.3 was the introduction of a few new tactics and the extension of the
guard condition for fixpoint definitions.

B. Barras extended the unification algorithm to complete partial terms and solved various tricky bugs
related to universes.
D. Delahaye developed theutoRewrite  tactic. He also designed the new behavioirdfo and
provided the tacticalBirst andSolve .
J.-C. Filliadtre developed th€orrectness  tactic.
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E. Giménez extended the guard condition in fixpoints.

H. Herbelin designed the new syntax for definitions and extendebhthestion  tactic.

P. Loiseleur developed th@uote tactic and the new design of taito tactic, he also introduced the
index of errors in the documentation.

C. Paulin wrote thdcocus command and introduced the reduction functions in definitions, this last
feature was proposed by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliatre. This
is a major revision with respect to the internal architecture of the system. Tlgeversion 7.0 was
distributed in March 2001, version 7.1 in September 2001, version 7.2 in January 2002, version 7.3 in
May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliatre designed the architecture of the new system, he introduced a new repre-
sentation for environments and wrote a new kernel for type-checking terms. His approach was to use
functional data-structures in order to get more sharing, to prepare the addition of modules and also to
get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified”
names, wrote a new pattern-matching compilation algorithm and designed a more compact algorithm
for checking the logical consistency of universes. He contributed to the simplificatiop@fir@ernal
structures and the optimisation of the system. He added basic tactics for forward reasoning and coercions
in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern-matching on
goals and context can directly be written from thetoplevel. He also provided primitives for the
design of user-defined tactics im@L.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library
with axiomatic trigopnometric functions, square, square roots, finite sums, Chasles property and basic
plane geometry.

Jean-Christophe Filliatre and Pierre Letouzey redesigned a new extraction proceduredmm C
terms to QML or HASKELL programs. This new extraction procedure, unlike the one implemented
in previous version of GQ is able to handle all terms in the Calculus of Inductive Constructions, even
involving universes and strong elimination. P. Letouzey adapted user contributions to extract ML pro-
grams when it was sensible. Jean-Christophe Filliatre weotgloc , a documentation tool for @Q
libraries usable from version 7.2.

Bruno Barras improved the reduction algorithms efficiency and the confidence level in the correct-
ness of @Q critical type-checking algorithm.

Yves Bertot designed th8earchPattern  andSearchRewrite  tools and the support for the
PcoQinterface http://www-sop.inria.fr/lemme/pcoq/ ).

Micaela Mayero and David Delahaye introdudédld , a decision tactic for commutative fields.

Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.

Loic Pottier develope#ourier , atactic solving linear inequalities on real numbers.

Pierre Crégut developed a new version based on reflexion @nthegadecision tactic.

Claudio Sacerdoti Coen designed an XML output for theeg@nodules to be used in the Hypertex-
tual Electronic Library of Mathematics (HELM ¢ittp://www.cs.unibo.it/helm ).

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault
was integrated in the basic theories.
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Jacek Chrzaszcz designed and implemented the module systemqoivliose foundations are in
Judicaél Courant’s PhD thesis.

The development was coordinated by C. Paulin.

Many discussions within the Démons team and the LogiCal project influenced significantly the de-
sign of CoQ especially with J. Courant, P. Courtieu, J. Duprat, J. Goubault, A. Miquel, C. Marché, B.
Monate and B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry , P. Zimmer-
man from INRIA, C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
Hugo Herbelin & Christine Paulin

Credits: version 8.0

Coq version 8 is a major revision of thed® proof assistant. First, the underlying logic is slightly
different. The so-calle@mpredicativityof the sortSet has been dropped. The main reason is that it
is inconsistent with the principle of description which is quite a useful principle for formalizing mathe-
matics within classical logic. Moreover, even in an constructive setting, the impredicati8gtofioes
not add so much in practice and is even subject of criticism from a large part of the intuitionistic math-
ematician community. Nevertheless, the impredicativit$gef remains optional for users interested in
investigating mathematical developments which rely on it.

Secondly, the concrete syntax of terms has been completely revised. The main motivations were

e a more uniform, purified style: all constructions are now lowercase, with a functional program-
ming perfume (e.g. abstraction is now writtem ), and more directly accessible to the novice
(e.g. dependent product is now writtimall  and allows omission of types). Also, parentheses
and are no longer mandatory for function application.

e extensibility: some standard notations (e.g. “<” and “>") were incompatible with the previous
syntax. Now all standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of
the syntax.

Together with the revision of the concrete syntax, a new mechanigmegpretation scopepermits
to reuse the same symbols (typically +, -, *, /, <, <=) in various mathematical theories without any
ambiguities for ©Q, leading to a largely improved readability ofo@ scripts. New commands to
easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language
of commands has been carried out. The purpose here is a better uniformity making the tactics and
commands easier to use and to remember.

Thirdly, a restructuration and uniformisation of the standard library ofy@as been performed.
There is now just one Leibniz’ equality usable for all the different kinds of@bjects. Also, the set
of real numbers now lies at the same level as the sets of natural and integer numbers. Finally, the names
of the standard properties of numbers now follow a standard pattern and the symbolic notations for the
standard definitions as well.

The fourth point is the release ofd@IDE, a new graphical gtk2-based interface fully integrated to
CoqQ. Close in style from the Proof General Emacs interface, it is faster and its integration @xgh C
makes interactive developments more friendly. All mathematical Unicode symbols are usable within
CoQIDE.
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Finally, the module system of@Q completes the picture of@Q version 8.0. Though released with
an experimental status in the previous version 7.4, it should be considered as a salient feature of the new
version.
Besides, ©Q comes with its load of novelties and improvements: new or improved tactics (includ-
ing a new tactic for solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflexion and the imple-
mentation of the new syntax. The smart automatic translator from old to new syntax releasedwith C
is also their work with contributions by Olivier Desmettre.

Hugo Herbelin is the main designer and implementor of the notion of interpretation scopes and of
the commands for easily adding new notations.

Hugo Herbelin is the main implementor of the restructuration of the standard library.

Pierre Corbineau is the main designer and implementor of the new tactic for solving first-order state-
ments in presence of inductive types. He is also the maintainer of the non-domain specific automation
tactics.

Benjamin Monate is the developer of th@QIDE graphical interface with contributions by Jean-
Christophe Filliatre, Pierre Letouzey and Claude Marché.

Claude Marché coordinated the edition of the Reference Manualdar\Zs.0.

Pierre Letouzey and Jacek Chrzaszcz respectively maintained the extraction tool and module system
of CoQ.

Jean-Christophe Filliatre, Pierre Letouzey, Hugo Herbelin and contributors from Sophia-Antipolis
and Nijmegen participated to the extension of the library.

Hugo Herbelin and Christine Paulin coordinated the development which was under the responsabil-
ity of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
Hugo Herbelin & Christine Paulin
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Chapter 1

The GALLINA specification language

This chapter describesABLINA , the specification language ofo@. It allows to develop mathematical
theories and to prove specifications of programs. The theories are built from axioms, hypotheses, pa-
rameters, lemmas, theorems and definitions of constants, functions, predicates and sets. The syntax of
logical objects involved in theories is described in section 1.2. The language of commandsTbelled
Vernacularis described in section 1.3.

In CoQ, logical objects are typed to ensure their logical correctness. The rules implemented by the
typing algorithm are described in chapter 4.

About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are sgiewriter
font . In addition, there are special notations for regular expressions.

An expression enclosed in square brackets] means at most one occurrence of this expression
(this corresponds to an optional component).

The notation éntry sep ... sep entry” stands for a non empty sequence of expressions parsed by
entry and separated by the literadép " 1.

Similarly, the notation éntry ... entry” stands for a non empty sequence of expressions parsed by
the “entry” entry, without any separator between.

At the end, the notation[entry sep ... sep entry]’ stands for a possibly empty sequence of
expressions parsed by thentry” entry, separated by the literasép .

1.1 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they
separate tokens.

Comments Comments in ©Q are enclosed betwedh and*) , and can be nested. They can contain
any character. However, string literals must be correctly closed. Comments are treated as blanks.

Identifiers and access identifiers Identifiers, writtenident, are sequences of letters, digitsand’ ,
that do not start with a digit dr. That is, they are recognized by the following lexical class:

1This is similar to the expressiortitry { sep entry }”in standard BNF, or &ntry ( sep entry )*” in the syntax of regular
expressions.
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26 1 The GALLINA specification language

first_letter = a.z |A.Z |_
subsequent_letter = a.z |A.Z [0.9 |_/|’
ident = first_letter [subsequent_letter. . .subsequent_]etter]

All characters are meaningful. In particular, identifiers are case-sensitive. Access identifiers, written
access_ident, are identifiers prefixed by (dot) without blank. They are used in the syntax of qualified
identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally
preceded by a minus sign.

digit = 0.9
num = digit...digit
integer = [- |num

Strings  Strings are delimited by (double quote), and enclose a sequence of any characters different
from " or the sequenc® to denote the double quote character. In grammars, the entry for quoted
strings isstring.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

_ as at  cofix else end
exists exists2 fix for forall fun
if IF in let match mod

Prop return  Set then  Type using
where  with

Special tokens The following sequences of characters are special tokens:

L ->

( I N <

= > < < <> <
<= <> = = =D > >->
> ? = @ [V ]
~d 0=y -

Lexical ambiguities are resolved according to the “longest match” rule: when a sequence of non
alphanumerical characters can be decomposed into several different ways, then the first token is the
longest possible one (among all tokens defined at this moment), and so on.

1.2 Terms

1.2.1 Syntax of terms

Figures 1.1 and 1.2 describe the basic set of terms which for@aheulus of Inductive Constructions
(also called p@). The formal presentation of pCis given in chapter 4. Extensions of this syntax are
given in chapter 2. How to customize the syntax is described in chapter 11.
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term = forall  binderlist , term (1.2.8)
|  fun binderlist => term a.2.7)
| fix fix_bodies (1.2.14)
| cofix cofix_bodies (1.2.14)
| let ident_with_params := term in term (1.2.12
| let fix  fix_bodyin term (1.2.14)
| let cofix cofix_body in term (1.2.14)
| let( [name, ..., name]) [dep_ret type]:= term in term (1.2.13,2.2]2)
| if term [dep_ret _type]then term else (1.2.13,2.2]1)
| term: term (1.2.10)
|  term -> term (1.2.8)
| termarg ... arg (1.2.9)
|  @qualid [term ... term] (2.6.7)
|  term Yident (11.2.2
|  match match_item, ..., match_item [return_type] with

[[l ] equation | ... | equation] end (1.2.13)

|  qualid (1.2.3)
| sort (1.2.%)
|  num (1.2.4)
| _ (1.2.11)

arg = term
|  ( ident := term) (2.6.7)

binderlist ::= name ... name [. term] 1.2/6
|  binder binderlet ... binderlet

binder ’= name 1.2)6
| ( name ... name: term)

binderlet = binder 126
|  ( name [: term]:= term)

name = ident
| _

qualid = ident
| qualid access_ident

sort == Prop | Set | Type

Figure 1.1: Syntax of terms

1.2.2 Types

CoqQterms are typed. GQtypes are recognized by the same syntactic clagg@as We denote byype

the semantic subclass of types inside the syntactic alass
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ident_with_params = ident [binderlet ... binderlet] [. term]
fix_bodies = fix_body

| fix_body with fix_body with ... with fix_body for ident
cofix_bodies '= cofix_body

| cofix_body with cofix_body with ... with cofix_body for ident

fix_body := ident binderlet ... binderlet [annotation][. term].= term
cofix_body :'= ident_with_params := term

annotation = { struct ident}

match_item .:= term [as name] [in term]

dep_ret_type :’= [asS name] return_type

return_type = return  term

equation ’= pattern , ..., pattern => term

pattern :'= qualid pattern ... pattern

pattern as ident

pattern %ident

qualid

num

( pattern, ..., pattern)

Figure 1.2: Syntax of terms (continued)

1.2.3 Qualified identifiers and simple identifiers

Qualified identifier{qualid) denoteglobal constantgdefinitions, lemmas, theorems, remarks or facts),
global variables(parameters or axiomsnductive typesor constructors of inductive typesSimple
identifiers(or shortlyident) are a syntactic subset of qualified identifiers. ldentifiers may also denote
local variables what qualified identifiers do not.

1.2.4 Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to
objects through the notation mechanism (see chapter 11 for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see 3.1.3).

Note: negative integers are not at the same levalias for this would make precedence unnatural.
1.2.5 Sorts

There are three sor&et, Prop andType.

e Prop is the universe ofogical propositions The logical propositions themselves are typing the
proofs. We denote propositions lfgrm. This constitutes a semantic subclass of the syntactic
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classterm.

e Setis is the universe gbrogram type®r specificationsThe specifications themselves are typing
the programs. We denote specificationsspycif. This constitutes a semantic subclass of the
syntactic classerm.

e Type is the type ofSet andProp

More on sorts can be found in section 4.1.1.

1.2.6 Binders

Various constructions introduce variables which scope is some of its sub-expressions. There is a uniform
syntax for this. A binder may be an (unqualified) identifier: the name to use to refer to this variable. If
the variable is not to be used, its name can b&Vhen its type cannot be synthesized by the system,
it can be specified with notatiohident : type) . There is a notation for several variables sharing the
same type( ident;...ident, : type) .

Some constructions allow “let-binders”, that is either a binder as defined above, or a variable with
a value. The notation i§ ident := term) . Only one variable can be introduced at the same time. It is
also possible to give the type of the variable before the symbol

The last kind of binders is the “binder list”. It is either a list of let-binders (the first one not being a
variable with value), ofdent;. . .ident,, : type if all variables share the same type.

CoQterms are typed. GQ types are recognized by the same syntactic clagsms We denote by
type the semantic subclass of types inside the syntactic class

1.2.7 Abstractions

The expressionflin ident : type=> term” denotes theabstractionof the variableident of type type,
over the termrerm. Put in another way, it is function of formal parameig¢nt of type type returning
term.

Keyword fun is followed by a “binder list’, so any of the binders of Section 1.2.6 ap-
ply. Internally, abstractions are only over one variable. Multiple variable binders are an itera-
tion of the single variable abstraction: notatium ident; ... ident, : type => term stands for
fun ident; : type => ... fun ident, : type => term. Variables with a value expand to a local
definition (see Section 1.2.12).

1.2.8 Products

The expressionforall  ident : type , term” denotes thgroductof the variableident of type type,

over the termerm. As for abstractiondprall  is followed by a binder list, and it is represented by an
iteration of single variable products.
Non dependent product types have a special notatibs> B” stands for forall _: A, B

This is to stress on the fact that non dependent product types are usual functional types.

1.2.9 Applications

The expressioermg term; denotes the application of terermg to term.

The expressionmermg term; ... term,, denotes the application of the temerm, to the arguments
term; ... thenterm,,. Itis equivalentto ... termg termy) ... term, : associativity is to the left.

When using implicit arguments mechanism, implicit positions can be forced a value with notation
( ident := term) or( num := term) . See Section 2.6.7 for details.
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1.2.10 Type cast

The expressiontérm : type” is a type cast expression. It enforces the typeeah to betype.

1.2.11 Inferable subterms

Since there are redundancies, a term can be type-checked without giving it in totality. Subterms that are
left to guess by the type-checker are replaced by “_".

1.2.12 Local definitions (let-in)

let ident ;= term; in terms denotes the local binding eérm; to the variabledent in terms.
There is a syntactic sugar for local definition of functioled: ident binder; ...binder, := term;
in terms stands folet ident := fun binder; ...binder, in terms.

1.2.13 Definition by case analysis

This paragraph only shows simple variants of case analysis. See Section 2.2.1 and Chapter 15 for
explanations of the general form.

Objects of inductive types can be destructurated by a case-analysis construction, also called pattern-
matching in functional languages. In its simple form, a case analysis expression is used to analyze the
structure of an inductive objects (upon which constructor it is built).

The expressiomatch termg return_type with pattern; => term; | ... | pattern,, => term,, end,
denotes gattern-matchingver the terntermg (expected to be of an inductive typgg term...term,,
are called branches. In a simple pattgnalid ident ... ident, the qualified identifiequalid is intended
to be a constructor. There should be a branch for every constructor of

The return_type is used to compute the resulting type of the wholgtch expression and the type
of the branches. Most of the time, when this type is the same as the types oftatithethe annotation
is not neededl This annotation has to be given when the resulting type of the whateh depends on
the actuatermy matched.

There are specific notations for case analysis on types with one or two constrifctbrgien
[ else andlet ( ...) := ...in....See alsosection 2.2.1 for details and examples.

See also:Section 2.2.1 for details and examples.

1.2.14 Recursive functions

Expression fix identy bindery : typey = termi with ... with ident,, binder, : type, := termy
for ident;” denotes theth component of a block of functions defined by mutual well-founded recur-
sion. Itis the local counterpart of tliéxpoint command. See Section 1.3.4 for more details. When
n = 1, thefor ident; is omitted.

The expressioncofix ident; binder; : typey with ... with ident,, binder, : type, for
ident;” denotes theth component of a block of terms defined by a mutual guarded co-recursion. It is
the local counterpart of theoFixpoint command. See Section 1.3.4 for more details. When 1,
thefor ident; is omitted.

The association of a single fixpoint and a local definition have a special syntéet
fix f...:= ...in ...” standsfortet f:=fix f...:= ...in ...”. The same applies for
co-fixpoints.

2except if no equation is given, to match the term in an empty type, e.g. th&alpe
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sentence ::= declaration
| definition
| inductive

fixpoint
statement [ proof ]

declaration :'= declaration_keyword assums .

declaration_keyword ::= Axiom | Conjecture
| Parameter | Parameters
| Variable | Variables
|  Hypothesis | Hypotheses

assums = ident ... ident . term
| binder ... binder
definition = Definition ident_with_params = term .

| Let ident with_params := term .

inductive = Inductive  ind_body with ... with ind_body .
|  Colnductive  ind_body with ... with ind_body .

ind_body ::= ident [binderlet ... binderlet]:. term =
[[| ] ident_with_params | ... | ident_with_params]
fixpoint = Fixpoint  fix_body with ... with fix_body .

|  CoFixpoint  cofix_body with ... with cofix_body .

statement :'= statement_keyword ident [binderlet ... binderlet]: term .
statement_keyword = Theorem | Lemma| Definition
proof n= Proof. ...Qed.

| Proof. ... Defined.

| Proof. ... Admitted .

Figure 1.3: Syntax of sentences

1.3 The Vernacular

Figure 1.3 describeShe Vernaculamwhich is the language of commands oAG.INA . A sentence of

the vernacular language, like in many natural languages, begins with a capital letter and ends with a dot.
The different kinds of command are described hereafter. They all suppose that the terms occurring

in the sentences are well-typed.

1.3.1 Declarations

The declaration mechanism allows the user to specify his own basic objects. Declared objects play the
role of axioms or parameters in mathematics. A declared object idean associated to &erm. A
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declaration is accepted byd® if and only if this term is a correct type in the current context of the
declaration anddent was not previously defined in the same module. T#im is considered to be the
type, or specification, of thilent.

Axiom ident : term .

This command linkgerm to the nameddent as its specification in the global context. The fact asserted
by term is thus assumed as a postulate.

Error messages:

1. ident already exists

Variants:

1. Parameter ident : term.
Is equivalent t)Axiom ident : term

2. Parameter ident;... ident,  term.
Addsn parameters with specificatiaerm

3. Parameter( identq ;... identyy, : termy )...(  identy ... ident,y, : term, ).
Addsn blocks of parameters with different specifications.

4. Conjecture  ident : term.
Is equivalent toAxiom ident :  term.

Remark: Itis possible to replacBarameter by Parameters

Variable ident : term.

This command linkserm to the namedent in the context of the current section (see Section 2.3 for a
description of the section mechanism). When the current section is closed;dwmeill be unknown
and every object using this variable will be explicitly parameterized (the variabisdbarged. Using
theVariable command out of any section is equivalenxiom .

Error messages:

1. ident already exists

Variants:

1. Variable ident;... ident,, : term.
Links term to namesdent; . . .ident,,.

2. Variable ( identy ;... identyy, : termy )...(  ident, ... identyy, @ term, ).
Addsn blocks of variables with different specifications.

3. Hypothesis  ident : term.
Hypothesis is a synonymous d¥ariable

Remark: Itis possible to replac¥ariable by Variables andHypothesis by Hypotheses

It is advised to use the keywordsxiom andHypothesis for logical postulates (i.e. when the
assertionterm is of sortProp ), and to use the keywordzarameter andVariable in other cases
(corresponding to the declaration of an abstract mathematical entity).
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1.3.2 Definitions

Definitions differ from declarations in allowing to give a name to a term whereas declarations were just
giving a type to a name. That is to say that the name of a defined object can be replaced at any time by
its definition. This replacement is calléeconversion (see Section 4.3). A defined object is accepted by
the system if and only if the defining term is well-typed in the current context of the definition. Then
the type of the name is the type of term. The defined name is calbertistantand one says thdhe
constant is added to the environment

A formal presentation of constants and environments is given in Section 4.2.

Definition ident = term.

This command binds the valuerm to the namedent in the environment, provided thatrm is well-
typed.

Error messages:

1. ident already exists

Variants:

1. Definition ident : termy = terms.
It checks that the type akrms is definitionally equal taerm;, and registersdent as being of
type term1, and bound to valueerm,.

2. Definition ident binder;... binder,, : termy = terms.
This is equivalent to
Definition ident : forall binder;... binder,,, term;:=fun binder;...binder, => terms .

Error messages:

1. In environment ... the term: term, does not have type termy.
Actually, it has type terms.

See alsoSections 6.2.4, 6.2.5, 8.5.5

Let ident := term.

This command binds the valuerm to the namedent in the environment of the current section. The
nameident disappears when the current section is eventually closed, and, all persistent objects (such as
theorems) defined within the section and dependingdent are prefixed by the local definitidiet

ident = term in .

Error messages:

1. ident already exists

Variants:

1. Let ident : termy, = terms.

See also:Sections 2.3 (section mechanism), 6.2.4, 6.2.5 (opaque/transparent constants), 8.5.5
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1.3.3 Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric in-
ductive types, mutually inductive types. We explain also co-inductive types.

Simple inductive types

The definition of a simple inductive type has the following form:

Inductive ident :  sort =
ident; @ type;

| ...

| ident, : type,

The namedent is the name of the inductively defined type awd is the universes where it lives.
The namesddenty, ..., ident,, are the names of its constructors amge1, ..., type, their respective
types. The types of the constructors have to satigipsitivity condition(see Section 4.5.3) fatlent.
This condition ensures the soundness of the inductive definition. If this is the case, the cadstants
identy, ..., ident,, are added to the environment with their respective types. Accordingly to the uni-
verse where the inductive type lives.q. its type sort), CoQ provides a humber of destructors for
ident. Destructors are nameadent_ind , ident_rec or ident_rect which respectively correspond
to elimination principles orProp , Set andType. The type of the destructors expresses structural
induction/recursion principles over objects ident. We give below two examples of the use of the
Inductive  definitions.

The set of natural numbers is defined as:

Cog < Inductive nat : Set :=
Coq < | O : nat

Coq < | S : nat -> nat.
nat is defined

nat_rect is defined

nat_ind is defined

nat_rec is defined

The typenat is defined as the leaSet containingOand closed by th& constructor. The constants

nat , OandS are added to the environment.
Now let us have a look at the elimination principles. They are threat:ind , nat rec and
nat_rect . The type ofnat_ind is:

Cog < Check nat_ind.
nat_ind
: forall P : nat -> Prop,
P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order
form of Peano’s induction principle. It allows to prove some universal property of natural numbers
(forall n:nat, P n ) by induction om.

The types ofnat_rec andnat_rect are similar, except that they pertain (f®:nat->Set)
and(P:nat->Type) respectively . They correspond to primitive induction principles (allowing de-
pendent types) respectively over sofist and Type. The constanident_ind is always provided,
whereaddent_rec andident_rect can be impossible to derive (for example, whident is a propo-
sition).

Variants:
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1. Coq < Inductive nat : Set := O | S (_:nat).
In the case where inductive types have no annotations (next section gives an example of such
annotations), the positivity condition implies that a constructor can be defined by only giving the
type of its arguments.

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple
sort, but what is called an arity, which is a type whose conclusion is a sort.
As an example of annotated inductive types, let us definedbe predicate:

Cog < Inductive even : nat -> Prop :=

Coq < | even_0 : even O

Cog < | even_SS : forall n:nat, even n -> even (S (S n)).
even is defined

even_ind is defined

The typenat->Prop means thakven is a unary predicate (inductively defined) over natural
numbers. The type of its two constructors are the defining clauses of the preglieate The type of
even_ind is:

Coq < Check even_ind.
even_ind
. forall P : nat -> Prop,
PO ->
(forall n : nat, even n -=> P n -> P (S (S n))) ->
forall n : nat, even n -> P n

From a mathematical point of view it asserts that the natural numbers satisfying the prederate
are exactly the naturals satisfying the clausesn_0 or even_SS. This is why, when we want to
prove any predicat® over elements oéven, it is enough to prove it fo© and to prove that if any
natural numben satisfies its double success¢® (S n)) satisfies als®. This is indeed analogous
to the structural induction principle we got foat .

Error messages:
1. Non strictly positive occurrence of ident in type

2. The conclusion of type is not valid; it must be built from ident

Parameterized inductive types

Inductive types may be parameterized. Parameters differ from inductive type annotations in the fact that
recursive invokations of inductive types must always be done with the same values of parameters as its
specification.

The general scheme is:

Inductive  ident binder. ..bindery, : term := identy: termy | ... |ident,: term,, .
A typical example is the definition of polymorphic lists:
Coq < Inductive list (A:Set) : Set :=

Coq < | nil : list A
Coq < | cons : A -> list A -> list A
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Note that in the type afil andcons , we write(list A) and not justist
The constantsil andcons will have respectively types:

Coq < Check nil.
nil
. forall A : Set, list A

Coq < Check cons.
cons
: forall A : Set, A > list A > list A

Types of destructors are also quantified wighSet)
Variants:

1. Cog < Inductive list (A:Set) : Set := nil | cons (_:A) (Clist A).
This is an alternative definition of lists where we specify the arguments of the constructors rather
than their full type.

Error messages:

1. The numth argument of ident must be ident’ in  type

See also:Sections 4.5 and 4.

Mutually defined inductive types

The definition of a block of mutually inductive types has the form:

Inductive ident; @ type; =
ident :  type}
| ...
| 1'dent,111 : type}l1
with
with  ident,, : type, =
ident? :  typel"
| ..
| ident;) @ typey! .
It has the same semantics as the adodeictive definition for eachdentq, ..., ident,,. All names
identq, ..., ident,, andident}, ..., ident}! are simultaneously added to the environment. Then well-
typing of constructors can be checked. Each one ofdéw 1, . .., ident,, can be used on its own.

It is also possible to parameterize these inductive definitions. However, parameters correspond to a
local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types The extended syntax is:

Inductive ident; params .  typei =
ident} :  typel

| ..

| ident; : type},

with

with  ident,, params . type,, :=

ident?* :  typel®
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| ..

| identy' . typej’ .

Example: The typical example of a mutual inductive data type is the one for trees and forests. We
assume given two types and B as variables. It can be declared the following way.

Coq < Variables A B : Set.

Coq < Inductive tree : Set :=

Coq < node : A -> forest -> tree
Coq < with forest : Set =

Coq < | leaf : B -> forest

Coq < | cons : tree -> forest -> forest.

This declaration generates automatically six induction principles. They are respectively called
tree rec ,tree ind ,tree rect ,forest rec ,forest ind ,forest rect . These ones
are not the most general ones but are just the induction principles corresponding to each inductive part
seen as a single inductive definition.

To illustrate this point on our example, we give the typeteé _rec andforest_rec

Coq < Check tree_rec.
tree_rec
: forall P : tree -> Set,
(forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t

Cog < Check forest_rec.
forest rec
. forall P : forest -> Set,
(forall b : B, P (leaf b)) ->
(forall (t : tree) (f : forest), P f -> P (cons t f)) ->
forall f1 : forest, P f1

Assume we want to parameterize our mutual inductive definitions with the two type varihbles
B, the declaration should be done the following way:

Cog < Inductive tree (A B:Set) : Set :=

Coq < node : A -> forest A B -> tree A B

Coq < with forest (A B:Set) : Set =

Coq < | leaf : B -> forest A B

Cog < | cons : tree A B -> forest A B -> forest A B.

Assume we define an inductive definition inside a section. When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive
definition.

See also:Section 2.3

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other
words, such objects contain onlyfiaite number constructors. Co-inductive types arise from relaxing

this condition, and admitting types whose objects contain an infinity of constructors. Infinite objects are
introduced by a non-ending (but effective) process of construction, defined in terms of the constructors

of the type.
An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called
streams. It can be introduced iro@ using theColnductive  command:
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Cog < Colnductive Stream : Set :=
Coq < Seq : nat -> Stream -> Stream.
Stream is defined

The syntax of this command is the same as the comrhahective  (cf. Section 1.3.3). Notice
that no principle of induction is derived from the definition of a co-inductive type, since such principles
only make sense for inductive ones. For co-inductive ones, the only elimination principle is case anal-
ysis. For example, the usual destructors on strelagnStream->nat  andtl:Str->Str can be
defined as follows:

Cog < Definition hd (x:Stream) := let (a,s) = x in a.
hd is defined
Cog < Definition tl (x:Stream) = let (a,s) := x in s.
tl is defined

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also al-
lowed. An example of a co-inductive predicate is the extensional equality on streams:

Cog < Colnductive EqSt : Stream -> Stream -> Prop :=

Cog < egst :
Coq < forall s1 s2:Stream,
Coq < hd s1 = hd s2 -> EqSt (il s1) (tl s2) -> EgqSt s1 s2.

EqSt is defined

In order to prove the extensionally equality of two streamandss we have to construct and infinite
proof of equality, that is, an infinite object of tygEqSt s; s2). We will see how to introduce infinite
objects in Section 1.3.4.

1.3.4 Definition of recursive functions
Fixpoint ident params {struct identy } . type ¢ = termg

This command allows to define inductive objects using a fixed point construction. The meaning of this
declaration is to defin@lenta recursive function with arguments specifiedtiyder; . . . binder,, such
thatidentapplied to arguments corresponding to these binders hasjtypg and is equivalent to the
expressiontermg. The type of theident is consequentlyorall params , typeg and the value is
equivalenttdun params => termy.

To be accepted, kixpoint  definition has to satisfy some syntactical constraints on a special
argument called the decreasing argument. They are needed to ensure fhiaptiet  definition
always terminates. The point of tfgtruct ident} annotation is to let the user tell the system which
argument decreases along the recursive calls. This annotation may be left implicit for fixpoints with one
argument. For instance, one can define the addition function as :

Cog < Fixpoint add (n m:nat) {struct n} : nat :=
Coq < match n with

Coq < | O =>m

Coq < | S p=S (add p m)

Coq < end.

add is recursively defined

Thematch operator matches a value (hergewith the various constructors of its (inductive) type.
The remaining arguments give the respective values to be returned, as functions of the parameters of
the corresponding constructor. Thus here whesgualsOwe returnm and whem equals(S p) we
return(S (add p m))
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The match operator is formally described in detail in Section 4.5.4. The system recognizes that
in the inductive calladd p m) the first argument actually decreases because ipatt@rn variable
coming frommatch n with

Example: The following definition is not correct and generates an error message:

Coq < Fixpoint wrongplus (n m:nat) {struct n} : nat :=
Cog < match m with

Cog < | O =>n

Cog < | S p=>S (wrongplus n p)

Coq < end.

Coq < Coq < Error:

Recursive definition of wrongplus is ill-formed.

In environment

n : nat
m : nat
p : nat

Recursive call to wrongplus has principal argument equal to
ny
instead of a subterm of n

because the declared decreasing argumesttually does not decrease in the recursive call. The
function computing the addition over the second argument should rather be written:

Coq < Fixpoint plus (n m:nat) {struct m} : nat :=
Cog < match m with

Coq < | O =>n

Coq < | S p =S (plus n p)

Cog < end.

The ordinary match operation on natural numbers can be mimicked in the following way.

Cog < Fixpoint nat_match

Coq < (C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C =
Cog < match n with

Cog < | O =>10

Coq < | S p == fS p (nat_match C f0 fS p)

Coq < end.

The recursive call may not only be on direct subterms of the recursive varidii¢ also on a deeper
subterm and we can directly write the functiomod2 which gives the remainder modulo 2 of a natural
number.

Coq < Fixpoint mod2 (n:nat) : nat :=
Cog < match n with

Coqg < | O =>0

Coq < | S p => match p with

Coq < | O =SSO0

Coq < | S g == mod2 q
Coq < end

Cog < end.

In order to keep the strong normalisation property, the fixed point reduction will only be performed when
the argument in position of the decreasing argument (which type should be in an inductive definition)
starts with a constructor.

The Fixpoint  construction enjoys also thsith extension to define functions over mutually
defined inductive types or more generally any mutually recursive definitions.

Variants:
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1. Fixpoint ident; paramsi : type; = term;
with ...
with  ident,, params,, : type,, = typem
Allows to define simultaneouslidentq, ..., ident,,.

Example: The size of trees and forests can be defined the following way:

Coq < Fixpoint tree_size (t:tree) : nat :=

Coq < match t with

Coq < | node a f => S (forest_size f)

Coq < end

Cog < with forest_size (f:forest) : nat :=

Coq < match f with

Coqg < | leaf b => 1

Coq < | cons t f => (tree_size t + forest_size f)
Coq < end.

A generic comman&cheme is useful to build automatically various mutual induction principles. It is
described in Section 8.13.

CoFixpoint  ident : typey := termy.

The CoFixpoint  command introduces a method for constructing an infinite object of a coinductive
type. For example, the stream containing all natural numbers can be introduced applying the following
method to the numbed (see Section 1.3.3 for the definition 8fream , hd andtl ):

Coq < CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be
admissible, a method of construction must provide at least one extra constructor of the infinite object
for each iteration. A syntactical guard condition is imposed on co-recursive definitions in order to
ensure this: each recursive call in the definition must be protected by at least one constructor, and only
by constructors. That is the case in the former definition, where the single recursive fralinofis
guarded by an application &eq. On the contrary, the following recursive function does not satisfy the
guard condition:

Coq < CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=

Coq < if p (hd s) then Seq (hd s) (filter p (tI s)) else filter p (tl s).
Cog < Coq < Error:

Recursive definition of filter is ill-formed.

In environment

filter : (nat -> bool) -> Stream -> Stream

p : nat -> bool

s : Stream

unguarded recursive call in "filter p (tl s)"

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it
occurs at the head of an application which is the argument of a case analysis expression. In any other
context, it is considered as a canonical expression which is completely evaluated. We can test this using
the commandEval , which computes the normal forms of a term:

Cog < Eval compute in (from 0).

= (cofix from (n : nat) : Stream := Seq n (from (S n))) O
: Stream

Coq Reference Manual, V8.0, June 27, 2004



1.3 The Vernacular 41
Cog < Eval compute in (hd (from 0)).

=0

. nat

Cog < Eval compute in (tl (from 0)).
= (cofix from (n : nat) : Stream := Seq n (from (S n))) 1

. Stream
Variants:

1. CoFixpoint ident; params : type; = term;
As for most constructions, arguments of co-fixpoints expressions can be introduced befere the
sign.

2. CoFixpoint identy : type; = term;
with
with  ident,, : type,, = term,,

As in theFixpoint command (cf. Section 1.3.4), it is possible to introduce a block of mutually
dependent methods.

1.3.5 Statement and proofs

A statement claims a goal of which the proof is then interactively done using tactics. More on the proof
editing mode, statements and proofs can be found in chapter 7.

Theorem ident : type.

This command bindsype to the namedent in the environment, provided that a proof gpe is next
given.
After a statement, 6Q needs a proof.

Variants:

1. Lemmaident : type.
It is a synonymous ofheorem

2. Remark ident : type.
It is a synonymous ofheorem

3. Fact ident : type.
It is a synonymous ofheorem

4. Definition ident @  type.
Allow to define a term of typeype using the proof editing mode. It behavesTdseorem but is
intended for the interactive definition of expression which computational behaviour will be used
by further commandsSee also:6.2.5 and 8.5.5.

Proof. ...Qed.

A proof starts by the keywor@®roof . Then GQ enters the proof editing mode until the proof is
completed. The proof editing mode essentially contains tactics that are described in chapter 8. Besides
tactics, there are commands to manage the proof editing mode. They are described in chapter 7. When
the proof is completed it should be validated and put in the environment using the ke@edrd
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Error message:

1. ident already exists

Remarks:

1.
2.

Several statements can be simultaneously opened.

Not only other statements but any vernacular command can be given within the proof editing
mode. In this case, the command is understood as if it would have been given before the statements
still to be proved.

. Proof is recommended but can currently be omitted. On the oppd3éd,(or Defined , see

below) is mandatory to validate a proof.

. Proofs ended b@ed are declared opaque (see 6.2.4) and cannot be unfolded by conversion tactics

(see 8.5). To be able to unfold a proof, you should end the prodfdiined (see below).

Variants:

1. Proof. ...Defined.

Same a$roof . ...Qed . butthe proof is then declared transparent (see 6.2.5), which means
it can be unfolded in conversion tactics (see 8.5).

. Proof. ...Save.

Same a®roof . ...Qed.

. Goal type...Save ident

Same ad.emmaident: type...Save. This is intended to be used in the interactive mode.
Conversely to named lemmas, anonymous goals cannot be nested.

. Proof. ...Admitted.

Turns the current conjecture into an axiom and exits editing of current proof.
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Chapter 2

Extensions of GALLINA

GALLINA is the kernel language of@). We describe here extensions of the Gallina’s syntax.

2.1 Record types

TheRecord construction is a macro allowing the definition of records as is done in many programming
languages. Its syntax is described on figure 2.1. In factRbeord macro is more general than
the usual record types, since it allows also for “manifest” expressions. In this sendeecbed
construction allows to define “signatures”.

sentence ++= record

record = Record ident [binderlet ... binderlet]: sort =
[ident]{ [field ; ... ; field]}.
field :’=  name : type

| name [. term] .= term

Figure 2.1: Syntax for the definition &fecord

In the expression
Record ident params : sort = identy { identy : termy;...ident, : term, }.

the identifierident is the name of the defined record awdl is its type. The identifieident is the name
of its constructor. Ilfident, is omitted, the default nanguild_  ident is used. The identifier&lent, ..,
ident,, are the names of fields ametm, .., term,, their respective types. Remark that the typedefit;
may depend on the previoitgent ; (for j < ¢). Thus the order of the fields is important. Finafgrams
are the parameters of the record.
More generally, a record may have explicitly defined (a.k.a. manifest) fields. For insRewad

ident [ params]: sort :={ ident : typei; identy := terms ; idents: types} in which case the
correctness ofypes may rely on the instancerms of idents andterms in turn may depend ofident; .

Example: The set of rational numbers may be defined as:

Cog < Record Rat : Set := mkRat

Coq <  {sign : bool;

Cog < top : nat;

Coq < bottom : nat;

Coq < Rat_bottom_cond : 0 <> bottom;
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Cog < Rat_irred_cond :
Coq < forall x y z:nat, (x *y) = top A (X * z) = bottom -> x = 1}.
Rat is defined

Rat_rect is defined

Rat_ind is defined

Rat_rec is defined

sign is defined

top is defined

bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Remark here that the fieRat_cond depends on the fieldottom .
Let us now see the work done by tRecord macro. First the macro generates an inductive defini-
tion with just one constructor:

Inductive ident params : sort =
identy (identy: term;) .. ( identy,: term,).

To build an object of typedent, one should provide the construcident, with n terms filling the fields

of the record.
As an example, let us define the rationaR:

Coq < Require Import Arith.

Coq < Theorem one_two_irred :
Coqg < forall x y znat, x *y =1 A x*z =2 ->x =1

Coq < Qed.

Cog < Definition half ;= mkRat true 1 2 (O_S 1) one_two_irred.
half is defined

Coq < Check half.
half
: Rat

The macro generates also, when it is possible, the projection functions for destructuring an object
of typeident. These projection functions have the same name that the corresponding fields. If a field is
named “ ” then no projection is built for it. In our example:

Cog < Eval compute in half.(top).
=1
© hat

Coq < Eval compute in half.(bottom).
=2
© nat

Coq < Eval compute in half.(Rat_bottom_cond).
=0S1
: 0 <> bottom half

Warnings:

1. Warning: ident; cannot be defined.

It can happen that the definition of a projection is impossible. This message is followed by an
explanation of this impossibility. There may be three reasons:
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term ++= term .( qualid)
| term .( qualid arg ... arg)
| term .( @qualid term ... term)

Figure 2.2: Syntax oRecord projections

(a) The nameddent; already exists in the environment (see Section 1.3.1).
(b) The body ofident; uses an incorrect elimination fadent (see Sections 1.3.4 and 4.5.4).

(c) The type of the projectiongdent; depends on previous projections which themselves
couldn’t be defined.

Error messages:

1. A record cannot be recursive

The record namédent appears in the type of its fields.

2. During the definition of the one-constructor inductive definition, all the errors of inductive defini-
tions, as described in Section 1.3.3, may also occur.

See also:Coercions and records in Section 16.9 of the chapter devoted to coercions.
Remark: Structure is a synonym of the keyworRecord .

Remark: An experimental syntax for projections based on a dot notation is available. The command to
activate it is

Set Printing Projections.

The corresponding grammar rules are given Figure 2.2. Wheahd denotes a projection, the
syntaxterm.( qualid) is equivalent toqualid term, the syntaxterm.( qualid arg; ... arg,)
to qualid arg; ...arg, term, and the syntaxerm.(@ qualid term; ... term,) to @qualid term;
...term,, term. In each caseaerm is the object projected and the other arguments are the parameters of
the inductive type.

To deactivate the printing of projections, udaset Printing Projections

2.2 Variants and extensions ofmatch

2.2.1 Multiple and nested pattern-matching

The basic version ahatch allows pattern-matching on simple patterns. As an extension, multiple and
nested patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequeatzobn sim-
ple patterns. Especially, a construction defined using the extendazh is printed under its expanded
form.

See alsochapter 15.
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2.2.2 Pattern-matching on boolean values: thg expression

For inductive types with exactly two constructors and for pattern-matchings expressions which do not
depend on the arguments of the constructors, it is possible to iise.a then ... else
notation. For instance, the definition

Cog < Definition not (b:bool) =
Coq < match b with

Coq < | true => false
Coq < | false => true
Coq < end.

not is defined
can be alternatively written

Cog < Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with construct@sandC,, we have the following equivalence
match term [dep_ret type] with

. Ci => term;
if term [dep_ret type] then term; else termo = | - -
[dep_ret_type] ! 2 | Coy _ ... _ => termo
end

Here is an example.

Coq < Check (fun x (H:{x=0}+{x<>0}) =>
Cog < match H with

Coq < | left _ => true
Coqg < | right _ => false
Coq < end).

fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false
. forall x : nat, {x = 0} + {x <> 0} -> bool

Notice that the printing uses tlife syntax becaussumbool is declared as such (see section 2.2.4).

2.2.3 Irrefutable patterns: the destructuring let

Closed terms (that is not relying on any axiom or variable) in an inductive type having only one

constructor, sayoo , have necessarily the forifioo ...) . In this case, thenatch construc-
tion can be written with a syntax close to the ... in ... construction. Expressiolet
( identy,...ident,) = termgin term; performs case analysis a¢rmy which must be in an induc-

tive type with one constructor with arguments. Variablegent; . . .ident,, are bound to the arguments
of the constructor in expressioerm;. For instance, the definition

Coq < Definition fst (A B:Set) (H:A * B) := match H with
Coq < | pair x y => x

Coq < end.
fst is defined

can be alternatively written

Cog < Definition fst (A B:Set) (p:A * B) = let (X, _) = p in x.
fst is defined
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Note however that reduction is slightly different from reguér ... in ... construction since
it can occur only iftermq can be put in constructor form. Otherwise, reduction is blocked.
The pretty-printing of a definition by matching on a irrefutable pattern can either be done using
match orthelet construction (see Section 2.2.4).
The general equivalence for an inductive type with one construtss

let ( identy,..., ident,) [dep_ret_type] = term in term’
= match term [dep_ret_type] with C ident; ... ident,, => term’ end

2.2.4 Options for pretty-printing of match

There are three options controlling the pretty-printingratch expressions.

Printing of wildcard pattern

Some variables in a pattern may not occur in the right-hand side of the pattern-matching clause. There
are options to control the display of these variables.

Set Printing Wildcard.

The variables having no occurrences in the right-hand side of the pattern-matching clause are just printed
using the wildcard symbol "

Unset Printing Wildcard.

The variables, even useless, are printed using their usual name. But some non dependent variables have
no name. These ones are still printed using ‘a “

Test Printing Wildcard.

This tells if the wildcard printing mode is on or off. The default is to print wildcard for useless variables.

Printing of the elimination predicate

In most of the cases, the type of the result of a matched term is mechanically synthesisable. Especially,
if the result type does not depend of the matched term.

Set Printing Synth.

The result type is not printed wherno@ knows that it can re-synthesise it.
Unset Printing Synth.

This forces the result type to be always printed.
Test Printing Synth.

This tells if the non-printing of synthesisable types is on or off. The default is to not print synthesisable
types.
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Printing matching on irrefutable pattern

If an inductive type has just one constructor, pattern-matching can be writtenlesing. := ...in ...
Add Printing Let ident.

This addsident to the list of inductive types for which pattern-matching is written usihgta expres-
sion.

Remove Printing Let ident.
This removesddent from this list.

Test Printing Let ident.
This tells ifident belongs to the list.

Print Table Printing Let.

This prints the list of inductive types for which pattern-matching is written usilegy aexpression.
The list of inductive types for which pattern-matching is written usihgta expression is managed
synchronously. This means that it is sensible to the comrRaset .

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern-matching can be writtenifusing
then ... else

Add Printing If ident.

This addsident to the list of inductive types for which pattern-matching is written using arexpres-
sion.

Remove Printing If ident.
This removesddent from this list.

Test Printing If ident.
This tells if ident belongs to the list.

Print Table Printing If.

This prints the list of inductive types for which pattern-matching is written usini§ aexpression.
The list of inductive types for which pattern-matching is written usingf arexpression is managed
synchronously. This means that it is sensible to the comriraset .
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Example

This example emphasizes what the printing options offer.

Cog < Test Printing Let prod.
Cases on elements of prod are printed using a ‘let’ form

Coq < Print fst.

fst =

fun (A B : Set) (p: A*B)=>let(x, ) :=pinXx
: forall A B : Set, A*B > A

Argument scopes are [type_scope type_scope _]

Coq < Remove Printing Let prod.

Cog < Unset Printing Synth.

Cog < Unset Printing Wildcard.

Coq < Print fst.

fst =

fun (A B : Set) (p: A*B)=>let (x, ) return A ;= p in X
: forall A B : Set, A*B -> A

Argument scopes are [type_scope type_scope _]

2.3 Section mechanism

The sectioning mechanism allows to organise a proof in structured sections. Then local declarations
become available (see Section 1.3.2).

2.3.1 Section ident

This command is used to open a section naideat.

2.3.2 End ident

This command closes the section naniéeht. When a section is closed, all local declarations (vari-
ables and local definitions) adéscharged This means that all global objects defined in the section are
generalised with respect to all variables and local definitions it depends on in the section. None of the

local declarations (considered as autonomous declarations) survive the end of the section.
Here is an example :

Coq < Section sl.

Coq < Variables x y : nat.
X is assumed
y is assumed

Coq < Let y' = .
y' is defined

1
2}
x

Coq < Definition X' :

x' is defined

Coq < Definition x” = x

X" is defined

Cog < Print x.

X =S X
: nat
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module_type ::= ident
|  module_type with Definition ident := term
|  module_type with Module ident := qualid

module_binding = ( ident ... ident . module_type )
module_bindings ::= module_binding ... module_binding
module_expression = qualid ... qualid

Figure 2.3: Syntax of modules

Coq < End sl.
X' is discharged.
X" is discharged.

Coq < Print x'.
X = fun x : nat => S x
: nat -> nat

Argument scope is [nat_scope]

Coq < Print x".

X>=fun xy :nat =>lety =y in x x +V
: nat -> nat -> nat

Argument scopes are [nat_scope nat_scope]

Notice the difference between the valuexof andx” inside sectiors1 and outside.

Error messages:

1. This is not the last opened section

Remarks:

1. Most commands, likélint , Notation , option management, ... which appear inside a section
are cancelled when the section is closed.

2.4 Module system

The module system provides a way of packaging related elements together, as well as a mean of massive
abstraction.

2.4.1 Module ident

This command is used to start an interactive module naidfeed.

Variants:

1. Module ident module_bindings
Starts an interactive functor with parameters givemiaylule_bindings.

2. Module ident : module_type
Starts an interactive module specifying its module type.
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3. Module ident module_bindings : module_type

Starts an interactive functor with parameters givemaylule_bindings, and output module type
module_type.

4. Module ident <: module_type

Starts an interactive module satisfyingdule_type.

5. Module ident module_bindings <: module_type
Starts an interactive functor with parameters givenroylule_bindings. The output module type

is verified against the module tymeodule_type.
2.4.2 End ident

This command closes the interactive modident. If the module type was given the content of the
module is matched against it and an error is signaled if the matching fails. If the module is basic (is not
a functor) its components (constants, inductive types, submodules etc) are now available through the dot
notation.

Error messages:
1. No such label ident
2. Signature components for label ident do not match

3. This is not the last opened module

2.4.3 Module ident := module_expression
This command defines the module identifigent to be equal tanodule_expression.

Variants:

1. Module ident module_bindings := module_expression

Defines a functor with parameters giveniagdule_bindings and bodymodule_expression.

2. Module ident module_bindings : module_type := module_expression

Defines a functor with parameters giveniaydule_bindings (possibly none), and output module
type module_type, with body module_expression.

3. Module ident module_bindings <: module_type = module_expression

Defines a functor with parameters given hpdule_bindings (possibly none) with bodynod-
ule_expression. The body is checked againsbdule_type.

2.4.4 Module Type ident

This command is used to start an interactive module igper.

Variants:

1. Module Type ident module_bindings
Starts an interactive functor type with parameters givembyule_bindings.
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2.45 End ident

This command closes the interactive module tyjzat.

Error messages:

1. This is not the last opened module type

2.4.6 Module Type ident := module_type
Defines a module typ&lent equal tomodule_type.
Variants:

1. Module Type ident module_bindings := module_type

Defines a functor typédent specifying functors taking argumenisdule_bindings and returning
module_type.

2.4.7 Declare Module  ident
Starts an interactive module declaration. This command is available only in module types.
Variants:

1. Declare Module ident module_bindings

Starts an interactive declaration of a functor with parameters givendayle_bindings.

2. Declare Module  ident module_bindings <: module_type

Starts an interactive declaration of a functor with parameters givendadyle_bindings (possibly
none). The declared output module type is verified against the modulenyghéde_type.

2.4.8 End ident

This command closes the interactive declaration of moftisler.

2.4.9 Declare Module ident : module_type
Declares a module atlent of type module_type. This command is available only in module types.
Variants:

1. Declare Module  ident module_bindings : module_type

Declares a functor with parameteredule_bindings and output module typmodule_type.

2. Declare Module ident := qualid

Declares a module equal to the modgielid.

3. Declare Module ident <: module_type = qualid

Declares a module equal to the modglenlid, verifying that the module type of the latter is a
subtype ofmodule_type.
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Example

Let us define a simple module.

Coq < Module M.
Interactive Module M started

Cog < Definition T := nat.

T is defined
Coq < Definition x = 0.
x is defined
Cog < Definition y : bool.
1 subgoal

bool
Cog < exact true.

Proof completed.

Cog < Defined.
exact true.
y is defined

Cog < End M.
Module M is defined

Inside a module one can define constants, prove theorems and do any other things that can be done in
the toplevel. Components of a closed module can be accessed using the dot notation:

Cog < Print M.x.
Mx =0
© hat

A simple module type:

Coq < Module Type SIG.
Interactive Module Type SIG started

Cog < Parameter T : Set.
T is assumed

Cog < Parameter x : T.
X is assumed

Coq < End SIG.
Module Type SIG is defined

Inside a module type the proof editing mode is not available. Consequently commands like
Definition without body,Lemma Theorem are not allowed. In order to declare constants, use
Axiom andParameter

Now we can create a new module fravhgiving it a less precise specification: thecomponent is
dropped as well as the body »f

Coq < Module N : SIG with Definiton T = nat = M.
Coq < Cog < Module N is defined

Coq < Print N.T.
N.T = nat
. Set
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Cog < Print N.x.
wk [N NLT ]

Coq < Print N.y.
User error: N.y not a defined object

The definition ofN using the module type expressiBhG with Definition T:=nat is equiva-
lent to the following one:

Cog < Module Type SIG'.

Cog < Definition T : Set := nat.
Coq < Parameter x : T.

Coq < End SIG.

Coq < Module N : SIG" = M.

If we just want to be sure that the our implementation satisfies a given module type without restricting
the interface, we can use a transparent constraint

Coq < Module P <: SIG = M.
Module P is defined

Coq < Print P.y.
P.y = true
. bool

Now let us create a functor, i.e. a parametric module

Cog < Module Two (X Y: SIG).
Interactive Module Two started

Coq < Definition T := (X.T * Y.T)%type.

Coq < Definition x = (X.x, Y.X).

Coq < End Two.

Module Two is defined

and apply it to our modules and do some computations
Coq < Module Q := Two M N.

Module Q is defined

Coq < Eval compute in (fst Q.x + snd Q.x).
= N.x
: nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of
its possible implementations:

Coq < Module Type SIG2.
Interactive Module Type SIG2 started

Cog < Declare Module M1 : SIG.
Module M1 is declared

Coq < Declare Module M2 <: SIG.
Interactive Declaration of Module M2 started

Cog < Definition T := ML1.T.
T is defined

Coq Reference Manual, V8.0, June 27, 2004



2.4 Module system 55

Coq
X is

Coq

< Parameter x : T.
assumed
< End M2.

Module M2 is declared

Coq

< End SIG2.

Module Type SIG2 is defined

Cog
Cog
Coq
Coq
Coq
Coq
Coq

< Module Mod <: SIG2.
< Module M1.

< Definition T := nat.
< Definition x = 1.
< End M1.

< Module M2 = M.
< End Mod.

Module Mod is defined

Notice thatMis a correct body for the componeli2 since itsT component is equalat and hence
M1.T as specified.

Remarks:

1.

2.

Modules and module types can be nested components of each other.

When a module declaration is started inside a module type, the proof editing mode is still unavail-
able.

. One can have sections inside a module or a module type, but not a module or a module type inside
a section.
. Commands likeHint or Notation can also appear inside modules and module types. Note

that in case of a module definition like:
Module N : SIG = M.

or

Module N : SIG.

End N.

hints and the like valid foN are not those defined M (or the module body) but the ones defined
in SIG.

2.4.10 Import qualid

If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components
available by their short names.
Example:
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Cog < Module Mod.
Interactive Module Mod started

Coq < Definition T:=nat.
T is defined

Coq < Check T.
T
: Set

Coq < End Mod.
Module Mod is defined

Coq < Check Mod.T.
Mod.T
. Set

Cog < Check T. (* Incorrect ! *)

Toplevel input, characters 6-7

> Check T.

> N

Error: The reference T was not found in the current environment

Cog < Import Mod.
Coq < Check T. (* Now correct *)
T
. Set
Variants:

1. Export qualid

When the module containing the commagBxport qualid is imported,qualid is imported as
well.

Error messages:

1. qualid is not a module
Warnings:

1. Warning: Trying to mask the absolute naalid !

2.4.11 Print Module ident
Prints the module type and (optionally) the body of the modkidet.

2.4.12 Print Module Type ident

Prints the module type correspondingidient.

2.5 Libraries and qualified names

2.5.1 Names of libraries and files

Libraries The theories developed ind® are stored itibraries. A library is characterised by a name
calledroot of the library. The standard library ofd has root nam€oq and is known by default when
a CoQ session starts.
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Libraries have a tree structure. E.g., tBeq library contains the sub-librariesit , Logic ,

Arith |, Lists , ... The “dot notation” is used to separate the different component of a library name.

For instance, thérith library of CoqQ standard library is writtenCoq.Arith ",

Remark: no blank is allowed between the dot and the identifier on its right, otherwise the dot is inter-
preted as the full stop (period) of the command!

Physical paths vs logical paths Libraries and sub-libraries are denoted Ibgical directory paths
(written dirpath and of which the syntax is the sameq@smlid, see 1.2.3). Logical directory paths can
be mapped to physical directories of the operating system using the command (see 6.5.3)

Add LoadPath physical_pathas dirpath.

A library can inherit the tree structure of a physical directory by usingfheption tocoqgtop or the
command (see 6.5.4)

Add Rec LoadPath physical _pathas dirpath.
Remark: When used interactively witbogtop command, ©Q opens a library calledop.

The file level At some point, (sub-)libraries containodulesvhich coincide with files at the physical
level. As for sublibraries, the dot notation is used to denote a specific module of a library. Typically,
Cog.Init.Logic is the logical path associated to the filegic.v  of CoqQ standard library. Notice
that compilation (see 12) is done at the level of files.

If the physical directory where a filEile.v  lies is mapped to the empty logical directory path
(which is the default when using the simple formAafd LoadPath or-1 option to cogtop), then the
name of the module it definesksle

2.5.2 Qualified names

Modules contain constructions (sub-modules, axioms, parameters, definitions, lemmas, theorems, re-
marks or facts). The (full) name of a construction starts with the logical name of the module
in which it is defined followed by the (short) name of the construction. Typically, the full name
Coq.Init.Logic.eq denotes Leibniz’ equality defined in the modulegic in the sublibrary

Init  of the standard library of GQ.

Absolute, partially qualified and short names The full name of a library, module, section, definition,
theorem, ... is itabsolute nameThe last identifierdq in the previous example) is ighort namegor
sometimedase name Any suffix of the absolute name ispartially qualified namde.g. Logic.eq
is a partially qualified name faCoq.Init.Logic.eq ). Partially qualified names (shorttyualified
namg are also built from identifiers separated by dots. They are writtatid in the documentation.

Coq does not accept two constructions (definition, theorem, ...) with the same absolute name but
different constructions can have the same short name (or even same patrtially qualified names as soon as
the full names are different).

Visibility CoqQ maintains aname tablemapping qualified names to absolute names. This table is
modified by the commandRequire (see 6.4.1)Jmport andExport (see 2.4.10) and also each
time a new declaration is added to the context.
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An absolute name is calledsible from a given short or partially qualified name when this name
suffices to denote it. This means that the short or partially qualified name is mapped to the absolute
name in @Q name table.

It may happen that a visible name is hidden by the short name or a qualified name of another con-
struction. In this case, the name that has been hidden must be referred to using one more level of
gualification. Still, to ensure that a construction always remains accessible, absolute names can never be
hidden.

Examples:

Cog < Check 0.
0
© hat

Coq < Definition nat := bool.
nat is defined

Coq < Check 0.
0
. Datatypes.nat

Coq < Check Datatypes.nat.
Datatypes.nat
. Set

Cog < Locate nat.
Constant Top.nat
Inductive Cog.Init.Datatypes.nat (visible as Datatypes.nat)

Remark: There is also a name table for sublibraries, modules and sections.

Remark: In versions prior to ©Q 7.4, lemmas declared witRemark andFact kept in their full
name the names of the sections in which they were defined. Sioge7Cl, they strictly behaves as
Theorem andLemmado.

See alsoCommand.ocate in Section 6.2.10.

Requiring a file A module compiled in a “.vo” file comes with a logical names (e.g. physical file
theories/Init/Datatypes.vo in the CoqQ installation directory is bound to the logical module
Cog.Init.Datatypes ). When requiring the file, the mapping between physical directories and log-
ical library should be consistent with the mapping used to compile the file (for modules of the standard
library, this is automatic — check it by typirigrint LoadPath ).

The commandAdd Rec LoadPath is also available frontoqtop andcoqgc by using op-
tion-R.

2.6 Implicit arguments

An implicit argument of a function is an argument which can be inferred from the knowledge of the type
of other arguments of the function, or of the type of the surrounding context of the application. Espe-
cially, an implicit argument corresponds to a parameter dependent in the type of the function. Typical
implicit arguments are the type arguments in polymorphic functions. More precisely, there are several
kinds of implicit arguments.
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Strict Implicit Arguments.  An implicit argument can be either strict or non strict. An implicit ar-
gument is saidstrict if, whatever the other arguments of the function are, it is still inferable from the
type of some other argument. Technically, an implicit argument is strict if it corresponds to a parameter
which is not applied to a variable which itself is another parameter of the function (since this parameter
may erase its arguments), not in the body aiatch , and not itself applied or matched against patterns
(since the original form of the argument can be lost by reduction).

For instance, the first argument of

cons: forall A:Set, A -> list A -> list A

in moduleList.v s strict becausést is an inductive type and will always be inferable from the
typelist A of the third argument ofons . On the opposite, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n -> ex nat P

is implicit but not strict, since it can only be inferred from the typen of the the third argument and
if Pise.g.fun _ => True , it reduces to an expression wharaloes not occur any longer. The
first argument is implicit but not strict either because it can only be inferred fildmrm andP is not
canonically inferable from an arbitraryand the normal form oP n (consider e.g. that is 0 and the
third argument has typ&rue , then anyP of the formfun n => match n with 0 => True |

_ => anything  end would be a solution of the inference problem.

Contextual Implicit Arguments.  An implicit argument can beontextualor non. An implicit argu-
ment is saiccontextualif it can be inferred only from the knowledge of the type of the context of the
current expression. For instance, the only argument of

nil : forall A:Set, list A
is contextual. Similarly, both arguments of a term of type
forall P:nat->Prop, forall n:nat, P n V. n = 0

are contextual (moreovar,is strict andP is not).

2.6.1 Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the
other arguments, the user can force the given argument to be guessed by replacing.itfqydssible,
the correct argument will be automatically generated.

Error messages:

1. Cannot infer a term for this placeholder

CoqQwas not able to deduce an instantiation of & “

2.6.2 Declaration of implicit arguments for a constant

In case one wants that some arguments of a given object (constant, inductive types, constructors, as-
sumptions, local or not) are always inferred by Coq, one may declare once for all which are the expected
implicit arguments of this object. The syntax is

Implicit Arguments qualid [ ident ... ident |
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where the list ofident is the list of parameters to be declared implicit. After this, implicit arguments can
just (and have to) be skipped in any expression involving an applicatigmadii .

Example:

Cog < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Cog < | cons : A -> list A -> list A.

Coq < Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)
. list nat

Cog < Implicit Arguments cons [A].
Cog < Implicit Arguments nil [A].

Coq < Check (cons 3 nil).
cons 3 nil
. list nat

Remark: To know which are the implicit arguments of an object, use comniRrart Implicit
(see 2.6.8).

Remark: If the list of arguments is empty, the command removes the implicit argumentsid .

2.6.3 Automatic declaration of implicit arguments for a constant

CoqQcan also automatically detect what are the implicit arguments of a defined object. The command is
just

Implicit Arguments qualid.

The auto-detection is governed by options telling if strict and contextual implicit arguments must be
considered or not (see Sections 2.6.5 and 2.6.6).

Example:

N

Coq Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.

N

Coq Implicit Arguments cons.

Cog < Print Implicit cons.
cons : forall A : Set, A -> list A -> list A
Argument A is implicit

Coq < Implicit Arguments nil.

Coq < Print Implicit nil.
nil : forall A : Set, list A
No implicit arguments

Cog < Set Contextual Implicit.
Coq < Implicit Arguments nil.

Coq < Print Implicit nil.
nil : forall A : Set, list A
Argument A is implicit
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The computation of implicit arguments takes account of the unfolding of constants. For instance,
the variablep below has typdTransitivity R) which is reducible tdorall x,y:U, R X
y -> forall zU, Ry z -> R X z . As the variablex, y andz appear strictly in body of
the type, they are implicit.

Cog < Variable X : Type.

Coq < Definition Relation := X -> X -> Prop.

Cog < Definition Transitivity (R:Relation) :=

Coq < forall x y:X, R xy -> forall zX, Ry z -> R x z
Cog < Variables (R : Relation) (p : Transitivity R).

Coq < Implicit Arguments p.

Coqg < Print p.

** [ p @ Transitivity R ]

Expanded type for implicit arguments

p:forall xy: X, Rxy->forall z: X, Ryz->R Xz
Arguments X, y, z are implicit

Cog < Print Implicit p.
p:forall xy : X, Rxy->forall z: X, Ryz->R Xz
Arguments X, y, z are implicit

Coq < Variables @b c: X) rl: Rab)(2:Rbc).

Cog < Check (p rl1 r2).
prlr2
R ac

2.6.4 Mode for automatic declaration of implicit arguments

In case one wants to systematically declare implicit the arguments detectable as such, one may switch
to the automatic declaration of implicit arguments mode by using the command

Set Implicit Arguments.

Conversely, one may unset the mode by udihgset Implicit Arguments . The mode is off
by default. Auto-detection of implicit arguments is governed by options controlling whether strict and
contextual implicit arguments have to be considered or not.

2.6.5 Controlling strict implicit arguments

By default, GQ automatically set implicit only the strict implicit arguments. To relax this constraint,
use command

Unset Strict Implicit.
Conversely, use commar@et Strict Implicit to restore the strict implicit mode.
Remark: In versions of @Q prior to version 8.0, the default was to declare the strict implicit arguments

as implicit.
2.6.6 Controlling contextual implicit arguments

By default, @®Q does not automatically set implicit the contextual implicit arguments. To el @
infer also contextual implicit argument, use command

Set Contextual Implicit.

Conversely, use commaruthset Contextual Implicit to unset the contextual implicit mode.
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term ++= @qualid term ... term

| @ qualid

| qualid argument ... argument
argument =  term

| (ident:= term)

Figure 2.4: Syntax for explicitations of implicit arguments

2.6.7 Explicit Applications

In presence of non strict or contextual argument, or in presence of partial applications, the synthesis
of implicit arguments may fail, so one may have to give explicitly certain implicit arguments of an
application. The syntax for this (sident:= term) whereident is the name of the implicit argument and

term is its corresponding explicit term. Alternatively, one can locally deactivate the hidding of implicit
arguments of a function by using the notati@ualid term;i.. term,. This syntax extension is given

Figure 2.4.
Example (continued):

Cog < Check (p r1 (z:=c)).

p rl (z:=c)
Rbc->Rac

Cog < Check (p (x:i=a) (y:=b) rl1 (z:=c) r2).
prlr2
R ac

2.6.8 Displaying what the implicit arguments are
To display the implicit arguments associated to an object use command

Print Implicit qualid.

2.6.9 Explicitation of implicit arguments for pretty-printing

By default the basic pretty-printing rules hide the inferable implicit arguments of an application. To
force printing all implicit arguments, use command

Set Printing Implicit.
Conversely, to restore the hidding of implicit arguments, use command

Unset Printing Implicit.

See also:Set Printing All in section 2.8.

2.6.10 Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve equations involv-
ing implicit arguments. Assume thatalid denotes an obje¢Build_struc ¢y ... ¢,) in the structure
structof which the fields arey, ..., z,,. Assume thatjualid is declared as a canonical structure using

the command

Canonical Structure qualid.
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Then, each time an equation of the fo(m; _) =35, ¢; has to be solved during the type-checking
processgqualid is used as a solution. Otherwise sajdalid is canonically used to extend the field
into a complete structure built an.

Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.
Here is an example.

Cog < Require Import Relations.
Coq < Require Import EgNat.
Coq < Set Implicit Arguments.
Cog < Unset Strict Implicit.

Cog < Structure Setoid : Type =

Coq <  {Carrier :> Set;

Coq < Equal : relation Carrier;

Coqg < Prf_equiv : equivalence Carrier Equal}.

Coq < Definition is_law (A B:Setoid) (f:A -> B) :=
Coq < forall x y:A, Equal x y -> Equal (f x) (f y).

Cog < Axiom eq_nat_equiv : equivalence nat eq_nat.
Cog < Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.

Coq < Canonical Structure nat_setoid.

Thanks tonat_setoid  declared as canonical, the implicit argumefisndB can be synthesised
in the next statement.

Coq < Lemma is law_S : is_law S.
1 subgoal

is_law (A:=nat_setoid) (B:=nat_setoid) S

Remark: If a same field occurs in several canonical structure, then only the structure declared first as
canonical is considered.

Variants:
1. Canonical Structure ident = term : type.
Canonical Structure ident = term.
Canonical Structure ident : type = term.

These are equivalent to a regular definitiondzfnt followed by the declaration

Canonical Structure ident.
See alsomore examples in user contributicategory  (Rocg/ALGEBRA).

2.6.11 Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be
convenient to bind the namasor mto the typenat of natural numbers). The command for that is

Implicit Types ident ... ident :  type
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The effect of the command is to automatically set the type of bound variables startinglauittieither
ident itself or ident followed by one or more single quotes, underscore or digits) type(unless the
bound variable is already declared with an explicit type in which case, this latter type is considered).

Example:

Cog < Require Import List.

Cog < Implicit Types m n : nat.

Cog < Lemma cons_inj nat : foral mn i, n I =m | ->n=m.
1 subgoal

foral m n (I : list nat), n I =m = ->n=m
Coq < intros m n.
1 subgoal

m : nat

n : nat

forall | : list nat, n 2l =m |1 ->n=m
Cog < Lemma cons_inj_bool : forall (m n:bool) I, n I =m | ->n = m.
1 subgoal

forall (m n : bool) (I : list bool), n > I = m = | ->n=m
Variants:

1. Implicit Type ident :  type
This is useful for declaring the implicit type of a single variable.

2.7 Coercions

Coercions can be used to implicitly inject terms from atessin which they reside into another one.
A classis either a sort (denoted by the keywd@drtclass ), a product type (denoted by the keyword
Funclass ), or a type constructor (denoted by its name), e.g. an inductive type or any constant with a
type of the formforall  (z; : A1)..(zy, : 4,,), s Wheres is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and
more generally to consider that a term of type A is of type B provided that there is a declared coercion
between A and B. The main command is

Coercion qualid : class; >-> classs.

which declares the construction denotedqioylid as a coercion betweethass; andclass,.
More details and examples, and a description of the commands related to coercions are provided in
chapter 16.

2.8 Printing constructions in full
Coercions, implicit arguments, the type of pattern-matching, but also notations (see chapter 11) can

obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are
sensitive to the implicit arguments). The command
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Set Printing All.

deactivates all high-level printing features such as coercions, implicit arguments, returned
type of pattern-matching, notations and various syntactic sugar for pattern-matching or record

projections.  Otherwise saidSet Printing All includes the effects of the commands
Set Printing Implicit , Set Printing Coercions , Set Printing Synth , Unset
Printing Projections and Unset Printing Notations . To reactivate the high-level

printing features, use the command

Unset Printing All.
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Chapter 3

The CoqQ library

The CoqQ library is structured into three parts:

The initial library: it contains elementary logical notions and datatypes. It constitutes the basic state
of the system directly available when running@Q

The standard library: general-purpose libraries containing various developmentoaf &xiomatiza-
tions about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules
are directly accessible through tRequire command (see section 6.4.1);

User contributions: Other specification and proof developments coming from the Gsers’ commu-
nity. These libraries are no longer distributed with the system. They are available by anonymous
FTP (see section 3.3).

This chapter briefly reviews these libraries.

3.1 The basic library

This section lists the basic notions and results which are directly available in the starmas)€em
1

3.1.1 Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However,

it does not assign a meaning to these notations. The purpose of this is to define precedence and asso-
ciativity of very common notations, and avoid users to use them with other precedence, which may be
confusing.

3.1.2 Logic

The basic library of ©Q comes with the definitions of standard (intuitionistic) logical connectives
(they are defined as inductive constructions). They are equipped with an appealing syntax enriching the
(subclasgorm) of the syntactic clasgrm. The syntax extension is shown on figure 3.2.

Remark: Implication is not defined but primitive (it is a non-dependent product of a proposition over
another proposition). There is also a primitive universal quantification (it is a dependent product over a

!Most of these constructions are defined infinelude  module in directoryheories/Init atthe @®Qroot directory;
this includes the moduldsotations , Logic , Datatypes , Specif ,Peano, andWf. ModuleLogic_Type also makes
it in the initial state
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Notation Precedence Associativity
<> 95 no
_V _ 85 right
_ N _ 80 right
~ _ 75 right
= _ 70 no
= _ = _ 70 no
= _ > 70 no
_ <> 70 no
_<>_>_ 170 no
< _ 70 no
> 70 no
_ <= _ 70 no
_>= 70 no
< < 70 no
< _<=_ 170 no
_<=_<_ 70 no
<= _ <= _ 170 no
o+ 50 left
- 50 left
o 40 left
_ 1 _ 40 left
- 35 right
/I _ 35 right
N 30 right

Figure 3.1: Notations in the initial state

form = True (True)
| False (False )
| ~ form (not )
|  form [\ form (and)
|  form \/ form (or)
| form -> form (primitive implication)
|  form <-> form (iff )
| forall ident: type, form (primitive for all)
| exists ident [ specif], form (ex)
| exists2 ident [ specif], form & form (ex2)
| term = term (eq)
|  term = term > specif (eq)

Figure 3.2: Syntax of formulas

proposition). The primitive universal quantification allows both first-order and higher-order quantifica-
tion.

Propositional Connectives

First, we find propositional calculus connectives:
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Cog < Inductive True : Prop = I

Coq < Inductive False : Prop = .

Cog < Definition not (A: Prop) := A -> False.

Coq < Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).
Cog < Section Projections.

Coq < Variables A B : Prop.

Cog < Theorem projl : A N B -> A.

Coq < Theorem proj2 : A N B -> B.

Coq < End Projections.

Cog < Inductive or (A B:Prop) : Prop =
Coq < | or_introl (_:A)
Cog < | or_intror (_:B).

Coq < Definition iff (P Q:Prop) = (P -> Q) A (Q -> P).
Cog < Definition IF_then_else (P Q R:Prop) = P AN Q V ~ P A R.

Quantifiers

Then we find first-order quantifiers:

Cog < Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.

Coq < Inductive ex (A: Set) (P:A -> Prop) : Prop =
Cog < ex_intro (x:A) (P x).

Coq < Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop =
Cog < ex_intro2 (x:A) (P x) (:Q x).

The following abbreviations are allowed:

exists x:A, P ex A (fun xA => P)

exists x, P ex _ (fun x => P)

exists2 x:A, P & Q ex2 A (fun x:A => P) (fun xA => Q)
exists2 x, P & Q ex2 _ (fun x == P) (fun x => Q)

The type annotatiorA can be omitted wheA can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, givEypa A and anx of type A,

the predicatdeq A x) isthe smallest one which contairs This definition, due to Christine Paulin-
Mohring, is equivalent to defineg as the smallest reflexive relation, and it is also equivalent to Leibniz’
equality.

Cog < Inductive eq (A:Type) (x:A) : A -> Prop :=
Cog < refl_equal : eq A X x.
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Lemmas

Finally, a few easy lemmas are provided.

Coq < Theorem absurd : forall A C:Prop, A -> ~ A -> C.

Coq < Section equality.

Cog < Variables A B : Type.

Coq < Variable f : A -> B.

Cog < Variables x y z : A.

Cog < Theorem sym_eq : X =y ->y = X

Coq < Theorem trans_eq : X =y >y =z -> X = Z,
Cog < Theorem f equal : x =y -> f x = fy.

Cog < Theorem sym_not_eq : X <>y ->y <> X

Coq < End equality.

Coq < Definition eq_ind_r :
Coq <  forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y.

Cog < Definition eq_rec_r :
Coq <  forall (A:Type) (x:A) (P:A -> Set), P x -> forall yA, y = x -> P y.

Cog < Definition eq_rect_r :
Coq <  forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -=> P y.

Coq < Hint Immediate sym_eq sym_not_eq : core.

The theoreni_equal is extended to functions with two to five arguments. The theorem are names
f equal2 ,f equal3 ,f equal4d andf equal5 . Forinstancd equal3 is defined the follow-
ing way.

Cog < Theorem f_equal3 :
Cog < forall (A1 A2 A3 B:Type) (A1 -> A2 -> A3 -> B) (x1 yl1:Al) (x2 y2:A2)
Coq < (x3 y3:A3), x1 =yl > x2 =y2 > x3 =y3 ->fx1l x2 x3 =1yl y2y3

3.1.3 Datatypes

In the basic library, we find the definitidmf the basic data-types of programming, again defined as in-
ductive constructions over the s@¢t . Some of them come with a special syntax shown on Figure 3.3.

Programming

Coq < Inductive unit : Set := tt.

Cog < Inductive bool : Set := true | false.

Coq < Inductive nat : Set := O | S (n:nat).

Coq < Inductive option (A:Set) : Set := Some (_:A) | None.

Coq < Inductive identity (A:Type) (a:A) : A -> Type =
Coqg refl_identity : identity A a a.

N

2They are inDatatypes.v
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specif = specif * specif (prod )
| specif + specif (sum)

|  specif + { specif} (sumor)

| { specif} + { specif} (sumbool )

| { ident: specif| form } (sig )

| { ident: specif| form & form } (sig2 )

| { ident : specif & specif } (sigS )

| { ident : specif & specif & specif } (sigS2 )

term = ( term, term ) (pair )

Figure 3.3: Syntax of datatypes and specifications

Note that zero is the lett€, andnot the numera0.

identity is logically equivalent to equality but it lives in so8et . Computationaly, it behaves
like unit

We then define the disjoint sum &fB of two setsA andB, and their producfA*B.

Coq < Inductive sum (A B:Set) : Set = inl (_:A) | inr (_:B).
Cog < Inductive prod (A B:Set) : Set := pair (_A) (:B).
Coq < Section projections.

Coq < Variables A B : Set.

Cog < Definition fst (H: prod A B) := match H with

Cog < | pair x y => X
Coqg < end.

Coqg < Definition snd (H: prod A B) := match H with

Cog < | pair x y =>y
Coq < end.

Cog < End projections.

3.1.4 Specification

The following notiong allows to build new datatypes and specifications. They are available with the
syntax shown on Figure 3'3

For instance, giver\:Set and P:A->Prop , the construc{x:A | P x}  (in abstract syntax
(sig A P) )isaSet. We may build elements of this set éexist x p) whenever we have a
witnessx:A with its justificationp:P x .

From such dexist x p) we may in turn extract its witnessA (using an elimination construct
such agmatch ) but not its justification, which stays hidden, like in an abstract data type. In technical
terms, one says thaig is a “weak (dependent) sum”. A variagig2 with two predicates is also
provided.

Cog < Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P Xx).

Coq < Inductive sig2 (A:Set) (P Q:A -> Prop) : Set =
Coq < exist2 (x:A) (P x) (:Q Xx).

3They are defined in modulpecif.v
4This syntax can be found in the mod8pecifSyntax.v
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A “strong (dependent) sun{X:A & (P xX)}  may be also defined, when the predicBtis now
defined as &et constructor.

Coq < Inductive sigS (A:Set) (P:A -> Set) : Set = existS (x:A) (P x).
Coq < Section sigSprojections.

Cog < Variable A : Set.

Coq < Variable P : A -> Set.

Cog < Definition projS1 (H:sigS A P) = let (x, h) := H in x.

Cog < Definition projS2 (H:sigS A P) :=
Coq < match H return P (projS1 H) with
Cog < existS x h => h

Coq < end.

Coq < End sigSprojections.

Coq < Inductive sigS2 (A: Set) (P Q:A -> Set) : Set :=
Cog < existS2 (x:A) (P x) (LQ Xx).

A related non-dependent construct is the constructive{ggs{B} of two propositionsA andB.
Coq < Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data type. An intermediate
betweensumbool andsum is the mixedsumor which combinesA:Set andB:Prop in the Set
A+{B} .

Coq < Inductive sumor (A:Set) (B:Prop) : Set := inleft (_:A) | inright (_:B).

We may define variants of the axiom of choice, like in Martin-L6f’s Intuitionistic Type Theory.
Coq < Lemma Choice :
Cogq < forall (S S:Set) (R:S -> S’ -> Prop),

Coqg (forall xS, {y : S | R x y}) ->
Coq < {f:S->98 | forall zS, R z (f 2)}.

N

Coq < Lemma Choice?2 :

Cog < forall (S S:Set) (R:S -> S’ -> Set),

Coq < (forall xS, {y : S & R xy}p ->

Coq < {f:S->8 & forall zS, R z (f 2)}.

Coq < Lemma bool_choice :

Cogq < forall (S:Set) (R1 R2:S -> Prop),

Coq < (forall x:S, {R1 x} + {R2 x}) ->

Coq < {f 1 S -> bool |

Coq < forall x:S, f x = true A RL x V f x = false A R2 x}.

The next constructs builds a sum between a data &/fet and an exceptional value encoding
errors:

Coq < Definition Exc := option.
Coq < Definition value := Some.

Coq < Definition error := None.
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This module ends with theorems, relating the s8es andProp in a way which is consistent with
the realizability interpretation.

Coq < Definition except := False _rec.
Cog < Notation Except := (except ).
Cog < Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.

Cog < Theorem and_rec :
Coq forall (A B:Prop) (P:Set), (A > B > P) > A NANB -> P.

N

3.1.5 Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions
of predecessor, addition and multiplicattorit also provides a scopsat_scope gathering standard
notations for common operations (+,*) and a decimal notation for numbers. That is he car8 write
for (S (S (S 0))) . This also works on the left hand side ofreatch expression (see for example
section 10.1). This scope is opened by default.

The following example is not part of the standard library, but it shows the usage of the notations:

Coq < Fixpoint even (n:nat) : bool =
Cog < match n with

Coq < | 0 => true

Coq < | 1 => false

Coq < | S (S n) => even n

Coq < end.

Coq < Theorem eq_S : forall x y:nat, x =y -> S x = S vy.

Coqg < Definition pred (n:nat) : nat :=
Cog < match n with

Cog< |]0=>0

Cog< | Su=>u

Cog < end.

Cog < Theorem pred_Sn : forall m:nat, m = pred (S m).
Coq < Theorem eq_add_S : forall n m:nat, S n =S m ->n =m.
Coq < Hint Immediate eq_add_S : core.

Cog < Theorem not_eq_S : forall n m:pat, n <> m -> S n <> S m.

Cog < Definition IsSucc (n:nat) : Prop :=
Cog < match n with

Coq < | 0 => False

Coq < | S p => True

Cog < end.

Coq < Theorem O_S : forall n:nat, 0 <> S n.

Coq < Theorem n_Sn : forall n:nat, n <> S n.

5This is in modulePeano.v
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Cog < Fixpoint plus (n m:nat) {struct n} : nat :=

Coq < match n with

Coqg < | 0 =>m

Coqg < | Sp =S (plus p m)

Coq < end.

Coq < Lemma plus_n_O : forall n:nat, n = plus n 0.

Coq < Lemma plus_n_Sm : forall n m:nat, S (plus n m) = plus n (S m).

Cog < Fixpoint mult (n m:nat) {struct n} : nat :=

Coq < match n with

Coq < | 0 =>0

Coq < | Sp=m+mult pm

Cog < end.

Coq < Lemma mult_ n_O : forall n:nat, 0 = mult n O.

Cog < Lemma mult_n_Sm : forall n m:pat, plus (mult n m) n = mult n (S m).

Finally, it gives the definition of the usual orderinigs, It , ge, andgt .

Coqg
Coqg
Cogq

Coq
Coq
Cogq
Cogqg

TANVANIVAY

N

N

N

N

Inductive le (n:nat) : nat -> Prop :=
| le_n :le nn
| le_S : forall m:nat, le n m -> le n (S m).

Infix "+" := plus : nat_scope.
Definition It (n m:nat) := S n <= m.
Definition ge (n m:nat) := m <= n.

Definition gt (n m:nat) := m < n.

Properties of these relations are not initially known, but may be required by the user from modules
Le andLt . Finally, Peano gives some lemmas allowing pattern-matching, and a double induction

principle.

Coq < Theorem nat_case :

Coq < forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n.
Coq < Theorem nat_double_ind :

Coq < forall R:nat -> nat -> Prop,

Cog < (forall n:nat, R 0 n) ->

Coq < (forall n:nat, R (S n) 0) ->

Cog < (forall n minat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.

3.1.6 Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction

Cog
Cog
Cog

Cog
Coq

Coq

<

N

N

N

N

Section Well_founded.
Variable A : Set.
Variable R : A -> A -> Prop.

Inductive Acc : A -> Prop =
Acc_intro : forall x:A, (forall y:A, R y x -> Acc y) -> Acc Xx.

Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc vy.

5This is defined in modulgf.v
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Coq <
Coq <

Coq
Coq
Coq

Coq
Coq
Coq

Coq
Coq
Cog

Cog
Cog
Cogq

Cog
Coq
Coq

ANNN NANN N AN N ANNNAN NNA

Section AccRec.
Variable P : A -> Set.
Variable F :
forall x:A,
(forall y:A, Ry x -> Acc y) -> (forall yA, Ry x -> Py ->P x
Fixpoint Acc_rec (x:A) (a:Acc x) {struct a} : P x =
F x (Acc_inv x a)
(fun (y:A) (h:R y x) => Acc_rec y (Acc_inv x a y h)).
End AccRec.
Definition well _founded := forall a:A, Acc a.
Hypothesis Rwf : well_founded.
Theorem well_founded_induction :
forall P:A -> Set,
(forall x:A, (forall y:A, Ry x -> P y) -> P x) -> forall a:A, P a.
Theorem well_founded_ind :
forall P:A -> Prop,
(forall x:A, (forall y:A, Ry x -> P y) -> P x) -> forall aiA, P a.

Acc_rec can be used to define functions by fixpoints using well-founded relations to justify termina-
tion. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be

proved.

Coq
Coq
Cog

Cog
Cog

Cog

Coq
Cog
Cog

Coqg
Cog
Coq

Cog
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Cog

N

Coqg

N

Coq

3.1.7

Section FixPoint.
Variable P : A -> Set.
Variable F : forall x:A, (forall yA, Ry x -> P y) -> P x.
Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=

F x (fun (y:A) (PR y X) => Fix F y (Acc_inv x r y p)).
Definition Fix (x:A) := Fix_F x (Rwf x).
Hypothesis F_ext :

forall (x:A) (f g:forall y:A, Ry x -> P y),

(forall (y:A) pPRy x), fyp=gyp >Fxf=FXxag.
Lemma Fix_F _eq :
forall (x:A) (r:Acc x),

F x (fun (y:A) (PR y X) => Fix_F y (Acc_inv x ry p)) = Fix_F xr.
Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y X) => Fix y).
End FixPoint.

End Well_founded.

Accessing th@ype level

The basic library includes the definitionsf the counterparts of some datatypes and logical quantifiers
at theType level: negation, pair, and propertiesidéntity

Cog <
Cog <

Definition notT (A:Type) := A -> False.
Inductive prodT (A B:Type) : Type := pairT (_:A) (UB).

At the end, it defines datatypes at fhge level.

"This is in moduleLogic_Type.v
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3.2 The standard library

3.2.1 Survey
The rest of the standard library is structured into the following subdirectories:
Logic Classical logic and dependent equality
Arith Basic Peano arithmetic
ZArith Basic integer arithmetic
Bool Booleans (basic functions and results)
Lists Monomorphic and polymorphic lists (basic functions and results), Streams (in-
finite sequences defined with co-inductive types)
Sets Sets (classical, constructive, finite, infinite, power set, etc.)
IntMap Representation of finite sets by an efficient structure of map (trees indexed by
binary integers).
Reals Axiomatization of Real Numbers (classical, basic functions, integer part, frac-

tional part, limit, derivative, Cauchy series, power series and results,... Re-
quires theZArith library).

Relations Relations (definitions and basic results).

Sorting Sorted list (basic definitions and heapsort correctness).

Wellfounded Well-founded relations (basic results).

These directories belong to the initial load path of the system, and the modules they provide are
compiled at installation time. So they are directly accessible with the comiRaqdire (see chap-

ter 6).
The different modules of the @) standard library are described in the additional document
Library.dvi . They are also accessible on the WWW through tieey@omepagé.

3.2.2 Notations for integer arithmetics

Onfigure 3.2.2 is described the syntax of expressions for integer arithmetics. It is provided by requiring
and opening the modul@Arith  and opening scop£_scope .

Figure 3.2.2 shows the notations provideddyscope . It specifies how notations are interpreted
and, when not already reserved, the precedence and associativity.

Coq < Require Import ZArith.

Coq < Check (2 + 3)%Z.
2 + )z

1 Z
Cog < Open Scope Z_scope.

Cog < Check 2 + 3.
2 +3
1 Z

3.2.3 Peano’s arithmetic Qat )

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further
operations and results belong to other modules. For instance, the decidability of the basic predicates are
defined here. This is provided by requiring the modauih

Figure 3.2.3 describes notation available in scogie scope

8http://coq.inria.fr
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Notation Interpretation Precedence Associativity
< ZIt

X <=y Zle

> Zgt

X >=y Zge

X <y<z X<yNhNy<z

X <y <=z X<yNy<=1z

X <=y <z X<=yNy<z

X<zy<=z |XxX<=yNy<=12z

_ 7= Zcompare 70 no
o+ Zplus

- Zminus

o Zmult

_ 1 _ Zdiv

_ mod _ Zmod 40 no
- Zopp

N Zpower

Figure 3.4: Definition of the scope for integer arithmeti€sgcope )

Notation Interpretation

< _ It

X <=y le

> gt

X >=y ge

X <y<z X <yNhNy<z
X <y <=2z X<y Ny<=2z
X <=y<z XxX<=yNy<z
X<=y<=2z |x<=yNy<=1z
o+ plus

- minus

o mult

Figure 3.5: Definition of the scope for natural numberat( scope )

3.2.4 Real numbers library
Notations for real numbers

This is provided by requiring and opening the modRigals and opening scopR_scope . This set
of notations is very similar to the notation for integer arithmetics. The inverse function was added.

Coq < Require Import Reals.

Cog < Check (2 + 3)%R.
(2 + 3)wR
R

Coq < Open Scope R_scope.

Coq < Check 2 + 3.
2 +3
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Notation Interpretation

_ < _ RIt

X <=y Rle

> Ragt

X >=y Rge

X <y<z X <yNhNy<z
X <y <=1z X <yNy<=2z
X <=y <z X<=yNy<z
X<zy<=z |[XxX<=yNy<=12z
o+ Rplus

- Rminus

o Rmult

! Rdiv

- Ropp

! Rinv

_ N pow

Figure 3.6: Definition of the scope for real arithmetiBs écope )
R
Some tactics
In addition to theing , field andfourier tactics (see Chapter 8) there are:
e discrR

Proves that a real integer constanis different from another real integer constant

Coq < Require Import DiscrR.

Coq < Goal 5 <> 0.

Coq < discrR.
Proof completed.

e split_Rabs  allows to unfoldRabs constant and splits corresponding conjonctions.

Cog < Require Import SplitAbsolu.

Coq < Goal forall x:R, x <= Rabs x.

Coq < intro; split_ Rabs.
2 subgoals

X : R
r. x<2o0

X <= - X
subgoal 2 is:
X <= X
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Notation | Interpretation| Precedence Associativity
_ ++ _ | app 60 right

cons 60 right

Figure 3.7: Definition of the scope for listist_scope )

e split Rmult allows to split a condition that a product is non null into subgoals corresponding
to the condition on each operand of the product.

Cog < Require Import SplitRmult.
Cog < Goal forall x y zR, x *y * z <> 0.

Coq < intros; split Rmult.
3 subgoals

X : R
y ' R
z : R

x <>0
subgoal 2 is:
y <>0
subgoal 3 is:
z<>0

All this tactics has been written with the tactic language Ltac described in Chapter 9. More details
are available in documehttp://coq.inria.fr/~desmettr/Reals.ps

3.2.5 Listlibrary

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring
moduleList
It defines the following notions:

length length

head first element (with default)

tail all but first element

app concatenation

rev reverse

nth accessing-th element (with default)
map applying a function

flat_map applying a function returning lists
fold_left iterator (from head to tail)
fold_right iterator (from tail to head)

Table show notations available when opening sdigpescope

3.3 Users’ contributions
Numerous users’ contributions have been collected and are available atcbdrinria.fr/

contribs/ . On this web page, you have a list of all contributions with informations (author, institu-
tion, quick description, etc.) and the possibility to download them one by one. There is a small search
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engine to look for keywords in all contributions. You will also find informations on how to submit a new
contribution.

The users’ contributions may also be obtained by anonymous FTP fronftfsiteia.fr
in directoryINRIA/cog/  and searchable on-line http://coq.inria.fr/contribs-eng.
html

’
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Chapter 4

Calculus of Inductive Constructions

The underlying formal language ofd® is aCalculus of Constructionwith Inductive Definitionslt is
presented in this chapter. Foo@ version V7, this Calculus was known as tBalculus of (Co)Inductive
ConstructionqCic in short). The underlying calculus ofd® version V8.0 and up is a weaker calcu-
lus where the sorBet satisfies predicative rules. We call this calculus Bredicative Calculus of
(Co)Inductive Construction@Cic in short). In section 4.7 we give the extra-rules facCA compil-
ing option of GQ allows to type-check theories in this extended system.

In pCic all objects have &ype There are types for functions (or programs), there are atomic types
(especially datatypes)... but also types for proofs and types for the types themselves. Especially, any
object handled in the formalism must belong to a type. For instance, the statdomneaiitx, P” is not
allowed in type theory; you must say insteéfdir all x belonging to T, P”. The expressiofx belonging
to T” is written“x:T” . One also saysX has type T". The terms of p@c are detailed in section 4.1.

In pCic there is an internal reduction mechanism. In particular, it allows to decide if two programs
areintentionallyequal (one saysonvertiblg. Convertibility is presented in section 4.3.

The remaining sections are concerned with the type-checking of terms. The beginner can skip them.

The reader seeking a background on the Calculus of Inductive Constructions may read several pa-
pers. Giménez [61] provides an introduction to inductive and coinductive definitions in Coq. In their
book [13], Bertot and Castéran give a precise description of the p@&sed on numerous practical ex-
amples. Barras [9], Werner [118] and Paulin-Mohring [104] are the most recent theses dealing with
Inductive Definitions. Coquand-Huet [27, 28, 29] introduces the Calculus of Constructions. Coquand-
Paulin [30] extended this calculus to inductive definitions. Thei8 a formulation of type theory
including the possibility of inductive constructions, Barendregt [6] studies the modern form of type
theory.

4.1 Theterms

In most type theories, one usually makes a syntactic distinction between types and terms. This is not the
case for p@c which defines both types and terms in the same syntactical structure. This is because the
type-theory itself forces terms and types to be defined in a mutual recursive way and also because similar
constructions can be applied to both terms and types and consequently can share the same syntactic
structure.

Consider for instance the» constructor and assunm&t is the type of natural numbers. Then
— is used both to denoteat — nat which is the type of functions fromat to nat, and to denote
nat — Prop which is the type of unary predicates over the natural numbers. Consider abstraction which
builds functions. It serves to build “ordinary” functionsfas x : nat = (mult x ) (assumingnult
is already defined) but may build also predicates over the natural numbers. For ifatamcenat =
(z = z) will represent a predicat®, informally written in mathematic®(x) = = z. If P has
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typenat — Prop, (P x) is a proposition, furthermortrall = : nat, (P =) will represent the type of
functions which associate to each natural numban object of typd P n) and consequently represent
proofs of the formulaVz.P(z)”".

4.1.1 Sorts

Types are seen as terms of the language and then should belong to another type. The type of a type is
always a constant of the language callexbet

The two basic sorts in the language ofigGreSet andProp.

The sortProp intends to be the type of logical propositions. Mf is a logical proposition then it
denotes a class, namely the class of terms representing prodfs ohn objectm belonging toM
witnesses the fact thdtl is true. An object of typérop is called gproposition

The sortSet intends to be the type of specifications. This includes programs and the usual sets such
as booleans, naturals, lists etc.

These sorts themselves can be manipulated as ordinary terms. Consequently sorts also should be
given a type. Because assuming simply tBat has typeSet leads to an inconsistent theory, we have
infinitely many sorts in the language of p&C These are, in addition t8et andProp a hierarchy of
universeslype(i) for any integeri. We callS the set of sorts which is defined by:

S = {Prop, Set, Type(i)|i € N}

The sorts enjoy the following propertieBrop: Type(0), Set: Type(0) andType(i):Type(i + 1).
The user will never mention explicitly the indexwhen referring to the universgype(i). One
only writesType. The system itself generates for each instanc&pgt a new index for the universe
and checks that the constraints between these indexes can be solved. From the user point of view we
consequently havéype :Type.
We shall make precise in the typing rules the constraints between the indexes.

4.1.2 Constants

Besides the sorts, the language also contains constants denoting objects in the environment. These
constants may denote previously defined objects but also objects related to inductive definitions (either
the type itself or one of its constructors or destructors).

Remark. In other presentations of pC, the inductive objects are not seen as external declarations but

as first-class terms. Usually the definitions are also completely ignored. This is a nice theoretical point
of view but not so practical. An inductive definition is specified by a possibly huge set of declarations,
clearly we want to share this specification among the various inductive objects and not to duplicate it.
So the specification should exist somewhere and the various objects should refer to it. We choose one
more level of indirection where the objects are just represented as constants and the environment gives
the information on the kind of object the constant refers to.

Our inductive objects will be manipulated as constants declared in the environment. This roughly
corresponds to the way they are actually implemented in the €/stem. It is simple to map this
presentation in a theory where inductive objects are represented by terms.

4.1.3 Terms

Terms are built from variables, global names, constructors, abstraction, application, local declarations
bindings (“let-in” expressions) and product.

From a syntactic point of view, types cannot be distingued from terms, except that they cannot start
by an abstraction, and that if a term is a sort or a product, it should be a type.
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More precisely the language of tizalculus of Inductive Constructions built from the following
rules:

1. the sortsSet, Prop, Type are terms.

2. names for global constants of the environment are terms.
3. variables are terms.
4

. if z isavariable and’, U are terms thel = : T, U (forall z : T, U in COQ concrete syntax) is a
term. If z occurs inU, V x : T, U reads asfor all x of type T, U”. As U depends omr, one says
thatV z : T, U is adependent productf = doesn’t occurs i/ thenV z : T, U reads asif T then
U”. A non dependent product can be writtdh:— U.

5. if z is avariable and’, U are terms then z : T, U (fun x : T = U in COQ concrete syntax) is a
term. This is a notation for the-abstraction of\-calculus [8]. The term\ x : T, U is a function
which maps elements @f to U.

6. if T"andU are terms theif’ U) is a term {" U in CoQ concrete syntax). The ter(d” U) reads
as“T applied to U".

7. if z is a variable, and”, U are terms thetet = := T in U is a term which denotes the tertn
where the variable is locally bound tdl’. This stands for the common “let-in” construction of
functional programs such as ML or Scheme.

Notations. Application associates to the left such tliat; . ..t,) represents...(t t1)...t,). The
products and arrows associate to the right suchthat A, B — C — D represent¥ =z : A, (B —
(C — D)). One uses sometim&sz y : A, Bor Az y : A, B to denote the abstraction or product of
several variables of the same type. The equivalent formulatiomisA,Vy : A, BorAxz : A, \y: A, B

Free variables. The notion of free variables is defined as usual. In the expresgians T, U and
vz : T, U the occurrences afin U are bound. They are represented by de Bruijn indexes in the internal
structure of terms.

Substitution. The notion of substituting a termto free occurrences of a variabhtein a termuw is
defined as usual. The resulting term is writign: /¢ }.

4.2 Typed terms

As objects of type theory, terms are subjectetifme discipline The well typing of a term depends on
an environment which consists in a global environment (see below) and a local context.

Local context. A local context(or shortly context) is an ordered list of declarations of variables. The
declaration of some variableis either an assumption, written: 17" (7" is a type) or a definition, written

x =t : T. We use brackets to write contexts. A typical exampleisT;y := u : U; z : V]. Notice
that the variables declared in a context must be distinct’ dieclares some, we writex € I'. By
writing (z : T') € I we mean that either : T is an assumption i’ or that there exists sonmesuch
thatz := ¢ : T is a definition inI". If I" defines some: := ¢ : T, we also write(x :=t : T') € I.
Contexts must be themselve®ll formed For the rest of the chapter, the notatbn: (y : T) (resp

I' 2 (y :==t : T)) denotes the context enriched with the declaration : 7" (respy := t : T). The
notation[] denotes the empty context.

Coq Reference Manual, V8.0, June 27, 2004



84 4 Calculus of Inductive Constructions
We define the inclusion of two contexfsand A (written asI” C A) as the property, for all variable
x,typeT and terny, if (x : T) e 'then(z : T) € Aandif(x:=t:T)eI'then(z:=t:T) € A.
A variablez is said to be free i if I' contains a declaration: 7" such thatz is free inT.

Environment. Because we are manipulating global declarations (constants and global assumptions),
we also need to consider a global environme&nt

An environment is an ordered list of declarations of global names. Declarations are either assump-
tions or “standard” definitions, that is abbreviations for well-formed terms but also definitions of induc-
tive objects. In the latter case, an object in the environment will define one or more constants (that is
types and constructors, see section 4.5).

An assumption will be represented in the environmemissum(T')(c : T') which means that is
assumed of some typewell-defined in some conteXt. An (ordinary) definition will be represented in
the environment aBef(I")(c := ¢ : T') which means that is a constant which is valid in some context
I" whose value ig and type isI'.

The rules for inductive definitions (see section 4.5) have to be considered as assumption rules to
which the following definitions apply: if the nameis declared in&, we writec € E and ifc : T or
c:=t:Tisdeclared inF, we write(c: T') € E.

Typing rules. In the following, we assumé’ is a valid environment wrt to inductive definitions. We
define simultaneously two judgments. The first d6@] + ¢ : T means the term is well-typed
and has typd’ in the environmen# and context”. The second judgmenyF(E)[I'] means that the
environmentE is well-formed and the conteXt is a valid context in this environment. It also means a
third property which makes sure that any constarf was defined in an environment which is included
inT L.

A termt¢ is well typed in an environmeri iff there exists a context and a ternil” such that the
judgmentE[I'] ¢ : T can be derived from the following rules.

W-E
WE(IDI
W-S
ElFT:s s€8 z¢&l EFt:T z¢&T
WF(E) :: (z:T)] WF(E) :: (z:=1t:T)]
Def
EllFt:T c¢c¢ EUT
WF(E;Def(I')(c:=t:T))[I]
AX
WF(E)[T] WF(E)[T]
E[l'| - Prop: Type(p) EI[I']+ Set: Type(q)
WF(E) i<y
E[ITF Type(i) : Type(j)
Var

WF(E)T] (x:T)eTl or (x:=t:T)eT for somet
Elraz:T

This requirement could be relaxed if we instead introduced an explicit mechanism for instantiating constants. At the
external level, the Cog engine works accordingly to this view that all the definitions in the environment were built in a sub-
context of the current context.
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Const

WF(E)| (¢:T)eFkE
ElFec:T

Prod
ETFT:s s€8 E[l:(x:T)]FU:Prop
ElFVa:T,U : Prop

E+T:s se{Prop,Set} E[l':(z:T)FU:Set
El|FYz:T,U : Set

EFT:Type(i) i<k E[l:(x:T)FU:Type(j) j<k
ElEYa:T,U : Type(k)

Lam
El|EYaz:T,U:s El:(z:T)kFt:U
ElFXa:T,t:Vo: T, U

App
Elkt:Vz:UT E[lkFu:U

E ¢ (tu): T{x/u}

L
. ElFt:T El:(x:=t:T)|Fu:U
ElFletz:=tinu:U{z/t}

Remark: We may havdet x := ¢ in u well-typed without havind (A = : T, u) t) well-typed (wherel’
is a type oft). This is because the valdeassociated ta may be used in a conversion rule (see section
4.3).

4.3 Conversion rules

B-reduction. We want to be able to identify some terms as we can identify the application of a function
to a given argument with its result. For instance the identity function over a giveritgpa be written

Az T,x. Inany environmenf' and contexf’, we want to identify any object (of typeT") with the
application((A z : T, x) a). We define for this aeduction(or aconversioi rule we callg:

ET|F ((Ax:T,t)u)pgt{r/u}

We say that{x/u} is the 5-contractionof ((\ = : T',t) ) and, conversely, thd{\ = : T,t) u) is the
B-expansiorof t{x/u}.

According tog-reduction, terms of th€alculus of Inductive Constructiomsjoy some fundamental
properties such as confluence, strong normalization, subject reduction. These results are theoretically of
great importance but we will not detail them here and refer the interested reader to [21].

t-reduction. A specific conversion rule is associated to the inductive objects in the environment. We
shall give later on (section 4.5.4) the precise rules but it just says that a destructor applied to an object
built from a constructor behaves as expected. This reduction is calegtliction and is more precisely
studied in [103, 118].
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o-reduction. We may have defined variables in contexts or constants in the global environment. It
is legal to identify such a reference with its value, that is to expand (or unfold) it into its value. This
reduction is called-reduction and shows as follows.

ElFaz>st if(x:=t:T)el ElFepst if(c:=t:T)eE

¢-reduction. Coq allows also to remove local definitions occurring in terms by replacing the defined
variable by its value. The declaration being destroyed, this reduction differs &mduction. It is
called(-reduction and shows as follows.

ETFletx :=uint>e t{x/u}

Convertibility. LetuswriteE[I'] - ¢ >« for the contextual closure of the relatioreduces ta in the
environmentE and contexI” with one of the previous reductigh ¢, § or .

We say that two terms; andt, are convertible(or equivalent)in the environmentt and con-
text I iff there exists a termu such thatE[l'| F¢;>...0u and E[I'] - ta>...>u. We then write
E[F} F 11 =gs.c to.

The convertibility relation allows to introduce a new typing rule which says that two convertible
well-formed types have the same inhabitants.

At the moment, we did not take into account one rule between universes which says that any term
in a universe of index is also a term in the universe of indéx- 1. This property is included into the
conversion rule by extending the equivalence relation of convertibility into an order inductively defined

by:
1. if E[I'] -t =gs¢c uthenE[l] -t <gs u,
2. ifi < jthenE[l] - Type(i) <gs.c Type(s),
3. for anyi, E[I'] - Prop <gs,c Type(i),
4. foranyi, E[I'] - Set <gs,c Type(i),

5. if E[F] T =88 U and E[F i (I : T)} T SB&C U’ then
E[F] FVYa: T,T’ éﬁ&C Va: U,U/.

The conversion rule is now exactly:

Conv
El|FU:s E[llkt:T E[I] T <gsc U

E[lFt:U

n-conversion. An other important rule is th@-conversion. It is to identify terms over a dummy
abstraction of a variable followed by an application of this variable. Tdte a typet be a term in
which the variabler doesn’t occurs free. We have

E[ll+Aa:T,(tz)>t

Indeed, as doesn't occur free i, for anyu one applies to\ = : T, (¢ x), it §-reduces tdt u). So
Az : T, (t ) andt can be identified.

Remark: Then-reduction is not taken into account in the convertibility rule i@
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Normal form. A term which cannot be any more reduced is said to b@ammal form There

are several ways (or strategies) to apply the reduction rule. Among them, we have to mention the
head reductionwhich will play an important role (see chapter 8). Any term can be written as
Axy : Th, ... dxg : Ty, (to t1 - . . t,) Wheretg is not an application. We say then thgtis the head

of t. If we assume thaty is A = : T, ug then one step of-head reduction of is:

Axyp Ty, deg T, Az Toug ty ..o ty) > A(xy 2 T) o (xg 2 T), (wo{x/ti} ta. . ty)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads
to the 5-head normal fornof ¢:

to...o Az Ty, AT T, (VU . Ugy)

wherew is not an abstraction (nor an application). Note that the head normal form must not be confused
with the normal form since some can be reducible.

Similar notions of head-normal forms involvirdg . and{ reductions or any combination of those
can also be defined.

4.4 Derived rules for environments

From the original rules of the type system, one can derive new rules which change the context of defini-
tion of objects in the environment. Because these rules correspond to elementary operation®i the C
engine used in the discharge mechanism at the end of a section, we state them explicitly.

Mechanism of substitution. One rule which can be proved valid, is to replace a tery its value
in the environment. As we defined the substitution of a term for a variable in a term, one can define the
substitution of a term for a constant. One easily extends this substitution to contexts and environments.

Substitution Property:
WEF(E;Def(T')(c:=1t:T); F)[A]
WF(E; F{c/t})[A{c/t}]

Abstraction. One can modify the context of definition of a constarty abstracting a constant with
respect to the last variableof its defining context. For doing that, we need to check that the constants
appearing in the body of the declaration do not depend, ave need also to modify the reference to the
constant: in the environment and context by explicitly applying this constant to the varialBecause

of the rules for building environments and terms we know the varialdeavailable at each stage where

¢ is mentioned.

Abstracting property:

WF(E;Def(I' :: (x: U))(c:=t:T); F)[A] WF(E)[T]
WF(E;Def(I')(c:= Az : Ut :Va:UT); F{c/(cx)})[A{c/(cx)}]

Pruning the context. We said the judgmentF(E)[I'] means that the defining contexts of constants

in & are included in". If one abstracts or substitutes the constants with the above rules then it may
happen that the contektis now bigger than the one needed for defining the constanis iBecause
defining contexts are growing i, the minimum context needed for defining the constants ia the

same as the one for the last constant. One can consequently derive the following property.
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88 4 Calculus of Inductive Constructions
Pruning property:

WF(E; Def(A)(c:=t:T))[T]
WF(E;Def(A)(c:=1t:T))[A]

4.5 Inductive Definitions

A (possibly mutual) inductive definition is specified by giving the names and the type of the inductive
sets or families to be defined and the names and types of the constructors of the inductive predicates.
An inductive declaration in the environment can consequently be represented with two contexts (one for
inductive definitions, one for constructors).

Stating the rules for inductive definitions in their general form needs quite tedious definitions. We
shall try to give a concrete understanding of the rules by precising them on running examples. We take
as examples the type of natural numbers, the type of parameterized lists overda tigpeelation which
states that a list has some given length and the mutual inductive definition of trees and forests.

4.5.1 Representing an inductive definition
Inductive definitions without parameters

As for constants, inductive definitions can be defined in a non-empty context.
We write Ind(T")(I'; := ') an inductive definition valid in a conteXt, a context of definitiong’;
and a context of constructols:.

Examples. The inductive declaration for the type of natural numbers will be:
Ind()(nat : Set:= O : nat,S : nat — nat)
In a context with a variablel : Set, the lists of elements irl is represented by:
Ind(A : Set)(List : Set := nil : List,cons : A — List — List)
Assumingl'yis [I; : Ay;...; 1, - Agl,andlgis [eq : Ch;. . 5 ¢ 2 Gy, the general typing rules are:

Ind(T)(T;:=T¢) €E j=1...k
(Ij:Aj)EE

Ind(F)(FI = Fc) el 1=1.mn
(¢; :C;) €E

Inductive definitions with parameters

We have to slightly complicate the representation above in order to handle the delicate problem of

parameters. Let us explain that on the exampleist. As they were defined above, the typist can

only be used in an environment where we have a variableSet. Generally one want to consider

lists of elements in different types. For constants this is easily done by abstracting the value over the

parameter. In the case of inductive definitions we have to handle the abstraction over several objects.
One possible way to do that would be to define the tyigeinductively as being an inductive family

of type Set — Set:

Ind()(List : Set — Set :=nil : (A : Set)(List A),cons: (A : Set)A — (List A) — (List A))
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There are drawbacks to this point of view. The information which sayqthsttnat) is an inductively
definedSet has been lost.

In the system, we keep track in the syntax of the context of parameters. The idea of these param-
eters is that they can be instantiated and still we have an inductive definition for which we know the
specification.

Formally the representation of an inductive declaration willligI")[I'|(I'; := ') for an in-
ductive definition valid in a context with parameterd'p, a context of definition$’; and a context of
constructord’. The occurrences of the variablesIgf in the contextd’; andI' are bound.

The definitionInd(T")[T'p](I'; := ') will be well-formed exactly whernd(I",I'p)(I'; :=T'¢)
is. fTCpis[py : Pi;...;pr: Pr], anobjectinnd(T)[['p|(T'; :=T'¢ ) applied togy, . . ., ¢, will behave
as the corresponding objectloid(T')(T'7{(pi/¢:)i=1..} :== Tc{(pi/¢i)i=1.+}) -

Examples The declaration for parameterized lists is:
Ind()[A : Set|(List : Set := nil : List,cons : A — List — List)
The declaration for the length of lists is:

Ind()[A : Set](Length : (List A) — nat — Prop := Lnil : (Length (nil A) O),
Lcons : Va : A,VI : (List A),Vn : nat, (Length [ n) — (Length (cons Aal) (Sn)))

The declaration for a mutual inductive definition of forests and trees is:

Ind()(tree : Set, forest : Set :=
node : forest — tree, emptyf : forest, consf : tree — forest — forest )

These representations are the ones obtained as the result ab¢théeClaration:

Cog < Inductive nat : Set =

Coq < | O : nat

Coq < | S : nat -> nat.

Cog < Inductive list (A:Set) : Set =

Coq < | nil : list A

Coq < | cons : A -> list A -> list A.

Coq < Inductive Length (A:Set) : list A -> nat -> Prop :=
Coq < | Lnil : Length A (nil A) O

Cog < | Lcons :

Coqg < forall (a:A) (Llist A) (n:nat),

Cog < Length A I n -> Length A (cons A a l) (S n).
Coq < Inductive tree : Set :=

Coq < node : forest -> tree

Coq < with forest : Set =

Coq < | emptyf : forest

Coq < | consf : tree -> forest -> forest.

The inductive declaration in @ is slightly different from the one we described theoretically. The
difference is that in the type of constructors the inductive definition is explicitly applied to the parameters
variables. The ©Q type-checker verifies that all parameters are applied in the correct manner in each
recursive call. In particular, the following definition will not be accepted because there is an occurrence
of List which is not applied to the parameter variable:

Coq < Inductive list' (A:Set) : Set =

Coq < | nil" : list A

Coq < | cons’ : A -> list (A -> A) -> list' A

Coq < Coq < Error: The 1st argument of "list" must be "A" in
A -> list (A > A) -> list A
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4.5.2 Types of inductive objects

We have to give the type of constants in an environniemthich contains an inductive declaration.
Ind-Const Assumingl'p is [p1 : Pi;...;pr : B), Tris [[1 @ Ay;...51; @ Ag], andT¢ is [ :
Cy. .50 0 Oyl

INd(D)[Tp|(C; :=T¢)€E j=1...k
(Ij :Vpl:Pl,...Vpr:P,«,Aj) ck

INd(D)[Cp](T; :=Tc)€E i=1l.n
(ci:Vp1:Pr,.. Vo : P, Ci{l;/(Ijpr...pr)}j=1.k) €EE

Example. We have(List : Set — Set), (cons : V A : Set, A — (List A) — (List A)),
(Length : ¥V A : Set, (List A) — nat — Prop), tree : Set andforest : Set.
From now on, we writéist_A instead of(List A) andLength_A for (Length A).

45.3 Well-formed inductive definitions

We cannot accept any inductive declaration because some of them lead to inconsistent systems. We
restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving the formal
rules, we need a few definitions:

Definitions A typeT is anarity of sorts if it converts to the sort or to a product = : T, U with U an
arity of sorts. (For instanced — SetorV A : Prop, A — Prop are arities of sort respective§et and
Prop). A type of constructor of is either atern{/ ¢, ... t,,) orVz : T, C with C' atype of constructor
of I.

The type of constructof” will be said tosatisfy the positivity conditiofor a constantX in the
following cases:

e I'=(Xt;...t,) andX does not occur free in arty

e T'=Vz:UV andX occurs only strictly positively i/ and the typd/ satisfies the positivity
condition for X

The constan occurs strictly positivelyn 7" in the following cases:

e X does not occur i’

e T convertsto X ¢ ... t,) andX does not occur in any df

e T convertstov x : U,V and X does not occur in typ& but occurs strictly positively in typ&

e T convertstol ay ... ap t; ... t,) wherel is the name of an inductive declaration of the form
Ind(T)[p1: Pi;...;pm : Pu](I: A:=c1:Cy;...5¢, 0 Cy) (in particular, it is not mutually de-
fined and it hasn parameters) and does not occur in any of thig, and the types of constructor
Ci{pj/a;}j=1..m of I satisfy the imbricated positivity condition fof

The type of constructdrl’ of I satisfies the imbricated positivity conditidor a constantX in the
following cases:

e T'=(It;...t,)andX does not occur in ang;
e T'=Vzx:U,VandX occurs only strictly positively i/ and the typd/ satisfies the imbricated
positivity condition forX
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Example X occurs strictly positively inA — X or X x A or (1istX) but notinX — A or

(X — A) — Anor(neg A) assuming the notion of product and lists were already defineshegds

an inductive definition with declaratidnd()[A : Set](neg : Set := neg : (A — False) — neg). As-
sumingX has aritynat — Prop andex is the inductively defined existential quantifier, the occurrence
of X in (exnat An: nat, (Xn)) is also strictly positive.

Correctness rules. We shall now describe the rules allowing the introduction of a new inductive defi-
nition.

W-Ind Let E be an environment anld, I'p, I';, I'~ are contexts such th&y is [I; : Aq;...; I : Akl
andlcis[c1 : Cy;.. .50 0 Gyl
(E[F;FP] H Aj : S;)jzlmk (E[F; PP; P[] H Cz : Spi)izl...n
WE(E:Ind(D)[Tp](T7 :=Te)))

providing the following side conditions hold:

o k>0,1;c; are differentnamesfor=1...kandi =1...n,
e forj =1...kwe haveA; is an arity of sorts; andl; ¢ ' U £,

e fori = 1...n we haveC; is a type of constructor of,,, which satisfies the positivity
condition forl; ... Iy andc; ¢ TU E.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort
of the type of its constructors which will always be satisfied for the impredicative Bavp} but may

fail to define inductive definition on so8et and generate constraints between universes for inductive
definitions in types.

Examples It is well known that existential quantifier can be encoded as an inductive definition. The
following declaration introduces the second-order existential quantifieP (X).

Coq < Inductive exProp (P:Prop->Prop) : Prop
Coq < := exP_intro : forall X:Prop, P X -> exProp P.

The same definition o8et is not allowed and fails :

Coq < Inductive exSet (P:Set->Prop) : Set
Cog < = exS_intro : forall X:Set, P X -> exSet P.
Cog < Cog < User error: Large non-propositional inductive types must be in Type

It is possible to declare the same inductive definition in the univype. The exType inductive
definition has typ&Type; — Prop) — Type; with the constraint < j.

Coq < Inductive exType (P:Type->Prop) : Type
Cog < = exT_intro : forall X:Type, P X -> exType P.

4.5.4 Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have
to say how to use an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them
are logically equivalent but not always equivalent from the computational point of view or from the user
point of view.
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92 4 Calculus of Inductive Constructions

From the computational point of view, we want to be able to define a function whose domain is an
inductively defined type by using a combination of case analysis over the possible constructors of the
object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalising
reduction, we cannot accept any sort of recursion (even terminating). So the basic idea is to restrict
ourselves to primitive recursive functions and functionals.

For instance, assuming a parameter. Set exists in the context, we want to build a function
length of typeList_A — nat which computes the length of the list, so such tfiangth nil) = O and
(length (cons A al)) = (S (length [)). We want these equalities to be recognized implicitly and taken
into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want
to capture the fact that we do not have any other way to build an object in this type. So when trying to
prove a property P m) for m in an inductive definition it is enough to enumerate all the cases where
starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra prop-
erty that we have built the smallest fixed point of this recursive equation. This says that we are only
manipulating finite objects. This analysis provides induction principles.

For instance, in order to prové : List_A, (Length_A [ (length [)) it is enough to prove:

(Length_A nil (length nil)) and

Va : A, Vi : List_A, (Length_Al (length 1)) — (Length_A (cons A a 1) (length (cons A a l))).

which given the conversion equalities satisfieddnygth is the same as provingtength_A nil O) and
Va : A, VI : List_A, (Length_A [ (length [)) — (Length_A (cons A al) (S (length 1))).

One conceptually simple way to do that, following the basic scheme proposed by Martin-L6f in his
Intuitionistic Type Theory, is to introduce for each inductive definition an elimination operator. At the
logical level it is a proof of the usual induction principle and at the computational level it implements a
generic operator for doing primitive recursion over the structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq to
factorize the operator for primitive recursion into two more primitive operations as was first suggested
by Th. Coquand in [25]. One is the definition by pattern-matching. The second one is a definition by
guarded fixpoints.

The match...with ...end construction.

The basic idea of this destructor operation is that we have an abjéctan inductive typel and we
want to prove a propertyP m) which in general depends on. For this, it is enough to prove the
property form = (c¢; u1 ... uy,) for each constructor af.

The Coqterm for this proof will be written :

match m with (¢1 z11 ... 1p,) = fi | ... | (tn Tn1---Tnp,) = fn €N

In this expression, ifn is a term built from a constructdr; u; . . . up, ) then the expression will behave
as itis specified withi-th branch and will reduce t§ where ther;;...z;,, are replaced by the; ... u,
according to the-reduction.

Actually, for type-checking anatch. .. with. .. end expression we also need to know the predicate
P to be proved by case analysis.oQ can sometimes infer this predicate but sometimes not. The
concrete syntax for describing this predicate usesathe. return construction. The predicate will be
explicited using the syntax :

match m as x return (P x) with (¢; 211 ... Z1p,) = f1 | ... | (cn Tn1...np, ) = fnend
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For the purpose of presenting the inference rules, we use a more compact notation :

case(m, (Az, P), Ax11 ... T1py, f1| -+ | AZpi..Znp,,, fn)

This is the basic idea which is generalized to the case whisran inductively defined-ary relation
(in which case the propert¥ to be proved will be a + 1-ary relation).

Non-dependent elimination. When defining a function by case analysis, we build an object of type
I — C and the minimality principle on an inductively defined logical predicate of type> Prop
is often used to prove a propeftyt : A, (I ) — (C x). This is a particular case of the dependent
principle that we stated before with a predicate which does not depend explicitly on the object in the
inductive definition.

For instance, a function testing whether a list is empty can be defined as:

Al: List_A, case(l,bool,nil = true | (consam) = false)

Allowed elimination sorts. An important question for building the typing rule foratch is what can
be the type of with respect to the type of the inductive definitions.

We define now a relatiofY : A|B] between an inductive definitiohof type A, an arity B which
says that an object in the inductive definitibican be eliminated for proving a propet®of type B.

The case of inductive definitions in sofést or Type is simple. There is no restriction on the sort of
the predicate to be eliminated.

Notations. The|[I : A|B] is defined as the smallest relation satisfying the following rules: We write
[I|B] for [ : A|B] whereA is the type off.

Prod
[(Iz): A|B]
[I:(x:A)A|(x: A)B']

Set& Type
s1 € {Set, Type(j)},s2 € S
[I . 81’1 — 82}

The case of Inductive Definitions of sdPtop is a bit more complicated, because of our interpre-
tation of this sort. The only harmless allowed elimination, is the one when predicet@lso of sort
Prop.

Prop
[I : Prop|l — Prop|

Prop is the type of logical propositions, the proofs of propertiésn Prop could not be used for
computation and are consequentely ignored by the extraction mechanism. AdsantkB are two
propositions, and the logical disjunctiehv B is defined inductively by :

Cog < Inductive or (A B:Prop) : Prop =
Coq < linto : A -> or AB | rintro : B -> or A B.

The following definition which computes a boolean value by case over the promf & B is not
accepted :
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Cog < Definition choice (A B: Prop) (x:or A B) =

Coq < match x with lintro a => true | rintro b => false end.
Cog < Coq < Error: Incorrect elimination of "x" in the inductive type
or

The elimination predicate "fun _ : or A B => bool" has type

"or A B -> Set"

It should be one of :

"Prop"

Elimination of an inductive object of sort : "Prop"

is not allowed on a predicate in sort : "Set"

because non-informative objects may not construct informative ones.

From the computational point of view, the structure of the proofoof A B) in this term is needed
for computing the boolean value.

In general, if] has typeProp then P cannot have typd — Set, because it will mean to build
an informative proof of typé P m) doing a case analysis over a non-computational object that will
disappear in the extracted program. But the other way is safe with respect to our interpretation we can
havel a computational object anfl a non-computational one, it just corresponds to proving a logical
property of a computational object.

In the same spirit, elimination oR of typel — Type cannot be allowed because it trivially implies
the elimination onP of typel — Set by cumulativity. It also implies that there is two proofs of the same
property which are provably different, contradicting the proof-irrelevance property which is sometimes
a useful axiom :

Cog < Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y.
proof _irrelevance is assumed

The elimination of an inductive definition of tygerop on a predicate® of typel — Type leads to a
paradox when applied to impredicative inductive definition like the second-order existential quantifier
exProp defined above, because it give access to the two projections on this type.

Empty and singleton elimination There are special inductive definitions Brop for which more
eliminations are allowed.

Prop -extended
I is an empty or singleton definitiors € S

[I : Prop|I — 5]

A singleton definitiorhas only one constructor and all the arguments of this constructor have type
Prop. In that case, there is a canonical way to interpret the informative extraction on an object in that
type, such that the elimination on any seris legal. Typical examples are the conjunction of non-
informative propositions and the equality. If there is an hypothksis: = b in the context, it can be
used for rewriting not only in logical propositions but also in any type.

Coq < Print eq_rec.
eq_rec =
fun (A : Type) (x : A) (P : A -> Set) => eqg_rect x P
: forall (A : Type) (x : A) (P : A -> Set),
Px->forally : A, x =y ->Py
Argument A is implicit
Argument scopes are [type_scope _ _ ]

Cog < Extraction eq_rec.
(** val eg_rec : 'al -> 'a2 -> 'al -> 'a2 *)
let eqg_rec x fy=

f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.
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Type of branches. Let c be a term of type”, we assumé’' is a type of constructor for an inductive
definition I. Let P be a term that represents the property to be proved. We assisitee number of
parameters.

We define a new typéc : '} which represents the type of the branch corresponding te th@
constructor.

{e:(Lipr...prt1... 1))} =(Pt1... tyc)
{¢:Vaz:T CY¥ =vVa:T,{(cx):C}’
We write {c}* for {c : O} with C the type ofc.

Examples. ForList_A the type ofP will be List_ A — sfors € S.
{(cons A)} =Va: A,V : List_A, (P (cons Aal)).
For Length_A, the type of P will be Vi : List_A,Vn : nat, (Length_A [ n) — Prop and the
expressior{ (Lcons A)}” is defined as:
Va : A,V : List_A,Vn : nat,Vh : (Length_Aln), (P (cons Aal) (Sn) (Lcons Aalnl)).
If P does not depend on its third argument, we find the more natural expression:
Va : A,V : List_A,Vn : nat, (Length_Aln) — (P (cons Aal) (Sn)).

Typing rule.  Our very general destructor for inductive definition enjoys the following typing rule

match

Eltce:Iqr...qpt1...ts) ELIF-P:B [(Iqi...q-)B] (EL]F fi:{(cp, q1-- .q,«)}P)izlml
E[l'lFcase(e,P, fi... fi): (Pti...tsc)

provided! is an inductive type in a declaratidnd(A)[I'p|(I'; := ¢ ) with |T'p| = 7, T'c =
[c1: Cr;...5cn - Cpl @andey, ... ¢y, are the only constructors af

Example. For List andLength the typing rules for thematch expression are (writing just : M
instead ofE[I'] - t : M, the environment and context being the same in all the judgments).

l:List A P:List A—s fi:(P(nilA)) fo:Va:AVL:List_A (P (cons Aal))
case(l, P, f1 f2) : (P1)

H : (Length_A L N)
P :Vi:List_A,Vn : nat, (Length_Aln) — Prop
fi: (P (nil A) O Lnil)
fa :Va: AV : List_A,Vn : nat,Vh : (Length_Aln), (P (cons Aan) (Sn) (Lcons Aalnh))
case(H,P, fi f2): (PLN H)

Definition of «-reduction. We still have to define thereduction in the general case.
A (-redex is a term of the following form:

case((cp, q1---qra1...am), P, fi... f1)

with ¢,, thei-th constructor of the inductive typewith » parameters.
The-contraction of this term i§f; a; . .. a,,) leading to the general reduction rule:

case((cp, q1---qrar...am), P, fi... fo)>, (fiar...am)
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4.5.5 Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually
recursive definitions. The basic concrete syntax for a recursive set of mutually recursive declarations is
(with T'; contexts) :

fix f1 (Fl) : A1 =1 with ... with fn(l“n) : An =1ty

The terms are obtained by projections from this set of declarations and are written
fix fl(I‘l) : Ay :=t1 with ... with fn(Fn) : A, =t, for f@
In the inference rules, we represent such a term by
Fix fz{fl : /1 = t,l e fn A;z = t;l}
with ¢/ (resp. A}) representing the term abstracted (resp. generalised) with respect to the bindings in
the context’;, namelyt, = AT';, ¢; and A, = VT';, A;.
Typing rule
The typing rule is the expected one for a fixpoint.
Fix
(BT Ai:si)i=t.n (BT, f1:Ar, oo fo Ap] Fti 0 Ad)i=1n
ET|FFRix fi{fi:Ai:=t1...fn:An =1t} 4;

Any fixpoint definition cannot be accepted because non-normalizing terms will lead to proofs of
absurdity.

The basic scheme of recursion that should be allowed is the one needed for defining primitive re-
cursive functionals. In that case the fixpoint enjoys a special syntactic restriction, namely one of the
arguments belongs to an inductive type, the function starts with a case analysis and recursive calls are
done on variables coming from patterns and representing subterms.

For instance in the case of natural numbers, a proof of the induction principle of type

VP : nat — Prop, (P O) — ((n:nat)(Pn) — (P (Sn))) — Vn:nat, (Pn)
can be represented by the term:

AP :nat — Prop, A\f : (P O),Ag: (Vn:nat,(Pn) — (P (Sn))),
Fix h{h:Vn:nat, (P n):= An:nat,case(n, P, f \p:nat,(gp (hp)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is
“guarded”. A precise analysis of this notion can be found in [59].

The first stage is to precise on which argument the fixpoint will be decreasing. The type of this
argument should be an inductive definition.

For doing this the syntax of fixpoints is extended and becomes

Fix fz{fl/kl : Al =1 fn/kn : An = tn}

wherek; are positive integers. Each; should be a type (reducible to a term) starting with at léast
productsvy; : By, ...y, : By,, A; and By, being an instance of an inductive definition.

Now in the definitiont;, if f; occurs then it should be applied to at leasarguments and thie;-th
argument should be syntactically recognized as structurally smallegthan
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The definition of being structurally smaller is a bit technical. One needs first to define the notion of
recursive arguments of a constructdror an inductive definitiotnd(I")[I'|(T'; := I'c ), the type of
a constructor: have the formvp; : Pi,...Vp, : P.,Vay : Ty,...Va, : T, (I; p1...pr t1...ts) the
recursive arguments will correspondpin which one of thel; occurs.

The main rules for being structurally smaller are the following:
Given a variable; of type an inductive definition in a declaratiomd(I")[I'p|(T'; := I'¢ ) wherel'; is
[I1: Ap;...; I 2 Agl, andl¢is [eq : Chj; .. .5 ¢ 2 Cp). The terms structurally smaller thgrare:

e (tu), \z:u,t whent is structurally smaller thap .

e case(c, P, f1... fn) when eacty; is structurally smaller thap.
If cisy or is structurally smaller thag, its type is an inductive definitiol, part of the induc-
tive declaration corresponding 0 Each f; corresponds to a type of constructoy = Vy; :
Bi,...Vyi : Bg, (I a1...a;) and can consequently be writtew, : B, ... \yy : By, gi. (B]
is obtained fromB; by substituting parameters variables) the varialesccurring ing; cor-
responding to recursive argumenmn®s (the ones in which one of th§ occurs) are structurally
smaller thany.

The following definitions are correct, we enter them usingEhgoint command as described in
section 1.3.4 and show the internal representation.

Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Cog < match n with

Coq < | O =>m

Coq < | S p =S (plus p m)

Cog < end.

plus is recursively defined

Coq < Print plus.

plus =

(fix plus (n m : pat) {struct n} : nat :=
match n with

| O =>m
| Sp=>S (plus p m)
end)

: hat -> nat -> nat

Coq < Fixpoint Igth (A:Set) (l:list A) {struct I} : nat :=
Coq < match | with

Coq < | nil => O

Coq < | cons al' => S (Igth A I

Cog < end.

Igth is recursively defined

Coq < Print Igth.
Igth =
(fix Igth (A : Set) (I : list A) {struct I} : nat :=
match | with
| nil => O
| cons _I' =>S (Igth A I
end)
: forall A : Set, list A -> nat
Argument scopes are [type_scope ]

Cog < Fixpoint sizet (t:itree) : nat := let (f) := t in S (sizef f)
Cog < with sizef (f:forest) : nat :=
Coq < match f with
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Cog < | emptyf => O

Coq < | consf t f => plus (sizet t) (sizef f)

Cog < end.

sizet, sizef are recursively defined

Coq < Print sizet.
sizet =
fix sizet (t : tree) : nat =
let (f) ;= t in S (sizef f)
with sizef (f : forest) : nat :=
match f with
| emptyf => O
| consf t fO => plus (sizet t) (sizef f0)
end
for sizet
. tree -> nat

Reduction rule

Let F' be the set of declarationg; /k; : Ay :=t1... fn/kn : Ay = t,. The reduction for fixpoints is:

(FiX fl{F} a ... aki) >, ti{(fk/FiX fk{F})kZI...n}

whenay, starts with a constructor. This last restriction is needed in order to keep strong normalization
and corresponds to the reduction for primitive recursive operators.
We can illustrate this behavior on examples.

Coq < Goal forall n m:nat, plus (S n) m = S (plus n m).
1 subgoal

forall n m : nat, plus (S n) m =S (plus n m)

Coq < reflexivity.
Proof completed.

Coq < Abort.
Current goal aborted

Coq < Goal forall f:forest, sizet (node f) = S (sizef f).
1 subgoal

forall f : forest, sizet (node f) = S (sizef f)

Coq < reflexivity.
Proof completed.

Coq < Abort.
Current goal aborted

But assuming the definition of a son function frarae to forest:
Cog < Definition sont (t:itree) : forest
Coq < =let (f) = tin f.

sont is defined

The following is not a conversion but can be proved after a case analysis.
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Cog < Goal forall titree, sizet t = S (sizef (sont t)).
Coq < Cog < 1 subgoal

forall t : tree, sizet t = S (sizef (sont t))

Cog < reflexivity. (** this one fails **)
Toplevel input, characters 0-11

> reflexivity.

> NNANNNNNNNNN

Error: Impossible to unify "S (sizef (sont t))" with "sizet t"

Cog < destruct t.
1 subgoal

f : forest

sizet (node f) = S (sizef (sont (node f)))

Coq < reflexivity.
Proof completed.

Mutual induction

The principles of mutual induction can be automatically generated usin§dheme command de-
scribed in section 8.13.

4.6 Coinductive types

The implementation contains also coinductive definitions, which are types inhabited by infinite objects.
More information on coinductive definitions can be found in [60, 61].

4.7 Cic: the Calculus of Inductive Construction with impredicative Set

CoQ can be used as a type-checker fac(the original Calculus of Inductive Constructions with an
impredicative sorSet by using the compiler optiosimpredicative-set
For example, using the ordinacpqgtop command, the following is rejected.

Coq < Definition id: Set := forall X:Set,X->X.
Coq < Cog < Coqg < Coq < Toplevel input, characters 192-202
> Definition id: Set := forall X:Set,X->X.

> NANNNNNNNNN

Error. The term “forall X : Set, X -> X" has type "Type"
while it is expected to have type "Set"

while it will type-check, if one use instead tbeqtop -impredicative-set command.
The major change in the theory concerns the rule for product formation in th&stnivhich is
extended to a domain in any sort :

Prod
ETFT:s s€S El:(x:T)|FU:Set
ElFVaz:T,U : Set

Coq Reference Manual, V8.0, June 27, 2004



100 4 Calculus of Inductive Constructions
This extension has consequences on the inductive definitions which are allowed. In the impredicative
system, one can build so-callé&atge inductive definitionike the example of second-order existential
quantifier €xSet ).

There should be restrictions on the eliminations which can be performed on such definitions. The
eliminations rules in the impredicative system for sset become :

Set
s € {Prop, Set} I isasmall inductive definition s € {Type(i)}

[I: Set|] — 5] [I: Set|] — 5]
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Chapter 5

The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to
structure large developments as well as a mean of massive abstraction.

5.1 Modules and module types

Access path. Itis denoted by, it can be either a module variahké or, if p’ is an access path arid
an identifier, then'.id is an access path.

Structure element. It is denoted byimpl and is either a definition of a constant, an assumption, a
definition of an inductive or a definition of a module or a module type abbreviation.

Module expression. It is denoted by\/ and can be:
e an access path
e a structuréstruct Impl;. . .;Impl End

e a functorFunctor(X : T') M’, whereX is a module variableT is a module type and/’ is a
module expression

e an application of access pathp”

Signature element. It is denoted bySpeg¢it is a specification of a constant, an assumption, an induc-
tive, a module or a module type abbreviation.

Module type, denoted byl" can be:
e a module type name
e an access path
e a signaturé&ig Spec. . .;SpecEnd

e a functor typeFunsig(X : 7") T”, whereT” andT” are module types

Module definition, written Mod(X : 7' := M) can be a structure element. It consists of a module
variableX, a module typd’ and a module expressiad.
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Module specification, written ModS(X : T") or ModSEq(X : T' == p) can be a signature element or
a part of an environment. It consists of a module variablea module typd” and, optionally, a module
pathp.

Module type abbreviation, written ModType(S := T'), whereS is a module type name aridis a
module type.

5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environ-
ments given in section 4.1. The environments, apart from definitions of constants and inductive types
now also hold any other signature elements. Terms, apart from variables, constants and complex terms,
include also access paths.

We also need additional typing judgments:

e E[| - WF(T), denoting that a module tyge is well-formed,
e E[]F M : T, denoting that a module expressidfihas typel” in environmentt.
e E[] - Impl : Spe¢denoting that an implementatidmypl verifies a specificatioBpec

e E[|+ Ty <: Ty, denoting that a module ty@8 is a subtype of a module typgie.

E[] - Speg <: Speg, denoting that a specificatidBpeg is more precise that a specification
Speg.

The rules for forming module types are the following:

WF-SIG
WF(E; E']]

E[] - WF(Sig E' End)

WF-FUN
E;ModS(X : T[] - WF(T")

E[| - WF(Funsig(X : T) T")

Rules for typing module expressions:

MT-STRUCT
E[] - WF(Sig Speg; . .. ; Speg End)
E;Speg;...;Spe¢_,[| F Impl, : Spe¢ fori=1...n
E[] & Struct Imply;...; Impl, End : Sig Speg; . .. ; Speq End
MT-FUN
E;ModS(X : T)[|F M : T’
E[] F Functor(X : T) M : Funsig(X : T') T"
MT-APP
E[| & p: Funsig(X; : Ty) ... Funsig(X,, : T,,) T”
EH |_pi : T’i{Xl/pl .. .Xifl/pifl} fori=1...n
ElFppr...pn: T{X1/p1... Xn/pn}

MT-SUB

E|FM:T EFT < T
E[JFM:T
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MT-STR

Elltp:T
EJFp:T/p
The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The
notation7'/p has the following meaning:

e if T = Sig Speg;...;Speq End thenT/p = Sig Speg/p;...;Spec /p End whereSpedp is
defined as follows:
— Def()(c:=U:t)/p = Def()(c:=U :t)
Assum()(c:U)/p = Def()(c:=p.c:U)
ModS(X : T)/p = ModSEq(X : T/p.X == p.X)
ModSEq(X : T'==19p')/p = ModSEq(X : T//p == p')
Ind()[T'p](Tc :=T1)/p = Ind,()[Lp](T'c :=T7)
Ind,y )[Cp)(Cc :==T1) /p = Indy([Tp|(Tc = Tr)
o if T'=Funsig(X : T) T" thenT/p =T

e if T is an access path or a module type name, then we have to unfold its definition and proceed
according to the rules above.

The notationInd,()[T'p](I'c :=T;) denotes an inductive definition that is definitionally equal

to the inductive definition in the module denoted by the path All rules which have

Ind()[T'p](I'c :=T';) as premises are also valid ford,()[I'p](I'c :=T';) . We give the formation

rule forind,()[I'p](I'c :=T';) below as well as the equality rules on inductive types and constructors.
The module subtyping rules:

MSUB-SIG
E; Speg; . .. ; Speg | - Speg ;) <: Speg fori = 1..m
o:{1...m}— {1...n} injective
EJ| + Sig Speg; . .. ; Speg, End <: Sig Speg; . . . ; Spe¢, End
MSUB-FUN

EFT] <:Ty E;ModS(X : T))[| F Tp <: T}
E[] F Funsig(X : T1) Ty <: Funsig(X : T7) T}

Specification subtyping rules:

ASSUM-ASSUM
E| F Uy <gsic Ua

E[] = Assum()(c: Uy) <: Assum()(c : Ua)

DEF-ASSUM
E[| F Ui <gsic Ua
E[| - Def()(c:=t:Uy) <: Assum()(c : Ua)
ASSUM-DEF
EH FU; <Bsuc U, EH Fe =gs.c 12
E[] - Assum()(c: Uy) <: Def()(c := ty : Ua)
DEF-DEF

E[ = Uy <gsic Uz E[l Ft1 =gsic t2
E[| + Def()(c:=t; : Uy) <: Def()(c := tg : Ua)
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IND-IND

E[FTp =5 Tp  E[lp|FTc =psc T E[lp;To]l FTr =psic I
B[ - Ind[Tp](To = T7) < Ind() [T (T, = T )

INDP-IND

EJFTpr=psc U'p  ELpIFTeo =psc T EpiTol F T =psic I
B[ - Ind,()[Tp)(Tc :==T7) <:Ind([Ip](Ig :=T7)

INDP-INDP

ElFTp =5 Ip E[p|FTc=p50Tr EIp;TeltETr=p5cT) E[JFp=psc?
E[lFInd,()[Tp](Tc :=T7) <:Indy()[Tp)(Ty :=T7)

MODS-MODS
EFT < Ty
EH F ModS(m : Tl) <: ModS(m : Tg)
MODEQ-MODS
EH [ T <: Ty
E[] = ModSEq(m : T == p) <: ModS(m : T)
MODS-MODEQ

EH FTl <:T2 E[]Fm:&hcpg
E[] F ModS(m : T1) <: ModSEq(m : Th == p3)

MODEQ-MODEQ

E|FTi <:Ty  E[F pi =g p2
E[] = ModSEq(m : Ty == p1) <: ModSEq(m : Th == pa)

MODTYPE-MODTYPE

EfFTi<Ty E[FT<T
E[] F ModType(S :=T1) <: ModType(S := T»)

Verification of the specification

IMPL-SPEC
WF(E; Sped|]
Speds one ofDef, Assum, Ind, Mod Type
E[] + Spec: Spec

MOD-MODS

WEF(E;ModS(m : T))][] E-M:T

E[JFMod(m : T := M) : ModS(m : T)
MOD-MODEQ

WF(E;ModSEq(m : T' == p))|] EllFp=psc P
E[JF Mod(m : T :=p') : ModSEq(m : T == p/)

New environment formation rules
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WF-MODS

WF(E)]| E[|F WF(T)
WEF(E;ModS(m : T))(]

WF-MODEQ
WF(E)[] Elbp:T
WEF(E,ModSEq(m : T == p))|]
WF-MODTYPE
WEF(E)[] E[|-WF(T)
WEF(E,ModType(S :=T))]]
WF-IND

WF(E; Ind()[T'p](Tc :=T7))]]
E[| - p:Sig Speg;...;Speg; Ind()[I'p](I'y :==T%);... End :

WF(E; Ind,()[Cp](Tc :=T7) )]

Component access rules

ACC-TYPE
E[I'] + p: Sig Speg; . . .; Speci; Assum()(c : U); ... End

E[I'l - p: Sig Speg;...; Spec;; Def()(c:=t: U);... End

ACC-DELTA Notice that the following rule extends the delta rule defined in section 4.3

E[I')F p: Sig Speg;...; Spec;; Def()(c:=t: U);... End

In the rules below we assuni& is [p1 : Pi;...;pr 2 B, Tris [l : Ar;...; I« Ag], andl¢ is
[c1:C;.. 50 Oy

ACC-IND
E[T|+ p: Sig Speg; . ..;Speg; Ind()[T'p|(T'c :=T7);... End

E[I'l+p:Sig Speg;...;Spe¢; Ind()[I'p](I'c :=T7);... End
E[F] F P-Cm : (pl : Pl) cee (pr : Pr)cm{I]/(Ij b1 -. 'pr)}j:l...k{p'l/l}lelabels(Specl;...;Speci)

ACC-INDP
E[| - p:Sig Speg;...;Speg;Ind,()[T'p](I'c :=T7) ;... End
EH F p.fi Ds p/.fi

E[l - p:Sig Speg;...;Speg;Ind,()[['p]l'c:=TI7) ;... End
E[lFp.civsp.c
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ACC-MOD
E[l]+ p: Sig Speg; . . .; Spec;; ModS(m : T); ... End
BT Fpm: T{p.l/U}1ciabeis(Specss...;Spec:)
E[T] + p: Sig Speg; . . .; Speci; ModSEq(m : T == p');... End
ET]Fpm: T{p.l/U}1ciabeis(Specss...;Spec:)
ACC-MODEQ

E[] + p: Sig Speg; . . .; Spec;; ModSEq(m : T == p');... End

E[F] - p-mbs p/{p-l/l}lelabels(Specl;...;Speci)
ACC-MODTYPE
E[l'| F p: Sig Speg; .. .; Spec;; ModType(S :=T);... End
E[F] Ep.Sps T{p'l/l}lelabels(Specl;...;Specz-)

The functionlabels() is used to calculate the set of label of the set of specifications.

It is defined

by labels(Speg; . ..;Speq) = labels(Speg) U ...;Ulabels(Speg) wherelabels(Speg is defined as

follows:
e labels(Assum(I')(c: U)) = {c},
labels(Def(T)(c:=t: U)) = {c},
labels(Ind(T) [T p](Ce :=T1)) = dom(T'¢) U dom(T'y),
(
(

labels(ModS(m : T')) = {m},
labels(ModSEq(m : T = ) = {m},

o labels(ModType(S :=T)) = {S}

Environment access for modules and module types

ENV-MOD
WF(E;ModS(m : T'); E')[T)
E;ModS(m :T); E'[I'|Fm : T
WF(E; ModSEq(m : T == p); E')[T]
E;ModSEq(m : T ==p); E'I'|Fm: T
ENV-MODEQ
WF(E; ModSEq(m : T == p); E')[I']
E;ModSEq(m : T ==p); E'[['| F m>s p
ENV-MODTYPE
WF(E; ModType(S :=T); E')[T]
E;ModType(S :=T); E'[l| - S>s T
ENV-INDP

WF(E;Ind,O)[Cp](Te :=T7) )]
E;Ind,)[Tpl(Cc:==T7) [ F Livs pd;
WF(E;Ind,O[Cp](Te :=T7) )]
E;Ind,()[Tp)(Tc:==T7) [ F ¢;>sp.ci
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Chapter 6

Vernacular commands

6.1 Displaying

6.1.1 Print qualid.
This command displays on the screen informations about the declared or defined object referred by
qualid.
Error messages:
1. qualid not a defined object

Variants:
1. Print Term  qualid.
This is a synonym t®rint  qualid whenqualid denotes a global constant.

2. About qualid.
This displays various informations about the object denotegtiblid: its kind (module, constant,
assumption, inductive, constructor, abbreviation...), long name, type, implicit arguments and
argument scopes.

6.1.2 Print All

This command displays informations about the current state of the environment, including sections and
modules.
Variants:

1. Inspect  num.
This command displays theum last objects of the current environment, including sections and

modules.

2. Print Section ident.
should correspond to a currently open section, this command displays the objects defined since
the beginning of this section.

6.2 Requests to the environment

6.2.1 Check term.

This command displays the type @fm. When called in proof mode, the term is checked in the local
context of the current subgoal.
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6.2.2 Eval convtactic in term.

This command performs the specified reductionedm, and displays the resulting term with its type.
The term to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in
progress).

See alsosection 8.5.

6.2.3 Extraction term.

This command displays the extracted term framm. The extraction is processed according to the
distinction betweeiset andProp; that is to say, between logical and computational content (see section
4.1.1). The extracted term is displayed in Objective Caml syntax, where global identifiers are still
displayed as in 6Qterms.

Variants:

1. Recursive Extraction qualidy ... qualid.,.
Recursively extracts all the material needed for the extraction of glghalgl; ... qualid,,.

See alsochapter 18.

6.2.4 Opaque qualid, ... qualid,.

This command tells not to unfold the the constaqislid ...qualid,, in tactics usingy-conversion.
Unfolding a constant is replacing it by its definitio@paque can only apply on constants originally
defined agransparent

Constants defined by a proof ended ®g¢d are automatically stamped &paque and can no
longer be considered dsansparent . This is to keep with the usual mathematical practicerobf
irrelevance what matters in a mathematical development is the sequence of lemma statements, not their
actual proofs. This distinguishes lemmas from the usual defined constants, whose actual values are of
course relevant in general.

See alsosections 8.5, 8.11, 7.1.4

Error messages:

1. The reference qualid was not found in the current environment
There is no constant referred lyalid in the environment. Nevertheless, if you askggaque
foo bar andifbar does not existioo is set opaque.

6.2.5 Transparent qualid, ... qualid,.

This command is the converse Gfpaque and can only apply on constants originally defined as
Transparent to restore their initial behaviour after &pague command.

The constants automatically declared transparent are the ones defined by a proof ended by
Defined , or by aDefinition or Local with an explicit body.

Warning: Transparent andOpaque are not synchronous with the reset mechanism. If a constant

was transparent at point A, if you set it opaque at point B and reset to point A, you return to state of point

A with the difference that the constant is still opaque. This can cause changes in tactic scripts behaviour.
At section or module closing, a constant recovers the status it got at the time of its definition.

Error messages:
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1. The reference qualid was not found in the current environment
There is no constant referred Qyalid in the environment.

See alsosections 8.5, 8.11, 7.1.4

6.2.6 Search qualid.

This command displays the name and type of all theorems of the current context whose statement’s
conclusion has the forriqualid t1 .. tn) . This command is useful to remind the user of the
name of library lemmasError messages:

1. The reference qualid was not found in the current environment
There is no constant in the environment namedlid.

Variants:

1. Search qualid inside  module; ... module,,.
This restricts the search to constructions defined in modutekile; ... module,,.

2. Search qualid outside  module; ... module,,.
This restricts the search to constructions not defined in modudesle; ... module,,.

Error messages:

(a) Module/section module not found No modulemodule has been required (see sec-
tion 6.4.1).

6.2.7 SearchAbout qualid.

This command displays the name and type of all objects (theorems, axioms, etc) of the current context
whose statement contaiggalid. This command is useful to remind the user of the name of library
lemmas.

Error messages:

1. The reference qualid was not found in the current environment
There is no constant in the environment namealid.

Variants:
1. SearchAbout [  qualid-or-string ... qualid-or-string ].
wherequalid-or-string iS aqualid oOr astring.

This extension oSearchAbout searches for all objects whose statement mentions gllaifd
of the list and whose name containssahing of the list.

Example:

Coqg < Require Import ZArith.

Coq < SearchAbout [ Zmult Zplus "distr" ].
weak_Zmult_plus_distr_r:

forall (p : positive) (n m : Z),

(Zpos p * (N + M)%Z = (Zpos p * n + Zpos p * Mm)%Z
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Zmult_plus_distr_r:

foraln mp: Z (n* (M + p))%Z
Zmult_plus_distr_|I:

foraln mp:Z (h+m)*p%Z =0nN?%*p+m*prz
Omegalemmas.fast Zmult_plus_distr:

foral (n m p : 2) (P : Z -> Prop),

Ph*p+m?*p%RZ ->P (h+m)* p)hZ

(n*m + n* p)%Z

2. SearchAbout term inside  module; ... module,,.
SearchAbout [  qualid-or-string ... qualid-or-string | inside module; ... module,,.

This restricts the search to constructions defined in modutesile; ... module,,.

3. SearchAbout term outside  module;... module,,.
SearchAbout [  qualid-or-string ... qualid-or-string | outside moduley... module,.

This restricts the search to constructions not defined in modudesle; ... module,,.

6.2.8 SearchPattern term.

This command displays the name and type of all theorems of the current context whose statement’s
conclusion matches the expressierm where holes in the latter are denoted by.”

Coq < Require Import Arith.

Coq < SearchPattern (_ + _ = _ + ).

plus_comm: forall n m : nat, n + m = m + n

plus_Snm_nSm: forall n m : nat, S n+m=n+ S m

plus _assoc: forall n m p : nat, n + (M + p) =n+m+p
plus_permute: forall n m p : nat, n + (m + p) = m + (n + p)
plus_assoc_reverse: foral n m p : nat, n + m + p = n + (M + p)

plus_permute_2_in_4:
foraln mpg:nat, n+m+ (p+qg =n+p+ M+ Q)

Patterns need not be linear: you can express that the same expression must occur in two places by
using pattern variable®ident”.

Coq < Require Import Arith.

Cog < SearchPattern (?X1 + _ = _
plus_ comm: forall n m : nat, n + m = m + n

Variants:

1. SearchPattern term inside  module; ... module,,.

This restricts the search to constructions defined in modutehile; ... module,,.

2. SearchPattern term outside  module; ... module,,.

This restricts the search to constructions not defined in modudesle; ... module,,.
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6.2.9 SearchRewrite term.

This command displays the name and type of all theorems of the current context whose statement’s
conclusion is an equality of which one side matches the expreasian. Holes interm are denoted by

Coq < Require Import Arith.

Coq < SearchRewrite (_ + _+ ).
plus _assoc: foral n m p : nat, n + (M + p) =n+m+p
plus_assoc_reverse: foral n m p : nat, n + m + p = n + (M + p)
plus_permute_2_in_4:

foraln mpq:nat,n+m+(pP+9g =n+p+(mM+q)

Variants:

1. SearchRewrite term inside  module; ... module,,.

This restricts the search to constructions defined in modutekile; ... module,,.

2. SearchRewrite term outside  module; ... module,,.

This restricts the search to constructions not defined in moduddsle; ... module,,.

6.2.10 Locate qualid.

This command displays the full name of the qualified identifieilid and consequently thed module
in which it is defined.

Cog < Locate nat.
Inductive Coq.Init.Datatypes.nat

Cog < Locate Datatypes.O.
Constructor Coq.Init.Datatypes.O (visible as O)

Coq < Locate Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O (visible as O)

Coq < Locate Cog.Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O (visible as O)

Coq < Locate |.Dont.Exist.
No object of suffix I.Dont.Exist

See alsoSection 11.1.10

6.3 Loading files

CoqQ offers the possibility of loading different parts of a whole development stored in separate files.
Their contents will be loaded as if they were entered from the keyboard. This means that the loaded
files are ASCII files containing sequences of commands fog'€toplevel. This kind of file is called a
scriptfor CoQ. The standard (and default) extension af@s script files is.v .
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6.3.1 Load ident.

This command loads the file naméidnt.v , searching successively in each of the directories specified
in theloadpath (see section 6.5)

Variants:

1. Load string.
Loads the file denoted by the stringing, wherestring is any complete filename. Then theand
abbreviations are allowed as well as shell variables. If no extension is speciiedyill use
the default extensiorv

2. Load Verbose ident.,Load Verbose string
Display, while loading, the answers ofo@ to each command (including tactics) contained in the
loaded fileSee alsosection 6.8.1

Error messages:

1. Can't find file ident on loadpath

6.4 Compiled files

This feature allows to build files for a quick loading. When loaded, the commands contained in a
compiled file will not bereplayed In particular, proofs will not be replayed. This avoids a useless waste
of time.

Remark: A module containing an opened section cannot be compiled.

6.4.1 Require dirpath.

This command looks in the loadpath for a file containing moditeath, then loads and opens (imports)
its contents. More precisely, dirpath splits into a library dirpathdirpath’ and a module namélent,
then the fileident.vo is searched in a physical path mapped to the logical giapath’.

TODO: effect on the name table.

If the module required has already been loadedQGimply opens it (asmport  dirpath would
do it).

If a moduleA contains a commanBequire B then the commanBequire A loads the module
B but does not open it (See tRequire Export  variant below).

Variants:

1. Require Export qualid.
This command acts aRequire qualid. But if a moduleA contains a commanRequire
Export B, then the commanRBRequire A opens the modulB as if the user would have typed
Require B.

2. Require  qualid string.
Specifies the file to load as beisging but containing modulgualid which is then opened.

These different variants can be combined.

Error messages:

1. Cannot load ident: no physical path bound to dirpath
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2. Can't find module toto on loadpath

The command did not find the filmto.vo . Eithertoto.v  exists but is not compiled or
toto.vo isin adirectory which is not in youroadPath (see section 6.5).

3. Bad magic number

The fileident.vo was found but either it is not ad compiled module, or it was compiled with
an older and incompatible version ob@.

See alsochapter 12

6.4.2 Print Modules.

This command shows the currently loaded and currently opened (imported) modules.

6.4.3 Declare ML Module string; .. string,.

This commands loads the Objective Caml compiled fiteg, . ..string,, (dynamic link). It is mainly

used to load tactics dynamically. The files are searched into the current Objective Caml loadpath (see the
commandAdd ML Path in the section 6.5). Loading of Objective Caml files is only possible under

the bytecode version @oqtop (i.e.coqtop called with optionsbyte , see chapter 12).

Error messages:
1. File not found on loadpath : string

2. Loading of ML object file forbidden in a native Coq

6.4.4 Print ML Modules.

This print the name of all @ ecTIVE CAML modules loaded witibeclare ML Module . To know
from where these module were loaded, the user should use the contoeaite File  (see page
117)

6.5 Loadpath

There are currently two loadpaths iro@. A loadpath where seekingd® files (extensionsv or .vo
or.vi ) and one where seeking Objective Caml files. The default loadpath contains the directory “
denoting the current directory and mapped to the empty logical path (see section 2.5.2).

6.5.1 Pwd.

This command displays the current working directory.

6.5.2 Cd string.
This command changes the current directory accordingiae which can be any valid path.

Variants:

1. Cd.
Is equivalent tdPwd.
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6.5.3 Add LoadPath string as dirpath.

This command adds the pathing to the current ©Q loadpath and maps it to the logical directory
dirpath, which means that every fil.v physically lying in directorytring becomes accessible through
logical name dirpath.M”.

Remark: Add LoadPath also addstring to the current ML loadpath.

Variants:

1. Add LoadPath string.
Performs a®\dd LoadPath string as dirpath but for the empty directory path.

6.5.4 Add Rec LoadPath string as dirpath.

This command adds the directosying and all its subdirectories to the currenb@ loadpath. The
top directorystring is mapped to the logical directodirpath while any subdirectorpdir is mapped to
logical directorydirpath.pdir  and so on.

Remark: Add Rec LoadPath also recursively addgring to the current ML loadpath.

Variants:

1. Add Rec LoadPath string.
Works asAdd Rec LoadPath string as dirpath but for the empty logical directory path.

6.5.5 Remove LoadPath string.

This command removes the patiing from the current ©Q loadpath.

6.5.6 Print LoadPath.

This command displays the curreno@G loadpath.

6.5.7 Add ML Path string.

This command adds the padtring to the current Objective Caml loadpath (see the comnizetare
ML Module in the section 6.4).

Remark: This command is implied bpdd LoadPath string as dirpath.

6.5.8 Add Rec ML Path string.

This command adds the directontying and all its subdirectories to the current Objective Caml loadpath
(see the commanideclare ML Module in the section 6.4).

Remark: This command is implied bpdd Rec LoadPath string as dirpath.

6.5.9 Print ML Path  string.

This command displays the current Objective Caml loadpath. This command makes sense only under
the bytecode version @oqtop , i.e. using optionrbyte (see the commandeclare ML Module
in the section 6.4).
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6.5.10 Locate File string.

This command displays the location of filging in the current loadpath. Typicallyring is a.cmo or
.vo or.v file.

6.5.11 Locate Library dirpath.

This command gives the status of the@moduledirpath. It tells if the module is loaded and if not
searches in the load path for a module of logical nafineath .

6.6 States and Reset

6.6.1 Reset ident.

This command removes all the objects in the environment siwee was introduced, includingdent.
ident may be the name of a defined or declared object as well as the name of a section. One cannot reset
over the name of a module or of an object inside a module.

Error messages:

1. ident: no such entry

6.6.2 Back.

This commands undoes all the effects of the last vernacular command. This does not include commands
that only access to the environment like those described in the previous sections of this chapter (for
instanceRequire andLoad can be undone, but n@heck andLocate ). Commands read from a
vernacular file are considered as a single command.

Variants:

1. Back n
Undoesn vernacular commands.

Error messages:
1. Reached begin of command history

Happens when there is vernacular command to undo.

6.6.3 Restore State string.
Restores the state contained in the fiténg.

Variants:

1. Restore State ident
Equivalent toRestore State "  ident.coq"

2. Reset Initial.
Goes back to the initial state (like after the commanudjtop , when the interactive session
began). This command is only available interactively.
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6.6.4 Write State string.

Writes the current state into a fikering for use in a further session. This file can be given as the
inputstate argument of the commandsqtop andcoqc .

Variants:

1. Write State ident
Equivalent toWrite State " ident.coq" . The state is saved in the current directory (see
115).

6.7 Quitting and debugging
6.7.1 Quit.

This command permits to quit@.

6.7.2 Drop.

This is used mostly as a debug facility byo@'s implementors and does not concern the casual user.
This command permits to leaveo@ temporarily and enter the Objective Caml toplevel. The Objective
Caml command:

#use "include";;

add the right loadpaths and loads some toplevel printers for all abstract typesgefs€ction_path,
identfifiers, terms, judgements, .... You can also use thédige_include instead, that loads only
the pretty-printers for section_paths and identifiers. You can return bac&¢on@h the command:

go();;

Warnings:

1. It only works with the bytecode version ofd@ (i.e. cogtop called with option-byte , see
page 213).

2. You must have compiled@ from the source package and set the environment var2®@TOP
to the root of your copy of the sources (see section 12.4).

6.7.3 Time command.

This command executes the vernac commandmand and display the time needed to execute it.

6.8 Controlling display

6.8.1 Set Silent.

This command turns off the normal displaying.

6.8.2 Unset Silent.

This command turns the normal display on.
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6.8.3 Set Printing Width integer.

This command sets which left-aligned part of the width of the screen is used for display.

6.8.4 Unset Printing Width.

This command resets the width of the screen used for display to its default value (which is 78 at the time
of writing this documentation).

6.8.5 Test Printing Width.

This command displays the current screen width used for display.

6.8.6 Set Printing Depth integer.

This command sets the nesting depth of the formatter used for pretty-printing. Beyond this depth, display
of subterms is replaced by dots.

6.8.7 Unset Printing Depth.

This command resets the nesting depth of the formatter used for pretty-printing to its default value (at
the time of writing this documentation, the default value is 50).

6.8.8 Test Printing Depth.

This command displays the current nesting depth used for display.
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Chapter 7

Proof handling

In CoqQ's proof editing mode all top-level commands documented in chapter 6 remain available and
the user has access to specialized commands dealing with proof development pragmas documented in
this section. He can also use some other specialized commandstealied They are the very tools
allowing the user to deal with logical reasoning. They are documented in chapter 8.
When switching in editing proof mode, the prom@bdq < is changed intddent < whereident is the
declared name of the theorem currently edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only
in the theorem itself. After having applied some tactics, the list of goals contains the subgoals generated
by the tactics.

To each subgoal is associated a number of hypotheses we clalteheontexiof the goal. Initially,
the local context is empty. It is enriched by the use of certain tactics (see mainly section 8.3.5).

When a proof is achieved the mess&yeof completed s displayed. One can then store this
proof as a defined constant in the environment. Because there exists a correspondence between proofs
and terms of\-calculus, known as th€urry-Howard isomorphisnig8, 6, 64, 71], @Q stores proofs
as terms of @. Those terms are callgmoof terms

It is possible to edit several proofs at the same time: see section 7.1.8

Error message: When one attempts to use a proof editing command out of the proof editing mode,
CoQ raises the error messagblo focused proof

7.1 Switching on/off the proof editing mode

7.1.1 Goal form.

This command switches@) to editing proof mode and sefsrm as the original goal. It associates the
nameUnnamed_thm to that goal.

Error messages:

1. the term form has type ... which should be Set, Prop or Type
See alsosection 7.1.4

7.1.2 Qed.

This command is available in interactive editing proof mode when the proof is completed.QHten
extracts a proof term from the proof script, switches back t@@op-level and attaches the extracted
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proof term to the declared name of the original goal. This name is added to the environment as an
Opaque constant.

Error messages:
1. Attempt to save an incomplete proof

2. Sometimes an error occurs when building the proof term, because tactics do not enforce com-
pletely the term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this
point, one may have to wait a while when the proof is large. In some exceptional cases one may
even incur a memory overflow.

Variants:
1. Defined.
Defines the proved term as a transparent constant.

2. Save.
Is equivalent tdQed.

3. Save ident.

Forces the name of the original goal toident. This command (and the following ones) can only
be used if the original goal has been opened usingstbedl command.

4. Save Theorem ident.
Save Lemma ident.
Save Remark ident.
Save Fact ident.

Are equivalent tdsave ident.

7.1.3 Admitted.

This command is available in interactive editing proof mode to give up the current proof and declare the
initial goal as an axiom.

7.1.4 Theorem ident :  form.

This command switches to interactive editing proof mode and decideas as being the name of
the original goalform. When declared as Bheorem , the namedent is known at all section levels:
Theorem is aglobal lemma.

Error messages:
1. the term form has type ... which should be Set, Prop or Type
2. identalready exists
The name you provided already defined. You have then to choose another name.
Variants:

1. Lemmaident : form.
It is equivalent toTheorem ident :  form.
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2. Remark ident : form.
Fact ident : form.

Used to have a different meaning, but are now equivaleiiteorem ident :  form. They
are kept for compatibility.

3. Definition ident :  form.

Analogous toTheorem, intended to be used in conjunction wilkefined (see 1) in order to
define a transparent constant.

4. Local ident : form.

Analogous taDefinition except that the definition is turned into a local definition on objects
depending on it after closing the current section.

7.1.5 Proof term.

This command applies in proof editing mode. It is equivalergxact term; Save. Thatis, you
have to give the full proof in one gulp, as a proof term (see section 8.2.1).

Variants:

1. Proof.

Is a noop which is useful to delimit the sequence of tactic commands which start a proof, after a
Theorem command. It is a good practice to uBeoof. as an opening parenthesis, closed in
the script with a closinged.

2. Proof with tactic.
This command may be used to start a proof. It defines a default tactic to be used each time a tactic
command is ended by.? ”. In this case the tactic command typed by the user is equivalent to
commangckactic.

7.1.6 Abort.

This command cancels the current proof development, switching back to the previous proof develop-
ment, or to the ©Q toplevel if no other proof was edited.

Error messages:

1. No focused proof (No proof-editing in progress)

Variants:

1. Abort ident.
Aborts the editing of the proof namedent.

2. Abort All.
Aborts all current goals, switching back to theQtoplevel.

7.1.7 Suspend.

This command applies in proof editing mode. It switches back to the ©plevel, but without cancel-
ing the current proofs.
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7.1.8 Resume.

This commands switches back to the editing of the last edited proof.

Error messages:

1. No proof-editing in progress

Variants:

1. Resume ident.

Restarts the editing of the proof namefént. This can be used to navigate between currently
edited proofs.

Error messages:

1. No such proof

7.2 Navigation in the proof tree

7.2.1 Undo.
This command cancels the effect of the last tactic command. Thus, it backtracks one step.

Error messages:
1. No focused proof (No proof-editing in progress)

2. Undo stack would be exhausted

Variants:

1. Undo num.
RepeatdJndo num times.

7.2.2 Set Undo num.

This command changes the maximum numbednélo’s that will be possible when doing a proof. It
only affects proofs started after this command, such that if you want to change the current undo limit
inside a proof, you should first restart this proof.

7.2.3 Unset Undo.

This command resets the default number of possilsido commands (which is currently 12).

7.2.4 Restart.
This command restores the proof editing process to the original goal.

Error messages:

1. No focused proof to restart

Coq Reference Manual, V8.0, June 27, 2004



7.3 Displaying information 125

7.2.5 Focus.

Will focus the attention on the first subgoal to prove, the remaining subgoals will no more be printed
after the application of a tactic. This is useful when there are many current subgoals which clutter your
screen.

7.2.6 Unfocus.

Turns off the focus mode.

7.3

Displaying information

7.3.1 Show.

This command displays the current goals.

Variants:

1.

Show num.
Displays only thenum-th subgoal.
Error messages:

(@) No such goal
(b) No focused proof

. Show Implicits.

Displays the current goals, printing the implicit arguments of constants.

. Show Implicits num.

Same as above, only displaying tiwem-th subgoal.

. Show Script.

Displays the whole list of tactics applied from the beginning of the current proof. This tac-
tics script may contain some holes (subgoals not yet proved). They are printed under the form
<Your Tactic Text here>

. Show Tree.

This command can be seen as a more structured way of displaying the state of the proof than that
provided byShow Script . Instead of just giving the list of tactics that have been applied, it
shows the derivation tree constructed by then. Each node of the tree contains the conclusion of
the corresponding sub-derivation (i.e. a goal with its corresponding local context) and the tactic
that has generated all the sub-derivations. The leaves of this tree are the goals which still remain
to be proved.

. Show Proof.

It displays the proof term generated by the tactics that have been applied. If the proof is not
completed, this term contain holes, which correspond to the sub-terms which are still to be con-
structed. These holes appear as a question mark indexed by an integer, and applied to the list of
variables in the context, since it may depend on them. The types obtained by abstracting away the
context from the type of each hole-placer are also printed.

. Show Conjectures.

It prints the list of the names of all the theorems that are currently being proved. As it is possible to
start proving a previous lemma during the proof of a theorem, this list may contain several names.
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8. Show Intro.
If the current goal begins by at least one product, this command prints the name of the first product,
as it would be generated by an anonymbiiso . The aim of this command is to ease the writing
of more robust scripts. For example, with an appropriate Proof General macro, it is possible to
transform any anonymoustro into a qualified one such datro y13 . In the case of a
non-product goal, it prints nothing.

9. Show Intros.
This command is similar to the previous one, it simulates the naming process$rafem

7.3.2 Set Hyps Limit num.

This command sets the maximum number of hypotheses displayed in goals after the application of a
tactic. All the hypotheses remains usable in the proof development.

7.3.3 Unset Hyps Limit.

This command goes back to the default mode which is to print all available hypotheses.
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Chapter 8

Tactics

A deduction rule is a link between some (unique) formula, that we calttimelusionand (several)
formulee that we call theremises Indeed, a deduction rule can be read in two ways. The first one has
the shapetif | know this and this then | can deduce thisFor instance, if | have a proof of and a proof

of B then | have a proof off A B. This is forward reasoning from premises to conclusion. The other
way says:to prove this | have to prove this and this’For instance, to provd A B, | have to proved

and | have to proveés. This is backward reasoning which proceeds from conclusion to premises. We say
that the conclusion ighe goalto prove and premises attee subgoalsThe tactics implemeriiackward
reasoning When applied to a goal, a tactic replaces this goal with the subgoals it generates. We say that
a tactic reduces a goal to its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is
applied to the current goal, but one can address a particular goal in the list by writiagc which
means‘apply tactic tactic to goal numbem”. We can show the list of subgoals by typiBgow (see
Section 7.3.1).

Since not every rule applies to a given statement, every tactic cannot be used to reduce any goal.
In other words, before applying a tactic to a given goal, the system checks thapsernaditionsare
satisfied. If it is not the case, the tactic raises an error message.

Tactics are build from atomic tactics and tactic expressions (which extends the folklore notion of
tactical) to combine those atomic tactics. This chapter is devoted to atomic tactics. The tactic language
will be described in chapter 9.

There are, at least, three levels of atomic tactics. The simplest one implements basic rules of the
logical framework. The second level is the onedefived ruleswvhich are built by combination of other
tactics. The third one implements heuristics or decision procedures to build a complete proof of a goal.

8.1 Invocation of tactics

Atactic is applied as an ordinary command. If the tactic does not address the first subgoal, the command
may be preceded by the wished subgoal number as shown below:

tactic_invocation = num . tactic .
| tactic .

8.2 Explicit proof as a term

8.2.1 exact term

This tactic applies to any goal. It gives directly the exact proof term of the goall betour goal, lep
be a term of typdJthenexact p succeeds ifff andU are convertible (see Section 4.3).
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Error messages:

1. Not an exact proof

8.2.2 refine  term
This tactic allows to give an exact proof but still with some holes. The holes are ngted “
Error messages:

1. invalid argument : the tacticrefine  doesn’t know what to do with the term you gave.

2. Refine passed ill-formed term . the term you gave is not a valid proof (not easy to
debug in general). This message may also occur in higher-level tactics, whictefioad
internally.

3. Cannot infer a term for this placeholder there is a hole in the term you gave
which type cannot be inferred. Put a cast around it.

An example of use is given in section 10.1.

8.3 Basics

Tactics presented in this section implement the basic typing rulesofi@en in Chapter 4.

8.3.1 assumption

This tactic applies to any goal. It implements the “Var” rule given in Section 4.2. It looks in the
local context for an hypothesis which type is equal to the goal. If it is the case, the subgoal is proved.
Otherwise, it fails.

Error messages:

1. No such assumption

8.3.2 clear ident

This tactic erases the hypothesis nan&at in the local context of the current goal. Théfent is no
more displayed and no more usable in the proof development.

Variants:
1. clear ident; ... ident,,.
This is equivalent telear  ident;. ... clear ident,,.

2. clearbody  ident.

This tactic expectsdent to be a local definition then clears its body. Otherwise said, this tactic
turns a definition into an assumption.

Error messages:

1. ident not found
2. ident is used in the conclusion

3. ident is used in the hypothesis ident’
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8.3.3 move ident; after ident,

This moves the hypothesis namildnt, in the local context after the hypothesis naniéght-.

If ident; comes beforédent, in the order of dependences, then all hypotheses betwiesn and
identy which (possibly indirectly) depend atent; are moved also.

If ident; comes aftelident, in the order of dependences, then all hypotheses betwdeen and
idents which (possibly indirectly) occur itdent; are moved also.

Error messages:
1. ident; not found
2. Cannot move ident; after identy: it occurs in idents

3. Cannot move ident; after ident,: it depends on idento

8.3.4 rename ident; into ident,
This renames hypothesident; into ident, in the current context

Error messages:
1. identy not found

2. idents is already used

8.3.5 intro

This tactic applies to a goal which is either a product or starts with a let binder. If the goal is a product,
the tactic implements the “Lam” rule given in Section%.# the goal starts with a let binder then the
tactic implements a mix of the “Let” and “Conv”.
If the current goal is a dependent proddotall x: T, U (resplet z:=t¢ in U) then
intro  putsx: T (respx:= t) in the local context. The new subgoallis
If the goal is a non dependent proddcet-> U, then it puts in the local context eithiein: T (if T
is of typeSet or Prop ) or Xn: T (if the type ofT' is Type ). The optional index is such thatn or Xn
is a fresh identifier. In both cases the new subgoél.is
If the goal is neither a product nor starting with a let definition, the tantro  applies the tactic
red until the tacticintro can be applied or the goal is not reducible.

Error messages:
1. No product even after head-reduction

2. ident is already used

Variants:

1. intros

Repeat$ntro  until it meets the head-constant. It never reduces head-constants and it never fails.

put it does not rename the hypothesis in the proof-term...
2Actually, only the second subgoal will be generated since the other one can be automatically checked.
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2. intro ident

Appliesintro  but forcesident to be the name of the introduced hypothesis.
Error message:name ident is already used

Remark: If a name used bintro  hides the base name of a global constant then the latter can
still be referred to by a qualified name (see 2.5.2).
3. intros identy ...  ident,
Is equivalent to the composed tadtitro  identy; ... ; intro ident,,.
More generally, théntros  tactic takes a pattern as argument in order to introduce names for
components of an inductive definition or to clear introduced hypotheses; This is explained in 8.7.3.
4. intros until ident
Repeatsntro  until it meets a premise of the goal having fo(nident : term ) and discharges

the variable nameitient of the current goal.

Error message:No such hypothesis in current goal

5. intros until num

Repeatsintro  until the num-th non-dependent premise. For instance, on the subgoal

forall x y:nat, x=y -> forall z:nat,z=x->z=y the tacticintros until 2
is equivalent tantros x y H z HO  (assuming, y, H, z andHO do not already occur
in context).

Error message:No such hypothesis in current goal

Happens whemnum is O or is greater than the number of non-dependent products of the goal.

6. intro after ident

Appliesintro  but puts the introduced hypothesis after the hypothdsigs in the hypotheses.

Error messages:

(@) No product even after head-reduction

(b) No such hypothesis : ident

7. intro  ident; after identq

Behaves as previously budent; is the name of the introduced hypothesis. It is equivalent to
intro  ident;; move ident; after  idents.

Error messages:

(@) No product even after head-reduction

(b) No such hypothesis : ident
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8.3.6 apply term

This tactic applies to any goal. The argumentin is a term well-formed in the local context. The tactic
apply tries to match the current goal against the conclusion of the typermf If it succeeds, then the
tactic returns as many subgoals as the number of non dependent premises of thedypeTfie tactic
apply relies on first-order pattern-matching with dependent types.p&tern in section 8.5.7 to
transform a second-order pattern-matching problem into a first-order one.

Error messages:

1. Impossible to unify ... with ...

The apply tactic failed to match the conclusion efrm and the current goal. You can help
the apply tactic by transforming your goal with thehange or pattern tactics (see sec-
tions 8.5.7, 8.3.10).

2. generated subgoal term’ has metavariables in it

This occurs when some instantiations of premisesmfi are not deducible from the unification.
This is the case, for instance, when you want to apply a transitivity property. In this case, you
have to use one of the variants below:

Variants:

1. apply term with term; ... term,

Providesapply with explicit instantiations for all dependent premises of the typemf which
do not occur in the conclusion and consequently cannot be found by unification. Notiegdhat
... term, must be given according to the order of these dependent premises of the tgpe.of

Error message:Not the right number of missing arguments

2. apply term with ( ref; := termy) ... (  ref, = termy)

This also providespply with values for instantiating premises. But variables are referred by
names and non dependent products by order (see syntax in Section 8.3.11).

3. eapply term

The tacticeapply behaves aapply but does not fail when no instantiation are deducible for
some variables in the premises. Rather, it turns these variables into so-called existential variables
which are variables still to instantiate. An existential variable is identified by a name of the form
?n wheren is a number. The instantiation is intended to be found later in the proof.

An example of use ofapply is given in Section 10.2.

4. lapply  term

This tactic applies to any goal, s& The argumenterm has to be well-formed in the current
context, its type being reducible to a non-dependent produet B with B possibly contain-
ing products. Then it generates two subgdasG andA. Applying lapply H (whereH has
type A->B andB does not start with a product) does the same as giving the seqoend
2:apply H. wherecut is described below.

Warning: Whenterm contains more than one non dependent product the tagply only
takes into account the first product.
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8.3.7 set ( ident = term )

Warning: V8 updating to do

This replaceserm by ident in the conclusion or in the hypotheses of the current goal and adds the
new definitionident:= term to the local context. The default is to make this replacement only in the
conclusion.

Variants:

1. set (  ident:= term) in *
This is equivalent to the above form but applies everywhere in the goal (both in conclusion and
hypotheses).

2.set ( ident:= term) in * |-

This is equivalent to the above form but applies everywhere in the hypotheses.

3.set ( ident:= term) in |- *
This is equivalent to the default behaviourseft .

4. set ( identg := term ) in identy

This behaves the same but substitutes: not in the goal but in the hypothesis namdent; .

5. set ( identy:= term) in ident; at num; ... numy,

This notation allows to specify which occurrences of the hypothesis nadaad (or the goal if
ident; is the wordGoal ) should be substituted. The occurrences are numbered from left to right.
A negative occurrence number means an occurrence which should not be substituted.

6. set ( identy:= term) in ident; at num} ... num} ,

It substitutegerm at occurrencesum’ ... num}, of hypothesisident;. One of theident’s may
be the wordGoal .

g m m
...ident,, at num{" ...numy’

7. pose ( ident = term )

This adds the local definitiofalent := term to the current context without performing any replace-
ment in the goal or in the hypotheses.

8. pose term
This behaves ggose ( ident :=term ) butident is generated by GQ.

8.3.8 assert (  ident : form )

This tactic applies to any goassert (H : U)  adds a new hypothesis of hafdassertindJ to the
current goal and opens a new subgd&l The subgoal comes first in the list of subgoals remaining to
prove.

Error messages:

1. Not a proposition or a type
Arises when the argumeffibrm is neither of typeProp , Set nor Type.

3This corresponds to the cut rule of sequent calculus.
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Variants:

1. assert form

This behaves asssert ( ident : form ) butident is generated by GQ.

2. assert ( ident :=term)
This behaves aassert ( ident : type);[exact term|idtac] wheretype is the type
of term.

3. cut form

This tactic applies to any goal. It implements the non dependent case of the “App” rule given in
Section 4.2. (This is Modus Ponens inference rutat) U transforms the current godlinto the

two following subgoalsU -> T andU. The subgoal -> T comes firstin the list of remaining
subgoal to prove.

8.3.9 generalize term

This tactic applies to any goal. It generalizes the conclusion w.r.t. one subterm of it. For example:

Cog < Show.
1 subgoal

X : nat
y ! nat

O<=x+y+y

Cog < generalize (x +y + ).

1 subgoal
X @ nat
y : nat

forall n : nat, 0 <= n

If the goal isG andt is a subterm of typd” in the goal, thergeneralize  t replaces the goal by
forall (x: T), G’ whereG' is obtained from(7 by replacing all occurrences oby x. The name
of the variable (hera) is chosen accordingly t6.

Variants:
1. generalize termy ... term,
Is equivalent tayeneralize term,; ... ; generalize term,. Note that the sequence

of term;’s are processed fromto 1.

2. generalize dependent term

This generalizeserm but alsoall hypotheses which depend asrm. It clears the generalized
hypotheses.
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8.3.10 change term

This tactic applies to any goal. It implements the rule “Conv” given in sectionch&ige U replaces
the current goal with U providing thatU is well-formed and thal andU are convertible.

Error messages:

1. Not convertible

Variants:

1. change term; with terms
This replaces the occurrencestafim, by terms in the current goal. The termsrm; andterms,
must be convertible.

2. change term; at numi; .. num; with terms

This replaces the occurrences numbetieth; ... num; of term; by terms in the current goal.
The termserm; andterms must be convertible.

Error message:Too few occurrences
3. change term in ident
4. change term; with terms in ident

5. change term; at num; .. num; with terms in ident

This applies thehange tactic not to the goal but to the hypothesisnt.
See also8.5

8.3.11 Bindings list

A bindings list is generally used after the keywawith in tactics. The general shape of a bindings
listis (ref; := term;) ... ( ref, := term,) whereref is either anident or anum. It is used to
provide a tactic with a list of valuesefmy, ..., term,,) that have to be substituted respectivelydo,,
..., ref,. Foralli € [1... n], if ref; is ident; then it references the dependent prodident;:T (for
some typel); if ref; is num; then it references theum;-th non dependent premise.

A bindings list can also be a simple list of termagn; terms ... term,. Inthat case the references
to which these terms correspond are determined by the tactic. In caBmof(see section 4) the terms
should correspond to all the dependent products in the typemfwhile in the case oapply only the
dependent products which are not bound in the conclusion of the type are given.

8.4 Negation and contradiction

8.4.1 absurd term

This tactic applies to any goal. The argumein is any propositiofP of typeProp . This tactic applies
False elimination, that is it deduces the current goal fréaise , and generates as subgoal® and

P. It is very useful in proofs by cases, where some cases are impossible. In mosPoaises$] is one

of the hypotheses of the local context.
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8.4.2 contradiction

This tactic applies to any goal. Tle®ntradiction tactic attempts to find in the current context
(after allintros ) one which is equivalent tBalse . It permits to prune irrelevant cases. This tactic is
a macro for the tactics sequenogos; elimtype False; assumption

Error messages:

1. No such assumption

8.5 Conversion tactics

This set of tactics implements different specialized usages of the thatige .
All conversion tactics (includinghange ) can be parameterised by the parts of the goal where the
conversion can occur. The specification of such parts are adledes It can be either the conclusion,
or an hypothesis. In the case of a defined hypothesis it is possible to specify if the conversion should
occur on the type part, the body part or both (default).
Clauses are written after a conversion tactic (tegdic 8.3.7 also uses clasues) and are introduced by
the keywordn . If no clause is provided, the default is to perform the conversion only in the conclusion.
The syntax and description of the various clauses follows:

in Hy ... H, |- onlyin hypothesedf;...H,
in Hy ... H, |- * inhypothesedd; ... H, and in the conclusion
in * |- inevery hypothesis

in * (equivalenttdn * |- * ) everywhere
in (type of H ) (value of H ) ... |- intype partofH, in the value part of{, etc.

For backward compatibility, the notatiaon H; ... H, performs the conversion in hypotheses
Hy.. . H,.

8.5.1 cbv flag, ... flag,,lazy flag, ... flag, and compute

These parameterized reduction tactics apply to any goal and perform the normalization of the goal ac-
cording to the specified flags. Since the reduction consideredpificlude (reduction of functional
application),d (unfolding of transparent constants, see 6.2.%eduction ofCases, Fix andCoFix
expressions) and (removal of local definitions), every flag is one loéta , delta , iota , zeta ,
[ qualidy... qualidy] and-[ qualid:... qualidy] . The last two flags give the list of constants to un-
fold, or the list of constants not to unfold. These two flags can occur only aftelettee  flag. If alone
(i.e. not followed by[ qualidy... qualid;] or-[ qualid,... qualid]), thedelta flag means that
all constants must be unfolded. However, tledta flag does not apply to variables bound by a let-in
construction whose unfolding is controlled by theta flag only. In addition, there is a fldgvar to
perform instantiation of existential variables (“?”) when an instantiation actually exists.

The goal may be normalized with two strategilsy (lazy tactic), orcall-by-value(cbv tactic).
The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call
are partially evaluated only when necessary, but if an argument is used several times, it is computed only
once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a
propositiondr x.P(x) reduce to a pair of a witnegsand a proof that verifies the predicaté&. Most
of the time,t may be computed without computing the prooffe(t), thanks to the lazy strategy.
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The call-by-value strategy is the one used in ML languages: the arguments of a function call are
evaluated first, using a weak reduction (no reduction undehtbstractions). Despite the lazy strat-
egy always performs fewer reductions than the call-by-value strategy, the latter should be preferred for
evaluating purely computational expressions (i.e. with few dead code).

Variants:

1. compute

This tactic is an alias fotbv beta delta evar iota zeta

Error messages:

1. Delta must be specified before

A list of constants appeared before tihedta flag.

8.5.2 red

This tactic applies to a goal which has the fofonall (x:T1)...(xk:Tk), ¢ t1 ... tn
wherec is a constant. It is transparent then it replaceswith its definition (sayt ) and then reduces
(ttl ... tn) according tg3.-reduction rules.

Error messages:

1. Not reducible

8.5.3 hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the
Bde-reduction ruleshnf does not produce a real head normal form but either a product or an applicative
term in head normal form or a variable.

Example: The termforall n:nat, (plus (S n) (S n)) is not reduced bynf .

Remark: Thed rule only applies to transparent constants (see section 6.2.4 on transparency and opac-
ity).
8.5.4 simpl

This tactic applies to any goal. The tacsonpl first appliess:-reduction rule. Then it expands
transparent constants and tries to rediliceaccording, once more, 6. rules. But when the rule is
not applicable then possibdereductions are not applied. For instance trying tosisgpl on (plus

n O)=n does change nothing.

Variants:

1. simpl term

This appliessimpl only to the occurrences eérm in the current goal.

2. simpl  term at num; .. num;

This appliesimpl only to thenumy, ..., num; occurrences oferm in the current goal.

Error message:Too few occurrences
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3. simpl ident

This appliessimpl only to the applicative subterms whose head occurreniiiis.

4. simpl ident at num; .. num;
This appliessimpl only to thenumy, ..., num; applicative subterms whose head occurrence is
ident.

8.5.5 unfold qualid

This tactic applies to any goal. The argumegmtlid must denote a defined transparent constant or local
definition (see Sections 1.3.2 and 6.2.5). The taatiold applies the rule to each occurrence of the
constant to whiclyualid refers in the current goal and then replaces it withBitsrormal form.

Error messages:

1. qualid does not denote an evaluable constant

Variants:
1. unfold  qualid,, ..., qualid,
Replacesimultaneouslyualid, ..., qualid,, with their definitions and replaces the current goal

with its 8. normal form.

2. unfold  qualid, at num%, s num

qualid, at numf ..  numj

The listsnumy, ..., num} andnum?, ..., num’ specify the occurrences qtialidy, ..., qualidy,
to be unfolded. Occurrences are located from left to right.

Error message:bad occurrence number of qualid;

Error message: qualid; does not occur

8.5.6 fold term

This tactic applies to any goal. The teream is reduced using theed tactic. Every occurrence of the
resulting term in the goal is then substituted faim.

Variants:

1. fold term; ... term,,

Equivalent tdfold termy; ...; fold term,,.

8.5.7 pattern term

This command applies to any goal. The arguntent must be a free subterm of the current goal. The
commandpattern performsg-expansion (the inverse gkreduction) of the current goal (sd@y by

1. replacing all occurrences afrm in T with a fresh variable
2. abstracting this variable

3. applying the abstracted goaltam
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For instance, if the current godlis expressible hag(¢) where the notation captures all the instances
oftin ¢(t), thenpattern  ¢transformsitintdfun x: A => ¢(x)) t. Thiscommand can be used,
for instance, when the tactapply fails on matching.

Variants:

1. pattern term at num; .. num,

Only the occurrencesum; ... num, of term will be considered fors-expansion. Occurrences
are located from left to right.

2. pattern termy, ..., term,,,
Starting from a goab(¢; ... t,,), the tacticpattern ¢, ..., t,, generates the equivalent
goal(fun (x 1: A1) ... X A => 6(X1... X ) t1 . b
If ¢; occurs in one of the generated typésthese occurrences will also be considered and possibly
abstracted.

3. pattern  term; at numj .. num,, .. termy,, at numfi' ..  nump'

This behaves as above but processing only the occurreneels . .., num! of termy, ..., num?,
e ,numgf‘ of term,,, starting fromterm,,,.

8.5.8 Conversion tactics applied to hypotheses

conv_tactic in identy ... ident,,

Applies the conversion tacticonv_tactic to the hypothesesdent,, ..., ident,. The tactic
conv_tactic is any of the conversion tactics listed in this section.

If ident; is a local definition, thendent; can be replaced by (Type ddlent;) to address not the
body but the type of the local definition. Examplenfold not in (Type of H1l) (Type of
H3).

Error messages:

1. No such hypothesis : ident.

8.6 Introductions

Introduction tactics address goals which are inductive constants. They are used when one guesses that
the goal can be obtained with one of its constructors’ type.

8.6.1 constructor num

This tactic applies to a goal such that the head of its conclusion is an inductive constahj. (Sag
argumentium must be less or equal to the numbers of constructor(s) bétci be thei -th constructor
of | , thenconstructor i is equivalent tantros; apply ci

Error messages:
1. Not an inductive product

2. Not enough constructors

Variants:
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1. constructor

This triesconstructor 1 thenconstructor 2 , ... , thenconstructor n wheren if
the number of constructors of the head of the goal.

2. constructor num With bindings_list
Letci be thei -th constructor of , thenconstructor i with bindings_list is equivalent
tointros; apply ci with bindings_list.

Warning: the terms in thebindings_list are checked in the context whetenstructor is
executed and not in the context whexgply is executed (the introductions are not taken into
account).

3. split
Applies if I has only one constructor, typically in the case of conjuncion B. Then, it is
equivalent taconstructor 1

4. exists  bindings_list
Appliesifl has only one constructor, for instance in the case of existential quantifiéatiétz).
Then, it is equivalent tintros; constructor 1 with bindings_list.

5. left ,right
Apply if 1 has two constructors, for instance in the case of disjunction B. Then, they are
respectively equivalent toonstructor 1 andconstructor 2

6. left bindings_list, right bindings_list, split bindings_list

As soon as the inductive type has the right number of constructors, these expressions are equivalent
to the correspondingonstructor i with  bindings_list.

8.7 Eliminations (Induction and Case Analysis)

Elimination tactics are useful to prove statements by induction or case analysis. Indeed, they make use
of the elimination (or induction) principles generated with inductive definitions (see Section 4.5).

8.7.1 induction term

This tactic applies to any goal. The type of the argumemt must be an inductive constant. Then, the
tacticinduction  generates subgoals, one for each possible forrerof, i.e. one for each constructor
of the inductive type.

The tacticinduction  automatically replaces every occurrenceseaf in the conclusion and the
hypotheses of the goal. It automatically adds induction hypotheses (using names of thidriarjrto
the local context. If some hypothesis must not be taken into account in the induction hypothesis, then it
needs to be removed first (you can also use the tagliics or simple induction , see below).

There are particular cases:

e If term is an identifierident denoting a quantified variable of the conclusion of the goal, then
induction ident behaves amtros until ident; induction ident

e If term is a num, theninduction num behaves asntros until num followed by
induction  applied to the last introduced hypothesis.

Remark: For simple induction on a numeral, use syntaduction (  num) (not very inter-
esting anyway).
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Example:

Cog < Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal

forall n : nat, n = n -> n <= n

Coq < intros n H.
1 subgoal

n <=n

Coq < induction n.
2 subgoals

H:0=0

0<=0
subgoal 2 is:
Sn<=S8n

Error messages:
1. Not an inductive product

2. Cannot refine to conclusions with meta-variables

Asinduction  usesapply , see Section 8.3.6 and the variahtn ... with ... below.

Variants:

1. induction term as intro_pattern

This behaves amduction term but uses the names intro_pattern to hames the variables
introduced in the context. Thatro_pattern must have the fornf pi1 ...pin, | -+ | Pm

.« .DPmn,, ]| With m being the number of constructors of the typeesfn. Each variable introduced

by induction  in the context of theé'" goal gets its name from the ligt; ...p;,, in order. If
there are not enough nameésjuction  invents names for the remaining variables to introduce.
More generally, they's can be any introduction patterns (see Section 8.7.3). This provides a
concise notation for nested induction.

Remark: for an inductive type with one constructeur, the pattern notdtjan...,  p,) can be
used instead df p; ...p, ] .

2. induction term using qualid

This behaves amduction term but using the induction scheme of namelid. It does not
expect that the type aérm is inductive.

3. induction term using qualid as intro_pattern

This combinesnduction term using qualid andinduction term as intro_pattern.
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4.

10.

11.

elim term

This is a more basic induction tactic. Again, the type of the arguneemt must be an inductive
constant. Then according to the type of the goal, the tatitic chooses the right destructor and
appliesit (as in the case of tApply tactic). For instance, assume that our proof context contains
n:nat , assume that our current goalTisof type Prop , thenelim n is equivalent taapply
nat_ind with (n:=n) . The tacticelim does not affect the hypotheses of the goal, neither
introduces the induction loading into the context of hypotheses.

. elim term

also works when the type aérm starts with products and the head symbol is an inductive defi-
nition. In that case the tactic tries both to find an object in the inductive definition and to use this
inductive definition for elimination. In case of non-dependent products in the type, subgoals are
generated corresponding to the hypotheses. In the case of dependent products, the tactic will try
to find an instance for which the elimination lemma applies.

. elim term with term; ... term,

Allows the user to give explicitly the values for dependent premises of the elimination schema.
All arguments must be given.

Error message:Not the right number of dependent arguments

. elim term with ref; := termy ... ref, = term,

Provides als@lim with values for instantiating premises by associating explicitly variables (or
non dependent products) with their intended instance.

. elim term; using terms

Allows the user to give explicitly an elimination predicatems which is not the standard one for
the underlying inductive type atrm;. Each of theterm; andterms is either a simple term or a
term with a bindings list (see 8.3.11).

. elimtype  form

The argumenform must be inductively definealimtype |  isequivalenttaut I. intro

Hn; elim H n; clear H n. Therefore the hypothesidn will not appear in the context(s) of
the subgoal(s). Conversely,tifis a term of (inductive) typé and which does not occur in the
goal therelim t is equivalent teelimtype I; 2: exact t.

Error message:Impossible to unify ... with ...

Arises whenform needs to be applied to parameters.

simple induction ident

This tactic behaves astros until ident; elim  ident whenident is a quantified variable
of the goal.

simple induction num

This tactic behaves astros until num; elim  ident whereident is the nhame given by

intros until num to thenum-th non-dependent premise of the goal.
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8.7.2 destruct term

The tacticdestruct  is used to perform case analysis without recursion. Its behavior is similar to
induction  except that no induction hypothesis is generated. It applies to any goal and the type of
term must be inductively defined. There are particular cases:

e If term is an identifierident denoting a quantified variable of the conclusion of the goal, then
destruct ident behaves amtros until ident; destruct ident

o If term is a num, then destruct num behaves asntros until num followed by
destruct  applied to the last introduced hypothesis.

Remark: For destruction of a numeral, use syni@dastruct ( num) (not very interesting
anyway).

Variants:

1. destruct term as intro_pattern

This behaves adestruct term but uses the names intro_pattern to names the variables
introduced in the context. Thmtro_pattern must have the formp pi1 ...pin, | --. | Pma
...Pmn,, ]| With m being the number of constructors of the typeesfn. Each variable introduced

by destruct  in the context of thé'” goal gets its name from the ligt; . . .p;,,. in order. If there

are not enough namesestruct  invents names for the remaining variables to introduce. More
generally, thep’'s can be any introduction patterns (see Section 8.7.3). This provides a concise
notation for nested destruction.

Remark: for an inductive type with one constructeur, the pattern notdtion..., p,) can be
used instead df py...pn ] -
2. destruct term using qualid

This is a synonym oinduction term using qualid.

3. destruct  term as intro_pattern using qualid

This is a synonym oinduction term using qualid as intro_pattern.

4. case term

The tacticcase is a more basic tactic to perform case analysis without recursion. It behaves as
elim term but using a case-analysis elimination principle and not a recursive one.

5. case term with term; ... term,,
Analogous teelim ... with above.
6. simple destruct ident
This tactic behaves a@stros until ident; case ident whenident is a quantified variable
of the goal.
7. simple destruct num
This tactic behaves astros until num; case ident whereident is the name given by

intros until num to thenum-th non-dependent premise of the goal.
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8.7.3 intros intro_pattern ... intro_pattern

The tacticintros  applied to introduction patterns performs both introduction of variables and case
analysis in order to give names to components of an hypothesis.
An introduction pattern is either:

e the wildcard:_

e avariable

e adisjunction of lists of pattern$:p;; ... Pimy | | D11 .- Drimn )

e aconjunction of patterng: p1, ..., pn)

The behavior ofntros  is defined inductively over the structure of the pattern given as argument:

e introduction on the wildcard do the introduction and then immediately clear (cf 8.3.2) the corre-
sponding hypothesis;

e introduction on a variable behaves like described in 8.3.5;

e introduction over a list of patterns ... p, is equivalent to the sequence of introductions over the
patterns namelyintros  ps;...; intros pn, the goal should start with at leasproducts;

e introduction over a disjunction of list of patterigpi; ... Pimy | | P11 ..
Pnm,,] - It introduces a new variabl&, its type should be an inductive definition withcon-
structors, then it performs a case analysis oVefwhich generates subgoals), it clear& and
performs on each generated subgoals the correspomdiog  p;; ... pim, tactic;

e introduction over a conjunction of patterysi, . . ., p,), it introduces a new variabl&, its type
should be an inductive definition withconstructor with (at least) arguments, then it performs
a case analysis oveX (which generateg subgoal with at least products), it clearsX and
performs an introduction over the list of pattegns. .. p,.

Remark: The pattern( p1, ..., pn) IS a synonym for the patterinp; ... pn] , i.€. it corre-
sponds to the decomposition of an hypothesis typed by an inductive type with a single constructor.

Coq < Lemma intros_test : forall A B C:Prop, AVBANC > (A ->C) > C.
1 subgoal

foral AB C: Prop, AVBAC ->(A->C) >C

Coq < intros A B C [a] [_ c]] f.
2 subgoals

A : Prop
B : Prop
C : Prop
a:A
f:A->C

c
subgoal 2 is:
C

Coq < apply (f a).
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1 subgoal

A : Prop
B : Prop
C : Prop
c:C
f:A->C
C

Coq < Proof c.
intros_test is defined

8.7.4 double induction ident, idents

This tactic applies to any goal. If the variablelent; andident, of the goal have an inductive type,
then this tactic performs double induction on these variables. For instance, if the current goal is
forall N m:nat, P n m then,double induction n m yields the four cases with their re-
spective inductive hypotheses. In particular the cas€fofS n) (S m))  with the induction hy-
pothese¢P (S n) m) and(m:nat)(P n m) (hence(P n m) and(P n (S m)) ).

Remark: When the induction hypothesi@ (S n) m) is not needed,nduction identy;
destruct  ident, produces more concise subgoals.

Variant;

1. double induction numi; numo

This applies double induction on them’* andnum%" non dependeniremises of the goal. More
generally, any combination of adent and annum is valid.

8.7.5 decompose [ qualid, ... qualid, | term

This tactic allows to recursively decompose a complex proposition in order to obtain atomic ones. Ex-
ample:

Coq < Lemma ex1 : forall A B C:Prop, ANBANCVBACVCANA->C.
1 subgoal

foral ABC: Prop, ANBNCVBANCVCAMANA->C

Coq < intros A B C H; decompose [and or] H; assumption.
Proof completed.

Cog < Qed.

decompose does not work on right-hand sides of implications or products.
Variants:

1. decompose sum term This decomposes sum types (liae).

2. decompose record term This decomposes record types (inductive types with one construc-
tor, like and andexists and those defined with tHeecord macro, see p. 43).
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8.7.6 functional induction ident term, ... term,,.

The experimentatactic functional induction performs case analysis and induction following
the definition of a (not mutually recursive) function.

Coq < Lemma le_minus : forall n m:nat, (n - m <= n).
1 subgoal

forall n m : nat, n - m <= n

Coq < intros n m.

1 subgoal
n : nat
m : nat

n-m=«<=n

Cog < functional induction minus n m; simpl; auto.
Proof completed.

Coq < Qed.

functional induction is a shorthand for the more general commargnctional
Scheme which builds induction principles following the recursive structure of (possibly mutually re-
cursive) functionsSee also:10.4 for the difference between using one or the other.

Remark: functional induction may fail on functions built by tactics. In particular case analysis
of a function are considered only if they are not inside an application.

Remark: Arguments of the function must be given, including implicits. If the function is recursive,
arguments must be variables, otherwise they may be any term.

See als08.14,10.4

8.8 Equality

These tactics use the equaldy:forall A:Type, A->A->Prop defined in fileLogic.v  (see
Section 3.1.2). The notation feq 7" t u is simplyt=u dropping the implicit type of andw.

8.8.1 rewrite term

This tactic applies to any goal. The typetefm must have the form

X 1:A1) ... X A termi=terms,.
Thenrewrite term replaces every occurrence efm; by terms in the goal. Some of the variables
X1 are solved by unification, and some of the types. .., A, become new subgoals.

Remark: In case the type oferm; contains occurrences of variables bound in the typeoi, the
tactic tries first to find a subterm of the goal which matches this term in order to find a closed instance
term’ of term;, and then all instances afrm/ will be replaced.

Error messages:

1. The term provided does not end with an equation
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2. Tactic generated a subgoal identical to the original goal
This happens iferm; does not occur in the goal.

Variants:

1. rewrite -> term
Is equivalent taewrite term

2. rewrite <- term
Uses the equalityerm=term- from right to left

3. rewrite term in ident
Analogous taewrite term but rewriting is done in the hypothesis namédent.

4. rewrite -> term in ident
Behaves asewrite term in ident.

5. rewrite <- term in ident
Uses the equalityerm=term- from right to left to rewrite in the hypothesis namzidnt.

8.8.2 cutrewrite -> term; = term,

This tactic acts likeeplace  termy; with terms (See below).

8.8.3 replace term; with term,

This tactic applies to any goal. It replaces all free occurrencesraf; in the current goal witherms
and generates the equalityrmo=term; as a subgoal. It is equivalent it termo=termy; intro
Hn; rewrite <- H n, clear H n.

Variants:

1. replace  term; with term, in ident
This replacesterm; with terms in the hypothesis namedtient, and generates the subgoal
termo=termj.

Error messages:

(a) No such hypothesis  : ident
(b) Nothing to rewrite in ident

8.8.4 reflexivity

This tactic applies to a goal which has the forru . It checks that andu are convertible and then
solves the goal. It is equivalent &pply refl_equal

Error messages:
1. The conclusion is not a substitutive equation

2. Impossible to unify ... with ..
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8.8.5 symmetry

This tactic applies to a goal which has the farma  and changes it inta=t .

Variant: symmetry in  ident
If the statement of the hypothesignt has the form=u , the tactic changes it to=t .

8.8.6 transitivity term

This tactic applies to a goal which has the farm and transforms it into the two subgo#tsterm and
term=u.

8.8.7 subst ident

This tactic applies to a goal which hagent in its context and (at least) one hypothesis, Bapf type
ident=t ort= ident. Then it replacesdent by t everywhere in the goal (in the hypotheses and in the
conclusion) and cleatiglent andH from the context.

Remark: When several hypotheses have the fadamt=t ort= ident, the first one is used.

Variants:
1. subst ident; ... ident,
Is equivalent tasubst  identy; ...; subst ident,,.
2. subst

Appliessubst repeatedly to all identifiers from the context for which an equality exists.

8.8.8 stepl term

This tactic is for chaining rewriting steps. It assumes a goal of the fd@mefm, termo” where R is a
binary relation and relies on a database of lemmas of theforatl 2y 2z, Rxy-> eqrz-> Rz
y Whereeq is typically a setoid equality. The applicationstepl  term then replaces the goal byr*
term termsy” and adds a new goal statingq' term term-".

Lemmas are added to the database using the command

Declare Left Step qualid.

wherequalid is the name of the lemma.
The tactic is especially useful for parametric setoids which are not accepted as regular setoids for
rewrite  andsetoid_replace (see chapter 20).

Variants:

1. stepl term by tactic
This appliestepl  term then appliesactic to the second goal.

2. stepr  term
stepr term by tactic
This behaves astepl  but on the right-hand-side of the binary relation. Lemmas are expected to
be ofthe formforall zyz2, Rxy-> eqy z-> R x z”and are registered using the command

Declare Right Step qualid.
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8.9 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or
types. These tactics use the equadityforall (A:Type), A->A->Prop , sSimply written with
the infix symbol=.

8.9.1 decide equality

This tactic solves a goal of the forforall v y. R, { z=y}+{~ z=y}, whereR is an inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent

types.
Variants:

1. decide equality term; terms .
Solves a goal of the forfiterm;=terms}+{~ term=terms} .

8.9.2 compare term; term,

This tactic compares two given objeatsm; andterm, of an inductive datatype. I is the current
goal, it leaves the sub-goatsm=term, -> G and~term=term, -> (. The type ofterm; andterm-
must satisfy the same restrictions as in the tagticide equality

8.9.3 discriminate ident

This tactic proves any goal from an absurd hypothesis stating that two structurally different terms of
an inductive set are equal. For example, from the hypoti{&siéS 0))=(S O) we can derive by
absurdity any proposition. Létlent be a hypothesis of typerm, = terms in the local contextterm
andterm, being elements of an inductive set. To build the proof, the tactic traverses the normdl forms
of term; andterms looking for a couple of subterms andw (u subterm of the normal form atrm;

andw subterm of the normal form aktrms), placed at the same positions and whose head symbols
are two different constructors. If such a couple of subterms exists, then the proof of the current goal is
completed, otherwise the tactic fails.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usitngs until ident.

Error messages:

1. ident Not a discriminable equality
occurs when the type of the specified hypothesis is not an equation.

Variants:

1. discriminate num
This does the same thing asros until num thendiscriminate ident whereident is
the identifier for the last introduced hypothesis.

2. discriminate
It applies to a goal of the formterm,=termy and it is equivalent tounfold not; intro
ident; discriminate ident.

Error messages:

“Recall: opaque constants will not be expanded bgductions
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(a) No discriminable equalities
occurs when the goal does not verify the expected preconditions.

8.9.4 injection ident

Theinjection tactic is based on the fact that constructors of inductive sets are injections. That means
that if ¢ is a constructor of an inductive set, anddft;) and(c t3) are two terms that are equal then
and ¢, are equal too.

If ident is an hypothesis of typerm; = term-, theninjection behaves as applying injection
as deep as possible to derive the equality of all the subtermsmf andterms placed in the same
positions. For example, from the hypotheé& (S n))=(S (S (S m)) we may deriven=(S
m). To use this tacticerm; andterms should be elements of an inductive set and they should be neither
explicitly equal, nor structurally different. We mean by this thatifandn,, are their respective normal
forms, then:

e n; andns should not be syntactically equal,

e there must not exist any couple of subtenmendw, u subterm oh; andwsubterm ohs , placed
in the same positions and having different constructors as head symbols.

If these conditions are satisfied, then, the tactic derives the equality of all the subtetens pofind
terms placed in the same positions and puts them as antecedents of the current goal.

Example: Consider the following goal:

Cog < Inductive list : Set :=
Coq < | nil : list
Coq < | cons : nat -> list -> list.
Coq < Variable P : list -> Prop.
Coq < Show.
1 subgoal
[ list
n : nat
H : P nil
HO : cons n | = cons O nil
P
Cog < injection HO.
1 subgoal
[ list
n : nat
H : P nil
HO : cons n | = cons O nil

I =nil =>n=0->P|I
Beware thainjection yields always an equality in a sigma type whenever the injected object
has a dependent type.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usitngs until ident.

Error messages:
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1. ident is not a projectable equality occurs when the type of the hypotheaidoes
not verify the preconditions.

2. Not an equation occurs when the type of the hypothegids not an equation.

Variants:

1. injection num

This does the same thing edros until num theninjection ident whereident is the
identifier for the last introduced hypothesis.

2. injection

If the current goal is of the formerm, <> terms, the tactic computes the head normal form of the
goal and then behaves as the sequennéold not; intro ident; injection ident.

Error message:goal does not satisfy the expected preconditions

8.9.5 simplify_eq ident

Let ident be the name of an hypothesis of typgm,=terms in the local context. Ifterm; and
termy are structurally different (in the sense described for the tatiticriminate ), then the tac-
tic simplify_eq behaves adiscriminate ident otherwise it behaves asjection ident.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usitigs until ident.

Variants:

1. simplify_eq num

This does the same thing agros until num thensimplify _eq ident whereident is
the identifier for the last introduced hypothesis.

2. simplify_eq If the current goal has formt; = t9, then this tactic dodsnf; intro ident;
simplify_eq ident.

8.9.6 dependent rewrite -> ident

This tactic applies to any goal. iflent has typgexistS A B a b)=(existS A B a' b’) in
the local context (i.e. each term of the equality has a sigmafyped & (B a)}) this tactic rewrites
intoa’ andb intob’ inthe current goal. This tactic works evenfis also a sigma type. This kind of
equalities between dependent pairs may be derived by the injection and inversion tactics.

Variants:

1. dependent rewrite <- ident
Analogous tadependent rewrite -> but uses the equality from right to left.
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8.10 Inversion

8.10.1 inversion ident

Let the type ofident in the local context bl i), whereI is a (co)inductive predicate. Then,
inversion  applied toident derives for each possible constructpof (I ), all the necessary condi-
tions that should hold for the instan¢gt) to be proved by:;.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified
in the goal, then the latter is first introduced in the local context usitngs until ident.

Variants:

1. inversion num

This does the same thing awros until num theninversion ident whereident is the
identifier for the last introduced hypothesis.

2. inversion_clear ident

This behaves asversion and then erasadent from the context.

3. inversion  ident as intro_pattern

This behaves amversion  but using names itntro_pattern for naming hypotheses. The-
tro_pattern must have the for p11...pin, | --- | Pmi -+ -Dmn,, ] With m being the number of
constructors of the type aflent. Be careful that the list must be of lengtheven ifinversion

discards some cases (which is precisely one of its roles): for the discarded cases, just use an empty
list (i.e. n; = 0).

The arguments of th&" constructor and the equalities thiatersion  introduces in the context

of the goal corresponding to th& constructor, if it exists, get their names from the list

...Din; in order. If there are not enough namesjuction  invents names for the remaining
variables to introduce. In case an equation splits into several equations (b@varsen
appliesinjection on the equalities it generates), the corresponding namie the list must be
replaced by a sublist of the forfrp;;1 ... psj,] (or, equivalently( p;;i, ..., Dijq) ) Where

q is the number of subequations obtained from splitting the original equation. Here is an example.

Cog < Inductive containsO : list nat -> Prop :=

Coq < | in_hd : forall I, containsO (0 :: 1)

Coq < | in_tl : forall | b, containsO | -> containsO (b :: ).
containsO is defined

containsO_ind is defined

Coq < Goal forall I:list nat, containsO (1 : I) -> containsO .
1 subgoal

forall | : list nat, containsO (1 :: I) -> containsO |

Cog < intros | H; inversion H as [ | I' p HI' [Hegp Heqgl 1.
1 subgoal

| : list nat

H : containsO (1 :: )
I : list nat

p : nat

HI' : containsO |
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10.

11.

12.

13.

14.

15.

1

Hegp : p
’ I

Heql’ : |

containsO |

. inversion num as intro_pattern

This allows to name the hypotheses introducedhversion  num in the context.

. inversion_clear ident as intro_pattern

This allows to name the hypotheses introducedhivgrsion_clear in the context.

inversion ident in ident ... ident,,

Letident; ... ident,, be identifiers in the local context. This tactic behaves as generaliking
. ident,,, and then performingversion

. inversion ident as intro_pattern in ident; ... ident,

This allows to name the hypotheses introduced in the conteixieysion  ident in ident; ...
ident,,.

. inversion_clear ident in ident; ...ident,,

Letident; ... ident,, be identifiers in the local context. This tactic behaves as generalizing
... ident,,, and then performingqversion_clear

. inversion_clear ident as intro_pattern in ident; ...ident,

This allows to name the hypotheses introduced in the conteitigysion_clear ident in
ident ...ident,,.

dependent inversion ident

That must be used wheident appears in the current goal. It acts likeversion  and then
substituteddent for the corresponding term in the goal.

dependent inversion ident as intro_pattern

This allows to name the hypotheses introduced in the contexdemgendent inversion
ident.

dependent inversion_clear ident

Like dependent inversion , except thaident is cleared from the local context.

dependent inversion_clear identas intro_pattern

This allows to name the hypotheses introduced in the context dependent
inversion_clear ident

dependent inversion ident with  term

This variant allow to give the good generalization of the goal. It is useful when the system fails
to generalize the goal automatically.itfent has type(I t) andI has typeforall(Z : T), s, then
term must be of typd : forall(Z : T),I ¥ — s’ wheres’ is the type of the goal.

dependent inversion ident as intro_pattern with  term

This allows to name the hypotheses introduced in the contextemendent inversion
ident with  term.

Coq Reference Manual, V8.0, June 27, 2004



8.10 Inversion 153

16. dependent inversion_clear ident with  term
Like dependent inversion ... with but clearsidentfrom the local context.

17. dependent inversion_clear ident as intro_pattern with  term
This allows to name the hypotheses introduced in the context dependent
inversion_clear ident with  term.

18. simple inversion ident

Itis a very primitive inversion tactic that derives all the necessary equalities but it does not simplify
the constraints asversion  do.
19. simple inversion ident as intro_pattern

This allows to name the hypotheses introduced in the contegirbygle inversion

20. inversion  ident using ident’
Letident have typg I t) (I an inductive predicate) in the local context, ddeht’ be a (dependent)
inversion lemma. Then, this tactic refines the current goal with the specified lemma.

21. inversion  ident using ident’in ident;... ident,

This tactic behaves as generaliziidgnt; . . . ident,,, then doingnversion  identusing ident’.
See also:10.5 for detailed examples

8.10.2 Derive Inversion ident with forall(z:T),I t Sort sort

This command generates an inversion principle foritiwersion ... using tactic. Let/ be

an inductive predicate andlthe variables occurring i This command generates and stocks the in-
version lemma for the sosort corresponding to the instangerall(Z : T), I ¢ with the nameident

in the global environment. When applied it is equivalent to have inverted the instance with the tactic
inversion

Variants:

1. Derive Inversion_clear ident with ~ forall(Z: T),I¥Sort sort
When applied it is equivalent to having inverted the instance with the iagicsion  replaced
by the tactidnversion_clear

2. Derive Dependent Inversion ident with  forall(Z : T),1¢Sort sort
When applied it is equivalent to having inverted the instance with the taegendent
inversion

3. Derive Dependent Inversion_clear ident with forall(f:f),IFSort sort

When applied it is equivalent to having inverted the instance with the taejpendent
inversion_clear

See als0:10.5 for examples
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8.10.3 quote ident

This kind of inversion has nothing to do with the tadtiwersion  above. This tactic doeshange

(ident t) ,wheret is aterm build in order to ensure the convertibility. In other words, it does inversion
of the functionident. This function must be a fixpoint on a simple recursive datatype: see 10.7 for the
full details.

Error messages:

1. quote: not a simple fixpoint
Happens whenuote is not able to perform inversion properly.

Variants:

1. quote ident [ ident; ... ident, ]
All terms that are build only withident; ...ident, will be considered byjuote as constants
rather than variables.

8.11 Automatizing

8.11.1 auto

This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve
the goal using thassumption tactic, then it reduces the goal to an atomic one usitrgs and
introducing the newly generated hypotheses as hints. Then it looks at the list of tactics associated to the
head symbol of the goal and tries to apply one of them (starting from the tactics with lower cost). This
process is recursively applied to the generated subgoals.

By default,auto only uses the hypotheses of the current goal and the hints of the database named
core .

Variants:

1. auto num
Forces the search depth to fmen. The maximal search depth is 5 by default.

2. auto with  ident; ... ident,,

Uses the hint databas&fnt; ... ident,, in addition to the databas®mre . See Section 8.12 for
the list of pre-defined databases and the way to create or extend a database. This option can be
combined with the previous one.

3. auto with *
Uses all existing hint databases, minus the special dataib2seSee Section 8.12

4, trivial

This tactic is a restriction oéuto that is not recursive and tries only hints which cost is 0.
Typically it solves trivial equalities likeX = X.

5. trivial with identy ...  ident,,

6. trivial with *

Remark: auto either solves completely the goal or else leave it intaato andtrivial never fail.

See also:Section 8.12
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8.11.2 eauto

This tactic generalizeauto . In contrast with the latteeauto uses unification of the goal against
the hints rather than pattern-matching (in other words, it eagply instead ofapply ). As a conse-
guencegauto can solve such a goal:

Cog < Hint Resolve ex_intro.
Warning: the hint: EApply ex_intro will only be used by EAuto

Coq < Goal forall P:nat -> Prop, P 0 -> exists n, P n.
1 subgoal

forall PO : nat -> Prop, PO O -> exists n : nat, PO n
Cog < eauto.
Proof completed.

Note thatex_intro  should be declared as an hint.

See also:Section 8.12

8.11.3 tauto

This tactic implements a decision procedure for intuitionistic propositional calculus based on the
contraction-free sequent calculi LIJT* of Roy Dyckhoff [49]. Note thatito succeeds on any in-
stance of an intuitionistic tautological propositiotauto unfolds negations and logical equivalence
but does not unfold any other definition.

The following goal can be proved liguto whereasauto would fail:

Coq < Goal forall (x:nat) (P:nat -> Prop), x = 0V P x ->x <> 0 -> P x.
1 subgoal

forall (x : nat) (PO : nat -> Prop), x = 0 V PO x -> x <> 0 -> PO x

Coq < intros.
1 subgoal

X @ nat

PO : nat -> Prop
H:x=0V PO x
HO : x <> 0

PO x

Cog < tauto.
Proof completed.

Moreover, if it has nothing else to dmuto performs introductions. Therefore, the uséntfos
in the previous proof is unnecessatguto can for instance prove the following:

Coq < (* auto would fail *)

Cog < Goal forall (A:Prop) (P:nat -> Prop),

Coq < A V (forall x:nat, ~ A -> P x) -> forall x:nat, ~ A -> P x.
1 subgoal
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forall (A : Prop) (PO : nat -> Prop),
AV (forall x : nat, ~ A -> PO x) -> forall x : nat, ~ A -> PO X

Coq <
Coq < tauto.
Proof completed.

Remark: In contrastfauto cannot solve the following goal

Cog < Goal forall (A:Prop) (P:nat -> Prop),
Coq < A V (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A V P x).

becausdforall x:nat, ~ A -> P x) cannot be treated as atomic and an instantiation of
X is necessary.

8.11.4 intuition tactic

The tacticintuition takes advantage of the search-tree builded by the decision procedure involved
in the tactictauto . It uses this information to generate a set of subgoals equivalent to the original one
(but simpler than it) and applies the tactictic to them [89]. If this tactic fails on some goals then
intuition fails. In fact,tauto is simplyintuition fail

For instance, the tactiotuition auto applied to the goal

(forall (x:nat), P x)AB -> (forall (y:nat),P y)A\ P O VBA P O
internally replaces it by the equivalent one:
(forall (x:nat), P x), B |- P O

and then useauto which completes the proof.

Originally due to César Mufoz, these tactitauto and intuition ) have been completely
reenginered by David Delahaye using mainly the tactic language (see chapter 9). The code is now quite
shorter and a significant increase in performances has been noticed. The general behavior with respect
to dependent types, unfolding and introductions has slightly changed to get clearer semantics. This may
lead to some incompatibilities.

Variants:
1. intuition
Is equivalent tantuition auto with *
8.11.5 firstorder

The tacticfirstorder is anexperimentakextension oftauto to first-order reasoning, written by
Pierre Corbineau. It is not restricted to usual logical connectives but instead may reason about any
first-order class inductive definition.

Variants:

1. firstorder tactic
Tries to solve the goal withactic when no logical rule may apply.

2. firstorder with ident; ...  ident,
Adds lemmatddent; ... ident,, to the proof-search environment.
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3. firstorder using identy ...  ident,,

Adds lemmata irauto hints basesdent; ... ident,, to the proof-search environment.

Proof-search is bounded by a depth parameter which can be set by typi@gttHarstorder
Depth n vernacular command.

8.11.6 congruence

The tacticcongruence , by Pierre Corbineau, implements the standard Nelson and Oppen congru-
ence closure algorithm, which is a decision procedure for ground equalities with uninterpreted symbols.
It also include the constructor theory (see 8.9.4 and 8.9.3). If the goal is a non-quantified equality,
congruence tries to prove it with non-quantified equalities in the context. Otherwise it tries to infer a
discriminable equality from those in the context.

Coq < Theorem T:
Cog < a=(f a) -> (g b (fa)=(f (fa)-> (g ab=(f(gba)->(g ab=a
1 subgoal

a=fa->gb(fa=f(fa->gab=f(@ba ->gab-=a

Coq < intros.
1 subgoal

H:a=*fa
HO : gb (fa) =f (f a
Hl1 :gab=1f(@ba)

gab=a

Cog < congruence.
Proof completed.

Cog < Theorem inj : f = pair a -> Some (f ¢c) = Some (f d) -> c=d.
1 subgoal

f = pair (B:=A) a -> Some (f ¢) = Some (fd) ->c =4d
Cog < intros.
1 subgoal

H : f = pair (B:=A) a
HO : Some (f ¢) = Some (f d)

c=d
Coq < congruence.
Proof completed.
Error messages:

1. 1 don't know how to handle dependent equality
The decision procedure managed to find a proof of the goal or of a discriminable equality but this
proof couldn’t be built in Coqg because of dependently-typed functions.

2. | couldn't solve goal
The decision procedure didn’t managed to find a proof of the goal or of a discriminable equality.
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8.11.7 omega

The tacticomega, due to Pierre Crégut, is an automatic decision procedure for Prestburger arithmetic.
It solves quantifier-free formulae build with \/ , A , -> on top of equations and inequations on both
the typenat of natural numbers and of binary integers. This tactic must be loaded by the command
Require Import Omega . See the additional documentation abontega (chapter 17).

8.11.8 ring term; ... term,

This tactic, written by Samuel Boutin and Patrick Loiseleur, applies associative commutative rewriting
on every ring. The tactic must be loadedRgquire Import Ring . The ring must be declared in
theAdd Ring command (see 19). The ring of booleans is predefined; if one wants to use the tactic on
nat one must first require the modubgithRing ; for Z, do Require Import ZArithRing ;
for N, doRequire Import NArithRing

The termstermy, .. ., term,, must be subterms of the goal conclusion. The taotig normalizes
these terms w.r.t. associativity and commutativity and replace them by their normal form.

Variants:

1. ring When the goal is an equality = t», it acts likering ¢; t and then simplifies or solves
the equality.

2. ring_nat isatactic macro forepeat rewrite S_to_plus_one; ring . The theorem
S_to_plus_one is a proof thaforall (n:nat), S n = plus (S O) n

Example:

Cog < Require Import ZArithRing.

Coq < Goal forall a b c:Z,

Coq < @+b+c)*(@+b+c =

Coq < a*a+b*b+c*c+2*a*rb+2*a*rc+2*hb*ec
1 subgoal

forall a b c : Z,
@+b+c¢c)*@+b+c =
a*a+b*b+c*c+2*a*b+2*a*c+2*b*c

Coq < intros; ring.
Proof completed.

You can have a look at the fil&&ng.v , ArithRing.v  , ZArithRing.v to see examples of the
Add Ring command.

See also:.Chapter 19 for more detailed explanations about this tactic.

8.11.9 field

This tactic written by David Delahaye and Micaela Mayero solves equalities using commutative field
theory. Denominators have to be non equal to zero and, as this is not decidable in general, this tactic
may generate side conditions requiring some expressions to be non equal to zero. This tactic must
be loaded byRequire Import Field . Field theories are declared (as fimg ) with the Add

Field command.

Example:
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Cog < Require Import Reals.

Coq < Goal forall x y:R,

Coq < x *y > 0%R ->
Cog < x*@/x+x/! X+ Y)YWR =
Coq < (C17y)*ry* (x> KX/ (x+y)- 1)%R.
Cog < intros; field.
1 subgoal
X R
y : R

H: X*y > 0%R

(x * (x +y) * V%R <> 0%R

8.11.10 Add Field

This vernacular command adds a commutative field theory to the database for théidhktic. You
must provide this theory as follows:

Add Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl

whereA is a term of typeType , Aplusis a term of typeA->A->A , Amultis a term of typeA->A->A |
Aoneis a term of typeA, Azerois a term of typeA, Aoppis a term of typeA->A, Aeqis a term of
type A->bool , Ainvis a term of typeA->A, Rthis a term of typgRing_Theory A Aplus Amult
Aone Azero Ainv Agq andTinvlis a term of typdorall n: A “(n= Azerg->( Amult ( Ainv n)
n)= Aone To build a ring theory, refer to Chapter 19 for more details.
This command adds also an entry in the ring theory table if this theory is not already declared. So, it
is useless to keep, for a given type, thdd Ring command if you declare a theory widd Field ,
except if you plan to use specific featuresrimiy (see Chapter 19). However, the modtileg is
not loaded byAdd Field and you have to makeRequire Import Ring if you want to call the
ring tactic.

Variants:

1. Add Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl
with minus:=  Aminus

Adds also the termdminuswhich must be a constant expressed by mearisph

2. Add Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl
with div:i= Adiv

Adds also the termAdivwhich must be a constant expressed by mearsrof
See alsofile theories/Reals/Rbase.v for an example of instantiation,
theorytheories/Reals for many examples of use field

See also]37] for more details regarding the implementatiorfiefd

8.11.11 fourier

This tactic written by Loic Pottier solves linear inequations on real numbers using Fourier's method [58].
This tactic must be loaded Wequire Import Fourier

Example:

Coq Reference Manual, V8.0, June 27, 2004



160 8 Tactics
Cog < Require Import Reals.

Coq < Require Import Fourier.

Coq < Goal forall x y:R, (X < Y)%R -> (y + 1 >= x - 1)%R.

Cog < intros; fourier.
Proof completed.

8.11.12 autorewrite with ident, ... ident,,.

This tactic® carries out rewritings according the rewriting rule baigleat; ... ident,.

Each rewriting rule of a bas@ent; is applied to the main subgoal until it fails. Once all the rules
have been processed, if the main subgoal has progressed (e.qg., if it is distinct from the initial main goal)
then the rules of this base are processed again. If the main subgoal has not progressed then the next base
is processed. For the bases, the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with thint Rewrite  vernacular command.

Warning: This tactic may loop if you build non terminating rewriting systems.

Variant:

1. autorewrite with ident; ... ident, using tactic
Performs, in the same way, all the rewritings of the badest; ... ident, applyingtactic to
the main subgoal after each rewriting step.

8.11.13 Hint Rewrite term; ... term, . ident

This vernacular command adds the terers; ... term, (their types must be equalities) in the rewrit-
ing basedent with the default orientation (left to right). Notice that the rewriting bases are distinct from
theauto hint bases and thaiuto does not take them into account.

This command is synchronous with the section mechanism (see 2.3): when closing a section, all
aliases created bMint Rewrite in that section are lost. Conversely, when loading a module, all
Hint Rewrite  declarations at the global level of that module are loaded.

Variants:

1. Hint Rewrite -> term; ... term, .  ident
This is strictly equivalent to the command above (we only make explicit the orientation which
otherwise defaults te> ).

2. Hint Rewrite <- termy ... term, . ident
Adds the rewriting ruleserm; ... term, with a right-to-left orientation in the basdent.
3. Hint Rewrite term; ... term, using tactic : ident
When the rewriting rulegerm; ... term, in ident will be used, the tactieactic will be applied

to the generated subgoals, the main subgoal excluded.

See als0:10.6 for examples showing the use of this tactic.

5The behavior of this tactic has much changed compared to the versions available in the previous distributions (V6). This
may cause significant changes in your theories to obtain the same result. As a drawback of the reenginering of the code, this
tactic has also been completely revised to get a very compact and readable version.
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8.12 The hints databases foauto and eauto

The hints forauto andeauto are stored in databases. Each databases maps head symbols to list of
hints. One can use the commaridnt Hint ident to display the hints associated to the head symbol
ident (see 8.12.2). Each hint has a cost that is an nonnegative integer, and a pattern. The hint is tried by
auto if the conclusion of current goal matches its pattern, and after hints with a lower cost. The general
command to add a hint to some databagest, ..., ident,, IS:

Hint hint_definition : ident; ... ident,,

wherehint_definition is one of the following expressions:
wherehint_definition is one of the following expressions:

e Resolve term

This command addapply term to the hint list with the head symbol of the typetefm. The
cost of that hint is the number of subgoals generateddply term.

In case the inferred type aérm does not start with a product the tactic added in the hint list is
exact term. In case this type can be reduced to a type starting with a product, theapptic
term is also stored in the hints list.

If the inferred type ofterm does contain a dependent quantification on a predicate, it is added to
the hint list ofeapply instead of the hint list ofpply . In this case, a warning is printed since
the hint is only used by the tactgauto (see 8.11.2). A typical example of hint that is used only
by eauto is a transitivity lemma.

Error messages:

1. Bound head variable
The head symbol of the type ofrm is a bound variable such that this tactic cannot be
associated to a constant.

2. term cannot be used as a hint

The type ofterm contains products over variables which do not appear in the conclusion.
A typical example is a transitivity axiom. In that case tiqgply tactic fails, and thus is
useless.

Variants:

1. Resolve term; ...term,,
Adds eachResolve term;.

e Immediate term

This command addspply term; trivial to the hint list associated with the head symbol of
the type ofidentin the given database. This tactic will fail if all the subgoals generatezpply
term are not solved immediately by thevial tactic which only tries tactics with cost

This command is useful for theorems such that the symmetry of equalitytot = m + 1 —
n = m that we may like to introduce with a limited use in order to avoid useless proof-search.

The cost of this tactic (which never generates subgoals) is always 1, so that it is not used by
trivial itself.

Error messages:
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1. Bound head variable
2. term cannot be used as a hint

Variants:

1. Immediate term; ...term,,
Adds eacHmmediate term;.

Constructors ident

If ident is an inductive type, this command adds all its constructors as hints oRgpelve .
Then, when the conclusion of current goal has the foident ...) , auto will try to apply
each constructor.

Error messages:

1. ident is not an inductive type
2. ident not declared

Variants:

1. Constructors identy ...ident,,
Adds eacHConstructors ident;.

Unfold qualid

This adds the tactionfold  qualid to the hint list that will only be used when the head constant
of the goal isident. Its cost is 4.

Variants:

1. Unfold ident; ...ident,,
Adds eacHJnfold ident;.

Extern num pattern => tactic

This hint type is to extenduto with tactics other thampply andunfold . For that, we must
specify a cost, a pattern and a tactic to execute. Here is an example:

Hint Extern 4 ~(?=?) => discriminate.

Now, when the head of the goal is a disequaliyio will try discriminate if it does not
succeed to solve the goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question
mark followed by an ident, lik@X1 or ?X2. Here is an example:

Coq < Require Import List.

Cog < Hint Extern 5 ({?X1 = ?2X2} + {?X1 <> ?X2}) =>
Coq < generalize X1 X2; decide equality : eqdec.

Coq < Goal
Coq < forall a b:list (nat * nat), {a = b} + {a <> b}.
1 subgoal
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forall a b : list (nat * nat), {a = b} + {a <> b}

Cog < info auto with eqdec.

== intro a; intro b; generalize a b; decide equality;
generalize a0 p; decide equality.
generalize b0 nO; decide equality.

generalize al n; decide equality.

Proof completed.

Remark: There is currently (in the 8.0 release) no way to do pattern-matching on hypotheses.
Variants:
1. Hint hint_definition
No database name is given : the hint is registered irctine database.

2. Hint Local hint definition : ident; ... ident,,

This is used to declare hints that must not be exported to the other modules that require and import
the current module. Inside a section, the optimtal is useless since hints do not survive
anyway to the closure of sections.

3. Hint Local hint_definition
Idem for thecore database.

8.12.1 Hint databases defined in the 6Q standard library

Several hint databases are defined in tlmpGtandard library. There is no systematic relation between
the directories of the library and the databases.

core This special database is automatically use@bip . It contains only basic lemmas about nega-
tion, conjunction, and so on from. Most of the hints in this database come froinithe and
Logic directories.

arith  This database contains all lemmas about Peano’s arithmetic proven in the dirdaibrieand

Arith
zarith  contains lemmas about binary signed integers from the directieesies/ZArith and
contrib/omega . It contains also a hint with a high cost that calleega.

bool contains lemmas about booleans, mostly from directioepries/Bool

datatypes s for lemmas about lists, streams and so on that are mainly proven lnistise subdi-
rectory.

sets contains lemmas about sets and relations from the direct®eatss andRelations

There is also a special database calléd . It collects all hints that were declared in the versions of
CoQ prior to version 6.2.4 when the databasese , arith , and so on were introduced. The purpose
of the database62 is to ensure compatibility with further versions of Coq for developments done in
versions prior to 6.2.4auto being replaced bguto with v62 ). The database62 is intended not
to be extended (!). Itis not included in the hint databases list used suoe with *  tactic.

Furthermore, you are advised not to put your own hints irctire database, but use one or several
databases specific to your development.
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8.12.2 Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while
the two variants can be used at every moment.

Variants:

1. Print Hint ident

This command displays only tactics associated vidtint in the hints list. This is independent of
the goal being edited, to this command will not fail if no goal is being edited.

2. Print Hint *

This command displays all declared hints.

3. Print HintDb ident

This command displays all hints from databadmt.

8.12.3 Hints and sections

Hints provided by theHint commands are erased when closing a section. Conversely, all hints of a
moduleA that are not defined inside a section (and not defined with ojiiamal ) become available
when the modulé\ is imported (using e.gRequire Import A. ).

8.13 Generation of induction principles with Scheme

The Scheme command is a high-level tool for generating automatically (possibly mutual) induction
principles for given types and sorts. Its syntax follows the schema:

Scheme ident; := Induction for ident’ 1 Sort sort;with ...
ident’1 ... ident’,, are different inductive type identifiers belonging to the same package of mutual

inductive definitions. This command generaitést;... ident,, to be mutually recursive definitions.
Each termident; proves a general principle of mutual induction for objects in type;.

Variants:
1. Scheme ident; := Minimality for ident’ 1 Sort sorty
with
with  ident,, := Minimality for ident’ ,, Sort sort,,

Same as before but defines a hon-dependent elimination principle more natural in case of induc-
tively defined relations.

See als0:10.3

See also:Section 10.3
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8.14 Generation of induction principles with Functional Scheme

The Functional Scheme  command is a high-level experimental tool for generating automatically
induction principles corresponding to (possibly mutually recursive) functions. Its syntax follows the
schema:

Functional Scheme ident; = Induction for ident’ ; with ident’ 1 ... ident’ ,,.

ident’; ... ident’ ,, are the names of mutually recursive functions (they must be in the same order as
when they were definedjdent’; being one of them. This command generates the induction principle
ident;, following the recursive structure and case analyses of the funciitens ; ... ident’,,, and
havingident’; as entry point.

Variants:
1. Functional Scheme ident; := Induction for ident’ 1.
This command is a shortcut for:
Functional Scheme ident1 := Induction for ident’ 1 with ident’ 1.

This variant can be used for non mutually recursive functions only.

See also:Section 10.4

8.15 Simple tactic macros
A simple example has more value than a long explanation:

Coq < Ltac Solve := simpl; intros; auto.
Solve is defined

Coq < Ltac ElimBoolRewrite b H1 H2 :=
Coq < elim b; [ intros; rewrite H1; eauto | intros; rewrite H2; eauto ].
ElimBoolRewrite is defined

The tactics macros are synchronous with theg@ection mechanism: a tactic definition is deleted
from the current environment when you close the section (see also 2.3) where it was defined. If you
want that a tactic macro defined in a module is usable in the modules that require it, you should put it
outside of any section.

The chapter 9 gives examples of more complex user-defined tactics.
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Chapter 9

The tactic language

This chapter gives a compact documentation of Ltac, the tactic language availalde.in\@ start by

giving the syntax, and next, we present the informal semantics. If you want to know more regarding
this language and especially about its fundations, you can refer to [36]. Chapter 10 is devoted to giving
examples of use of this language on small but also with non-trivial problems.

9.1 Syntax

The syntax of the tactic language is given Figures 9.1 and 9.2. See page 25 for a description of the BNF

metasyntax used in these grammar rules. Various already defined entries will be used in this chapter:

entriesnatural , integer, ident, qualid, term, cpattern andatomic_tactic represent respectively the natural

and integer numbers, the authorized identificators and qualified namess @rms and patterns and

all the atomic tactics described in chapter 8. The syntagpaftern is the same as that of terms, but

there can be specific variables liRed whereid is aident or _, which are metavariables for pattern

matching.?id allows us to keep instantiations and to make constraints wherglagws that we are not

interested in what will be matched. On the right hand side, they are used without the question mark.
The main entry of the grammar égpr. This language is used in proof mode but it can also be used

in toplevel definitions as shown in Figure 9.3.

Remarks:
1. Theinfix tacticals“.. || ...”and*“...; ...” are associative.

2. As shown by the figure, tactichl binds more than the prefix tacticaty , repeat , do, info
andabstract  which themselves bind more than the postfix tactical §[ ... ] " which
binds more than“..; ...".

For instance

try repeat tacticy || tactico; tactics;[ tacticsy|...|  tactics,]; tacticy.
is understood as

(try (repeat ( tacticy || tactics)));

(( tactics;[ tacticsi|...|  tacticsy]); tacticy).
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expr

tacexprs

tacexprs

tacexpry

atom

expr; expr
expr; [ expr| ...| expr]
tacexprs

do (natural | ident) tacexprs
info  tacexprs

progress  tacexprs
repeat tacexprs

try tacexprs

tacexpry

tacexpr || tacexprs

tacexpr;

fun name ... name => atom

let et clause with ... with Iet _clause in atom

let rec rec_clause with ... with rec_clause in expr

match goal with  context_rule | ... | context_rule end

match reverse goal with context_rule | ... | context_rule end
match expr with match_rule | ... | match_rule end

abstract  atom
abstract  atom using ident

first [ expr| ... | expr]
solve [ expr| ... | expr]
idtac | idtac string

fail | fail natural string

fresh | fresh string
context ident [ term ]
eval redexprin term
type of term

constr :  term
atomic_tactic

qualid tacarg ... tacarg
atom

qualid

0
(expr)

Figure 9.1: Syntax of the tactic language

9.2 Semantics

Tactic expressions can only be applied in the context of a goal. The evaluation yields either a term, an
integer or a tactic. Intermediary results can be terms or integers but the final result must be a tactic which

is then applied to the current goal.

There is a special case foratch goal
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tacarg = qualid
0
| ltac : atom
| term
let_clause = ident [name ... name]:= expr
rec_clause = ident name ... name = expr
context_rule = context_hyps, ..., context_hyps |- cpattern => expr
| |- cpattern => expr
|  _ =>expr
context_hyps = name : cpattern
match_rule :’= cpattern => expr
| context [ident][ cpattern]=> expr
| _ =>expr

Figure 9.2: Syntax of the tactic language (continued)

top Ltac Itac_def with ... with Itac_def

Itac_def

ident [ident ... ident]:= expr

Figure 9.3: Tactic toplevel definitions

The rest of this section explains the semantics of every construction of Ltac.

Sequence
A sequence is an expression of the following form:
€expri ; expro
expr, andexpro are evaluated to; andwvs. v; andvy must be tactic values, is then applied ands is
applied to every subgoal generated by the applicatian o$equence is left associating.
General sequence
We can generalize the previous sequence operator as
expro; | expri| ...| expr,]
expr; is evaluated tay;, fori = 0, ..., n. v is applied and; is applied to the-th generated subgoal by

the application ofy, for = 1, ..., n. It fails if the application ofuy does not generate exactlysubgoals.

For loop

There is a for loop that repeats a taation times:

do num expr
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expr is evaluated ta. v must be a tactic valuev is appliednum times. Supposingum > 1, after

the first application ob, v is applied, at least once, to the generated subgoals and so on. It fails if the
application ofv fails before theaum applications have been completed.

Repeat loop
We have a repeat loop with:
repeat expr

expr is evaluated t@. v must be a tactic value: is applied until it fails. Supposing > 1, after the first
application ofv, v is applied, at least once, to the generated subgoals and so on. It stops when it fails for
all the generated subgoals. It never fails.
Error catching
We can catch the tactic errors with:
try expr
expr is evaluated ta). v must be a tactic valuev is applied. If the application of fails, it catches
the error and leaves the goal unchanged. If the level of the exception is positive, then the exception is
re-raised with its level decremented.
Detecting progress
We can check if a tactic made progress with:

progress  expr

expr is evaluated t@. v must be a tactic value. is applied. If the application af produced one subgoal
equal to the initial goal (up to syntactical equality), then an error of level O is raised.

Error message: Failed to progress

Branching
We can easily branch with the following structure:
expri || expry
expr, andexprsy are evaluated to; andv,. v andvs must be tactic values, is applied and if it fails

thenws is applied. Branching is left associating.

First tactic to work
We may consider the first tactic to work (i.e. which does not fail) among a panel of tactics:
first [ expri | ...| expry]

expr; are evaluated to; andv; must be tactic values, far= 1, ..., n. Supposing: > 1, it appliesvy, if
it works, it stops else it tries to apply and so on. It fails when there is no applicable tactic.

Error message:No applicable tactic
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Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:
solve [ expri| ...| expry]

expr; are evaluated to; andv; must be tactic values, far= 1, ..., n. Supposing: > 1, it appliesvy, if
it solves, it stops else it tries to apply and so on. It fails if there is no solving tactic.

Error message:Cannot solve the goal

Identity

The constanidtac s the identity tactic: it leaves any goal unchanged but it appears in the proof script.
idtac andidtac "message"

The latter variant prints the string on the standard output.

Failing

The tacticfail  is the always-failing tactic: it does not solve any goal. It is useful for defining other
tacticals since it can be catchedtoy or match goal . There are three variants:

fail  n,fall "message" andfail n "message"

The number is the failure level. If no level is specified, it defaultstoThe level is used byry and
match goal . If 0, it makesmatch goal considering the next clause (backtracking). If non zero,
the currentmatch goal block ortry command is aborted and the level is decremented.

Error message: Tactic Failure "message" (level n).

Local definitions

Local definitions can be done as follows:

let ident; := expr;
with identy := expro

with ident,, := expry in
expr

eachexpr; is evaluated ta;, then,expr is evaluated by substituting to each occurrence aflent;, for
i =1,...,n. There is no dependencies betweendke; and theident;.
Local definitions can be recursive by usieg rec  instead ofet . Only functions can be defined
by recursion, so at least one argument is required.
Application
An application is an expression of the following form:

qualid tacarg; ... tacarg,

The referenceyualid must be bound to some defined tactic definition expecting at teasguments.
The expressionaxpr; are evaluated to;, fori =1, ..., n.
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Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:
fun ident; ... ident,, => expr

Indeed, local definitions of functions are a syntactic sugar for bindiiag atactic to an identifier.

Pattern matching on terms
We can carry out pattern matching on terms with:

match expr with
cpattern, => expri
| cpatterng => expro

| cpattern,, => expr,
| _=> exprp+1
end

Theexpr is evaluated and should yield a term which is matched (non-linear first order unification) against
cpattern; thenexpr; is evaluated into some value by substituting the pattern matching instantiations to
the metavariables. If the matching witlpattern; fails, cpatterns is used and so on. The pattern _
matches any term and shunts all remaining patterns if amypH; evaluates to a tactic, this tactic is not
immediately applied to the current goal (in contrast withtch goal ). If all clauses fail (in particular,

there is no pattern ) then a no-matching error is raised.

Error messages:
1. No matching clauses for match
No pattern can be used and, in particular, there is pattern.
2. Argument of match does not evaluate to a term
This happens wheexpr does not denote a term.
There is a special form of patterns to match a subterm against the pattern:
context ident [ cpattern ]

It matches any term which one subterm matclpestern. If there is a match, the optionalent is assign
the “matched context”, that is the initial term where the matched subterm is replaced by a hole. The
definition ofcontext in expressions below will show how to use such term contexts.

This operator never makes backtracking. If there are several subterms matching the pattern, only the
first match is considered. Note that the order of matching is left unspecified.

Pattern matching on goals
We can make pattern matching on goals using the following expression:

match goal with
| hypi1, .o RYDP1Im, |- cpattern;=> expr;
| hypai, ... hyp2.m, |- cpatterno=> expro

| hypnis -ow RYPnm, |- cpattern,=> expry,
. => exprpi1

end
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If each hypothesis patterfyp; ;, with < = 1, ..., m; is matched (non-linear first order unification)
by an hypothesis of the goal anddpattern; is matched by the conclusion of the goal, thepr; is
evaluated ta); by substituting the pattern matching to the metavariables and the real hypothesis names
bound to the possible hypothesis names occurring in the hypothesis pattesnis. dftactic value, then
it is applied to the goal. If this application fails, then another combination of hypotheses is tried with the
same proof context pattern. If there is no other combination of hypotheses then the second proof context
pattern is tried and so on. If the next to last proof context pattern failseten , is evaluated t@,, ;1
andwv,,1 is applied.

Error message:No matching clauses for match goal
No goal pattern can be used and, in particular, there is goal pattern.

It is important to know that each hypothesis of the goal can be matched by at most one hypothesis
pattern. The order of matching is the following: hypothesis patterns are examined from the right to the
left (i.e. hyp;m, beforehyp; 1). For each hypothesis pattern, the goal hypothesis are matched in order
(fresher hypothesis first), but it possible to reverse this order (older first) witméteh reverse
goal with variant.

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a
term to be used in tactic expressions:

context ident [ expr]

ident must denote a context variable bound byoatext pattern of anatch expression. This expres-
sion evaluates replaces the hole of the valuglait by the value okxpr.

Error message:not a context variable

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with
theintro  tactic is not so good since it is very awkward to retrieve the name the system gave.
As before, the following expression returns a term:

fresh string

It evaluates to an identifier unbound in the goal, which is obtained by padding with a number if
necessary. If no name is given, the prefixis

type of term

This tactic computes the type afrm.

Computing in a constr

Evaluation of a term can be performed with:
eval redexprin term

whereredexpr is a reduction tactic amorgd , hnf , compute , simpl , cbv,lazy ,unfold ,fold
pattern
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Accessing tactic decomposition

Tactical ‘info  expr” is not really a tactical. For elementary tactics, this is equivalentxjor. For
complex tactic likeauto , it displays the operations performed by the tactic.
Proving a subgoal as a separate lemma

From the outside dbstract expr’ is the same asolve expr. Internally it saves an auxiliary
lemma calledident_subproof n whereident is the name of the current goal ands chosen so that
this is a fresh name.

This tactical is useful with tactics such amega or discriminate that generate huge proof
terms. With that tool the user can avoid the explosion at time oStnee command without having to
cut manually the proof in smaller lemmas.

Variants:

1. abstract expr using ident.
Give explicitly the name of the auxiliary lemma.

Error message:Proof is not complete

9.3 Tactic toplevel definitions

Basically, tactics toplevel definitions are made as follows:
Ltac ident ident; ... ident, := expr

This defines a new tactic that can be used in any tactic script or new tactic toplevel definition.

Remark: The preceding definition can equivalently be written:
Ltac ident := fun ident; ... ident,, => expr

Recursive and mutual recursive function definitions are also possible with the syntax:

Ltac ident; identy ; ... identy ,,, = expri
with idents idents 1 ... idents ,,, = expro
with ident,, ident,, i ... ident, ,,, = expr,
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Chapter 10

Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

10.1 refine

This tactic applies to any goal. It behaves li&eact with a big difference : the user can leave some
holes (denoted by or (_: typg) in the term. refine  will generate as many subgoals as they are
holes in the term. The type of holes must be either synthesized by the system or declared by an explicit
cast like(\_:nat->Prop) . This low-level tactic can be useful to advanced users.

Example:

Cog < Inductive Option : Set =
Coq < | Fail : Option
Cog < | Ok : bool -> Option.

Cog < Definition get : forall x:Option, x <> Fail -> bool.
1 subgoal

forall x : Option, x <> Fail -> bool

Cog < refine
Coq < (fun x:Option =>

Coq < match x return x <> Fail -> bool with
Coq < | Fail => _
Coqg < | Ok b => fun _ => b
Cog < end).
1 subgoal
X : Option

Fail <> Fail -> bool

Cog < intros; absurd (Fail = Fail); trivial.
Proof completed.

Coq < Defined.

10.2 eapply

Example: Assume we have a relation ot which is transitive:
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Cog < Variable R : nat -> nat -> Prop.

Cog < Hypothesis Rtrans : forall x y znat, R Xy >Ry z -> R x z
Coq < Variables n m p : nat.

Coq < Hypothesis Rnm : R n m.

Coq < Hypothesis Rmp : R m p.

Consider the gogR n p) provable using the transitivity d®:
Cog < Goal R n p.

The direct application dRtrans with apply fails because no value fgrin Rtrans is found by
apply :

Coq < apply Rtrans.
Unnamed_thm < Unnamed_thm < Toplevel input, characters 144-156
> apply Rtrans.

> ANAANNNNNNNN

Error: generated subgoal "R n ?17" has metavariables in it
A solution is to rather applyRtrans n m p)

Coq < apply (Rtrans n m p).
2 subgoals

Rnm
subgoal 2 is:
R mp

More elegantlyapply Rtrans with (y:=m) allows to only mention the unknowm
Coq <

Cog < apply Rtrans with (y := m).
2 subgoals

Rnm
subgoal 2 is:
R mp

Another solution is to mention the proof (R x y) inRtrans ...
Cog <

Coq < apply Rtrans with (1
1 subgoal

Rnm).

R mp
... orthe proofofR y 2z) :
Coq <

Cog < apply Rtrans with (2
1 subgoal

Rmp).

R nm
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On the opposite, one can usapply which postpone the problem of findimg Then one can apply
the hypotheseRnmandRmp This instantiates the existential variable and completes the proof.

Coq < eapply Rtrans.
2 subgoals

R n ?5
subgoal 2 is:
R ?5 p
Cog < apply Rnm.
1 subgoal

Rmp

Coq < apply Rmp.
Proof completed.

10.3 Scheme

Example 1: Induction scheme fdree andforest
The definition of principle of mutual induction faree andforest over the sorSet is defined
by the command:

Coq < Inductive tree : Set :=

Cog < node : A -> forest -> tree

Coq < with forest : Set =

Coq < | leaf : B -> forest

Coq < | cons : tree -> forest -> forest.

Coq <

Coq < Scheme tree forest rec := Induction for tree Sort Set
Coqg < with forest tree rec := Induction for forest Sort Set.

You may now look at the type dfee_forest_rec

Coq < Check tree_forest_rec.
tree_forest_rec
. forall (P : tree -> Set) (PO : forest -> Set),
(forall (a : A) (f : forest), PO f -> P (node a f)) ->
(forall b : B, PO (leaf b)) ->
(forall t : tree, P t -> forall f : forest, PO f -> PO (cons t f)) ->
forall t : tree, Pt

This principle involves two different predicates toees andforests ; it also has three premises
each one corresponding to a constructor of one of the inductive definitions.

The principletree_forest_rec shares exactly the same premises, only the conclusion now
refers to the property of forests.

Coq < Check forest tree_rec.
forest_tree_rec
: forall (P : tree -> Set) (PO : forest -> Set),
(forall (a : A) (f : forest), PO f -> P (node a f)) ->
(forall b : B, PO (leaf b)) ->
(forall t : tree, P t -> forall f : forest, PO f -> PO (cons t f)) ->
forall f2 : forest, PO f2
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Example 2: Predicatesodd andeven on naturals
Letodd andeven be inductively defined as:

Coq < Inductive odd : nat -> Prop :=

Coqg < oddS : forall n:nat, even n -> odd (S n)
Cog < with even : nat -> Prop :=

Coq < | evenO : even 0O

Cog < | evenS : forall n:nat, odd n -> even (S n).

The following command generates a powerful elimination principle:

Coq < Scheme odd even := Minimality for  odd Sort Prop
Cog < with even_odd := Minimality for even Sort Prop.
odd_even, even_odd are recursively defined

The type ofodd_even for instance will be:

Cog < Check odd_even.
odd_even
. forall P PO : nat -> Prop,
(forall n : nat, even n -> PO n -> P (S n)) ->
PO O ->
(forall n : nat, odd n -> P n -> PO (S n)) ->
forall n : nat, odd n -> P n

The type ofeven_odd shares the same premises but the conclusifmmat)(even n)->(Q

n) .

10.4 Functional Scheme and functional induction

Example 1: Induction scheme fadiv2
We define the functiodiv2 as follows:

Coq < Require Import Arith.

Coq < Fixpoint div2 (n:nat) : nat :=

Cog < match n with

Coq < | O =0

Coq < | S n0 => match nO with

Cog < | O =>0

Coq < | S n=>S (div2 n)
Coq < end

Cog < end.

The definition of a principle of induction corresponding to the recursive structutie®f is defined
by the command:

Cog < Functional Scheme div2_ind := Induction for div2.
You may now look at the type afiv2_ind
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Cog < Check div2_ind.
div2_ind
. forall QO : nat -> Prop,
(forall n : nat, n = 0 -> Q0 0) ->
(forall N N0 : nat, n = S n0 ->n0 =0 -> Q0 1) ->
(forall n nO : nat,
n=Sn0->forall " : nat, N0 = S n ->Q0n -> Q0 (S (S n)) ->
forall n : nat, Q0 n

We can now prove the following lemma using this principle:

Cog < Lemma div2_le’ : forall n:nat, div2 n <= n.
Coqg < intro n.
Cog < pattern n.

Coq < apply div2_ind; intros.

3 subgoals
n : nat
n0 : nat

Heg :n0 =20

div2 0 <=0
subgoal 2 is:
div2 1 <=1
subgoal 3 is:
div2 (S (S n)) <=S (Sn)

Coq auto with arith.

Coq
Coq

simpl; auto with arith.
Qed.

Sincediv2 is not mutually recursive, we can use directly thactional induction tactic
instead of building the principle:

<

Coq < auto with arith.
<
<

Coq < Reset div2_ind.
Cog < Lemma div2_le : forall n:nat, div2 n <= n.
Coq < intro n.

Cog < functional induction div2 n.
3 subgoals

n : nat
H_eg_ :n

1
o

0<=0
subgoal 2 is:
0<=1
subgoal 3 is:
S (div2 n) <= S (S n)

Coq < auto with arith.
Cog < auto with arith.
Coq < auto with arith.
Coq < Qed.
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remark: functional induction makes no use of an induction principle, so be warned that
each time it is applied, a term mimicking the structuredof2 (roughly the size ofliv2_ind ) is
built. Using Functional Scheme is generally faster and less memory consuming. On the other
handfunctional induction performs some extra simplifications tHainctional Scheme

does not, and as it is a tactic it can be used in tactic definitions.

Example 2: Induction scheme fdree_size
We define trees by the following mutual inductive type:

Coq < Variable A : Set.

Coq < Inductive tree : Set :=

Cog < node : A -> forest -> tree
Coq < with forest : Set =

Coq < | empty : forest

Coq < | cons : tree -> forest -> forest.

We define the functiotree_size  that computes the size of a tree or a forest.

Coq < Fixpoint tree_size (titree) : nat :=

Coq < match t with

Coq < | node A f => S (forest_size f)

Cog < end

Coq < with forest_size (f:forest) : nat =

Cog < match f with

Coq < | empty => 0

Coq < | cons t f => (tree_size t + forest_size f)
<

Coq end.
The definition of principle of mutual induction following the recursive structurged_size  is
defined by the command:

Cog < Functional Scheme treelnd := Induction for tree_size
Coq < with tree_size forest_size.

You may now look at the type dfeelnd

Coq < Check treelnd.
treelnd
: forall (Q1 : forest -> Prop) (QO : tree -> Prop),
(forall (t : tree) (A : A) (f : forest),
t = node Af->Q1f-> Q0 (hode A f) ->
(forall f : forest, f = empty -> Q1 empty) ->
(forall (f : forest) (t : tree) (f : forest),
f=zconstf ->Q0t->Q1f ->Q1 (cons t f)) ->
forall t : tree, QO t

10.5 inversion

Generalities about inversion

When working with (co)inductive predicates, we are very often faced to some of these situations:

e we have an inconsistentinstance of an inductive predicate in the local context of hypotheses. Thus,
the current goal can be trivially proved by absurdity.
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e we have a hypothesis that is an instance of an inductive predicate, and the instance has some
variables whose constraints we would like to derive.

The inversion tactics are very useful to simplify the work in these cases. Inversion tools can be
classified in three groups:

1. tactics for inverting an instance without stocking the inversion lemma in the context; this includes
the tacticsdependent ) inversion  and @dependent ) inversion_clear

2. commands for generating and stocking in the context the inversion lemma corresponding to
an instance; this includdserive (Dependent ) Inversion  andDerive (Dependent )
Inversion_clear

3. tactics for inverting an instance using an already defined inversion lemma; this includes the tactic
inversion ...using

As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the
same instance needs to be inverted several times.

Example 1: Non-dependent inversion
Let’s consider the relatiobhe over natural numbers and the following variables:

Coq < Inductive Le : nat -> nat -> Set =
Coq < | LeO : forall n:nat, Le 0 n
Coq < | LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Cog < Variable P : nat -> nat -> Prop.

Coq < Variable Q : forall n m:nat, Le n m -> Prop.
For example, consider the goal:

Coq < Show.
1 subgoal

n : nat
m : nat
H:Le (Snm

Pnm

To prove the goal we may need to reason by caseés$anmd to derive thamis necessarily of the form
(8 myg) for certainmg and that( Le n mg). Deriving these conditions corresponds to prove that the only
possible constructor de (S n) m) isLeS and that we can invert the in the type ofLeS. This
inversion is possible becauke is the smallest set closed by the constructa® andLeS.

Cog < inversion_clear H.
1 subgoal

n : nat
m : nat
mO : nat
HO : Le n mO

P n (S m0)
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Note thatmhas been substituted in the goal {& mO0) and that the hypothes{te n m0) has
been added to the context.
Sometimes it is interesting to have the equatity(S mO) in the context to use it after. In that case
we can usénversion  that does not clear the equalities:

Cog < Undo.
Coq < inversion H.
1 subgoal
n : nat
m : nat
H:Le (Snm
n0 : nat
mO : nat
H1 : Le n mO
HO : n0 = n

H2 : S mO =m

P n (S m0)

Example 2: Dependent Inversion
Let us consider the following goal:

Coq < Show.
1 subgoal

n : nat
m : nat
H:Le (Snm

Q((Sn mH

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like
inversion tactics to substitutd by the corresponding term in constructor form. Neithrarersion
nor Inversion_clear make such a substitution. To have such a behavior we use the dependent
inversion tactics:

Cog < dependent inversion_clear H.
1 subgoal

n : nat
m : nat
mO0 : nat
| : Le n mO

Q (S n) (S MO (LeS n mO I)

Note thatH has been substituted fyeS n m0 1) andmby (S mO0).

Example 3: using already defined inversion lemmas
For example, to generate the inversion lemma for the instdregS n) m) and the sorProp
we do:

Cog < Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
Cog < Prop.
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Cog < Check leminv.
leminv

foral (n m : nat) (P : nat -> nat -> Prop),
(foral mO : nat, Le n mO -> P n (S m0)) ->Le(Sn m->Pnm

Then we can use the proven inversion lemma:

Coq < Show.
1 subgoal
n : nat
m : nat
H:Le (Sn m
P m

Cog < inversion H using leminv.

1 subgoal
n : nat
m : nat
H:Le (Sn m

forall mO : nat, Le n mO -> P n (S mO0)

10.6 autorewrite

Here are two examples @futorewrite use. The first oneAckermann functionshows actually a
quite basic use where there is no conditional rewriting. The secondvme Carthy functiohpinvolves
conditional rewritings and shows how to deal with them using the optional tactic blittieRewrite
command.

Example 1: Ackermann function

Cog < Require Import Arith.

Coq < Variable Ack :
Cog < nat -> nat -> nat.
Cog < Axiom AckO :
Coq < forall m:nat, Ack 0 m = S m.
Cog < Axiom Ackl : forall n:nat, Ack (S n) 0 = Ack n 1.
Coq < Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).
Coq < Hint Rewrite AckO Ackl Ack2 : baseO.
Coq < Lemma ResAckO :
Cog < Ack 3 2 = 29.
1 subgoal
Ack 3 2 = 29

Coq < autorewrite with baseO using try reflexivity.
Proof completed.
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Example 2: Mac Carthy function

Cog < Require Import Omega.

Cog < Variable g :

Coq < nat -> nat -> nat.

Coq < Axiom g0 :

Cog < forall m:nat, g O m = m.

Cog < Axiom

Coq < gl :

Coq < forall n m:nat,

Cog < (n>0)->(m >100) ->gnm=g (pred n) (m - 10).
Coq < Axiom

Cog < g2 :

Coq < forall n m:nat,

Coq < (n>0) ->(mM«<=100) >gnm=g9g (S n (m+ 11).
Cog < Hint Rewrite g0 gl g2 using omega : basel.

Cogq < Lemma ResgO :
Coqg < g 1 110 = 100.
1 subgoal

g 1 110 = 100

Coq < autorewrite with basel using reflexivity || simpl.
Proof completed.

Coq < Lemma Resgl : g 1 95 = 91.
1 subgoal

g1095=091

Coq < autorewrite with basel using reflexivity || simpl.
Proof completed.

10.7 quote

The tacticquote allows to use Barendregt’s so-called 2-level approach without writing any ML code.
Suppose you have a langudgef 'abstract terms’ and a typ& of 'concrete terms’ and a functidn:
L -> A.If Lis asimple inductive datatype ahda simple fixpointquote f will replace the head of
current goal by a convertible term of the fofint) . L must have a constructor of typA: -> L.

Here is an example:

Coq < Require Import Quote.

Cog < Parameters A B C : Prop.
A is assumed
B is assumed
C is assumed

Cog < Inductive formula : Type :=
Coqg < | f and : formula -> formula -> formula (* binary constructor *)
Coq < | f_or : formula -> formula -> formula
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Cog < | f_not : formula -> formula (* unary constructor *)
Coq < | f true : formula (* O-ary constructor *)
Coq < | f const : Prop -> formula (* contructor for constants *).

formula is defined

formula_rect is defined
formula_ind is defined
formula_rec is defined

Coq < Fixpoint interp_f (f:
Coq < formula) : Prop =

Cog < match f with

Coq < | f_and f1 f2 => interp_f f1 A interp_f f2
Cog < | for f1 f2 => interp_f f1 V interp_f f2
Coq < | f not f1 => ~ interp_f f1

Coq < | f true => True

Cog < | fconstc =>c

Coq < end.

interp_f is recursively defined

Cog < Goal AN (AV True) A ~B AN (A <> A).
1 subgoal

ANMAV True) A ~ B N (A <> A

Cog < quote interp_f.
1 subgoal

interp_f
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_.and (f_not (f_const B)) (f_const (A <-> A)))))

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of
f . If there is a match, apply the corresponding left-hand side and call yourself recursively on sub-terms.
If there is no match, we are at a leaf: return the corresponding constructorf (berest ) applied to
the term.

Error messages:

1. quote: not a simple fixpoint
Happens whequote is not able to perform inversion properly.

10.7.1 Introducing variables map

The normal use ofjuote is to make proofs by reflection: one defines a functsmplify :
formula -> formula and proves a theoremimplify_ok: (f:formula)(interp_f
(simplify f)) -> (interp_f f) . Then, one can simplify formulas by doing:

quote interp_f.

apply simplify_ok.
compute.

But there is a problem with leafs: in the example above one cannot write a function that implements,
for example, the logical simplificationéd N A — Aor AN —-A — False . This is because therop is
impredicative.

It is better to use that type of formulas:
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Cog < Inductive formula : Set :=

Coq < | f and : formula -> formula -> formula
Coq < | for : formula -> formula -> formula
Cog < | f_not : formula -> formula

Coq < | f_true : formula

Coq < | f_atom : index -> formula.
formula is defined

formula_rect is defined

formula_ind is defined

formula_rec is defined

index is defined in modulguote . Equality on that type is decidable so we are able to simplify
A A Ainto A at the abstract level.

When there are variables, there are bindings, qunate provides also a typévarmap A) of
bindings fromindex to any setA, and a functiorvarmap_find  to search in such maps. The inter-
pretation function has now another argument, a variables map:

Coqg | f_atom i => varmap_find True i vm
Coq end.
interp_f is recursively defined

Coq < Fixpoint interp_f (vm:
Cog < varmap Prop) (f:formula) {struct f} : Prop :=
Coq < match f with
Cog < | fand f1 f2 => interp_f vm f1 A interp_f vm f2
Coq < | for f1 f2 => interp_f vm f1 V interp_f vm f2
Coq < | f_ not f1 => ~ interp_f vm f1
Coq < | f_true => True
<
<

qguote handles this second case properly:

Cog < Goal AN(B V A N (AV ~ B).
1 subgoal

ANBVYVANMV -~ B)

Coq < quote interp_f.
1 subgoal

interp_f
(Node_vm B (Node_vm A (Empty_vm Prop) (Empty_vm Prop)) (Empty_vm Prop))
(f_and (f_atom (Left_idx End_idx))
(f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
(f_or (f_atom (Left_idx End_idx)) (f_not (f_atom End_idx)))))

It buildsvmandt suchtha{f vm t) is convertible with the conclusion of current goal.

10.7.2 Combining variables and constants

One can have both variables and constants in abstracts terms; that is the case, for examphador the
tactic (chapter 19). Then one must providegtoote a list of constructors of constants-or example,
if the list is[O S] then closed natural numbers will be considered as constants and other terms as
variables.

Example:

Coq Reference Manual, V8.0, June 27, 2004



10.8 Using the tactical language 187

Cog < Inductive formula : Type :=
Coq < | f and : formula -> formula -> formula

Coq < | for : formula -> formula -> formula

Cog < | f_not : formula -> formula

Coq < | f_true : formula

Coq < | f_const : Prop -> formula (* constructor for constants *)
Cog < | f_atom : index -> formula.

Cog < Fixpoint interp_f

Cogq < (vm: (* constructor for variables *)
Coq < varmap Prop) (f:formula) {struct f} : Prop :=

Cog < match f with

Coq < | f and f1 f2 => interp_f vm f1 A interp_f vm f2
Coq < | for f1 f2 => interp_f vm f1 V interp_f vm f2
Coq < | f_ not f1 => ~ interp_f vm f1

Cog < | f_true => True

Cog < | f_const ¢ => ¢

Coq < | f_atom i => varmap_find True i vm

Cog < end.

Coq < Goal

Cog < AN(AV True) N ~ B N (C <> Q).

Coq < quote interp_f [ A B ].
1 subgoal

interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_.and (f_not (f_const B)) (f_atom End_idx))))

Coq < Undo.
1 subgoal

ANV Tue) A ~ B A (C <> C)

Coq < quote interp_f [ B C iff ].
1 subgoal

interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_atom End_idx)
(f_and (f_or (f_atom End_idx) f _true)
(f_and (f_not (f_const B)) (f_const (C <-> C)))))
Warning: Since function inversion is undecidable in general case, don’t expect miracles from it!
See alsocomments of source fil@ctics/contrib/polynom/quote.ml

See alsothering tactic (Chapter 19)

10.8 Using the tactical language

10.8.1 About the cardinality of the set of natural numbers

A first example which shows how to use the pattern matching over the proof contexts is the proof that
natural numbers have more than two elements. The proof of such a lemma can be done as follows:
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Cog < Section Sort.
Coq < Variable A : Set.
Cog < Inductive permut : list A -> list A -> Prop :=
Coq < | permut_refl . forall 1, permut | |
Coq < | permut_cons
Cog < forall a 10 11, permut 10 11 -> permut (a :: 10) (a :: I11)
Coq < | permut_append : forall a I, permut (a :: I) (I ++ a :: nil)
Coq < | permut_trans
Coq < forall 10 11 12, permut 10 [1 -> permut I1 12 -> permut 10 2.
Cog < End Sort.

Figure 10.1: Definition of the permutation predicate
Coq < Lemma card_nat :
Coq < ~ (exists x : nat, exists y : nat, forall zznat, x = z V y = 2).
Coq < Proof.
Cog < red; intros (x, (y, Hy)).
Cog < elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
Cog < match goal with
Coq < | [(?a = ?b), ((?a = 2¢) |- _ ] =>
Coq < cut (b = c); [ discriminate | apply trans_equal with a; auto ]
Cog < end.

Coq < Qed.

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct
natural numbers) are successfully solved bgatch goal structure and, in particular, with only one
pattern (use of non-linear matching).

10.8.2 Permutation on closed lists

Another more complex example is the problem of permutation on closed lists. The aim is to show that a
closed list is a permutation of another one.

First, we define the permutation predicate as shown in table 10.1.

A more complex example is the problem of permutation on closed lists. The aim is to show that
a closed list is a permutation of another one. First, we define the permutation predicate as shown on
Figure 10.1.

Next, we can write naturally the tactic and the result can be seen on Figure 10.2. We can no-
tice that we use two toplevel definitiof®ermutProve andPermut . The function to be called is
PermutProve which computes the lengths of the two lists and cBésmut with the length if the
two lists have the same lengtRermut works as expected. If the two lists are equal, it concludes. Oth-
erwise, if the lists have identical first elements, it appResmut on the tail of the lists. Finally, if the
lists have different first elements, it puts the first element of one of the lists (here the second one which
appears in theermut predicate) at the end if that is possible, i.e., if the new first element has been at
this place previously. To verify that all rotations have been done for a list, we use the length of the list
as an argument fdPermut and this length is decremented for each rotation down to, but not including,

1 because for a list of length, we can make exactly — 1 rotations to generate at mosdistinct lists.

Here, it must be noticed that we use the natural numbersaf fGr the rotation counter. On Figure 9.1,

we can see that it is possible to use usual natural numbers but they are only used as arguments for prim-
itive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a
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Cog
Coq
Coq
Coqg
Coqg
Cog
Coqg
Coq
Cog
Cog
Cog
Coqg
Coq
Coq
Coqg

< Ltac Permut n :=
< match goal with

< | |- (permut _ 2?1 ?I) => apply permut_refl

< | |- (permut _ (?a :: ?11) (?a = ?12)) =>

< let newn := eval compute in (length I1) in
< (apply permut_cons; Permut newn)

< | |- (permut ?A (?a :: ?I1) ?12) =>

< match eval compute in n with

< | 1 => fail

< | =

< let 11" := constr:(IL ++ a :: nil) in

< (apply (permut_trans A (a :: 1) 11’ 12);
< [ apply permut_append | compute; Permut (pred n) ])
< end

< end.

Permut is defined

Cog
Coq
Coqg
Coqg
Coqg
Cog
Coq

< Ltac PermutProve :=

< match goal with

< | |- (permut _ 211 ?12) =>

< match eval compute in (length I1 = length [2) with
< | (?n = ?n) => Permut n

< end

< end.

PermutProve is defined

Figure 10.2: Permutation tactic

natural choice is to used) data structures so thatd@ makes the computations (reductions)dwal
compute in and we can get the terms back tmatch .

With PermutProve , we can now prove lemmas as follows:

Coq
Cog

Cog
Cog
Coq
Coq
Coq

Cog

N

Lemma permut_ex1 :
permut nat (1 : 2 :: 3 : nil) (3 2 1 ::nil).

N

N

Proof. PermutProve. Qed.

< Lemma permut_ex2 :

< permut nat

< O:=21:22:23:24:25:26:07:8:9::ni
< ©:x22:24:6:8:29:7::5:3:1::ni.

< Proof. PermutProve. Qed.

Coq
Coq
Coqg
Cog
Coq
Cog

Ltac Axioms :=
match goal with
| |- True => trivial
| :False |- _ => elimtype False; assumption
| :?A |- ?A  => auto
end.

ANNNNANNANNA

Axioms is defined

Figure 10.3: Deciding intuitionistic propositions (1)
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Cog < Ltac DSimplif :=

Coq < repeat

Coq < (intros;

Cog < match goal with

Coq < | id:(~ ) |- _=>redin id

Coqg < | id:(_ N ) |- _ =

Cog < elim id; do 2 intro; clear id

Coqg < | id:(C_V ) |-_ =

Coqg < elim id; intro; clear id

Cog < | id:(?2A AN ?B -> ?C) |- _ =>

Coq < cut (A > B -> C);

Cog < [ intro | intros; apply id; split; assumption ]
Coq < | id:(?A V ?B > ?C) |- _ =>

Coq < cut (B -> C);

Coq < [ cut (A -> C);

Coqg < [ intros; clear id

Cog < | intro; apply id; left; assumption ]

Coq < | intro; apply id; right; assumption ]

Coqg < | idO:(?A -> ?B),id1:?A |- _ =>

Coqg < cut B; [ intro; clear idO | apply idO; assumption ]
Coq < | - C A ) => split

Coq < | |- (= ) => red

Cog < end).

DSimplif is defined

Cog < Ltac TautoProp :=

Coq < DSimplif;

Coq < Axioms ||

Coq < match goal with

Coqg < | id:((?A -> ?B) -> ?C) |- _ =>

Coq < cut (B -> C);

Coq < [ intro; cut (A -> B);

Coq < [ intro; cut C;

Cog < [ intro; clear id | apply id; assumption ]
Coq < | clear id ]

Coq < | intro; apply id; intro; assumption ]; TautoProp
Cog < | id:(~ ?2A > ?B) |- _ =>

Coqg < cut (False -> B);

Cog < [ intro; cut (A -> False);

Coq < [ intro; cut B;

Coq < [ intro; clear id | apply id; assumption ]
Coq < | clear id ]

Coq < | intro; apply id; red; intro; assumption ]; TautoProp
Coq < | - C V ) => (left; TautoProp) || (right; TautoProp)
Cog < end.

TautoProp is defined

Figure 10.4: Deciding intuitionistic propositions (2)

10.8.3 Deciding intuitionistic propositional logic

The pattern matching on goals allows a complete and so a powerful backtracking when returning tactic
values. An interesting application is the problem of deciding intuitionistic propositional logic. Consid-
ering the contraction-free sequent caldulir™* of Roy Dyckhoff ([49]), it is quite natural to code such a
tactic using the tactic language as shown on Figures 10.3 and 10.4. Thé\dotits tries to conclude
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Cog < Open Scope type_scope.

N

Coq
Coq < Variables A B C : Set.

Coq < Axiom Com : A * B = B * A

Coq < Axiom Ass : A* (B *C) =A*B * C.

Coq < Axiom Cur : (A *B ->C) = (A ->B -> C).

Cog < Axiom Dis : (A >B *C) = (A > B) * (A -> Q).

Section Iso_axioms.

Coq < Axiom P_unit : A * unit = A.

Cog < Axiom AR_unit : (A -> unit) = unit.

Cog < Axiom AL_unit : (unit -> A) = A.

Cog < Lemma Cons : B =C > A *B = A *C.
Coq < Proof.

Coq < intro Heq; rewrite Heq; apply refl_equal.
Coq < Qed.

Coq < End Iso_axioms.

Figure 10.5: Type isomorphism axioms

using usual axioms. The tactSimplif  applies all the reversible rules of Dyckhoff’s system. Finally,
the tacticTautoProp (the main tactic to be called) simplifies wilbSimplif , tries to conclude with
Axioms and tries several paths using the backtracking rules (one of the four Dyckhoff’s rules for the
left implication to get rid of the contraction and the right or).

For example, withTautoProp , we can prove tautologies like those:

Coq < Lemma tauto_exl : forall A B:Prop, AAN B -> AV B.
Coq < Proof. TautoProp. Qed.

Cogq < Lemma tauto_ex2 :
Coq forall A B:Prop, (-~ ~B ->B) > (A ->B) >~ ~A -> B.

N

Coq < Proof. TautoProp. Qed.

10.8.4 Deciding type isomorphisms

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose
to use the isomorphisms of the simply typeatalculus with Cartesian product andit type (see, for
example, [38]). The axioms of this-calculus are given by table 10.5.

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we
choose to use the isomorphisms of the simply typethlculus with Cartesian product amebit type
(see, for example, [38]). The axioms of thhscalculus are given on Figure 10.5.

The tactic to judge equalities modulo this axiomatization can be written as shown on Figures 10.6
and 10.7. The algorithm is quite simple. Types are reduced using axioms that can be oriented (this
done byMainSimplif ). The normal forms are sequences of Cartesian products without Cartesian
product in the left component. These normal forms are then compared modulo permutation of the com-
ponents (this is done bgompareStruct ). The main tactic to be called and realizing this algorithm
is IsoProve

Here are examples of what can be solveddmProve
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Cog < Ltac DSimplif trm :=

Coq < match trm with

Coqg < | (?A * ?B * ?C) =>

Cog < rewrite <- (Ass A B C); try MainSimplif
Coq < | (?A * ?B -> ?C) =>

Coq < rewrite (Cur A B C); try MainSimplif

Cog< | (?A > ?B * ?C) =>

Coq < rewrite (Dis A B C); try MainSimplif

Coqg < | (?A * unit) =>

Coq < rewrite (P_unit A); try MainSimplif

Coq < | (unit * ?B) =>

Cog < rewrite (Com unit B); try MainSimplif

Coq < | (?A -> unit) =>

Coqg < rewrite (AR_unit A); try MainSimplif

Cog < | (unit -> ?B) =>

Coqg < rewrite (AL_unit B); try MainSimplif

Cog < | (?PA * ?B) =>

Coqg < (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq < | (?A -> ?B) =>

Coq < (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq < end

Coq < with MainSimplif :=

Cog < match goal with

Coq < | |- (?A = ?B) => try DSimplif A; try DSimplif B
Cog < end.

DSimplif is defined
MainSimplif is defined

Coq < Ltac Length trm :=
Coq < match trm with

Cog < | (L * ?B) => let succ := Length B in constr:(S succ)
Coq < | _ => constr:1
Coq < end.

Length is defined

Cog < Ltac assoc := repeat rewrite <- Ass.
assoc is defined

Figure 10.6: Type isomorphism tactic (1)

Coq < Lemma isos_ex1 :
Cog < forall A B:Set, A * unit * B = B * (unit * A).

Coq < Proof.
Coq < intros; IsoProve.
Coq < Qed.

Coq <

Coq < Lemma isos_ex2 :

Cog < forall A B C:Set,

Coq < (A * unit -> B * (C * unit)) =

Cog < (A * unit -> (C -> unit) * C) * (unit -> A -> B).

Coq < Proof.
Coq < intros; IsoProve.
Cog < Qed.

Coq Reference Manual, V8.0, June 27, 2004



10.8 Using the tactical language

193

Cog < Ltac DoCompare n =

Coq < match goal with

Coq < | [ |- (?A = ?A) |1 => apply refl_equal
Cog< |[|-(RA*?B =7?A*72C)] =

Coq < apply Cons; let newn := Length B in
Coqg < DoCompare newn
Coqg < [ [I- (?A *?B = ?C) ] =>

Coq < match eval compute in n with

Coq < | 1 => fail

Cog < | =

Coq < pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
Coq < end

Coq < end.

DoCompare is defined

Coq < Ltac CompareStruct :=

Coqg < match goal with

Cog < [TI- (?A = ?B) ] =>

Coqg < let 11 := Length A

Cog < with 12 := Length B in

Coq < match eval compute in (I1 = 12) with
Coqg < | (?n = ?n) => DoCompare n

Coq < end

Coq < end.
CompareStruct is defined

Coq < Ltac IsoProve := MainSimplif; CompareStruct.
IsoProve is defined

Figure 10.7: Type isomorphism tactic (2)
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Chapter 11

Syntax extensions and interpretation
scopes

In this chapter, we introduce advanced commands to modify the veaeyparses and prints objects, i.e.

the translations between the concrete and internal representations of terms and commands. The main
commands ar@lotation andInfix  which are described in section 11.1. It also happens that the
same symbolic notation is expected in different contexts. To achieve this form of overloadiag, C
offers a notion of interpretation scope. This is described in section 11.2.

Remark: The command&rammar, Syntax andDistfix ~ which were present for a while ind@®
are no longer available froma@ version 8.0. The underlying AST structure is also no longer available.
The functionalities of the commar&lntactic Definition are still available, see section 11.3.

11.1 Notations

11.1.1 Basic notations

A notationis a symbolic abbreviation denoting some term or term pattern.
A typical notation is the use of the infix symbdl to denote the logical conjunctioarfd). Such a
notation is declared by

Cog < Notation "A A B" := (and A B).

The expressiofand A B) is the abbreviated term and the stritlg A B" (called anotation
tells how it is symbolically written.

A notation is always surrounded by double quotes (excepted when the abbreviation is a single ident,
see 11.3). The notation is composedaKkensseparated by spaces. ldentifiers in the string (such as
andB) are theparameterof the notation. They must occur at least once each in the denoted term. The
other elements of the string (such/as) are thesymbols

An identifier can be used as a symbol but it must be surrounded by simple quotes to avoid the
confusion with a parameter. Similarly, every symbol of at least 3 characters and starting with a simple
guote must be quoted (then it starts by two single quotes). Here is an example.

Coq < Notation "™IF' cl 'then’ c2 ’else’ c3" := (IF_then_else cl c¢2 c3).
A notation binds a syntactic expression to a term. Unless the parser and pretty-printey aff€ady

know how to deal with the syntactic expression (see 11.1.7), explicit precedences and associativity rules
have to be given.
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11.1.2 Precedences and associativity

Mixing different symbolic notations in a same text may cause serious parsing ambiguity. To deal with
the ambiguity of notations, €Q uses precedence levels ranging from 0 to 100 (plus one extra level
numbered 200) and associativity rules.

Consider for example the new notation

Cog < Notation "A VV B" := (or A B).

Clearly, an expression such @sProp)True N A V A V False is ambiguous. To tell
the GCoQ parser how to interpret the expression, a priority between the symboésndV/ has to be
given. Assume for instance that we want conjunction to bind more than disjunction. This is expressed
by assigning a precedence level to each notation, knowing that a lower level binds more than a higher
level. Hence the level for disjunction must be higher than the level for conjunction.

Since connectives are the less tight articulation points of a text, it is reasonable to choose levels not
so far from the higher level which is 100, for example 85 for disjunction and 80 for conjuhgction

Similarly, an associativity is needed to decide whethere N\ False /\ False defaults to
True N\ (False N\ False) (right associativity) or tqTrue N\ False) N\ False (left
associativity). We may even consider that the expression is not well-formed and that parentheses are
mandatory (this is a “no associativity?) We don’t know of a special convention of the associativity of
disjunction and conjunction, let's apply for instance a right associativity (which is the choice@f C

Precedence levels and associativity rules of notations have to be given between parentheses in a list
of modifiers that théNotation command understands. Here is how the previous examples refine.

Coq < Notation "A N\ B" :
Cog < Notation "A VV B"

(and A B) (at level 80, right associativity).

(or A B) (at level 85, right associativity).

By default, a notation is considered non associative, but the precedence level is mandatory (except
for special cases whose level is canonical). The level is either a number or the nresxiotevel
whose meaning is obvious. The list of levels already assigned is on Figure 3.1.

11.1.3 Complex notations

Notations can be made from arbitraly complex symbols. One can for instance define prefix notations.

Cog < Notation "~ x" := (not x) (at level 75, right associativity).

One can also define notations for incomplete terms, with the hole expected to be inferred at typing
time.

Coq < Notation "x = y" = (@eq _ X y) (at level 70, no associativity).

One can definelosednotations whose both sides are symbols. In this case, the default precedence
level for inner subexpression is 200.

Cog < Notation "( x , y )" := (@pair _ _ x y) (at level 0).

One can also define notations for binders.

Lwhich are the levels effectively chosen in the current implementatioroaf C

2Co0 accepts notations declared as no associative but the parser on winicis Guilt, namely @QmLP4, currently does
not implement the no-associativity and replace it by a left associativity; hence it is the samadon&associativity is in fact
left associativity
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Coq < Notation "{ x : A | P }' = (sig A (fun x => P)) (at level 0).

In the last case though, there is a conflict with the notation for type casts. This last notation, as
shown by the comman@rint Grammar constr is at level 100. To avoid : A being parsed as
a type cast, it is necessary to puat a level below 100, typically 99. Hence, a correct definition is

Cog < Notation "{ x : A | P }' := (sig A (fun x => P)) (at level 0, x at level 99).

See the next section for more about factorisation.

11.1.4 Simple factorisation rules

CoqQ extensible parsing is performed by Camlp4 which is essentially a LL1 parser. Hence, some care
has to be taken not to hide already existing rules by new rules. Some simple left factorisation work has
to be done. Here is an example.

Cog < Notation "x < y" = (It x y) (at level 70).
Cog < Notation "x <y < z" = X <y ANy < 2) (at level 70).

In order to factorise the left part of the rules, the subexpression referrgchhg to be at the same
level in both rules. However the default behavior pytat the next level below 70 in the first rule (no
associativity is the default), and at the level 200 in the second rule (level 200 is the default for inner
expressions). To fix this, we need to force the parsing levegl af follows.

Coq < Notation "x < y" = (It x y) (at level 70).
Cogq < Notation "x <y < z" = (x <y ANy < z) (at level 70, y at next level).

For the sake of factorisation withd®) predefined rules, simple rules have to be observed for nota-
tions starting with a symbol: e.qg. rules starting with “{” or “(” should be put at level 0. The listoHC
predefined notations can be found in chapter 3.

The command to display the current state of treg@erm parser is

Print Grammar constr.

11.1.5 Displaying symbolic notations
The commandNotation  has an effect both on thed® parser and on the @ printer. For example:

Coq < Check (and True True).
True N\ True
: Prop

However, printing, especially pretty-printing, requires more care than parsing. We may want specific
indentations, line breaks, alignment if on several lines, etc.

The default printing of notations is very rudimentary. For printing a notatidioymatting boxis
opened in such a way that if the notation and its arguments cannot fit on a single line, a line break is
inserted before the symbols of the notation and the arguments on the next lines are aligned with the
argument on the first line.

A first, simple control that a user can have on the printing of a notation is the insertion of spaces at
some places of the notation. This is performed by adding extra spaces between the symbols and param-
eters: each extra space (other than the single space needed to separate the components) is interpreted as
a space to be inserted by the printer. Here is an example showing how to add spaces around the bar of
the notation.
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Cog < Notation "{{ x : A | P }}" = (sig (fun x : A => P))
Coq < (at level 0, x at level 99).

Cog < Check (sig (fun x : nat => x=x)).
{{x : nat | x = x}}
. Set

The second, more powerful control on printing is by usingfdmmat modifier. Here is an example

Coq < Notation "If c1 'then’ c2 ’else’ ¢3" := (IF_then_else ¢l c2 c3)
Cog < (at level 200, right associativity, format
Cog <™v "If cl'l [ 'thenn c2 7T 'V T 'else’ ¢c3°7 1.

Defining 'If as keyword

A formatis an extension of the string denoting the notation with the possible following elements
delimited by single quotes:

e extra spaces are translated into simple spaces

e tokens of the fornl/ '  are translated into breaking point, in case a line break occurs, an
indentation of the number of spaces after théis applied (2 spaces in the given example)

e token of the formi//’  force writing on a new line

e well-bracketed pairs of tokens of the forfn " and’l are translated into printing boxes;
in case a line break occurs, an extra indentation of the number of spaces given affet ithe “
applied (4 spaces in the example)

e well-bracketed pairs of tokens of the forfhv~ * and’]’ are translated into horizontal-
orelse-vertical printing boxes; if the content of the box does not fit on a single line, then every
breaking point forces a newline and an extra indentation of the number of spaces given after the
“[ " is applied at the beginning of each newline (3 spaces in the example)

¢ well-bracketed pairs of tokens of the forfw ° and’]  are translated into vertical printing
boxes; every breaking point forces a newline, even if the line is large enough to display the whole
content of the box, and an extra indentation of the number of spaces given aftel thafplied
at the beginning of each newline

Thus, for the previous example, we get
Notations do not survive the end of sections. No typing of the denoted expression is performed at
definition time. Type-checking is done only at the time of use of the notation.

Coq < Check
Cog < (IF_then_else (IF_then_else True False True)
Coq < (IF_then_else True False True)
Coqg < (IF_then_else True False True)).
If If True
then False
else True
then If True
then False
else True
else If True
then False
else True
: Prop

Remark: Sometimes, a notation is expected only for the parser. To do so, the apiipparsingis
allowed in the list of modifiers diotation
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11.1.6 Thelnfix command

Thelnfix command is a shortening for declaring notations of infix symbols. Its syntax is

Infix symbol" = qualid ( modifier, ..., modifier) .
and it is equivalent to

Notation "X symbol y" = ( qualid x y) ( modifier, ..., modifier) .
wherex andy are fresh names distinct frogualid. Here is an example.

Coq < Infix "\" := and (at level 80, right associativity).

11.1.7 Reserving notations

A given notation may be used in different context® @expects all uses of the notation to be defined at

the same precedence and with the same associativity. To avoid giving the precedence and associativity
every time, it is possible to declare a parsing rule in advance without giving its interpretation. Here is an
example from the initial state of @Q.

Coq < Reserved Notation "x = y" (at level 70, no associativity).

Reserving a notation is also useful for simultaneously defined an inductive type or a recursive con-
stant and a notation for it.

Remark: The notations mentioned on Figure 3.1 are reserved. Hence their precedence and associativity
cannot be changed.

11.1.8 Simultaneous definition of terms and notations

Thanks to reserved notations, the inductive, coinductive, recursive and corecursive definitions can ben-
efit of customized notations. To do this, insertvhere notation clause after the definition of the
(co)inductive type or (co)recursive term (or after the definition of each of them in case of mutual defini-
tions). The exact syntax is given on Figure 11.1. Here are examples:

Coq < Inductive and (A B:Prop) : Prop :=conj: A ->B > AN\B
Coq < where "A N B" := (and A B).

Cog < Fixpoint plus (n m:nat) {struct n} : nat :=

Coq < match n with

Coqg < | O =>m

Cog < | Sp=>S (p+tm)

Coq < end

Cog < where "n + m" = (plus n m).

11.1.9 Displaying informations about notations

To deactivate the printing of all notations, use the command
Unset Printing Notations.

To reactivate it, use the command
Set Printing Notations.

The default is to use notations for printing terms wherever possible.
See also:Set Printing All in section 2.8.
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sentence = Notation [Local ] string :=
| Infix [Local ] string :=
| Reserved Notation
| Inductive  ind_body [decl_notation] with ... with
|  Colnductive  ind_body [decl_notation] with
| fix_body [decl_notation ] with
|

cofix_body [decl_notation ] with

Fixpoint
CoFixpoint

decl_notation = [where string ;= term [.scope]] .
, ident at level  natural

, ident at next level
natural

modifiers = ident, ...
| ident, ...
| at level
| left associativity
|  right associativity
| no associativity
|  ident ident
|  ident global
| ident bigint
| only parsing
|

format string

term [modifiers] [: scope] .
qualid [modifiers] [: scope] .
[Local ] string [modifiers] .

... with
... with fix_body [decl_notation] .
... with cofix_body [decl|notation] .

ind_body [decl_notation ].
ind_body [decl_nptation].

Figure 11.1: Syntax of the variants Wbtation

11.1.10 Locating notations

To know to which notations a given symbol belongs to, use the command

Locate symbol

where symbol is any (composite) symbol surrounded by quotes. To locate a particular notation, use a

string where the variables of the notation are replaced by

Example:

Cog < Locate "exists".
Notation
"exists’ X :

Scope
ex (fun x : t => p)
. type_scope
(default interpretation)
ex (fun x => p)
. type_scope
(default interpretation)

t, p' =

exists’ x , p" =

Coq < Locate "exists’ _ , _
Notation Scope
"exists’ x , p" = ex (fun x => p)
. type_scope
(default interpretation)

See also:Section 6.2.10.
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11.1.11 Notations with recursive patterns

An experimental mechanism is provided for declaring elementary notations including recursive patterns.
The basic syntax is

Cog < Notation "[ x ; .. ; ¥y ]' := (cons x .. (cons y nil) ..).

On the right-hand-side, an extra construction of the farm(f ¢; ... ¢t;) .. can be used. Notice
that.. is part of the @Q syntax while. . . is just a meta-notation of this manual to denote a sequence
of terms of arbitrary size.

This extra construction enclosed within, let’s call it¢, must be one of the argument of an applica-
tive term of the form( f w; ... wy,). The sequences ... t, andu; ... u, must coincide everywhere
but in two places. In one place, say the terms of indjeee must have,; = ¢. In the other place, say the
terms of indicej, bothu; andt; must be variables, sayandy which are bound by the notation string
on the left-hand-side of the declaration. The variablesmdy in the string must occur in a substring of
the form'r s .. sy"where.. is part of the syntax anslis two times the same sequence of terminal
symbols (i.e. symbols which are not variables).

These invariants must be satisfied in order the notation to be correct. Thé; tsrtheterminating
expression of the notation and the pattérh w; ... wi—1 [I] wiy1 ... wj—1 [E] wjp1 ... up)
is theiterating pattern The hole [I] is theiterative place and the hole [E] is thenumeratingplace.
Remark that ifj < 4, the iterative place comes after the enumerating place accordingly.

The notation parses sequences of tokens such that the subpart " s y" parses any number
of time (but at least one time) a sequence of expressions separated by the sequence af tbkens
parsing phase produces a list of expressions which are used to fill in order the holes [E] of the iterating
pattern which is nested as many time as the length of the list, the hole [I] being the nesting point. In
the innermost occurrence of the nested iterating pattern, the hole [1] is finally filled with the terminating

expression.

In the example abovef, is cons , n = 3 (becaus&ons has a hidden implicit argumenty,= 3
andj = 2. Theterminatingexpression isil and theiterating patternis cons [E] [I]. Finally, the
sequence is made of the single token “. Here is another example.

Cog < Notation "( x , ¥y, .., z )" := (pair .. (pair x y) .. z) (at level 0).

Notations with recursive patterns can be reserved like standard notations, they can also be declared
within interpretation scopes (see section 11.2).

11.1.12 Summary

Syntax of notations The different syntactic variants of the commaxiotation  are given on Figure
11.1. The optional scope is described in the section 11.2.

Remark: No typing of the denoted expression is performed at definition time. Type-checking is done
only at the time of use of the notation.

Remark: Many examples oNotation may be found in the files composing the initial state afcC
(see directondCOQLIB/theories/Init ).

Remark: The notatior{ x }" has a special status in such a way that complex notations of the form
"x +{y}" or"x*{y}" canbe nested with correct precedences. Especially, every notation
involving a pattern of the for{ x }" s parsed as a notation where the patt¢rrx }* has been
simply replaced byx" and the curly brackets are parsed separately."s.g- { z }" is not parsed

as a term of the given form but as a term of the foym+ z" wherez has been parsed using the rule
parsing{ x }" . Especially, level and precedences for a rule including patterns of the'foxm}"
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are relative not to the textual notation but to the notation where the curly brackets have been removed
(e.g. the level and the associativity given to some notation;{say } & { z }" in fact applies to

the underlyind{ x }" -free rule whichisy & z" ).

Persistence of notations Notations do not survive the end of sections. They survive modules unless
the commandNotation Local is used instead dflotation

11.2 Interpretation scopes

An interpretation scopés a set of notations for terms with their interpretation. Interpretation scopes
provides with a weak, purely syntactical form of notations overloading: a same notation, for instance
the infix symbok can be used to denote distinct definitions of an additive operator. Depending on which
interpretation scopes is currently open, the interpretation is different. Interpretation scopes can include
an interpretation for numerals. However, this is only made possible atshec¥1ve CAML level.

See Figure 11.1 for the syntax of notations including the possibility to declare them in a given scope.
Here is a typical example which declares the notation for conjunction in the $go@escope

Notation "A A B" := (and A B) : type_scope.

Remark: A notation not defined in a scope is calletbaelynotation.

11.2.1 Global interpretation rules for notations

At any time, the interpretation of a notation for term is done withstackof interpretation scopes and
lonely notations. In case a notation has several interpretations, the actual interpretation is the one defined
by (or in) the more recently declared (or open) lonely notation (or interpretation scope) which defines
this notation. Typically if a given notation is defined in some scappe but has also an interpretation
not assigned to a scope, thernsdbpe is open before the lonely interpretation is declared, then the lonely
interpretation is used (and this is the case even if the interpretation of the notati@péris given after
the lonely interpretation: otherwise said, only the order of lonely interpretations and opening of scopes
matters, and not the declaration of interpretations within a scope).

The initial state of ©Q declares three interpretation scopes and no lonely notations. These scopes,
in opening order, areore_scope ,type_scope andnat_scope

The command to add a scope to the interpretation scope stack is

Open Scope scope.
It is also possible to remove a scope from the interpretation scope stack by using the command
Close Scope scope.

Notice that this command does not only cancel the@®tn Scope scope but all the invocation of
it.

Remark: Open Scope andClose Scope do not survive the end of sections where they occur.
When defined outside of a section, they are exported to the modules that import the module where they
occur.

Variants:
1. Open Local Scope scope.

2. Close Local Scope  scope.

These variants are not exported to the modules that import the module where they occur, even if
outside a section.

Coq Reference Manual, V8.0, June 27, 2004



11.2 Interpretation scopes 205
11.2.2 Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of
subterms are available.

Local opening of an interpretation scope

It is possible to locally extend the interpretation scope stack using the syatay%okey (or simply
term%key for atomic terms), wherkey is a special identifier calledelimiting keyand bound to a given
scope.

In such a situation, the termarm, and all its subterms, are interpreted in the scope stack extended
with the scope bound tkey.

To bind a delimiting key to a scope, use the command

Delimit Scope  scope with ident

Binding arguments of a constant to an interpretation scope

It is possible to set in advance that some arguments of a given constant have to be interpreted in a given
scope. The command is

Arguments Scope qualid [ opt_scope ... opt_scope ]

where the list is a list made either of or of a scope name. Each scope in the list is bound to the
corresponding parameter gfialid in order. When interpreting a term, if some of the arguments of
qualid are built from a notation, then this notation is interpreted in the scope stack extended by the
scopes bound (if any) to these arguments.

See alsoThe command to show the scopes bound to the arguments of a function is described in section
2.

Binding types of arguments to an interpretation scope

When an interpretation scope is naturally associated to a type (e.g. the scope of operations on the natural
numbers), it may be convenient to bind it to this type. The effect of this is that any argument of a
function that syntactically expects a parameter of this type is interpreted using scope. More precisely,
it applies only if this argument is built from a notation, and if so, this notation is interpreted in the
scope stack extended by this particular scope. It does not apply to the subterms of this notation (unless
the interpretation of the notation itself expects arguments of the same type that would trigger the same
scope).

More generally, anylass (see chapter 16) can be bound to an interpretation scope. The command
todoitis

Bind Scope scope with class

Example:

Cog < Parameter U : Set.
U is assumed

Coq < Bind Scope U_scope with U.

Coq < Parameter Uplus : U -> U -> U.
Uplus is assumed
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Coqg < Parameter P : forall T:Set, T -> U -> Prop.
P is assumed

Coqg < Parameter f : forall T:Set, T -> U.
f is assumed

Cog < Infix "+" := Uplus : U_scope.
Cog < Unset Printing Notations.
Coq < Open Scope nat_scope. (* Define + on the nat as the default for + *)

Coqg < Check (fun x yl y2 zt =>P _ (x +t) (f _ (y1 + y2) + 2))).
fun (x y1 y2 : nat) (z : U) (t : nat) =>
P nat (plus x t) (Uplus (f nat (plus yl y2)) 2z)

: nat -> nat -> nat -> U -> nat -> Prop

Remark: The scopdype_scope has also a local effect on interpretation. See the next section.

See alsoThe command to show the scopes bound to the arguments of a function is described in section
2.

11.2.3 Thetype_scope interpretation scope

The scopdype_scope has a special status. It is a primitive interpretation scope which is temporar-
ily activated each time a subterm of an expression is expected to be a type. This includes goals and
statements, types of binders, domain and codomain of implication, codomain of products, and more
generally any type argument of a declared or defined constant.

11.2.4 Interpretation scopes used in the standard library of ©Q

We give an overview of the scopes used in the standard libraryoaf. €or a complete list of notations
in each scope, use the commaifuist Scopes orPrint Scopes scope.

type_scope

This includes infix* for product types and infix for sum types. It is delimited by ketype .

nat_scope

This includes the standard arithmetical operators and relations omatpePositive numerals in this
scope are mapped to their canonical representent built@andS. The scope is delimited by keyat .

N_scope

This includes the standard arithmetical operators and relations oitflpeary natural numbers). It is
delimited by keyN and comes with an interpretation for numerals as closed term of&ype

Z_scope

This includes the standard arithmetical operators and relations oZ t{lpieary integer numbers). It is
delimited by keyZ and comes with an interpretation for numerals as closed term ofaype
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positive_scope

This includes the standard arithmetical operators and relations opbogiteve  (binary strictly pos-
itive numbers). It is delimited by kepositive  and comes with an interpretation for numerals as
closed term of typgositive

real_scope

This includes the standard arithmetical operators and relations omRtggpegomatic real numbers). It is
delimited by keyR and comes with an interpretation for numerals as term of B/pehe interpretation

is based on the binary decomposition. The numeral 2 is represented-ly The interpretatior(n)

of an odd positive numerals greateithan 3 is1l+(1+1)* ¢((n — 1)/2). The interpretation(n) of

an even positive numerals greatethan 4 is(1+1)* ¢(n/2). Negative numerals are represented as
the opposite of the interpretation of their absolute value. E.g. the syntactic ebleds interpreted as
-(1+(A+1)*((1+1)*(1+(1+1)))) where the unit and all the operations are thoseRof

bool_scope

This includes notations for the boolean operators. It is delimited byokey .

list_scope

This includes notations for the list operators. It is delimited by lisy .

core_scope

This includes the notation for pairs. It is delimited by layre .

11.2.5 Displaying informations about scopes

Print Visibility

This displays the current stack of notations in scopes and lonely notations that is used to interpret a
notation. The top of the stack is displayed last. Notations in scopes whose interpretation is hidden by

the same notation in a more recently open scope are not displayed. Hence each notation is displayed
only once.

Variant:
Print Visibility scope

This displays the current stack of notations in scopes and lonely notations assumisngpaat
pushed on top of the stack. This is useful to know how a subterm locally occurring in the sceppeof
is interpreted.

Print Scope  scope

This displays all the notations defined in interpretation saeppge. It also displays the delimiting key
if any and the class to which the scope is bound, if any.

Print Scopes

This displays all the notations, delimiting keys and corresponding class of all the existing interpretation
scopes. It also displays the lonely notations.
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11.3 Abbreviations

An abbreviationis a hame denoting a (presumably) more complex expression. An abbreviation is a
special form of notation with no parameter and only one symbol which is an identifier. This identifier is
given with no quotes around. Example:

Coq < Notation List := (list nat).

An abbreviation expects no precedence nor associativity, since it can always be put at the lower level
of atomic expressions, and associativity is irrelevant. Abbreviations are used as much as possible by the
CoqQ printers unless the modifiéonly parsing) is given.

Abbreviations are bound to an absolute name like for an ordinary definition, and can be referred by
partially qualified names too.

Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at
the time of the definition of the abbreviation but at the time it is used. Especially, abbreviation can be
bound to terms with holes (i.e. with “_"). The general syntax for abbreviations is

Notation [Local ] ident := term [(only parsing) ].

Example:
Coq < Definition explicit_id (A:Set) (a:A) := a.
explicit_id is defined
Coq < Notation id := (explicit_id ).
Cog < Check (id 0).
id O
: nat

Abbreviations do not survive the end of sections. No typing of the denoted expression is performed

at definition time. Type-checking is done only at the time of use of the abbreviation.

Remark: compatibility Abbreviations are similar to thgyntactic definitionsavailable in versions
of CoQ prior to version 8.0, except that abbreviations are used for printing (unless the modifier
(only parsing) is given) while syntactic definitions were not.

11.4 Tactic Notations

Tactic notations allow to customize the syntax of the tactics of the tactic langudgetic notations
obey the following syntax

sentence = Tactic Notation string [ production_item ... production_item |
= tactic .
production_item = string | tactic_argument_type( ident)
tactic_argument_type ::= ident |simple_intropattern | hyp
| reference | constr
| integer
| int_or_var |tactic |
A tactic notationTactic Notation string [production_item ... production_item ]

= tactic extends the parser and pretty-printer of tactics with a new rule made of the juxtaposition
of the head name of the tactiaring and the list of its production items (in the syntax of production

3Tactic notations are just a simplification of tBeammar tactic simple_tactic command that existed in versions
prior to version 8.0.
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items, string stands for a terminal symbol anactic_argument_type( ident) for non terminal
entries . It then evaluates into the tactic expressiastic.

Each type of tactic argument has a specific semantic regarding how it is parsed and how it is inter-
preted. The semantic is described in the following table. The last command gives examples of tactics
which use the corresponding kind of argument.

Tactic argument type parsed as \ interpreted as \ as in tactic
ident identifier a user-given name intro
simple_intropattern intro_pattern an intro_pattern intros

hyp identifier an hypothesis defined in contexclear
reference gualified identifier | a global reference of term unfold
constr term aterm exact
integer integer an integer

int_or_var identifier or integer| an integer do

tactic tactic a tactic

Remark: In order to be bound in tactic definitions, each syntactic entry for argument type must in-
clude the case of simplé,,. identifier as part of what it parses. This is naturally the casedfemt |,
simple_intropattern , reference , constr , ... but not forinteger . This is the reason

for introducing a special entipt_or_var  which evaluates to integers only but which syntactically
includes identifiers in order to be usable in tactic definitions.
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Chapter 12

The CoQ commands

There are two ©Q commands:
e coqtop : The CoqQtoplevel (interactive mode) ;
e coqc : The CoqQ compiler (batch compilation).

The options are (basically) the same for the two commands, and roughly described below. You can also
look at themanpages oftoqtop andcoqc for more details.

12.1 Interactive use ¢oqgtop )

In the interactive mode, also known as thedtoplevel, the user can develop his theories and proofs
step by step. The @Q toplevel is run by the commarabqgtop .

They are two different binary images ofo@: the byte-code one and the native-code one (if Objec-
tive Caml provides a native-code compiler for your platform, which is supposed in the following). When
invoking cogtop or coqc , the native-code version of the system is used. The command-line options
-byte and-opt explicitly select the byte-code and the native-code versions, respectively.

The byte-code toplevel is based on a Caml toplevel (to allow the dynamic link of tactics). You can
switch to the Caml toplevel with the commaidop. , and come back to the & toplevel with the
commandroplevel.loop();;

12.2 Batch compilation €oqc )

Thecogc command takes a nanfige as argument. Then it looks for a vernacular file narfiledv ,
and tries to compile it into file.vo file (See 6.4).

Warning: The namefile must be a regular €Q identifier, as defined in the section 1.1. It must
only contain letters, digits or underscores (). Thus it caribae/foo/toto.v but cannot be
/bar/foo/to-to.v

Notice that thebyte and-opt options are still available witbogc and allow you to select the
byte-code or native-code versions of the system.

12.3 Resource file

When @q is launched, with eithecoqtop or coqc, the resource filSHOME/.cogrc.7.0 is
loaded, whereéSHOMEis the home directory of the user. If this file is not found, then the file
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$HOME/.cogrc is searched. You can also specify an arbitrary name for the resource file (see op-
tion -init-file below), or the name of another user to load the resource file of someone else (see
option-user ).

This file may contain, for instancddd LoadPath commands to add directories to the load path
of CoQ. Itis possible to skip the loading of the resource file with the optpn

12.4 Environment variables

There are three environment variables used by the €ystem.$COQBINfor the directory where the
binaries are$COQLIB for the directory whrer the standard library is, &@OQTORor the directory

of the sources. The latter is useful only for developers that are writing their own tactics and are using
cog_makefile  (see 13.3). IBCOQBINor $COQLIBare not defined, GQ will use the default values
(defined at installation time). So these variables are useful only if you movedhdibaries and library

after installation.

12.5 Options

The following command-line options are recognized by the commaogs andcoqtop :
-byte

Run the byte-code version ofd®.
-opt

Run the native-code version ofd@Q.

-l directory, -include  directory
Add directoryto the searched directories when looking for a file.

-R directorydirpath

This maps the subdirectory structure of physidaéctory to logical dirpath and addslirectory
and its subdirectories to the searched directories when looking for a file.

-is file, -inputstate file

Cause ©Q to use the state put in the fifde as its input state. The default statdrngtial.coq.
Mainly useful to build the standard input state.

-nois

Cause ©Qto begin with an empty state. Mainly useful to build the standard input state.

-notactics

Forbid the dynamic loading of tactics.

-init-file file

Takefile as the resource file.

Cause ©Q not to load the resource file.
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-user username

Take resource file of useisernameéthat is~usernamécoqrc.7.0 ) instead of yours.

-load-ml-source file

Load the Caml source fili@e.

-load-ml-object file
Load the Caml object filéle.

-load-vernac-source file
Load Coqfile file.v

-load-vernac-object file
Load CoQ compiled filefile.vo

-require  file
Load GoQ compiled filefile.vo and import it Require file).

-compile file
This compiles fildfile.v into file.vo . This option implies optionsbatch and-silent . Itis
only available forcoqtop .

-batch

Batch mode : exit just after arguments parsing. This option is only useddpy .

-debug
Switch on the debug flag.

-xml
This option is for use witltogc . It tells CoQ to export on the standard output the content of the
compiled file into XML format.

-emacs

Tells CoQit is executed under Emacs.

Launch @@ under the Objective Caml debugger (provided thattas been compiled for de-
bugging; see next chapter).
-impredicative-set

Change the logical theory of@ by declaring the so$et impredicative; warning: this is known
to be inconsistent with some standard axioms of classical mathematics such as the functional
axiom of choice or the principle of description

-dont-load-proofs

This avoids loading in memory the proofs of opaque theorems resulting in a smaller memory
requirement and faster compilation; warning: this invalidates some features such as the extraction
tool.
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-image file

This option sets the binary image to be used tdileenstead of the standard one. Not of general
use.

-bindir  directory

Set the directory containing @) binaries. It is equivalent to dexport COQBIN= directory
before lauching ©Q.

-libdir file

Set the directory containing @ libraries. It is equivalent to dexport COQLIB= directory
before lauching ©Q.

-where

Print the @Q’s standard library location and exit.

Print the @Q's version and exit.

-h , -help
Print a short usage and exit.
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Chapter 13
Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics
writing or documentation.

13.1 Building a toplevel extended with user tactics

The native-code version of @ cannot dynamically load user tactics using Objective Caml code.
It is possible to build a toplevel of @Q, with Objective Caml code statically linked, with the tool
cogmktop .

For example, one can build a native-code@toplevel extended with a tactic which source is in
tactic.ml with the command

% cogmktop -opt -0 mytop.out tactic.cmx

wheretactic.ml has been compiled with the native-code compdeamlopt . This command
generates an executable callagtop.out . To use this executable to compile youp@ files, use
cogc -image mytop.out

A basic example is the native-code version ad@(coqgtop.opt ), which can be generated by
cogmktop -opt -0 coqopt.opt

Application: how to use the Objective Caml debugger with Cog. One useful application of
cogmktop is to build a @Qq toplevel in order to debug your tactics with the Objective Caml debugger.
You need to have configured and compileddfor debugging (see the fillNSTALL included in the
distribution). Then, you must compile the Caml modules of your tactic with the opgiofwith the
bytecode compiler) and build a stand-alone bytecode toplevel with the following command:

% cogmktop -g -0 cog-debug  <your.cmo files>

To launch the @JECTIVE CAML debugger with the image you need to execute it in an environment
which correctly sets th€OQLIB variable. Moreover, you have to indicate the directories in which
ocamldebug should search for Caml modules.

A possible solution is to use a wrapper arowgdmldebug which detects the executables con-
taining the wordcoq . In this case, the debugger is called with the required additional arguments. In
other cases, the debugger is simply called without additional arguments. Such a wrapper can be found
in thedev/ subdirectory of the sources.
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13.2 Modules dependencies

In order to compute modules dependencies (so tomeke), CoQ comes with an appropriate tool,
coqdep .

coqdep computes inter-module dependencies fan@and (BJECTIVE CAML programs, and
prints the dependencies on the standard output in a format readable by make. When a directory is
given as argument, it is recursively looked at.

Dependencies of €@ modules are computed by looking Require commands Require ,
Require Export ,Require Import ,Require Implementation ), but also at the command
Declare ML Module

Dependencies of &1ecTIVE CAML modules are computed by looking @en commands and
the dot notatiormodule.value However, this is done approximatively and you are advised to use
ocamldep instead for the ®JECTIVE CAML modules dependencies.

See the man page obqdep for more details and options.

13.3 Creating aMakefile for CoQ modules

When a proof development becomes large and is split into several files, it becomes crucial to use a tool
like make to compile GQ modules.

The writing of a generic and compleMakefile may be a tedious work and that's whyoQ
provides a tool to automate its creatimpg_makefile . Given the files to compile, the command
cog_makefile  prints aMakefile on the standard output. So one has just to run the command:

% coq_makefile file;.v... filg,.v> Makefile

The resultedMakefile  has a targetlepend which computes the dependencies and puts them in
a separate filedepend , which is included by th&lakefile . Therefore, you should create such afile
before the first invocation of make. You can for instance use the command

% touch .depend
Then, to initialize or update the modules dependencies, type in:
% make depend

There is atargatll to compile all the filedile, . .. file,, and a generic target to produceva file
from the corresponding file (so you can donake file.vo to compile the filfile.v ).
coq_makefile  can also handle the case of ML files and subdirectories. For more options type

% cog_makefile -help

Warning: To compile a project containing ®ECTIVE CAML files you must keep the sources 0bQ
somewhere and have an environment variable nad@@QTORhat points to that directory.

13.4 Documenting MQ files with cogdoc

coqdoc is a documentation tool for the proof assistait@; similar tojavadoc or ocamldoc. The task
of coqdoc is

1. to produce a nicéeX and/or HTML document from the €Q sources, readable for a human and
not only for the proof assistant;

2. to help the user navigating in his own (or third-party) sources.
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13.4.1 Principles

Documentation is inserted intod® files asspecial commentsThus your files will compile as usual,
whether you useoqdoc or not.coqgdoc presupposes that the giveroG files are well-formed (at least
lexically). Documentation starts witff* , followed by a space, and ends with the pendipg The
documentation format is inspired by Todd A. Coramlsnost Free Text (AFTpol: it is mainly ASCII
text with some syntax-light controls, described beloagdoc is robust: it shouldn't fail, whatever the
input is. But remember: “garbage in, garbage out”.

CoqQ material inside documentation. CoQmaterial is quoted between the delimitgrand] . Square
brackets may be nested, the inner ones being understood as being part of the quoted code (thus you can
quote a term likdz : TJu by writing [[x:T]u] ). Inside quotations, the code is pretty-printed in the
same way as it is in code parts.
Pre-formatted vernacular is enclosed[pyand]] . The former must be followed by a newline and
the latter must follow a newline.

Pretty-printing.  coqgdoc uses different faces for identifiers and keywords. The pretty-printingoag C
tokens (identifiers or symbols) can be controlled using one of the following commands:

(** printing token %...L AIpX...% #..HTML...# *)
or
(** printing token $..L ATlpX math...$ #..HTML...# *)

It gives the ATEX and HTML texts to be produced for the givero@ token. One of theATeX or HTML
text may be ommitted, causing the default pretty-printing to be used for this token.
The printing for one token can be removed with

(** remove printing token *)

Initially, the pretty-printing table contains the following mapping:

> - <- — * X
<= < >= > == =
<> £ <> - - F
V. v A\ A ~ -

Any of these can be overwritten or suppressed usingtiméing commands.

Important note: the recognition of tokens is done by a (ocaml)lex automaton and thus applies the
longest-match rule. For instance~ is recognized as a single token, where@sees two tokens. It
is the responsability of the user to insert space between takettsgive pretty-printing rules for the
possible combinations, e.g.

(** printing ->~ %\ensuremath{\rightarrow\Inot}% *)

Sections. Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the line). One star is
a section, two stars a sub-section, etc. The section title is given on the remaining of the line. Example:

(** * Well-founded relations

In this section, we introduce... *)

Coq Reference Manual, V8.0, June 27, 2004



220 13 Utilities
Lists. List items are introduced by 1 to 4 leading dashes. Deepness of the list is indicated by the
number of dashes. List ends with a blank line. Example:

This module defines
- the predecessor [pred]
- the addition [plus]
- order relations:
-- less or equal [le]
-- less [It]

Rules. More than 4 leading dashes produce an horizontal rule.

Escapings to ATEX and HTML.  Pure ETpX or HTML material can be inserted using the following
escape sequences:

e $..LaTeX stuff..$ inserts someALlEX material in math mode. Simply discarded in
HTML output.

e %...LaTeX stuff...% inserts somefeX material. Simply discarded in HTML output.

o #. . HTML stuff..# inserts some HTML material. Simply discardedAmgX output.

Verbatim. Verbatim material is introduced by a leading and closed by>. Example:

Here is the corresponding caml code:
<<
let rec fact n =
if n <= 1 then 1 else n * fact (n-1)
>>

Hyperlinks. Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the
place of its definition.

In order to get hyperlinks you need to first compile younfile usingcoqc --dump-glob
file ; this appends 6Q names resolutions done during the compilation tofilee . Take care of
erasing this file, if any, when starting the whole compilation process.

Then invokecogdoc --glob-from file  to tell cogdoc to look for name resolutions into the
file file

Identifiers from the ©Q standard library are linked to thed@ web site ahttp://coq.inria.
fr/library/ . This behavior can be changed using command line optiors externals and

--coglib  ; see below.

Hiding / Showing parts of the source. Some parts of the source can be hidden using command line
options-g and-l (see below), or using such comments:

(* begin hide *)

some Coqg material

(* end hide *)

Conversely, some parts of the source which would be hidden can be shown using such comments:

(* begin show *)
some Coqg material
(* end show *)

The latter cannot be used around some inner parts of a proof, but can be used around a whole proof.
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13.4.2 Usage

coqgdoc is invoked on a shell command line as follows:
cogdoc < options and files>

Any command line argument which is not an option is considered to be a file (even if it starts-}ith a
Coqfiles are identified by the suffixeg and.g and BIEX files by the suffix.tex

HTML output

This is the default output. One HTML file is created for each@Xile given on the command
line, together with a filendex.html  (unless optionno-index  is passed). The HTML pages
use a style sheet namstyle.css . Such afile is distributed withogdoc.

IATEX output

A single BTeX file is created, on standard output. It can be redirected to a file with ofgiohe

order of files on the command line is kept in the final documegXfiles given on the command

line are copied ‘as is’ in the final document . DVI and PostScript can be produced directly with
the optionsdvi and-ps respectively.

TeXmacs output

To translate the input files togkKmacs format, to be used by thgXimacs Coq interface (see
http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/ ).
Command line options

Overall options

--html
Select a HTML output.

--latex
Select aATEX output.

--dvi

Select a DVI output.

_-ps
Select a PostScript output.

--texmacs

Select a Xmacs output.

-0 file, --output file
Redirect the output into the fildile’ (meaningless witkhtml ).
-d dir, --directory dir
Output files into directorydir’ instead of current directory (optiosd does not change the file-

name specified with optioto , if any).
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-s , --short

Do not insert titles for the files. The default behavior is to insert a title like “Library Foo” for each
file.
-t string, --title string

Set the document title.

--body-only
Suppress the header and trailer of the final document. Thus, you can insert the resulting document
into a larger one.
-p string, --preamble  string
Insert some material in théTEX preamble, right beforébegin{document} (meaningless
with -html ).
--vernac-file file, --tex-file file

Considers the filefile’ respectively as av (or.g ) file or a.tex file.

--files-from file

Read file names to process in filide’ as if they were given on the command line. Useful for
program sources splitted in several directories.

-q , --quiet
Be quiet. Do not print anything except errors.

-h , --help

Give a short summary of the options and exit.

-V , --version

Print the version and exit.

Index options
Default behavior is to build an index, for the HTML output only, imolex.html

--no-index
Do not output the index.

--multi-index

Generate one page for each category and each letter in the index, together with a top page
index.html

Table of contents option

-toc , --table-of-contents

Insert a table of contents. ForAIEX output, it inserts atableofcontents at the beginning
of the document. For a HTML output, it builds a table of contents iatohtml
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Hyperlinks options

--glob-from file
Make references usingd® globalizations from fildile. (Such globalizations are obtained with
CoqQoption-dump-glob ).

--no-externals
Do not insert links to the GQ standard library.

--coglib url

Set base URL for the €Q standard library (default isttp://coq.inria.fr/library/ ).
-R dir coqdir

Map physical directorylir to CoqQ logical directorycoqdir (similarly to CoQ option-R).

Note: option-R only has effect on the fild®llowing it on the command line, so you will probably
need to put this option first.

Contents options
-g , --gallina
Do not print proofs.
-l , --light
Light mode. Suppress proofs (as with) and the following commands:

e [Recursive ] Tactic Definition

e Hint / Hints

Require

Transparent / Opaque

Implicit Argument / Implicits

Section / Variable / Hypothesis / End

The behavior of optiongy and-l can be locally overridden using tife begin show *) N
end show *) environment (see above).

Language options
Default behavior is to assume ASCII 7 bits input files.
-latinl , --latinl
Select 1SO-8859-1 input files. It is equivalent tinputenc latinl -charset
is0-8859-1
-utf8 , --utf8

Select UTF-8 (Unicode) input files. Itis equivalentioputenc utf8 -charset utf-8
IATEX UTF-8 support can be found attp://www.ctan.org/tex-archive/macros/
latex/contrib/supported/unicode/

--inputenc  string
Give a BTpX input encoding, as an option t8TEX packagenputenc

--charset  string
Specify the HTML character set, to be inserted in the HTML header.
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13.4.3 The coqdocATEX style file

In case you choose to produce a document without the defé@lgX Ipreamble (by using option
--no-preamble ), then you must insert into your own preamble the command

\usepackage{coqdoc}
Then you may alter the rendering of the document by redefining some macros:

coqdockw , cogdocid

The one-argument macros for typesetting keywords and identifiers. Defaults are sans-serif for
keywords and italic for identifiers.

For example, if you would like a slanted font for keywords, you may insert
\renewcommand{\coqdockw}[1{\texts{#1}}

anywhere betweewsepackage{coqdoc} and\begin{document}

cogdocmodule
One-argument macro for typesetting the title of afile. Default is

\newcommand{\cogdocmodule}[1]{\section*{Module #1}}

and you may redefine it usingenewcommand .

13.5 Exporting CoQ theories to XML

This section describes the exportation ab@theories to XML that has been contributed by Claudio
Sacerdoti Coen. Currently, the main applications are the rendering and searching tool developed within
the HELM! and MoWGLP projects mainly at the University of Bologna and partly at INRIA-Sophia
Antipolis.

13.5.1 Practical use of the XML exportation tool

The basic way to export the logical content of a file into XML format is to asgc with option
-xml . When thexml flag is set, every definition or declaration is immediately exported to XML once
concluded. The system environment variaBl@Q_XML_LIBRARY_ROQfhust be previously set to a
directory in which the logical structure of the exported objects is reflected.

For Makefile files generated bgoq_makefile  (see section 13.3), it is sufficient to compile
the files using

make COQ_XML=-xml

(or, equivalently, setting the environment variaBieQ_XML
To export a development to XML, the suggested procedure is then:

1. add to your own contribution a valiMake file and usecoq_makefile  to generate the
Makefile  from theMake file.

Warning: Since logical names are used to structure the XML hierarchy, always add et
file at least oné-R" option to map physical file names to logical module paths.

'Hypertextual Electronic Library of Mathematics
2Mathematics on the Web, Get it by Logic and Interfaces
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2. set theCOQ_XML_LIBRARY_ROGanvironment variable to the directory where the XML file
hierarchy must be physically rooted.

3. compile your contribution withmake COQ_XML=-xml"

Remark: In case the system variabOQ XML LIBRARY_ROQ3 not set, the output is done on the
standard output. Also, the files are compressed ugkilyg after creation. This is to save disk space
since the XML format is very verbose.

13.5.2 Reflection of the logical structure into the file system

For each ©@Qlogical object, several independent files associated to this object are created. The structure
of the long name of the object is reflected in the directory structure of the file system. E.g. an object
of long nameident; ..... ident,,. ident is exported to files in the subdirectaident,/. . . fident,, of the
directory bound to the environment varial@®©Q_XML_LIBRARY_ROOT

13.5.3 What is exported?

The XML exportation tool exports the logical content 0@ theories. This covers global definitions
(including lemmas, theorems, ...), global assumptions (parameters and axioms), local assumptions or
definitions, and inductive definitions.

Vernacular files are exported ttheory.xml files. Comments are pre-processed vdtiydoc
(see section 13.4). Especially, they have to be enclosed withinand*) to be exported.

For each inductive definition of namident.. . . ident,,.ident, a file nameddent.ind.xml  is cre-
ated in the subdirectoriylent/.../  ident,, of the xml library root directory. It contains the arities and
constructors of the type. For mutual inductive definitions, the file is named after the name of the first
inductive type of the block.

For each global definition of base namédent;..... ident,,. ident, files named
ident.con.body.xml and ident.con.xml  are created in the subdirectoiylent;/.../  ident,,.
They respectively contain the body and the type of the definition.

For each global assumption of base naiident,. idents..... ident,,. ident, a file named

ident.con.xml s created in the subdirectorgent,/.../  ident,. It contains the type of the global
assumption.

For each local assumption or definition of base nadeet located in sectiongdent’, . . ., ident;, of
the moduleident;. idents..... ident,,. ident, a file nameddent.var.xml is created in the subdi-
rectoryidenty/.../  ident,/ ident}/.../]  ident,. It contains its type and, if a definition, its bodly.

In order to do proof-rendering (for example in natural language), some redundant typing information
is required, i.e. the type of at least some of the subterms of the bodies and types of the CIC objects. These
types are called inner types and are exported to files of stiffpes.xml by the exportation tool.

13.5.4 Inner types
The type of a subterm of a construction is calledrarer typeif it respects the following conditions.

1. Its sort isProp 3.

2. Itis not a type cast nor an atomic term (variable, constructor or constant).

3or CProp which is the "sort"-like definition used in C-CoRN (sdwtp://vacuumcleaner.cs.kun.nl/
c-corn ) to type computationally relevant predicative propositions.

Coq Reference Manual, V8.0, June 27, 2004



226 13 Utilities
3. Ifit's root is an abstraction, then the root’s parent node is not an abstraction, i.e. only the type of
the outer abstraction of a block of nested abstractions is printed.

The rationale for the’3 condition is that the type of the inner abstractions could be easily computed
starting from the type of the outer ones; moreover, the types of the inner abstractions requires a lot of
disk/memory space: removing th&3ondition leads to XML file that are two times as big as the ones
exported applying the’3 condition.

13.5.5 Interactive exportation commands

There are also commands to be used interactivetypqtop .

Print XML  qualid

If the variableCOQ_XML_LIBRARY_ROQF set, this command creates files containing the logical
content in XML format ofqualid. If the variable is not set, the result is displayed on the standard output.

Variants:

1. Print XML File string qualid
This writes the logical content a@fualid in XML format to files whose prefix istring.

Show XML Proof

If the variableCOQ_XML_LIBRARY_ROG¥ set, this command creates files containing the current
proof in progress in XML format. It writes also an XML file made of inner types. If the variable is not
set, the result is displayed on the standard output.

Variants:

1. Show XML File string Proof
This writes the logical content @fualid in XML format to files whose prefix istring.

13.5.6 Applications: rendering, searching and publishing

The HELM team at the University of Bologna has developed tools exploiting the XML exportation of
Coq libraries. This covers rendering, searching and publishing tools.

All these tools require a running http server and, if possible, a MathML compliant browser. The
procedure to install the suite of tools ultimately allowing rendering and searching can be found on the
HELM web sitehttp://helm.cs.unibo.it/library.html

It may be easier though to upload your developments on the HELM http server and to re-use the
infrastructure running on it. This requires publishing your development. To this aim, follow the instruc-
tions onhttp://mowgli.cs.unibo.it

Notice that the HELM server already hosts a copy of the standard libranyoaf&@d of the ©Q
user contributions.

13.5.7 Technical informations

CIC with Explicit Named Substitutions

The exported files are XML encoding of the lambda-terms used by ¢iges@stem. The implementative
details of the ©Q system are hidden as much as possible, so that the XML DTD is a straightforward
encoding of the Calculus of (Co)Inductive Constructions.
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Nevertheless, there is a feature of thedsystem that can not be hidden in a completely satisfactory
way: discharging (see Sect.2.3). lloQitis possible to open a section, declare variables and use them in
the rest of the section as if they were axiom declarations. Once the section is closed, every definition and
theorem in the section is discharged by abstracting it over the section variables. Variable declarations
as well as section declarations are entirely dropped. Since we are interested in an XML encoding of
definitions and theorems as close as possible to those directly provided the user, we do not want to export
discharged forms. Exporting non-discharged theorem and definitions together with theorems that rely
on the discharged forms obliges the tools that work on the XML encoding to implement discharging to
achieve logical consistency. Moreover, the rendering of the files can be misleading, since hyperlinks can
be shown between occurrences of the discharge form of a definition and the non-discharged definition,
that are different objects.

To overcome the previous limitations, Claudio Sacerdoti Coen developed in his PhD. thesis an ex-
tension of CIC, called Calculus of (Co)Inductive Constructions with Explicit Named Substitutions, that
is a slight extension of CIC where discharging is not necessary. The DTD of the exported XML files
describes constants, inductive types and variables of the Calculus of (Co)Inductive Constructions with
Explicit Named Substitutions. The conversion to the new calculus is performed during the exportation
phase.

The following example shows a very smalb@ development together with its version in CIC with
Explicit Named Substitutions.

# CIC version: #
Section S.
Variable A : Prop.

Definition impl ;= A -> A.

Theorem t : impl. (* uses the undischarged form of impl *)
Proof.
exact (fun (a:A) => a).
Qed.

End S.

Theorem t' : (impl False). (* uses the discharged form of impl *)
Proof.
exact (t False). (* uses the discharged form of t *)

Qed.

# Corresponding CIC with Explicit Named Substitutions version: #
Section S.
Variable A : Prop.

Definition impl(A) = A -> A. (* theorems and definitions are
explicitly abstracted over the
variables. The name is sufficient to
completely describe the abstraction *)

Theorem t(A) : impl. (* impl where A is not instantiated *)
Proof.
exact (fun (a:A) => a).
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Qed.

End S.

Theorem t'() : impl{False/A}. (* impl where A is instantiated with False

Notice that t does not depend on A *)
Proof.
exact t{False/A}. (* t where A is instantiated with False *)
Qed.

Further details on the typing and reduction rules of the calculus can be found in Claudio Sacerdoti
Coen PhD. dissertation, where the consistency of the calculus is also proved.

The CIC with Explicit Named Substitutions XML DTD

A copy of the DTD can be found in the filecic.dtd " in the contrib/xml source directory of
CoQ. The following is a very brief overview of the elements described in the DTD.

<ConstantType> is the root element of the files that correspond to constant types.

<ConstantBody> is the root element of the files that correspond to constant bodies. It is used only
for closed definitions and theorems (i.e. when no metavariable occurs in the body or type of the
constant)

<CurrentProof> is the root element of the file that correspond to the body of a constant that de-
pends on metavariables (e.g. unfinished proofs)

<Variable> is the root element of the files that correspond to variables

<InductiveTypes> is the root element of the files that correspond to blocks of mutually defined
inductive definitions

The elementxLAMBDA> <CAST> <PROD> <REL>, <SORT> <APPLY> <VAR> <META>
<IMPLICIT> , <CONST><LETIN>, <MUTIND> <MUTCONSTRUCT&MUTCASE><FIX> and
<COFIX> are used to encode the constructors of CIC. Stxé or type attribute of the element, if
present, is respectively the sort or the type of the term, that is a sort because of the typing rules of CIC.

The elemenkinstantiate> correspond to the application of an explicit named substitution to
its first argument, that is a reference to a definition or declaration in the environment.

All the other elements are just syntactic sugar.

13.6 Embedded @Q phrases inside ATEX documents

When writing a documentation about a proof development, one may want to inserplases inside
a BWTpX document, possibly together with the corresponding answers of the system. We provide a me-
chanical way to process sucho@ phrases embedded iATEX files: thecog-tex filter. This filter
extracts Coq phrases embedded in LaTeX files, evaluates them, and insert the outcome of the evaluation
after each phrase.

Starting with a filefile.tex containing @Q phrases, theog-tex filter produces a file named
file.v.tex  with the CoQ outcome.

There are options to produce th®Q@parts in smaller font, italic, between horizontal rules, etc. See
the man page afog-tex for more details.

Remark. This Reference Manual and the Tutorial have been completely producedagitex
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13.7 Coog and GNU EMACS

13.7.1 The @Q Emacs mode

CoQ comes with a Major mode for GNU MACS, cog.el . This mode provides syntax highlight-
ing (assuming your GNU &AcSs library provideshilit19.el ) and also a rudimentary indentation
facility in the style of the Caml GNU EACS mode.

Add the following lines to youremacs file:

(setqg auto-mode-alist (cons ’'("\\.v$" . cog-mode) auto-mode-alist))
(autoload 'cog-mode "coq" "Major mode for editing Coq vernacular." t)

The CoQ major mode is triggered by visiting a file with extensien, or manually with the com-
mandM-x cog-mode . It gives you the correct syntax table for th@@Qlanguage, and also a rudi-
mentary indentation facility:

e pressing AB at the beginning of a line indents the line like the line above;

e extra TABS increase the indentation level (by 2 spaces by default);

e M-TAB decreases the indentation level.

An inferior mode to run ©Q under Emacs, by Marco Maggesi, is also included in the distribution,
in file cog-inferior.el . Instructions to use it are contained in this file.

13.7.2 Proof General

Proof General is a generic interface for proof assistants based on Emacs (or XEmacs). The main idea
is that the @Q commands you are editing are sent to agoplevel running behind Emacs and the
answers of the system automatically inserted into other Emacs buffers. Thus you don't need to copy-
paste the ©Q material from your files to the €qQ toplevel or conversely from thed toplevel to some
files.

Proof General is developped and distributed independently of the systemlits freely available
atproofgeneral.inf.ed.ac.uk

13.8 Module specification

Given a @Qvernacular file, thgallina  filter extracts its specification (inductive types declarations,
definitions, type of lemmas and theorems), removing the proofs parts of the file. dtdil€ file.v
gives birth to the specification fifde.g (where the suffixg stands for GQLLINA).

See the man page ghllina  for more details and options.

13.9 Man pages

There are man pages for the commaaodgdep , gallina  andcog-tex . Man pages are installed at
installation time (see installation instructions in fidSTALL , step 6).
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Chapter 14

CoQ Integrated Development
Environment

The CoQ Integrated Development Environment is a graphical tool, to be used as a user-friendly replace-
ment tocoqgtop . Its main purpose is to allow the user to navigate forward and backward intwga C
vernacular file, executing corresponding commands or undoing them respectively.

CoQIDE is run by typing the commandogide on the command line. Without argument, the
main screen is displayed with an “unnamed buffer”, and with a file name as argument, another buffer
displaying the contents of that file. Additionally, cogide accepts the same options as coqtop, given in
Chapter 12, the ones having obviously no meaning foRIDE being ignored.

A sample @QIDE main screen, while navigating into a fikermat.v , is shown on Figure 14.1.

At the top is a menu bar, and a tool bar below it. The large window on the left is displaying the various
script buffers The upper right window is thgoal window where goals to prove are displayed. The lower
right window is themessage windowvhere various messages resulting from commands are displayed.
At the bottom is the status bar.

14.1 Managing files and buffers, basic edition

In the script window, you may open arbitrarily many buffers to edit. e menu allows you to open

files or create some, save them, print or export them into various formats. Among all these buffers, there
is always one which is the curreninning buffer whose name is displayed on a green background,
which is the one where Coq commands are currently executed.

Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, ...)
are available in thézdit menu. @QIDE offers only basic editing commands, so if you need more
complex editing commands, you may launch your favorite text editor on the current buffer, using the
Edit/External Editormenu.

14.2 Interactive navigation into CoQ scripts

The running buffer is the one where navigation takes place. The toolbar proposes five basic commands
for this. The first one, represented by a down arrow icon, is for going forward executing one command.
If that command is successful, the part of the script that has been executed is displayed on a green
background. If that command fails, the error message is displayed in the message window, and the
location of the error is emphasized by a red underline.

On Figure 14.1, the running buffer lermat.v , all commands until th&heorem have been
already executed, and the user tried to go forward execuidgction n . That command failed
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File Edit MNavigation Trv Tactics Templates Queries Compile Windows Help

Q%+ F L )

@#*Unnamed Buffers E]Fermat.v‘ 1 subgoal s
forall = vy z ninat, € "n+vy *"n=2:"n-=

Fizpoint power (% n:nat) {struct n} : nat := n <= 2

match nowith

| O =>*1

| 8 m=>xz * powar ¥ m

and.
Notation "z * n" := (power x nj.

Thecorem Fermat :

(forall = v 2 ninat, @ *n+y*n = 2°n -> n <= 2]
Procf.
Inducticn n.

Error: The reference Induction was not found
in the current envireonment

4] |l
Feady, proving Fermat Line: 13 char: 1| Coglde started

Figure 14.1: ©QIDE main screen

because no such tactic exist (tactics are now in lowercase...), and the wrong word is underlined.

Notice that the green part of the running buffer is not editable. If you ever want to modify something
you have to go backward using the up arrow tool, or even better, put the cursor where you want to go
back and use thgoto button. Unlike withcoqtop , you should never udgndo to go backward.

Two additional tool buttons exist, one to go directly to the end and one to go back to the beginning.
If you try to go to the end, or in general to run several commands usingdfeebutton, the execution
will stop whenever an error is found.

If you ever try to execute a command which happens to run during a long time, and would like to
abort it before its termination, you may use the interrupt button (the white cross on a red circle).

Finally, notice that these navigation buttons are also available in the menu, where their keyboard
shortcuts are given.

14.3 Try tactics automatically

The menuTry Tactics  provides some features for automatically trying to solve the current goal
using simple tactics. If such a tactic succeeds in solving the goal, then its text is automatically inserted
into the script. There is finally a combination of these tactics, callegrbef wizardwhich will try each

of them in turn. This wizard is also available as a tool button (the light bulb). The set of tactics tried by
the wizard is customizable in the preferences.

These tactics are general ones, in particular they do not refer to particular hypotheses. You may also
try specific tactics related to the goal or one of the hypotheses, by clicking with the right mouse button
one the goal or the considered hypothesis. This is the “contextual menu on goals” feature, that may be
disabled in the preferences if undesirable.
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File Edit HNavigaticon Try Tactics Templates Queries Compile Windows Help
P +20F 2O

@*Unnamed Buffer#* HFermat.v‘ 1 subgoeal

Require Reals.

(1/1)
0->y>0->x "n

[=I[o[]

forall x ¥y z ninat, x >
4 n - ~

Searchabout [ "Cauchy"]

Fixpoint power (x n:natl X D g
match n with

| 0 => 1 Page 1|
(Lng M = 5 BT 5 |Print ﬂlmult ok
’ Besult for command Print mult .
Hotati "y A p" iz mult =
otation “X n (pq (fix mult (n:nat) : nat -> nat :=
Theorem Fermat : fun m:nat => match n with
. | O ==0
gzgiilxyzn, x>0 -> | 8 p =>m + mult pm
. end)
: nat -» nat -> nat

Argument scopes are [nat_scope nat_scope]

KT} O
fReady, proving Fermat Line: 16 Char: g

Figure 14.2: ©QIDE: the query window

14.4 \ernacular commands, templates

The Templates menu allows to use shortcuts to insert vernacular commands. This is a nice way to
proceed if you are not sure of the spelling of the command you want.

Moreover, this menu offers sontemplatesvhich will automatic insert a complex command like
Fixpoint with a convenient shape for its arguments.

14.5 Queries

We call query any vernacular command that do not change the current state, suChinemk,
SearchAbout , etc. Those commands are of course useless during compilation of a file, hence should
not be included in scripts. To run such commands without writing them in the scrig| XE offers
another input window called theuery window This window can be displayed on demand, either by us-
ing theWindow menu, or directly using shortcuts given in tQeeries menu. Indeed, with GQIDE

the simplest way to perform SearchAbout on some identifier is to select it using the mouse, and
pressing=2. This will both make appear the query window and run$learchAbout in it, displaying

the result. Shortcuts3 andF4 are forCheck andPrint  respectively. Figure 14.2 displays the query
window after selection of the word “mult” in the script windows, and presgihdo print its definition.

14.6 Compilation
TheCompile menu offers direct commands to:

e compile the current buffer
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e run a compilation usingnake

e go to the last compilation error

e create anakefile usingcoq_makefile

14.7 Customizations

You may customize your environment using mebadit/Preferences . A new window will be
displayed, with several customization sections presented as a notebook.

The first section is for selecting the text font used for scripts, goal and message windows.

The second section is devoted to file management: you may configure automatic saving of files, by
periodically saving the contents into files nam## for each opened file. You may also activate the
revertfeature: in case a opened file is modified on the disk by a third padglBE may read it again
for you. Note that in the case you edited that same file, you will be prompt to choose to either discard
your changes or not. THele charset encoding choice is described below in Section 14.8.3

The Externals  section allows to customize the external commands for compilation, printing,
web browsing. In the browser command, you may %sseto denote the URL to open, for example:
mozilla -remote "OpenURL(%s)"

TheTactics Wizard section allows to defined the set of tactics that should be tried, in sequence,
to solve the current goal.

The last section is for miscellaneous boolean settings, such as the “contextual menu on goals” feature
presented in Section 14.3.

Notice that these settings are saved in the.fitgjiderc  of your home directory.

A gtk2 accelerator keymap is saved under the naiogide.keys . This file should not be edited
manually: to modify a given menu shortcut, go to the corresponding menu item without releasing the
mouse button, press the key you want for the new shortcut, and release the mouse button afterwards.

For experts: it is also possible to set up a specific gtk resource file, under the name
.cogide-gtk2rc , following the gtk2 resources syntaxttp://developer.gnome.org/
doc/API/2.0/gtk/gtk-Resource-Files.html . Such a default resource file exists in the
Coqlibrary, you may copy this file into your home directory, and edit it using any text editogl BE
itself for example.

14.8 Using unicode symbols

CoQIDE supports unicode character encoding in its text windows, consequently a large set of symbols
is available for notations.

14.8.1 Displaying unicode symbols

You just need to define suitable notations as described in Chapter 11. For example, to use the mathemat-
ical symbolsv andd, you may define

Notation " V x : t, P" :=
(forall x:t, P) (at level 200, x ident).
Notation " 3 x : t, P" :=
(exists x:t, P) (at level 200, x ident).

There exists a small set of such notations already defined, in thetfiler  of CoqQ library, so you
may enable them just bigequire utf8  inside GQIDE, or equivalently, by starting €QIDE with
cogide -l utf8
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However, there are some issues when using such unicode symbols: you of course need to use a
character font which supports them. In the Fonts section of the preferences, the Preview line displays
some unicode symbols, so you could figure out if the selected font is OK. Related to this, one thing you
may need to do is choose whether Gtk should use antialiased fonts or not, by setting the environment
variableGDK_USE_XFTo 1 or O respectively.

14.8.2 Defining an input method for non ASCII symbols

To input an Unicode symbol, a general method is to press both the CONTROL and the SHIFT keys, and
type the hexadecimal code of the symbol required, for exa220€ for thev symbol. A list of symbol
codes is available dittp://www.unicode.org

Of course, this method is painful for symbols you use often. There is always the possibility to copy-
paste a symbol already typed in. Another method is to bind some key combinations for frequently used
symbols. For example, to bind kelf&1 andF12 to vV andd respectively, you may add

bind "F11" “insert-at-cursor" (" V")
bind "F12" "insert-at-cursor" (" 3
to yourbinding "text" section in.cogiderc-gtk2rc

14.8.3 Character encoding for saved files

IntheFiles section of the preferences, the encoding option is related to the way files are saved.

If you have no need to exchange files with non UTF-8 aware applications, it is better to choose the
UTF-8 encoding, since it guarantees that your files will be read again without problems. (This is because
when GQIDE reads a file, it tries to automatically detect its character encoding.)

If you choose something else than UTF-8, then missing characters will be written encoded by
\X{....} or\x{........ } where each dot is an hexadecimal digit: the number between braces is
the hexadecimal UNICODE index for the missing character.

14.9 Building a custom QIDE with user ML code

You can do this as described in Section 13.1 for a custom coq text toplevel, simply by adding option
-ide tocogmktop , that is something like

cogmktop -ide -byte m1.CMO ... my.CMO
or

cogmktop -ide -opt mi1.CMX ... My, .CMX
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Presentation of the Addendum

Here you will find several pieces of additional documentation for tbhe ®eference Manual. Each of
this chapters is concentrated on a particular topic, that should interest only a fraction af¢hesérs:
that’s the reason why they are apart from the Reference Manual.

Extended pattern-matching This chapter details the use of generalized pattern-matching. It is con-
tributed by Cristina Cornes and Hugo Herbelin.

Implicit coercions This chapter details the use of the coercion mechanism. It is contributed by
Amokrane Saibi.

Program extraction This chapter explains how to extract in practice ML files frétn terms. It is
contributed by Jean-Christophe Fillidtre and Pierre Letouzey.

omega omega, written by Pierre Crégut, solves a whole class of arithmetic problems.

Thering tactic This is a tactic to do AC rewriting. This chapter explains how to use it and how it
works. The chapter is contributed by Patrick Loiseleur.

The Setoid_replace tactic This is a tactic to do rewriting on types equipped with specific (only
partially substitutive) equality. The chapter is contributed by Clément Renard.
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Chapter 15

Extended pattern-matching

Cristina Cornes

This section describes the full form of pattern-matching m@@erms.

15.1 Patterns

The full syntax ofmatch is presented in figures 1.1 and 1.2. Identifiers in patterns are either constructor
names or variables. Any identifier that is not the constructor of an inductive or coinductive type is
considered to be a variable. A variable hame cannot occur more than once in a given pattern. It is
recommended to start variable names by a lowercase letter.

If a pattern has the forrx ) wherec is a constructor symbol andis a linear vector of variables,
it is calledsimple it is the kind of pattern recognized by the basic versiomatch . If a pattern is not
simple we call inested

A variable pattern matches any value, and the identifier is bound to that value. The pattern “
(called “don’t care” or “wildcard” symbol) also matches any value, but does not bind anything. It may
occur an arbitrary number of times in a pattern. Alias patterns wrftiemern as identifier) are also
accepted. This pattern matches the same valugst&sn does anddentifier is bound to the matched
value. A list of patterns separated with commas is also considered as a pattern and isoélfgd
pattern

Since extendedhatch expressions are compiled into the primitive ones, the expressiveness of the
theory remains the same. Once the stage of parsing has finished only simple patterns remain. An easy
way to see the result of the expansion is by printing the term Ritht if the term is a constant, or
using the comman@heck.

The extendedmatch still accepts an optionatlimination predicategiven after the keyword
return . Given a pattern matching expression, if all the right hand sides>ofrhs in short) have
the same type, then this type can be sometimes synthesized, and so we can o#tiirthe part.
Otherwise the predicate aftexturn  has to be provided, like for the basiatch .

Let us illustrate through examples the different aspects of extended pattern matching. Consider for
example the function that computes the maximum of two natural numbers. We can write it in primitive
syntax by:

Coq < Fixpoint max (n m:nat) {struct m} : nat :=
Cog < match n with

Cog < | O =>m

Coq < | S n’" => match m with
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Coq < | O == Sn

Coq < | S m =>S (max n" m)
Coq < end

Cog < end.

max is recursively defined
Using multiple patterns in the definition allows to write:

Cogq < Reset max.

Coq < Fixpoint max (n m:nat) {struct m} : nat :=
Cog < match n, m with

Coq < | O,  =>m

Coq < | Sn, O=5Sn

Cog < | S, Sm =>S (max n" m’)

Coq < end.
max is recursively defined

which will be compiled into the previous form.

The pattern-matching compilation strategy examines patterns from left to righatéh expression
is generatednly when there is at least one constructor in the column of patterns. E.g. the following
example does not buildraatch expression.

Cog < Check (fun x:nat => match x return nat with

Coq < ly =>vy
Coq < end).
fun x : nat => X

: nat -> nat

We can also usedSs patterns” to associate a name to a sub-pattern:

Cog < Reset max.

Cog < Fixpoint max (n m:nat) {struct n} : nat :=
Coq < match n, m with

Cog < | O, _ =>m

Coq < | Snasp O=>p

Coq < | Sn, Sm =>3S (max n m’)

Cog < end.

max is recursively defined

Here is now an example of nested patterns:

Cog < Fixpoint even (n:nat) : bool :=
Coq < match n with

Coq < | O => true

Coq < | S O => false

Coqg < | S (S n) =>even n’

Cog < end.

even is recursively defined
This is compiled into:

Coq < Print even.

even =

(fix even (n : nat) : bool :=
match n with
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| O => true
| S n0O => match n0O with
| O => false
| S n =>evenn
end

end)
: nat -> bool
Argument scope is [nat_scope]

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write
patterns that admit a non trivial superposition. Consider the boolean fumhetiothat given two natural
numbers yieldsrue if the first one is less or equal than the second onefalsd otherwise. We can
write it as follows:

Coq < Fixpoint lef (n m:nat) {struct m} : bool =
Cog < match n, m with

Coq < | O, x => true

Coq < | X, O => false

Coq < | S n, Sm=>1lefnm

Cog < end.

lef is recursively defined

Note that the first and the second multiple pattern superpose because the couple oDvalues
matches both. Thus, what is the result of the function on those values? To eliminate ambiguity we use
the textual priority rule we consider patterns ordered from top to bottom, then a value is matched by
the pattern at théh row if and only if it is not matched by some pattern of a previous row. Thus in the
exampleO Ois matched by the first pattern, and(éef O O) yieldstrue .

Another way to write this function is:

Cog < Reset lef.

Coq < Fixpoint lef (n m:nat) {struct m} : bool =
Cog < match n, m with

Coq < | O, x => true

Cog < | Sn, Sm=>1lef nm

Coq < | , => false

Coq < end.

lef is recursively defined

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will
be used only for values that do not match neither the first nor the second one.
Terms with useless patterns are not accepted by the system. Here is an example:

Cog < Check (fun x:nat =>

Cog < match x with

Coq < | O => true

Coq < | S _ => false

Coq < | x => true

Coq < end).

Coq < Cog < Toplevel input, characters 246-255
> | x => true

> NNNNNNNNN

Error: This clause is redundant
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15.2 About patterns of parametric types

When matching objects of a parametric type, constructors in patiernst expecthe parameter argu-
ments. Their value is deduced during expansion.
Consider for example the polymorphic lists:

Cog < Inductive List (A:Set) : Set :=
Coq < | nil : List A

Coq < | cons : A -> List A -> List A.
List is defined

List_rect is defined

List_ind is defined

List_rec is defined

We can check the functiadtail ;

Coq < Check

Cog < (fun I:List nat =>

Coq < match | with

Coq < | nil => nil nat

Coqg < | cons _ I =>17

Coq < end).

fun | : List nat => match | with
| nil => nil nat
| cons _I'=>1
end

: List nat -> List nat

When we use parameters in patterns there is an error message:

Coq < Check

Coq < (fun [:List nat =>

Coq < match | with

Coq < | nil A => nil nat

Coq < | cons A _I' =17

Coq < end).

Coq < Cog < Toplevel input, characters 220-231
> | cons A _I'=>17

> NNANNNNNNNNN

Error: The constructor cons expects 2 arguments.

15.3 Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non-dependent types, but we can also
use the expansion strategy to destructure objects of dependent type. Consider listntypef lists of
a certain length:

Cog < Inductive listn : nat -> Set :=

Coq < | niln : listn O

Coq < | consn : forall n:nat, nat -> listn n -> listn (S n).
listn is defined

listn_rect is defined

listn_ind is defined

listn_rec is defined
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15.3.1 Understanding dependencies in patterns

We can define the functidength overlistn  by:

Cog < Definition length (n:nat) (l:listn n) := n.
length is defined

Just for illustrating pattern matching, we can define it by case analysis:

Cog < Reset length.

Coq < Definition length (n:nat) (Llisth n) =
Cog < match | with

Coq < | niln => 0

Coq < | consn n _ _ =>Sn

Coq < end.

length is defined

We can understand the meaning of this definition using the same notions of usual pattern matching.

15.3.2 When the elimination predicate must be provided

The examples given so far do not need an explicit elimination predicate because all the rhs have the same
type and the strategy succeeds to synthesize it. Unfortunately when dealing with dependent patterns
it often happens that we need to write cases where the type of the rhs are different instances of the
elimination predicate. The functi@moncat forlistn  is an example where the branches have different

type and we need to provide the elimination predicate:

Coq < Fixpoint concat (n:nat) (l:listn n) (m:nat) (Ilisthn m) {struct I} :

Cog < listn (n + m) :=

Coq < match | in listn n return listn (n + m) with

Coq < | niln => 1

Cog < | consn n” ay =>consn (n" + m) a (concat n" 'y m [')

Coq < end.
concat is recursively defined

The elimination predicate fn (n:nat) (l:listh n) => listn (n+m) . In general ifm
has type(l q1 ...q, t1...ts) Whereq; ... g, are parameters, the elimination predicate should be of the
form:fun wy1... ys 2:( I q1... ¢ y1... ys) => P.

In the concrete syntax, it should be written :

matchmaszin (I _..._y;...ys) return Q with ... end

The variables which appear in tieandas clause are new and bounded in the propéjtin the
return clause. The parameters of the inductive definitions should not be mentioned and are replaced by
Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same
time and the branches have different type we need to provide the elimination predicate for this multiple
pattern. It is done using the same scheme, each term may be associated tanain clause in order
to introduce a dependent product.
For example, an equivalent definition fooncat (even though the matching on the second term is
trivial) would have been:
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Coqg < Reset concat.

Cog < Fixpoint concat (n:nat) (Llistn n) (m:at) (Ilistn m) {struct I} :

Cog < listn (n + m) :=

Coq < match | in listn n, I' return listn (n + m) with

Coq < | niln, x => x

Coq < | consn n" ay, x => consn (N + m) a (concat N y m X)
Cog < end.

concat is recursively defined

When the arity of the predicate (i.e. number of abstractions) is not correct Coq raises an error
message. For example:

Cog < Fixpoint concat

Coq < (n:nat) (l:listn n) (m:nat)

Cog < (I:listn m) {struct I} : listn (n + m) :=

Cog < match I, I' with

Coq < | niln, x => x

Cog < | consn n” ay, x => consn (N + m) a (concat N y m X)
Coq < end.

Coq < Cog < Coq < Toplevel input, characters 342-343

> | niln, x => x

> N

Error:

In environment
concat : forall n : nat,
listh n -> forall m : nat, listh m -> listn (n + m)

n : nat

[ : listh n

m : nat

I : listn m

The term "I has type "listh m" while it is expected to have type

"listn (231 + ?32)"

15.4 Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But
it may depend and the typical case is when we write a proof by induction or a function that yields an
object of dependent type. An example of proof usimgtch in given in section 10.1

For example, we can write the functitwildlist that given a natural numberbuilds a list of
lengthn containing zeros as follows:

Coq < Fixpoint buildlist (n:nat) : listn n :=
Cog < match n return listn n with

Coq < | O => niln

Coq < | S n => consn n O (buildlist n)
Cog < end.

buildlist is recursively defined

We can also use multiple patterns. Consider the following definition of the predicate less-equal

Coq < Inductive LE : nat -> nat -> Prop =

Coq < | LEO : forall n:nat, LE O n

Coq < | LES : forall n m:nat, LE n m -> LE (S n) (S m).
LE is defined

LE_ind is defined
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We can use multiple patterns to write the proof of the lenfme:nat) (LE n m)V(LE m

n) :

Cog < Fixpoint dec (n m:nat) {struct n} : LE n m V LE m n :=

Coq < match n, m return LE n m V LE m n with

Cog < | O, x => or_introl (LE x 0) (LEO x)

Cog < | x, O => or_intror (LE x 0) (LEO x)

Cog < | Snasn, Smasm =>

Cog < match dec n m with

Coq < | or_introl h => or_introl (LE m' n’) (LES n m h)

Coq < | or_intror h => or_intror (LE n” m’) (LES m n h)
<

Coq end

Coq < end.
dec is recursively defined

In the example oflec, the firstmatch is dependent while the second is not.
The user can also ugeatch in combination with the tacticefine  (see section 8.2.2) to build
incomplete proofs beginning withraatch construction.

15.5 Pattern-matching on inductive objects involving local definitions

If local definitions occur in the type of a constructor, then there are two ways to match on this con-
structor. Either the local definitions are skipped and matching is done only on the true arguments of the
constructors, or the bindings for local definitions can also be caught in the matching.

Example.

Coq < Inductive list : nat -> Set :=
Coq < | nil : list O
Coq < | cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)).

In the next example, the local definition is not caught.

Cog < Fixpoint length n (l:list n) {struct I} : nat :=
Cog < match | with

Cog < | nil =0

Coq < | cons n 10 => S (length (2 * n) 10)
Cog < end.

length is recursively defined
But in this example, it is.

Coq < Fixpoint length’ n (l:list n) {struct I} : nat :=
Cog < match | with

Cog < | nil =>0

Cog < | cons _ m 10 => S (length’ m 10)

Cog < end.

length’ is recursively defined

Remark: for a given matching clause, either none of the local definitions or all of them can be caught.
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15.6 Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from
constructors is sought. If such a coercion can be found, it is automatically inserted around the pattern.
Example:

Coq < Inductive | : Set =
Coq < | C1 : nat -> |
Coq < | C2:1 > 1

| is defined

|_rect is defined

|_ind is defined

|_rec is defined

Coq < Coercion C1 : nat >-> I.
C1 is now a coercion

Coq < Check (fun x => match x with
Cog < | C2 0 =0
Coq < | =0
Cog < end).
fun x 1 | =>
match x with
| C1 _=>0
| C2 i =

match i with

| C1 n => match n with

| O =0
| S _=>0
end
| C2 =0
end
end
1 -> nat

15.7 When does the expansion strategy fail ?

The strategy works very like in ML languages when treating patterns of non-dependent type. But there
are new cases of failure that are due to the presence of dependencies.

The error messages of the current implementation may be sometimes confusing. When the tactic
fails because patterns are somehow incorrect then error messages refer to the initial expression. But
the strategy may succeed to build an expression whose sub-expressions are well typed when the whole
expression is not. In this situation the message makes reference to the expanded expression. We en-
courage users, when they have patterns with the same outer constructor in different equations, to name
the variable patterns in the same positions with the same name. E.g. tqoanéen O x) => el
and(cons n _ x) => e2 instead ofcons n O x) => el and(cons n’ _ x) => e2 . This
helps to maintain certain name correspondence between the generated expression and the original.

Here is a summary of the error messages corresponding to each situation:

Error messages:

1. The constructor ident expects  num arguments

The variable identis bound several times in pattern term
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Found a constructor of inductive type term while a constructor of
term is expected

Patterns are incorrect (because constructors are not applied to the correct number of the arguments,
because they are not linear or they are wrongly typed)

2. Non exhaustive pattern-matching
the pattern matching is not exhaustive

3. The elimination predicate term should be of arity num (for non
dependent case) or num (for dependent case)
The elimination predicate provided toatch has not the expected arity

4. Unable to infer a match predicate

Either there is a type incompatiblity or the problem involves
dependencies

There is a type mismatch between the different branches
Then the user should provide an elimination predicate.
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Chapter 16

Implicit Coercions

Amokrane Saibi

16.1 General Presentation
This section describes the inheritance mechanisma$.dn CoQ with inheritance, we are not inter-
ested in adding any expressive power to our theory, but only convenience. Given a term, possibly not

typable, we are interested in the problem of determining if it can be well typed modulo insertion of
appropriate coercions. We allow to write:

e fawheref: forall x: A, B anda : A’ whenA’ can be seen in some sense as a subtypk of
e 2 : AwhenA is not a type, but can be seen in a certain sense as a type: set, group, category etc.

e f awhenj is not a function, but can be seen in a certain sense as a function: bijection, functor,
any structure morphism etc.

16.2 Classes
A class withn parameters is any defined name with a typeall (z1 : Ay)..(z, : An), s Wheres is
a sort. Thus a class with parameters is considered as a single class and not as a family of classes. An

object of a clas€” is any term of type&’' ¢;..t,,. In addition to these user-classes, we have two abstract
classes:

e Sortclass |, the class of sorts; its objects are the terms whose type is a sort.

e Funclass |, the class of functions; its objects are all the terms with a functional type, i.e. of form
forall x : A, B.

Formally, the syntax of a classes is defined on Figure 16.1.
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class = qualid
|  Sortclass
|  Funclass

Figure 16.1: Syntax of classes

16.3 Coercions

A namef can be declared as a coercion between a source uselctlagh n parameters and a target
classD if one of these conditions holds:

e D is a user-class, then the type gfmust have the formforall (x; : Ai)..(zn @ An)(y :
C xzy..zy), D uy..u, Wherem is the number of parameters Df.

e D is Funclass , then the type off must have the formforall (x; : A1)..(zn @ An)(y :
Cuxi.xy)(z: A),B.

e D is Sortclass , then the type off must have the formforall (x1 : A1)..(zy : An)(y :
C xi..xzy), s With s a sort.

We then writef : C>-> D. The restriction on the type of coercions is caltlbd uniform inheritance
condition Remark that the abstract clas§esiclass andSortclass  cannot be source classes.

To coerce an object: C t;..t, of C towardsD, we have to apply the coercighto it; the obtained
term f t1..t, t is then an object oD.

16.4 Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition.
Let C' and D be two classes with respectivelyandm parameters and : forall (x1 : T1)..(zy :

Te)(y = C uy..up), D vy..v,, a function which does not verify the uniform inheritance condition. To
declaref as coercion, one has first to declare a subdédss C:

C':= fun (x1:T1)..(z) : Ty) => C uy..uy

We then define aidentity coerciorbetweenC’ andC":

Id_C' C = fun(zy:T).(zr: Tp)(y: C x1..21) => (y: C uy..up)

We can now declarg as coercion fronC’ to D, since we can “cast” its type aforall (x; :
Ty)..(xg : Ti)(y : C" 21..wg), D v1..0p,.
The identity coercions have a special status: to coerce an abjec’ ¢;..t; of C’ towardsC, we
does not have to insert explicitld_C’_C sinceld_C’_C t..t;, t is convertible witht. However we
“rewrite” the type oft to become an object @ in this case, it becomes u7..u;, where each:; is the
result of the substitution in; of the variables:; by ¢;.

16.5 Inheritance Graph

Coercions form an inheritance graph with classes as nodes. Weoeatlion pathan ordered list of
coercions between two nodes of the graph. A class said to be a subclass 6f if there is a coercion
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path in the graph frond’ to D; we also say that’ inherits fromD. Our mechanism supports multiple
inheritance since a class may inherit from several classes, contrary to simple inheritance where a class
inherits from at most one class. However there must be at most one path between two classes. If this
is not the case, only theldestone is valid and the others are ignored. So the order of declaration of
coercions is important.

We extend notations for coercions to coercion paths. For instgice; fz] : C>-> D is the coer-
cion path composed by the coerciofis. fi.. The application of a coercion path to a term consists of the
successive application of its coercions.

16.6 Declaration of Coercions

16.6.1 Coercion qualid : class; >-> class,.

Declares the construction denotedduulid as a coercion betweetiass; andclasss.

Error messages:
1. qualid not declared
. qualid is already a coercion
. Funclass cannot be a source class

. Sortclass cannot be a source class

2

3

4

5. qualid is not a function
6. Cannot find the source class of qualid

7. Cannot recognize class; as a source class of qualid
8. qualid does not respect the inheritance uniform condition

9. Found target class class instead of classs

When the coercioqualid is added to the inheritance graph, non valid coercion paths are ignored;
they are signaled by a warning.

Warning :
1. Ambiguous paths: [fls5 fh ] Cr>> Dy
[f15 . T’Z}ﬂ] : Cp>-> D,
Variants:
1. Coercion Local qualid : class; >-> classs.

Declares the construction denoteddulid as a coercion local to the current section.

2. Coercion ident = term
This defineddent just like Definition ident = term, and then declaragent as a coercion
between it source and its target.

3. Coercion ident = term . type
This definesdent just like Definition ident : type := term, and then declaragent as
a coercion between it source and its target.
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4. Coercion Local ident = term

This definesident just like Local ident := term, and then declareslent as a coercion be-
tween it source and its target.

. Assumptions can be declared as coercions at declaration time. This extends the grammar of dec-

larations from Figure 1.3 as follows:

declaration '= declaration_keyword assums .

assums '= simple_assums
( simple_assums) ... ( simple_assums)

simple_assums ::= ident ... ident: [>] term

If the extra> is present before the type of some assumptions, these assumptions are declared as
coercions.

. Constructors of inductive types can be declared as coercions at definition time of the inductive

type. This extends and modifies the grammar of inductive types from Figure 1.3 as follows:

inductive = Inductive ind_body with ... with ind_body .
Colnductive  ind_body with ... with ind_body .

ind_body ident [binderlet ... binderlet]: term .=

[[| ] constructor | ... | constructor]

constructor ::= ident [binderlet ... binderlet] [. [>] term]

Especially, if the extra is present in a constructor declaration, this constructor is declared as a
coercion.

16.6.2 Identity Coercion ident: class; >-> class,.

We check thatlass; is a constant with a value of the forfun (x; : 11)..(zy, : T5,) => (classa t1..t,)
wherem is the number of parameters ofass;. Then we define an identity function with the type
forall (x1 : T1)..(zy, : T),)(y : classy xy..xy,), classs t1..t,,, and we declare it as an identity coercion
betweerclass; andclasss.

Error messages:

1. class; must be a transparent constant

Variants:

1. Identity Coercion Local ident: ident; >-> idents.

Idem but locally to the current section.

. SubClass ident := type.

If type is a clasddent’ applied to some arguments théfent is defined and an identity coercion
of nameld_ ident_ident’ is declared. Otherwise said, this is an abbreviation for

Definition ident = type.
followed by
Identity Coercion Id_ ident_ident”: ident >-> ident’ .
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3. Local SubClass ident := type.
Same as before but locally to the current section.

16.7 Displaying Available Coercions
16.7.1 Print Classes.

Print the list of declared classes in the current context.

16.7.2 Print Coercions.

Print the list of declared coercions in the current context.

16.7.3 Print Graph.

Print the list of valid coercion paths in the current context.

16.7.4 Print Coercion Paths class; class,.

Print the list of valid coercion paths frondass; to classs.

16.8 Activating the Printing of Coercions

16.8.1 Set Printing Coercions.

This command forces all the coercions to be printed. Conversely, to skip the printing of coercions, use
Unset Printing Coercions . By default, coercions are not printed.

16.8.2 Set Printing Coercion qualid.

This command forces coercion denotedglid to be printed. To skip the printing of coercignalid,
useUnset Printing Coercion qualid. By default, a coercion is never printed.

16.9 Classes as Records

We allow the definition ofStructures with Inheritancéor classes as records) by extending the existing
Record macro (see section 2.1). Its new syntax is:

Record [>] ident binderlet : sort = [identy] {
ident; [: |:>] term; ;
ident,, [: |:>] term, }.

The identifierident is the name of the defined record asalt is its type. The identifielident is
the name of its constructor. The identifigedent1, .., ident,, are the names of its fields anetm;, ..,
term,, their respective types. The alternative:> | is “: ” or “:>". If ident;:> term;, thenident; is
automatically declared as coercion fradent to the class oferm;. Remark thaident; always verifies
the uniform inheritance condition. If the optiona™beforeident is present, theident, (or the default
nameBuild_ ident if ident, is omitted) is automatically declared as a coercion from the clagsmof,
to ident (this may fail if the uniform inheritance condition is not satisfied).

Remark: The keywordStructure  is a synonym oRecord .
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16.10 Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions
defined inside a section are redefined after its closing, using their new value and new type. The classes
and coercions which are local to the section are simply forgotten. Coercions with a local source class or
a local target class, and coercions which do not verify the uniform inheritance condition any longer are
also forgotten.

16.11 Examples
There are three situations:

e faisill-typed wheref : forall x : A, B anda : A’. If there is a coercion path betweegh and
A, f ais transformed intg o’ whered’ is the result of the application of this coercion pathuto

We first give an example of coercion between atomic inductive types

Cog < Definition bool_in_nat (b:bool) := if b then 0 else 1.
bool_in_nat is defined

Coq < Coercion bool_in_nat : bool >-> nat.
bool_in_nat is now a coercion

Coq < Check (0 = true).
0 = true
: Prop
Coq < Set Printing Coercions.
Coq < Check (0 = true).

0 = bool_in_nat true
: Prop

Warning: “Check true=0. 7 fails. This is “normal” behaviour of coercions. To validate
true=0 , the coercion is searched framat to bool . There is none.

We give an example of coercion between classes with parameters.

Cog < Parameters

Coq < (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
C is assumed

D is assumed

E is assumed

Cog < Parameter f : forall n:nat, C n -> D (S n) true.
f is assumed

Coq < Coercion f : C >-> D.
f is now a coercion

Coq < Parameter g : forall (n:nat) (b:bool), D n b -> E b.
g is assumed

Coq < Coercion g : D >-> E.
g is now a coercion

Coq < Parameter ¢ : C 0.
c is assumed
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Coq < Parameter T : E true -> nat.
T is assumed

Coq < Check (T ¢).
Tc

 nat
Cog < Set Printing Coercions.
Coq < Check (T ¢).

T (g 1 true (f 0 c)
: nat

We give now an example using identity coercions.

Cog < Definition D’ (b:bool) := D 1 b.
D’ is defined
Coq < ldentity Coercion IdD'D : D’ >-> D.
Coq < Print IdD'D.
IdD'D =
(fun (b : bool) (x : D' b) => x):forall b : bool, D’ b -> D 1 b
: forall b : bool, Db -> D 1 b
Coq < Parameter d' : D’ true.
d is assumed
Coq < Check (T d).
Td
: nat
Coq < Set Printing Coercions.
Coq < Check (T d).
T (g 1 true d)
: nat

In the case of functional arguments, we use the monotonic rule of sub-typing. Approximatively,
to coercet : forall x : A, B towardsforall x : A’, B’, one have to coercd’ towardsA and B
towardsB’. An example is given below:

Coq < Parameters (A B : Set) (h : A -> B).
A is assumed
B is assumed
h is assumed

Cog < Coercion h : A >-> B.
h is now a coercion

Coq < Parameter U : (A -> E true) -> nat.
U is assumed

Coq < Parameter t : B -> C 0.
t is assumed

Coq < Check (U t).
U (fun x : A =>t X)
: nat

Coq < Set Printing Coercions.

Coq < Check (U t).
U (fun x : A =>g 1 true (f 0 (t (h x))))
 nat
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Remark the changes in the result following the modification of the previous example.

Coq < Parameter U’ : (C 0 -> B) -> nat.
U’ is assumed

Coq < Parameter t : E true -> A
t' is assumed

Coq < Check (U t).
U (fun x : C 0 =>1t Xx)
. nat
Cog < Set Printing Coercions.

Cog < Check (U t).
U (fun x: CO=>h(t' (g1true (f 0 x)))
: nat

e An assumption: : A whenA is not a type, is ill-typed. It is replaced hy: A’ whereA’ is the
result of the application tal of the coercion path between the classdodndSortclass  if it
exists. This case occurs in the abstractfam = : A => t, universal quantificatiorforall x :
A, B, global variables and parameters of (co-)inductive definitions and functiongortil x :
A, B, such a coercion path may be applied3@lso if necessary.

Coq < Parameter Graph : Type.
Graph is assumed

Coq < Parameter Node : Graph -> Type.
Node is assumed

Coq < Coercion Node : Graph >-> Sortclass.
Node is now a coercion

Coq < Parameter G : Graph.
G is assumed

Coq < Parameter Arrows : G -> G -> Type.
Arrows is assumed

Coqg < Check Arrows.
Arrows
: G > G -> Type

Coq < Parameter fg : G -> G.
fg is assumed

Coq < Check fg.
fg
G > G

Cog < Set Printing Coercions.

Coq < Check fg.
fg
: Node G -> Node G

e f aisill-typed becausg : A is not a function. The ternf is replaced by the term obtained by
applying tof the coercion path betweehandFunclass if it exists.
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Coq < Parameter bij : Set -> Set -> Set.
bij is assumed

Coq < Parameter ap : forall A B:Set, bij A B -> A -> B.
ap is assumed

Cog < Coercion ap : bij >-> Funclass.
ap is now a coercion

Cog < Parameter b : bij nat nat.
b is assumed

Coq < Check (b 0).
ap nat nat b 0
: nat

Cog < Set Printing Coercions.

Coq < Check (b 0).
ap nat nat b 0
: nat

Let us see the resulting graph of this session.

Coq < Print Graph.
[bool_in_nat] : bool >-> nat

[fl: C>>D

[, g : C>>E
[0 : D >> E
[IdD'D] : D >-> D
[ldD'D;

g : D>>E

[h] : A >>1B

[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass
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Chapter 17

Omega: a solver of quantifier-free
problems in Presburger Arithmetic

Pierre Crégut

17.1 Description ofomega

omega solves a goal in Presburger arithmetic, i.e. a universally quantified formula made of equations
and inequations. Equations may be specified either on thengtpef natural numbers or on the tyge
of binary-encoded integer numbers. Formulagiah are automatically injected intd. The procedure
may use any hypothesis of the current proof session to solve the goal.

Multiplication is handled byomega but only goals where at least one of the two multiplicands of
products is a constant are solvable. This is the restriction meaned by “Presburger arithmetic”.

If the tactic cannot solve the goal, it fails with an error message. In any case, the computation
eventually stops.

17.1.1 Arithmetical goals recognized bymega
omega applied only to quantifier-free formulas built from the connectors
NV, o~ >
on atomic formulas. Atomic formulas are built from the predicates
= le, It, gt, ge
onnat or from the predicates
=, <, <=, >, >=
onZ. In expressions of typeat , omega recognizes
plus, minus, mult, pred, S, O
and in expressions of typ& omega recognizes
+, -, *, Zsucc , and constants.
All expressions of typenat or Z not built on these operators are considered abstractly as if they
were arbitrary variables of typsat or Z.
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17.1.2 Messages froommega

Whenomega does not solve the goal, one of the following errors is generated:

Error messages:

1.

0o N oo o b~ W

omega can’'t solve this system

This may happen if your goal is not quantifier-free (if it is universally quantifiedjrinps

first; if it contains existentials quantifiers toomega is not strong enough to solve your goal).
This may happen also if your goal contains arithmetical operators unknowrofreaga. Finally,
your goal may be really wrong!

. omega:

Not a quantifier-free goal

If your goal is universally quantified, you should first appifro  as many time as needed.

. omega:
. omega:
. omega:
. omega:
. omega:

. omega:

Unrecognized predicate or connective: ident
Unrecognized atomic proposition: prop

Can't solve a goal with proposition variables
Unrecognized proposition

Can't solve a goal with non-linear products

Can't solve a goal with equality on type

17.2 Usingomega

Theomega tactic does not belong to the core system. It should be loaded by

Coq < Require Import Omega.

Cog < Open Scope Z_scope.

Example 3:

Coq < Goal forall m n:iZ, 1 + 2 * m <> 2 * n.
1 subgoal

forall m n :

Z, 1 +2*m«<>2%*n

Coq < intros; omega.
Proof completed.

Example 4:

Coq < Goal forall zZ, z >0 ->2 *z + 1 > z
1 subgoal

forall z :

Z,z2>0->2*z+1>1z2z

Cog < intro; omega.
Proof completed.
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17.3 Technical data

17.3.1 Overview of the tactic
e The goal is negated twice and the first negation is introduced as an hypothesis.

e Hypothesis are decomposed in simple equations or inequations. Multiple goals may result from
this phase.

e Equations and inequations oveat are translated ovef, multiple goals may result from the
translation of substraction.

e Equations and inequations are normalized.
e Goals are solved by teMEGAdecision procedure.

e The script of the solution is replayed.

17.3.2 Overview of theOMEGAdecision procedure

The OMEGAdecision procedure involved in tlmenega tactic uses a small subset of the decision pro-
cedure presented in

"The Omega Test: a fast and practical integer programming algorithm for dependence anal-
ysis", William Pugh, Communication of the ACM , 1992, p 102-114.

Here is an overview, look at the original paper for more information.

e Equations and inequations are normalized by division by the GCD of their coefficients.

e Equations are eliminated, using the Banerjee test to get a coefficient equal to one.

¢ Note that each inequation defines a half space in the space of real value of the variables.

¢ Inequations are solved by projecting on the hyperspace defined by cancelling one of the variable.
They are partitioned according to the sign of the coefficient of the eliminated variable. Pairs of
inequations from different classes define a new edge in the projection.

e Redundant inequations are eliminated or merged in new equations that can be eliminated by the
Banerjee test.

e The last two steps are iterated until a contradiction is reached (success) or there is no more variable
to eliminate (failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure
(dark shadow) are not implemented, so the decision procedure is only partial.

17.4 Bugs

e The simplification procedure is very dumb and this results in many redundant cases to explore.
e Much too slow.

e Certainly other bugs! You can report them to

Pierre.Cregut@cnet.francetelecom.fr
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Chapter 18

Extraction of programs in Objective Cam|
and Haskell

Jean-Christophe Filliatre and Pierre Letouzey

The status of extraction is experimental.

We present here thedz) extraction commands, used to build certified and relatively efficient functional
programs, extracting them from the proofs of their specifications. The functional languages available as
output are currently @ ECTIVE CAML, HASKELL and SHEME. In the following, “ML” will be used
(abusively) to refer to any of the three.

Differences with old versions. The current extraction mechanism is new for version 7.0 06CIn
particular, theF,, toplevel used as an intermediate step betweer &1d ML has been withdrawn. It
is also not possible any more to import ML objects in thjs toplevel. The current mechanism also
differs from the one in previous versions 0b@: there is no more an explicit toplevel for the language
(formerly called RvL).

18.1 Generating ML code

The next two commands are meant to be used for rapid preview of extraction. They both display ex-
tracted term(s) inside @Q.

Extraction qualid.

Extracts one constant or module in the@toplevel.

Recursive Extraction qualid, ... qualid,.

Recursive extraction of all the globals (or modulesdlid; ... qualid,, and all their dependencies
in the CoQ toplevel.

All the following commands produce real ML files. User can choose to produce one monolithic file
or one file per ©Qq library.
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Extraction " file

' qualid; ... qualid,.

Recursive extraction of all the globals (or modulegsdlid; ... qualid,, and all their dependencies
in one monolithic filefile. Global and local identifiers are renamed according to the choosen ML
language to fullfill its syntactic conventions, keeping original names as much as possible.

Extraction Library ident.

Extraction of the whole GQ library ident.v to an ML moduleident.ml . In case of name
clash, identifiers are here renamed using prefoxes  or Coq_ to ensure a session-independent
renaming.

Recursive Extraction Library ident.
Extraction of the ©Q library ident.v and all other module&ient.v depends on.

The list of globalsqualid; does not need to be exhaustive: it is automatically completed into a
complete and minimal environment.

18.2 Extraction options

18.2.1 Setting the target language

The ability to fix target language is the first and more important of the extraction options. Default is
Ocaml. Besides Haskell and Scheme, another language called Toplevel is provided. It is a pseudo-
Ocaml, with no renaming on global names: so names are printed as@n This third language is
available only at the 6Q Toplevel.

Extraction Language Ocaml
Extraction Language Haskell
Extraction Language Scheme

Extraction Language Toplevel

18.2.2 Inlining and optimizations

Since Objective Caml is a strict language, the extracted code has to be optimized in order to be efficient
(for instance, when using induction principles we do not want to compute all the recursive calls but only
the needed ones). So the extraction mechanism provides an automatic optimization routine that will be
called each time the user want to generate Ocaml programs. Essentially, it performs constants inlining
and reductions. Therefore some constants may not appear in resulting monolithic Ocaml program (a
warning is printed for each such constant). In the case of modular extraction, even if some inlining is
done, the inlined constant are nevertheless printed, to ensure session-independent programs.

Concerning Haskell, such optimizations are less useful because of lazyness. We still make some
optimizations, for example in order to produce more readable code.

All these optimizations are controled by the followingQ options:

Set Extraction Optimize.

Unset Extraction Optimize.

Default is Set. This control all optimizations made on the ML terms (mostly reduction of dummy
beta/iota redexes, but also simplications on Cases, etc). Put this option to Unset if you want a ML
term as close as possible to the Coqg term.
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Set Extraction Autolnline.

Unset Extraction Autolnline.

Default is Set, so by default, the extraction mechanism feels free to inline the bodies of some
defined constants, according to some heuristics like size of bodies, useness of some arguments,
etc. Those heuristics are not always perfect, you may want to disable this feature, do it by Unset.

Extraction Inline qualid; ... qualid,,.

Extraction Nolnline qualidq ... qualid,,.
In addition to the automatic inline feature, you can now tell precisely to inline some more constants
by theExtraction Inline command. Conversely, you can forbid the automatic inlining of
some specific constants by tixtraction Nolnline command. Those two commands
enable a precise control of what is inlined and what is not.

Print Extraction Inline
Prints the current state of the table recording the custom inlinings declared by the two previous
commands.

Reset Extraction Inline
Puts the table recording the custom inlinings back to empty.

Inlining and printing of a constant declaration. A user can explicitely asks a constant to be extracted
by two means:

e by mentioning it on the extraction command line
e by extracting the whole 6@ module of this constant.

In both cases, the declaration of this constant will be present in the produced file. But this same con-
stant may or may not be inlined in the following terms, depending on the automatic/custom inlining
mechanism.

For the constants non-explicitely required but needed for dependancy reasons, there are two cases:

e If an inlining decision is taken, wether automatically or not, all occurences of this constant are
replaced by its extracted body, and this constant is not declared in the generated file.

¢ If no inlining decision is taken, the constant is normally declared in the produced file.

18.2.3 Realizing axioms

Extraction will fail if it encounters an informative axiom not realized (see section 18.2.3). A warning
will be issued if it encounters an logical axiom, to remind user that inconsistant logical axioms may lead
to incorrect or non-terminating extracted terms.

It is possible to assume some axioms while developing a proof. Since these axioms can be any
kind of proposition or object or type, they may perfectly well have some computational content. But a
program must be a closed term, and of course the system cannot guess the program which realizes an
axiom. Therefore, it is possible to tell the system what ML term corresponds to a given axiom.

Extract Constant qualid => string.
Give an ML extraction for the given constant. Titeing may be an identifier or a quoted string.
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Extract Inlined Constant qualid => string.

Same as the previous one, except that the given ML terms will be inlined everywhere instead of
being declared via a let.

Note that theExtract Inlined Constant command is sugar for dbxtract Constant
followed by aExtraction Inline . Hence &Reset Extraction Inline will have an effect
on the realized and inlined xaxiom.

Of course, it is the responsability of the user to ensure that the ML terms given to realize the axioms
do have the expected types. In fact, the strings containing realizing code are just copied in the extracted
files. The extraction recognize whether the realized axiom should become a ML type constant or a ML
object declaration.

Example:

Coq < Axiom X:Set.
X is assumed

Coq < Axiom x:X.
X is assumed

Coq < Extract Constant X => "int".
Cog < Extract Constant x => "0".

Notice that in the case of type scheme axiom (i.e. whose type is an arity, that is a sequence of product
finished by a sort), then some type variables has to be given. The syntax is then:

Extract Constant qualid string; ... string, => string.

The number of type variable given is checked by the system.
Example:

Coq < Axiom Y : Set -> Set -> Set.
Y is assumed

Cog < Extract Constant Y ™a" "™b" => " 'a*p "

Realizing an axiom vi&xtract Constant is only useful in the case of an informative axiom
(of sort Type or Set). A logical axiom have no computational content and hence will not appears in
extracted terms. But a warning is nonetheless issued if extraction encounters a logical axiom. This
warning reminds user that inconsistant logical axioms may lead to incorrect or non-terminating extracted
terms.

If an informative axiom has not been realized before an extraction, a warning is also issued and the
definition of the axiom is filled with an exception labelldBXIOM TO BE REALIZEDThe user must
then search these exceptions inside the extracted file and replace them by real code.

The system also provides a mechanism to specify ML terms for inductive types and constructors.
For instance, the user may want to use the ML native boolean type insteanibi@®. The syntax is
the following:

Extract Inductive qualid => string [ string ... string ].

Give an ML extraction for the given inductive type. You must specify extractions for the type
itself (first string) and all its constructors (between square brackets). The ML extraction must be
an ML recursive datatype.

Example: Typical examples are the following:

Coq < Extract Inductive unit => "unit" [ "(0" ].

Coq < Extract Inductive bool => "bool" [ "true" "false" ].
Coq < Extract Inductive sumbool => "bool" [ "true" "false" ].
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18.3 Differences between 6Q and ML type systems

Due to differences betweend@ and ML type systems, some extracted programs are not directly typable
in ML. We now solve this problem (at least in Ocaml) by adding when needed some unsafe casting
Obj.magic , which give a generic typa to any term.

For example, Here are two kinds of problem that can occur:

e If some part of the program igerypolymorphic, there may be no ML type for it. In that case the

extraction to ML works all right but the generated code may be refused by the ML type-checker.
A very well known example is thdistr-pair function:

Definition dp :=
fun (A B:Set)(x:A)(y:B)(f:forall C:Set, C->C) => (f A x, f B y).

In Ocaml, for instance, the direct extracted term would be:

let dp x y f = Pair((f () x),(f O V)
and would have type:
dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,’b) prod

which is not its original type, but a restriction.
We now produce the following correct version:

let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))

e Some definitions of 6Q may have no counterpart in ML. This happens when there is a quantifi-
cation over types inside the type of a constructor; for example:

Inductive anything : Set := dummy : forall A:Set, A -> anything.

which corresponds to the definition of an ML dynamic type. In Ocaml, we must cast any argument
of the constructor dummy.

Even with those unsafe castings, you should never get error like “segmentation fault”. In fact even
if your program may seem ill-typed to the Ocaml type-checker, it can’t go wrong: it comes from a Coq
well-typed terms, so for example inductives will always have the correct number of arguments, etc.

More details about the correctness of the extracted programs can be found in [84].

We have to say, though, that in most “realistic” programs, these problems do not occur. For exam-
ple all the programs of Coq library are accepted by Caml type-checker witholjnyagic (see
examples below).

18.4 Some examples

We present here two examples of extractions, taken from the Standard Library. We chooseBO
JECTIVE CAML as target language, but all can be done in the other dialects with slight modifications.
We then indicate where to find other examples and tests of Extraction.
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18.4.1 A detailed example: Euclidean division

The fileEuclid contains the proof of Euclidean division (theorenrcl_dev ). The natural numbers
defined in the example files are unary integers defined by two constrdztms.S:

Coq < Inductive nat : Set =
Cog < | O : nat
Cog < | S : nat -> nat.

This module contains a theoresmcl_dev , and its extracted term is of type
forall b:nat, b > 0 -> forall a:nat, diveucl a b

wherediveucl is atype for the pair of the quotient and the modulo. We can now extract this program
to OBJECTIVE CAML:

Coq < Require Import Euclid.
Coq < Extraction Inline Wf_nat.gt wf_rec Wf_nat.lt wf rec.

Coq < Recursive Extraction eucl_dev.
type nat =
| O
| S of nat
type sumbool =
| Left
| Right
(** val minus : nat -> nat -> nat **)
let rec minus n m =
match n with
| O >0
| S k -=> (match m with
| O > S k
| S 1 -> minus k I)
(** val le_It dec : nat -> nat -> sumbool **)
let rec le_ It dec n m =
match n with
| O -> Left
| S n0O -> (match m with
| O -> Right
| S n1 -> le_It dec n0 nl)
(** val le_gt dec : nat -> nat -> sumbool **)
let le_gt dec n m =
le It dec n m
type diveucl =
| Divex of nat * nat
(** val eucl _dev : nat -> nat -> diveucl **)
let rec eucl dev b a =
match le_gt dec b a with
| Left -> let Divex (x, x0) = eucl_dev b (minus a b) in Divex ((S x), x0)
| Right -> Divex (O, a)

The inlining ofgt_wf_rec andlt_wf rec is not mandatory. It only enhances readability of
extracted code. You can then copy-paste the output to adidéd.ml  or let CoQ do it for you with
the following command:

Coq < Extraction "euclid" eucl_dev.
The file euclid.ml has been created by extraction.
The file euclid.mli has been created by extraction.
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Let us play the resulting program:

# t#use "euclid.ml";;

type sumbool = Left | Right

type nat = O | S of nat

type diveucl = Divex of nat * nat

val minus : nat -> nat -> nat = <fun>

val le It dec : nat -> nat -> sumbool = <fun>
val le_gt dec : nat -> nat -> sumbool = <fun>
val eucl dev : nat -> nat -> diveucl = <fun>
# eucl dev (S (S O) (S (S (S (S (SO
- : diveucl = Divex (S (S 0), S 0O)

It is easier to test on BYECTIVE CAML integers:

# let rec i2n = function 0 -> O | n -=> S (i2n (n-1));;
val i2n : int -> nat = <fun>
# let rec n2i = function O -=> 0 | S p -> 1+(n2i p);
val n2i : nat -> int = <fun>
# let div a b =
let Divex (q,r) = eucl_dev (i2n b) (i2n a) in (n2i g, n2i r);
div : int -> int -=> int * int = <fun>
# div 173 15;;
- int * int = 11, 8

18.4.2 Another detailed example: Heapsort

The file Heap.v contains the proof of an efficient list sorting algorithm described by Bjerner. Is is
an adaptation of the well-knowheapsortalgorithm to functional languages. The main function is
treesort , whose type is shown below:

Cog < Require Import Heap.

Coq < Check treesort.
treesort
: forall (A : Set) (leA eqA : relation A),
(forall x y : A, {leA x y} + {leA y x}) ->
forall eqA_dec : forall x y : A, {eqA x y} + {~ egA X vy},
(forall x y z : A, leA xy >leAy z -> leA x z) ->
forall | : list A,
{m : list A | sort leA m & permutation egA eqA dec | m}

Let’s now extract this function:

Coq < Extraction Inline sort_rec is_heap_rec.
Coq < Extraction Nolnline list_to_heap.

Coq < Extraction "heapsort" treesort.
The file heapsort.ml has been created by extraction.
The file heapsort.mli has been created by extraction.

One more time, th&xtraction Inline andNolnline directives are cosmetic. Without it,
everything goes right, but the output is less readable. Here is the produdeeiisort.ml
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type nat =

| O

| S of nat

type 'a sig2 =
‘a
(* singleton inductive, whose constructor was exist2 *)

type sumbool =
| Left
| Right

type 'a list =
| Nil
| Cons of 'a * 'a list

type 'a multiset =
‘a -> nat
(* singleton inductive, whose constructor was Bag *)

type 'a merge_lem =
‘a list
(* singleton inductive, whose constructor was merge_exist *)

(** val merge : (al -> 'al -> sumbool) -> (‘al -> 'al -> sumbool) ->
‘al list -> ’al list -> ’al merge_lem **)

let rec merge leA _dec eqA_dec 11 12 =
match 11 with
| Nil -> 12
| Cons (a, I) ->
let rec f = function
| Nil -> Cons (a, )
| Cons (a0, 13) ->
(match leA_dec a a0 with
| Left -> Cons (a,
(merge leA_dec egA _dec | (Cons (a0, 13))))
| Right -> Cons (a0, (f 13)))
in f 12

type ’'a tree =
| Tree_Leaf
| Tree_Node of 'a * 'a tree * ’'a tree
type ’'a insert_spec =
'a tree
(* singleton inductive, whose constructor was insert_exist *)

(** val insert : (al -> 'al -> sumbool) -> (al -> 'al -> sumbool) ->
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'al tree -> 'al -> ’'al insert_spec **)

let rec insert leA_dec egA dec t a =
match t with
| Tree_Leaf -> Tree_Node (a, Tree_Leaf, Tree_ Leaf)
| Tree_Node (a0, tO, t1) ->
let h3 = fun x -> insert leA_dec egA _dec t0 x in
(match leA_dec a0 a with
| Left -> Tree_Node (a0, t1, (h3 a))
| Right -> Tree_Node (a, t1, (h3 a0)))

type ’'a build_heap =
'a tree
(* singleton inductive, whose constructor was heap_exist *)

(** val list_ to_heap : (al -> 'al -> sumbool) -> (al -> 'al ->
sumbool) -> 'al list -> ’'al build_heap **)

let rec list to _heap leA_dec egA dec = function
| Nil -> Tree_Leaf
| Cons (a, 10) ->
insert leA_dec egA _dec (list_to_heap leA dec eqgA_dec 10) a

type 'a flat_spec =
‘a list
(* singleton inductive, whose constructor was flat_exist *)

(** val heap_to_list : (al -> 'al -> sumbool) -> (al -> 'al ->
sumbool) -> 'al tree -> ’al flat_spec **)

let rec heap_to_list leA _dec egA _dec = function
| Tree_Leaf -> Nil
| Tree_Node (a, t0, t1) -> Cons (a,
(merge leA _dec egA dec (heap_to_list leA dec egA dec t0)
(heap_to_list leA_dec eqA_dec t1)))

(** val treesort : (‘lal -> 'al -> sumbool) -> (‘fal -> 'al -> sumbool)
-> 'al list -> ’al list sig2 **)

let treesort leA _dec eqA _dec | =
heap to list leA dec egA _dec (list_to _heap leA_dec egA dec )

Let's test it:

# #use "heapsort.ml";;

type sumbool = Left | Right

type nat = O | S of nat

type 'a tree = Tree Leaf | Tree_Node of 'a * 'a tree * 'a tree
type 'a list = Nil | Cons of 'a * 'a list
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val merge :

(a -> 'a -> sumbool) -> 'b -> ’a list -> ’a list -> ’a list = <fun>
val heap_to list :

(a -> 'a -> sumbool) -> 'b -> 'a tree -> 'a list = <fun>
val insert :

(a -> 'a -> sumbool) -> 'b -> 'a tree -> 'a -> ’a tree = <fun>
val list_to_heap :

(a -> 'a -> sumbool) -> 'b -> ’a list -> 'a tree = <fun>
val treesort :

(a -> 'a -> sumbool) -> 'b -> ’a list -> 'a list = <fun>

One can remark that the argumenttadesort  corresponding tegAdec is never used in the
informative part of the terms, only in the logical parts. So the extraitessort  never use it, hence
this’b argument. We will us€) for this argument. Only remains theAdec argument (of typéa
-> 'a -> sumbool ) to really provide.

# let leAdec x y = if x <= y then Left else Right;;
val leAdec : 'a -> 'a -> sumbool = <fun>
# let rec listn = function 0 -> Nil
| n -> Cons(Random.int 10000,listn (n-1));;
val listn : int -> int list = <fun>
# treesort leAdec () (listn 9);;
- . int list = Cons (160, Cons (883, Cons (1874, Cons (3275, Cons
(5392, Cons (7320, Cons (8512, Cons (9632, Cons (9876, Ni)))N)

Some tests on longer lists (10000 elements) show that the program is quite efficient for Caml code.

18.4.3 The Standard Library

As a test, we propose an automatic extraction of the Standard Libraryoaj. CIn particu-
lar, we will find back the two previous exampleEuclid and Heapsort . Go to directory
contrib/extraction/test of the sources of 6Q, and run commands:

make tree; make

This will extract all Standard Library files and compile them. It is done via mBAryaction
Module , with some customization (see subdirectongtom ).
The result of this extraction of the Standard Library can be browsed at URL

http://www.Iri.fr/~letouzey/extraction
This test works also with Haskell. In the same directory, run:
make tree; make -f Makefile.haskell
The haskell compiler currently used isbc. Any other should also work, just adapt the
Makefile.haskell . In particularghc is known to work.
18.4.4 Extraction’s horror museum
Some pathological examples of extraction are grouped in the file
contrib/extraction/test_extraction.v

of the sources of GQ.
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18.4.5 Users’' Contributions

Several of the ©Q Users’ Contributions use extraction to produce certified programs. In particular the
following ones have an automatic extraction test (justmake in those directories):

e Bordeaux/Additions

e Bordeaux/EXCEPTIONS
e Bordeaux/SearchTrees
e Dyade/BDDS

e Lannion

e Lyon/CIRCUITS

e Lyon/FIRING-SQUAD

e Marseille/CIRCUITS

e Muenchen/Higman

e Nancy/FOUnify

e Rocg/ARITH/Chinese

e Rocg/COC

e Rocq/GRAPHS

e Rocg/HIGMAN

e Sophia-Antipolis/Stalmarck

e Suresnes/BDD
Lannion, Rocg/HIGMAN and Lyon/CIRCUITS are a bit particular. They are the only examples of

developments whem@®bj.magic are needed. This is probably due to an heavy use of impredicativity.
After compilation those two examples run nonetheless, thanks to the correction of the extraction [84].
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Chapter 19

Thering tactic

Patrick Loiseleur and Samuel Boutin

This chapter presents thieg tactic.

19.1 What does this tactic?

ring does associative-commutative rewriting in ring and semi-ring structures. Assume you have two
binary functionsd and® that are associative and commutative, witldistributive on®, and two con-
stants 0 and 1 that are unities ferand®. A polynomialis an expression built on variablég, 7, . ..
and constants by application efand®.

Let anordered producbe a product of variableg;, @ ... ® V; verifyingi; < ip < -+ < dp.
Let a monomialbe the product of a constant (possibly equal to 1, in which case we omit it) and an
ordered product. We can order the monomials by the lexicographic order on products of variables. Let
acanonical sunbe an ordered sum of monomials that are all different, i.e. each monomial in the sum
is strictly less than the following monomial according to the lexicographic order. It is an easy theorem
to show that every polynomial is equivalent (modulo the ring properties) to exactly one canonical sum.
This canonical sum is called thrmal formof the polynomial. So what doethg ? It normalizes
polynomials over any ring or semi-ring structure. The basic usmgf is to simplify ring expressions,
so that the user does not have to deal manually with the theorems of associativity and commutativity.

Examples:

1. Inthe ring of integers, the normal form ©f3 + yz + 25(1 — 2)) + zx is 28z + (—24)xz + zxy.

2. For the classical propositional calculus (or the boolean rings) the normal form is what logicians
call disjunctive normal formevery formula is equivalent to a disjunction of conjunctions of atoms.
(Hered is Vv, ® is A, variables are atoms and the only constants are T and F)

19.2 The variables map

It is frequent to have an expression built with + andbut rarely on variables only. Let us associate a
number to each subterm of a ring expression in theIBNA language. For example in the rimgt ,
consider the expression:

(plus (mult (plus (f (5)) x) x)
(mult (if b then (4) else (f (3))) (2))
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As a ring expression, is has 3 subterms. Give each subterm a number in an arbitrary order:

0 — if b then (4) else (f (3))

1 — ()

2 — X
Then normalize the “abstract” polynomial

(1@ Vz) o V)@ (Vo ®2)
In our example the normal form is:

2 V) o (VieWh) e (Va2 V)
Then substitute the variables by their values in the variables map to get the concrete normal polynomial:

(plus (mult (2) (if b then (4) else (f (3))))
(plus (mult (f (5)) x) (mult x x)))

19.3 Isit automatic?

Yes, building the variables map and doing the substitution after normalizing is automatically done by
the tactic. So you can just forget this paragraph and use the tactic according to your intuition.

19.4 Concrete usage in 0Q
Under a session launched bgqtop or coqtop -full , load thering files with the command:
Require Ring.

It does not work undecoqtop -opt  because the compiled ML objects used by the tactic are not
linked in this binary image, and dynamic loading of native code is not possibleig©rive CAML.

In order to useing on naturals, load\rithRing  instead; for binary integers, load the module
ZArithRing

Then, to normalize the ternisrmy, ..., term,, in the current subgoal, use the tactic:

ring termy ... term,
Then the tactic guesses the type of given terms, the ring theory to use, the variables map, and replace

each term with its normal form. The variables map is common to all terms

Warning: ring termgy; ring  terms iS not equivalent taing  termq terms. In the latter case
the variables map is shared between the two terms, and common sulaéterm,; andterms will
have the same associated variable number.

Error messages:
1. All terms must have the same type
2. Don’'t know what to do with this goal

3. No Declared Ring Theory for term.
Use Add [Semi] Ring to declare it

That happens when all terms have the same tye, but there is no declared ring theory for this
set. See below.
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Variants:

1. ring

That works if the current goal is an equality between two polynomials. It will normalize both sides
of the equality, solve it if the normal forms are equal and in other cases try to simplify the equality
usingcongr_eqT andrefl_equal toreducer +y = x4+ ztoy = zandx x z = x x y to

Y= z.

Error message: This goal is not an equality

19.5 Add a ring structure

It can be done in the €gtoplevel (No ML file to edit and to link with ©Q). First,ring can handle
two kinds of structure: rings and semi-rings. Semi-rings are like rings without an opposite to addition.
Their precise specification (in&&LINA ) can be found in the file

contrib/ring/Ring_theory.v

The typical example of ring i, the typical example of semi-ring it .
The specification of a ring is divided in two parts: first the record of constants:( 1, 0,8) and
then the theorems (associativity, commutativity, etc.).

Section Theory_of _semi_rings.

Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A > A
Variable Aone : A.
Variable Azero : A.
(* There is also a "weakly decidable" equality on A. That means
that if (A_eq X y)=true then x=y but x=y can arise when
(A_eq x y)=false. On an abstract ring the function [x,y:Alfalse
is a good choice. The proof of A eq_prop is in this case easy. *)
Variable Aeq : A -> A -> bool.

Record Semi_Ring_Theory : Prop :=
{ SR plus_sym : (nm:A)| n+m=m + n |[];
SR_plus_assoc : (nnm,p:A)[J n + (m + p) == (n + m) + p |[];

SR_mult_sym : (n,m:A)[| n*m == m*n |[];
SR_mult_assoc : (n,m,p:A)[| n*(m*p) == (n"*m)*p |[];
SR_plus_zero_left :(n:A)[| 0 + n == n];
SR_mult_one_left : (n:A)[] 1*n == n [];
SR_mult_zero_left : (n:A)[] 0*n == 0 |];
SR_distr_left c(nmp:A) [| (n + m*p == n*p + m*p |];
SR_plus_reg_left : (nm,p:A)[| n + m == n + p |] -> m==p;
SR_eqg_prop : (X,y:A) (Is_true (Aeq x y)) -> x==y

I3

Section Theory_of _rings.
Variable A : Type.

Variable Aplus : A -> A -> A
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Variable Amult : A -> A -> A.
Variable Aone : A.

Variable Azero : A.

Variable Aopp : A -> A
Variable Aeq : A -> A -> bool.

Record Ring_Theory : Prop :=

{ Th_plus_ sym : (nm:A)| n + m=m + n |];
Th_plus_assoc : (nm,p:A)[f n + (m + p) == (n + m) + p |[];
Th_mult_sym : (n,m:A)[] n*m == m*n |];
Th_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |[];
Th_plus_zero_left :(n:A)[] 0 + n == n[];
Th_mult_one_left : (n:A)[| 1*n == n |];
Th _opp_def : (n:A) [| n + (-n) == 0 |[];
Th_distr_left D (nmp:A) [| (n + m*p == n*p + m*p |[];
Th_eq_prop : (x,y:A) (Is_true (Aeq X y)) -> x==

To define a ring structure on A, you must provide an addition, a multiplication, an opposite function
and two unities 0 and 1.

You must then prove all theorems that make (A,Aplus,Amult,Aone,Azero,Aeq) a ring structure, and
pack them with théuild_Ring_Theory constructor.

Finally to register a ring the syntax is:

Add Ring A Aplus Amult Aone Azero Ainv Aed Tcl .. .cn].

whereA is a term of typeSet , Aplusis a term of typeA->A->A , Amultis a term of typeA->A->A

Aoneis a term of typeA, Azerois a term of typeA, Ainvis a term of typeA->A, Aeqis a term of type
A->bool , TisatermoftypdRing_Theory A Aplus Amult Aone Azero Ainv Aedlhe arguments

cl ...cn are the names of constructors which define closed terms: a subterm will be considered as a
constant if it is either one of the ternsg ... cnor the application of one of these terms to closed terms.
Fornat , the given constructors aBandQ, and the closed terms a@(S O),(S (S O)) ,...

Variants:

1. Add Semi Ring A Aplus Amult Aone Azero Aeq[Tcl... cn].

There are two differences with thedd Ring command: there is no inverse function and the
termT must be of typ€Semi_Ring_Theory A Aplus Amult Aone Azero Aeqg

2. Add Abstract Ring A Aplus Amult Aone Azero Ainv Aeq T

This command should be used for when the operations of rings are not computable; for example
the real numbers dheories/REALS/ . Here0 + 1 is not beta-reduced tbbut you still may

want torewrite it to 1 using the ring axioms. The argumefeq is not used; a good choice for

that function igx:AJfalse

3. Add Abstract Semi Ring A Aplus Amult Aone Azero Aeq T

Error messages:

1. Not a valid (semi)ring theory
That happens when the typing condition does not hold.
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Currently, the hypothesis is made than no more than one ring structure may be declared for a given
type inSet or Type. This allows automatic detection of the theory used to achieve the normalization.
On popular demand, we can change that and allow several ring structures on the same set.

The table of ring theories is compatible with the@sectioning mechanism. If you declare a ring
inside a section, the declaration will be thrown away when closing the section. And when you load a
compiled file, all theAdd Ring commands of this file that are not inside a section will be loaded.

The typical example of ring i&, and the typical example of semi-ringriat . Another ring structure
is defined on the booleans.

Warning: Only the ring of booleans is loaded by default with tReng module. To load the ring
structure fomat , load the modulérithRing , and forZ, load the modul&ArithRing

19.6 How does it work?

The code ofring is a good example of tactic written usimgflection (or internalization it is syn-
onymous). What is reflection? Basically, it is writingd@ tactics in @Q, rather than in GBJECTIVE
CamL. From the philosophical point of view, it is using the ability of the Calculus of Constructions to
speak and reason about itself. For thmgy tactic we used GQ as a programming language and also
as a proof environment to build a tactic and to prove it correctness.

The interested reader is strongly advised to have a look at thRifig_normalize.v . Here a
type for polynomials is defined:

Inductive Type polynomial :=

Pvar : idx -> polynomial
| Pconst : A -> polynomial
| Pplus : polynomial -> polynomial -> polynomial
| Pmult : polynomial -> polynomial -> polynomial
| Popp : polynomial -> polynomial.

There is also a type to represent variables maps, and an interpretation function, that maps a variables
map and a polynomial to an element of the concrete ring:

Definition polynomial_simplify := [...]
Definition interp : (varmap A) -> (polynomial A) -> A = [..]

A function to normalize polynomials is defined, and the big theorem is its correctness w.r.t interpre-
tation, that is:

Theorem polynomial_simplify_correct : forall (v:(varmap A))(p:polynomial)
(interp v (polynomial_simplify p))
=(interp v p).

(The actual code is slightly more complex: for efficiency, there is a special datatype to represent
normalized polynomials, i.e. “canonical sums”. But the idea is still the same).

So now, what is the scheme for a normalization proof?_be the polynomial expression that the
user wants to normalize. First a little piece of ML code guesses the typetbé ring theoryT to use,
an abstract polynomiap and a variables mayp such thafp is gd:.-equivalent tointerp v ap)
Then we replace it byinterp v (polynomial_simplify ap)) , using the main correctness
theorem and we reduce it to a concrete expresgiagrwhich is the concrete normal form pf This is
summarized in this diagram:
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p —gs (interp v ap)

—(by the main correctness theorem)
1

P’ <«ps (interp v (polynomial_simplify ap))

The user do not see the right part of the diagram. From outside, the tactic behavesgdikesien-
plification extended with AC rewriting rules. Basically, the proof is only the application of the main
correctness theorem to well-chosen arguments.

19.7 History ofring

First Samuel Boutin designed the tacBE€DSimpl. This tactic did lot of rewriting. But the proofs
terms generated by rewriting were too big foo@s type-checker. Let us see why:

Coq < Goal forall x y zZ, x + 3 +y +y*z=x+3+y+2z*y.
1 subgoal

forall xy z:Z, x+3+y+y*z=x+3+y+2z*y
Coq < intros; rewrite (Zmult_comm y 2z); reflexivity.
Cog < Save toto.

Coq < Print toto.
toto =
fuh xy z:2Z =
eg_ind r (fun z0 : Z =>x + 3 +y + 20 =x+3 +y +2z*y
(refl_equal (x + 3 +y + z *vy)) (Zmult_ comm y 2z)
cforall x y z 1 Z, x+3+y+y*z=x+3+y+z*ry
Argument scopes are [Z_scope Z_scope Z_scope]

At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that
does hundreds of rewriting generates huge proof terms. 3i6&Simpl was too slow, Samuel Boutin
rewrote it using reflection (see his article in TACS’97 [17]). Later, the stuff was rewritten by Patrick
Loiseleur: the new tactic does not any more reqéi@DSimpl to compile and it makes use 66.-
reduction not only to replace the rewriting steps, but also to achieve the interleaving of computation and
reasoning (see 19.8). He also wrote a few ML code foAtld Ring command, that allow to register
new rings dynamically.

Proofs terms generated bipg are quite small, they are linear in the numbemoind® operations
in the normalized terms. Type-checking those terms requires some time because it makes a large use of
the conversion rule, but memory requirements are much smaller.

19.8 Discussion

Efficiency is not the only motivation to use reflection haieg also deals with constants, it rewrites for
example the expressidd+2xx—x+12 to the expected result+46. For the tactidCDSimpl , the only
constants were 0 and 1. So the expres8ibR2«(x—1)+12isinterpreted a8y Vi ®(V2©1)@ V3, with
the variables mappinglp — 34; Vi — 2; Vo — x; V3 — 12}. Thenitis rewritten t@4 — x +2xx + 12,
very far from the expected result. Here rewriting is not sufficient: you have to do some kind of reduction
(some kind ofcomputatioi to achieve the normalization.

The tacticring is not only faster than a classical one: using reflection, we get for free integration
of computation and reasoning that would be very complex to implement in the classic fashion.
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Is it the ultimate way to write tactics? The answer is: yes and no.rifige tactic uses intensively
the conversion rule of pi€, that is replaces proof by computation the most as it is possible. It can be
useful in all situations where a classical tactic generates huge proof terms. Symbolic Processing and
Tautologies are in that case. But there are also tacticsAlike or Linear : that do many complex
computations, using side-effects and backtracking, and generate a small proof term. Clearly, it would be
a non-sense to replace them by tactics using reflection.

Another argument against the reflection is thaid; as a programming language, has many nice
features, like dependent types, but is very far from the speed and the expressive poweEofT OE
CamML. Wait a minute! With @Q it is possible to extract ML code from pC terms, right? So, why
not to link the extracted code withd® to inherit the benefits of the reflection and the speed of ML
tactics? That is calletbtal reflection and is still an active research subject. With these technologies it
will become possible to bootstrap the type-checker afq®ut there is still some work to achieve that
goal.

Another brilliant idea from Benjamin Werner: reflection could be used to couple a external tool (a
rewriting program or a model checker) withto@. We define (in ©Q) a type of terms, a type dfaces
and prove a correction theorem that statesndyaltying tracess safe w.r.t some interpretation. Then we
let the external tool do every computation (using side-effects, backtracking, exception, or others features
that are not available in pure lambda calculus) to produce the trace: now we replay the trace in Coq, and
apply the correction lemma. So internalization seems to be the best way to import ... external proofs!
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Chapter 20

The setoid_replace tactic

Clément Renard

This chapter presents tisetoid_replace tactic.

20.1 Description ofsetoid replace

Working on user-defined structures iro@Q is not very easy if Leibniz equality does not denote the in-
tended equality. For example using lists to denote finite sets drive to difficulties since two non convertible
terms can denote the same set.

We present here a@) module,setoid_replace , which allows to structure and automate some
parts of the work. In particular, if everything has been registered a simple tactic can do replacement just
as if the two terms were equal.

20.2 Adding new setoid or morphisms
Under the toplevel load theetoid_replace files with the command:

Coq < Require Setoid.

A setoid is just a typ@ and an equivalence relation én
The specification of a setoid can be found in the file

theories/Setoids/Setoid.v
It looks like :
Section Setoid.

Variable A : Type.
Variable Aeq : A -> A -> Prop.

Record Setoid_Theory : Prop :=
{ Seq_refl : (x:A) (Aeq X X);

Seq_sym : (x.y:A) (Aeq x y) -> (Aeq y X);

Seq_trans : (x,y,z:A) (Aeq x y) -> (Aeq vy 2) -> (Aeq X 2)
}

Coq Reference Manual, V8.0, June 27, 2004
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To define a setoid structure @ you must provide a relatioAeq on A and prove thaf\eq is an
equivalence relation. That is, you have to define an object of ($ptoid_Theory A Aeq)
Finally to register a setoid the syntax is:

Add Setoid A AeqST

whereAeqis a term of typeA->A->Prop andSTis a term of typgSetoid_Theory A Aeq .

Error messages:

1. Not a valid setoid theory
That happens when the typing condition does not hold.

2. A Setoid Theory is already declared for A
That happens when you try to declare a second setoid theory for the same type.

Currently, only one setoid structure may be declared for a given type. This allows automatic detec-
tion of the theory used to achieve the replacement.

The table of setoid theories is compatible with thesectioning mechanism. If you declare a
setoid inside a section, the declaration will be thrown away when closing the section. And when you
load a compiled file, all thé\dd Setoid commands of this file that are not inside a section will be
loaded.

Warning: Only the setoid orProp is loaded by default with theetoid_replace module. The
equivalence relation usedif§ i.e. the logical equivalence.

20.3 Adding new morphisms

A morphism is nothing else than a function compatible with the equivalence relation. You can only
replace a term by an equivalent in position of argument of a morphism. That’s why each morphism has
to be declared to the system, which will ask you to prove the accurate compatibility lemma.

The syntax is the following :

Add Morphism f :ident

where f is the name of a term which type is a non dependent product (the term you want to declare as a
morphism) anddentis a new identifier which will denote the compatibility lemma.

Error messages:
1. The term term is already declared as a morphism
2. The term term is not a product
3. The term term should not be a dependent product

The compatibility lemma generated depends on the setoids already declared.

20.4 The tactic itself

After having registered all the setoids and morphisms you need, you can use the tactic called
setoid_replace . The syntax is

setoid_replace termy With terms
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The effect is similar to the one oéplace
You also have a tactic callesktoid_rewrite which is the equivalent aewrite  for setoids.
The syntax is

setoid_rewrite term
Variants:

1. setoid_rewrite -> term

2. setoid_rewrite <- term

The arrow tells the system in which direction the rewriting has to be done. Moreover, you can use
rewrite  for setoid rewriting. In that case the system will check if the term you give is an equality or
a setoid equivalence and do the appropriate work.
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[, 71

2-level approach, 154

A*B, 71

A+{B} , 72

A+B, 71

Abbreviations, 208

Abort , 123

About , 109

Absolute names, 57
abstract , 174
abstractions, 29

absurd , 70, 134
absurd_set , 73

Acc, 74

Acc_inv ,74

Acc rec ,74

Add Abstract Ring , 282
Add Abstract Semi Ring , 282
Add Field , 159

Add LoadPath , 116

Add ML Path, 116

Add Morphism , 288
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Add Printing Let ident, 48
Add Rec LoadPath , 116
Add Rec ML Path, 116

Add Ring , 158, 282

Add Semi Ring , 158, 282
Add Setoid , 288

Admitted , 41, 122

all ,69

and, 68
and_rec , 73
app, 79
applications, 29
apply , 131

apply ... with , 131
Arguments Scope , 205
Arithmetical notations, 76
Arity, 90

assert , 132
Associativity, 198
assumption , 128

auto , 154

autorewrite  , 160
Axiom , 32

Axiom (and coercions), 256

Back, 117

Bad Magic Number , 115
Begin Silent ,118
(-reduction, 85, 86
Bind Scope , 205
binders, 29

Binding list, 134

BNF metasyntax, 25
bool , 70
bool_choice , 72
byte-code, 213

Calculus of (Co)Inductive Constructions, 81

Canonical Structure , 62
case , 142
case ... with , 142
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Cases, 243 coqdep , 218
Cast, 30 coqdoc, 218
cbv, 135 cogide , 231
Cd, 115 coq_Makefile 218
change , 134 cogmktop , 217
change ... in ,134 cog-tex , 228
Check, 109 coqtop , 213
Choice , 72 cut , 133
Choice2 , 72 cutrewrite  , 146
(cl:llij,SBels, 135 Datatypes, 70
clear ,128 Depugger, 21.7
clearbc;dy 128 decide e;quahty , 148
Close Scop;a 204 Declarations, 31
Coercion 64,255 Declare Left Step , 147
. T Declare ML Module , 115
Coercion Local , 255, 256 Declare Right Step 147
Coercions, 64 decom 144 ’
pose,

and records, 257 decompose record , 144

and sections, 258 decompose sum, 144

classes, 253 Defined , 41, 122

Funclass, 254 Definiion , 33, 123

identity, 254 Definitions, 33

inheritance graph, 254 Delimit Scope , 205

presentation, 253 5-reduction, 33, 85, 86

Sortclass, 254 Dependencies, 218
CoFixpoint , 40 dependent inversion 152
CoFixpoint ... where ... , 201 dependent inversion ... as , 152
Colnductive , 37 dependent inversion ... as ...
Colnductive (and coercions), 256 with , 152
Comments, 25 dependent inversion ... with , 152
compare , 148 dependent inversion_clear , 152
Compiled files, 114 dependent inversion_clear ...
compute , 135, 136 as, 152
congruence , 157 dependent inversion_clear ...
conj , 68 as ... with , 153
Conjecture , 32 dependent inversion_clear ...
Connectives, 68 with , 153
Constant, 33 dependent rewrite -> , 150
constructor , 138 dependent rewrite <- , 150
constructor ... with , 139 Derive Dependent Inversion , 153
Context, 83 Derive Dependent
context Inversion_clear , 153

in expression, 173 Derive Inversion , 153

in pattern, 172 Derive Inversion_clear , 153

contradiction , 135
Contributions, 79
Conversion rules, 85
Conversion tactics, 135
coqc, 213

Derive Inversion_clear ... with, 153
destruct , 142

discriminate , 148

discrR , 78

do, 169
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double induction , 144 Extraction , 110, 267
Drop, 118 Extraction Inline , 269
Extraction Language , 268
eapply , 131,175 Extraction Module 267
eauto , 155 Extraction Nolnline , 269
elim ... using , 141
elim ... with , 141 f_equal ,70
Elimination f_equal 4,70
Empty elimination, 94 Fact , 41, 123
Singleton elimination, 94 fail ,171
Elimination sorts, 93 False , 68
elimtype , 141 false , 70
Emacs, 229 False_rec ,73
End, 49, 51, 52 field ,158
End Silent ,118 first ,170
Environment, 33, 84 firstorder , 156
Environment variables, 214 firstorder using , 157
eq, 69 firstorder with , 156
eq_add_S,73 firstorder tactic, 156
eg_ind_r ,70 Fix , 96
eg_rec ,73 fix ident{...}, 30
eq_rec_r ,70 fix_eq ,75
eq_rect ,70 Fix F ,75
eq_rect r ,70 Fix F eq ,75
eq_S, 73 Fix_F_inv ,75
Equality, 69 Fixpoint , 38
error , 72 Fixpoint ... where ... , 201
n-conversion, 86 flat_ map ,79
n-reduction, 86 Focus , 125
Eval , 110 fold , 137
eval fold_left , 79
in Ltac, 173 fold_right , 79
ex, 69 form, 29
ex2, 69 fourier , 159
ex_intro , 69 fresh
ex_intro2 , 69 in Ltac, 173
exact , 127 fst , 71
Exc, 72 fun
Expept , 73 in Ltac, 172
exist ,71 functional induction , 145,178
ex?st2 , 71 Functional Scheme , 165,178
existS ,72
exists , 69, 139 Gallina, 25, 43
existS2 , 72 gallina , 229
exists2 , 69 ge, 74
Explicitation of implicit arguments, 62 generalize , 133
Export , 56 generalize dependent , 133
Extract Constant , 269 Goal , 41, 121
Extract Inductive , 270 goal, 127

Extraction, 267
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head, 79 inversion ... as ... in , 152
Head normal form, 86 inversion ... in , 152
Hint , 161 inversion ... using , 153
Hint Constructors , 162 inversion ... using ... in , 153
Hint Extern ,162 inversion_clear , 151
Hint Immediate , 161 inversion_clear ... as ... in ,
Hint Resolve , 161 152
Hint Rewrite , 160 inversion_clear ... in , 152
Hint Unfold , 162 inversion_cleardots as , 152
Hints databases, 161 t-reduction, 85, 86, 95, 98
hnf , 136 IsSucc , 73
Hypotheses , 32
Hypothesis , 32 A-calculus, 83
Hypothesis  (and coercions), 256 lapply , 131
IATEX, 228
|, 68 lazy , 135
ident, 25 le , 74
identity , 70 le n ,74
Identity Coercion , 256 le S,74
idtac ,171 left ,72,139
if ... then ... else , 46 Lemma4l, 122
IF_then_else , 69 length , 79
iff ,69 Let , 33
Implicit Arguments , 59 let
Implicit arguments, 58 in Ltac, 171
Import , 55 let ... in , 46
induction , 139 let rec
Inductive , 34 in Ltac, 171
Inductive (and coercions), 256 let-in, 30
Inductive definitions, 34 Lexical conventions, 25
Inductive ... where ... , 201 Libraries, 56
Infix , 201 Load, 114
info ,174 Load Verbose , 114
injection , 149, 150 Loadpath, 115
inl ,71 Local , 123
inleft |72 local context, 121
inr ,71 Local definitions, 30
inright ,72 Locate , 113, 202
Inspect , 109 Locate File 117
integer, 26 Locate Library 117
Interpretation scopes, 204 Logical paths, 56
intro , 129 It ,74
intro ... after , 130 Ltac
intro after , 130 eval, 173
intros , 129 fresh, 173
intros intro_pattern, 143 fun, 172
intros until , 130 let, 171
intuition , 156 letrec, 171
inversion , 151,180 match, 172

inversion ... as , 151

match goal, 172
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match reverse goal, 172 or_introl , 69

type of, 173 or_intror ,69
Ltac ,174 _

pair ,71

Makefile , 218 pairT ,75
Man pages, 229 Parameter , 32
map, 79 Parameter (and coercions), 256
match Parameters , 32

in Ltac, 172 pattern , 137
match...with...end , 30, 45, 92 pCIC, 81
match goal Peano’s arithmetic, 76

in Ltac, 172 plus , 73
match reverse goal plus_n_O , 73

in Ltac, 172 plus n_Sm ,73
ML-like patterns, 45, 243 pose, 132
mod, 76 Positivity, 90
Module , 50, 51 Precedences, 198
Module Type , 51 pred , 73
Modules, 50 pred_Sn , 73
move, 129 Predicative Calculus of (Co)Inductive Construc-
mult , 73 tions, 81
mult n O ,73 Print , 109
mult_n_Sm , 73 Print Al , 109
Mutual Inductive 36 Print Classes , 257

Print Coercion Paths , 257

n_Sn, 73 Print Coercions , 257
nat , 70 Print Extraction Inline , 269
nat_case ,74 Print Grammar constr , 199

nat _double ind ,74
nat_scope ,76
native code, 213
None, 70

Normal form, 86

not , 68

not eq S ,73
Notation , 197, 208
Notations for lists, 79
Notations for real numbers, 77
notT , 75

nth , 79

num, 26

O 70

O0_S73

omega, 158, 263

Opaque, 110

Open Scope, 204

option , 70

Options of the command line, 214
or, 69
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Print Graph , 257

Print Hint 164

Print HintDb , 164
Print Implicit , 62
Print LoadPath ,116
Print ML Modules , 115
Print ML Path , 116
Print Module ,56

Print Module Type ,56
Print Modules , 115
Print Section , 109
Print Table Printing If , 48
Print Table Printing Let , 48
Print Term , 109

Print XML , 226

prod , 71

prodT , 75

products, 29
Programming, 70

progress , 170

projl , 68

proj2 , 68



Global Index 303
projS1 ,72 rewrite <- ... in , 146
projS2 , 72 rewrite ... in , 146
Prompt, 121 right , 72,139
Proof , 41, 123 ring , 158, 279, 280
Proof editing, 121
Proof General, 229 S, 70
Proof rendering, 224 Save, 41, 122
Proof term, 121 Scheme, 164, 177
Prop, 28, 82 Script file, 113
Pwd, 115 Search , 111

SearchAbout , 111
Qed, 41, 121 SearchPattern , 112
qualid, 62 SearchPattern ... inside ... ,
Qualified identifiers, 57 112
Quantifiers, 69 SearchPattern ... outside ... ,
Quit , 118 112
quote , 154, 184 SearchRewrite , 113

Section , 49
Record , 43 Sections, 49
Recursion, 74 Set, 28, 82
Recursive arguments, 97 set ,132
Recursive Extraction , 267 Set Contextual Implicit , 61
Recursive Extraction Module , 267 Set Extraction Autolnline , 269
red , 136 Set Extraction Optimize , 268
refine , 128,175 Set Firstorder Depth , 157
refl_equal ,69 Set Hyps Limit , 126
refl_identity , 70 Set Implicit Arguments , 61
reflexivity , 146 Set Printing All , 64
Remark, 41, 123 Set Printing Coercion , 257
Remove LoadPath , 116 Set Printing Coercions , 257
Remove Printing If ident, 48 Set Printing Depth , 119
Remove Printing Let ident, 48 Set Printing Implicit , 62
rename, 129 Set Printing Notations , 201
repeat , 170 Set Printing Synth , 47
replace ... with , 146 Set Printing Width , 119
Require ,114 Set Printing Wildcard , 47
Require Export ,114 Set Strict Implicit , 61

ReservedNotation , 201
Reset , 117

Reset Extraction Inline , 269

Reset Initial , 117
Resource file, 213
Restart , 124
Restore State 117

Resume, 124

rev, 79

rewrite , 145

rewrite -> 146

rewrite -> ... in , 146
rewrite <- 146

Set Undo, 124
setoid_replace , 287, 288
setoid_rewrite , 288
Show, 125

Show Conjectures , 125
Show Implicits , 125
Show Intro , 126

Show Intros , 126
Show Proof , 125

Show Script , 125
Show Tree, 125

Show XML Proof, 226
sig , 71
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sig2 ,71 repeat , 170
sigS , 72 solve , 171
sigS2 , 72 try , 170
Silent mode, 118 Tactics, 127
simpl , 136 tail ,79
simpl ... in , 136 tauto , 155
simple destruct , 142 term, 27
simple induction , 141 Terms, 26
simple inversion , 153 Test Printing Depth , 119
simple inversion ... as , 153 Test Printing If ident, 48
simplify_eq , 150 Test Printing Let ident, 48
snd, 71 Test Printing Synth , 47
solve ,171 Test Printing Width , 119
Some 70 Test Printing Wildcard , 47
sort, 27 Theorem, 41, 122
Sorts, 28, 82 Theories, 67
specif, 29 Time, 118
split  , 139 trans_eq ,70
split Rabs , 78 transitivity , 147
split Rmult  , 79 Transparent 110
stepl , 147 trivial , 154
stepr , 147 True , 68
string, 26 true , 70
Structure |, 257 try ,170
SubClass , 256 tt ,70
subgoal, 127 Type, 28, 82
subst , 147 type, 27, 29
Substitution, 83 type of
sum, 71 in Ltac, 173
sumbool , 72 Type of constructor, 90
sumor, 72 type_scope, 206
Suspend , 123 Typing rules, 84, 128
sym_eq, 70 App, 85, 133
sym_not_eq , 70 Ax, 84
symmetry , 147 Const, 84
symmetry in , 147 Conv, 86, 129, 134
Syntactic Definition, 208 Fix, 96
Lam, 85, 129
tactic., 127 o Let, 85, 129
Tac_tlc Definition , 165 match, 95
tactic macros, 165 Prod, 85

Tacticals, 168
tacticy; tactico, 169
abstract ,174
do, 169
fail ,171
first ,170
idtac , 171
info ,174
|, 170
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Var, 84, 128

Undo, 124

Unfocus , 125

unfold , 137

unfold ... in , 137

unit , 70

Unset Contextual Implicit , 61
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Unset Extraction Autolnline , 269
Unset Extraction Optimize , 268
Unset Hyps Limit , 126

Unset Implicit Arguments , 61
Unset Printing All , 64

Unset Printing Coercion , 257
Unset Printing Coercions , 257
Unset Printing Depth , 119
Unset Printing Implicit , 62
Unset Printing Notations , 201
Unset Printing Synth , 47

Unset Printing Width , 119
Unset Printing Wildcard , 47
Unset Strict Implicit , 61
Unset Undo , 124

value , 72

Variable , 32

Variable  (and coercions), 256
Variables , 32

Well founded induction, 74
Well foundedness, 74
well founded ,74
Write State ,118

XML exportation, 224

¢-reduction, 86
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||, 170
1,169
i[-- l... |..] ,169

abstract , 174
absurd , 134

apply , 131

apply ... with , 131
assert ,132
assumption , 128
auto , 154

autorewrite , 160

case , 142

case ... with , 142
cbv, 135

change , 134

change ... in , 134
clear , 128

clearbody ,128
compare , 148
compute , 135, 136
congruence , 157
constructor , 138

constructor ... with , 139
contradiction , 135

cut , 133

cutrewrite |, 146

decide equality , 148

decompose, 144

decompose record , 144

decompose sum, 144

dependent inversion , 152

dependent inversion ... as

dependent inversion ... as ...
with , 152

dependent inversion ... with

dependent inversion_clear

dependent inversion_clear ...
as, 152

dependent inversion_clear ...
as ... with , 153
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, 152
, 152

dependent inversion_clear ...

with , 153

dependent rewrite ->
dependent rewrite <-
destruct , 142
discriminate , 148
discrR , 78

do, 169

doubl

e induction , 144

eapply , 131, 175
eauto , 155

elim ...
elim ...

using , 141
with , 141

elimtype , 141

exact

, 127

exists , 139

fail
field
first

, 171
, 158
, 170

firstorder , 156
firstorder using , 157
firstorder with , 156
firstorder tactic, 156

fold

, 137

fourier , 159
functional induction

generalize ,133
generalize dependent

hnf , 136

idtac

, 171

induction , 139

info

, 174

injection  , 149, 150

intro

intro ...

intro
intros
intros

, 129
after , 130
after , 130
, 129
intro_pattern, 143

, 150
, 150

, 145,178

, 133
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intros until , 130

intuition , 156

inversion , 151,180

inversion ... as , 151

inversion ... as ... in , 152

inversion ... in , 152

inversion ... using , 153

inversion ... using ... in , 153

inversion_clear , 151

inversion_clear ... as ... in ,
152

inversion_clear ... in , 152

inversion_cleardots as , 152

lapply , 131
lazy , 135
left ,139

move, 129
omega, 158, 263

pattern , 137
pose, 132
progress , 170

quote , 154, 184

red , 136

refine , 128,175
reflexivity , 146
rename, 129

repeat , 170

replace ... with , 146
rewrite , 145

rewrite -> 146

rewrite -> ... in , 146
rewrite <- 146

rewrite <- ... in , 146
rewrite ... in , 146
right , 139

ring , 158, 279, 280

set , 132

setoid_replace , 287, 288
setoid_rewrite , 288
simpl , 136

simpl ... in , 136
simple destruct , 142
simple induction , 141
simple inversion , 153

simple inversion ... as
simplify_eq , 150
solve , 171

split , 139

split Rabs , 78
split_Rmult , 79

stepl , 147
stepr , 147
subst , 147

symmetry , 147
symmetry in , 147

tauto , 155
transitivity , 147
trivial , 154

try , 170

unfold , 137
unfold ... in , 137
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Abort , 123

About , 109

Add Abstract Ring , 282
Add Abstract Semi Ring 282
Add Field , 159

Add LoadPath , 116

Add ML Path, 116

Add Morphism , 288

Add Printing If ident, 48
Add Printing Let ident, 48
Add Rec LoadPath , 116
Add Rec ML Path, 116

Add Ring , 158, 282

Add Semi Ring , 158, 282
Add Setoid , 288

Admitted , 41, 122
Arguments Scope , 205
Axiom , 32

Axiom (and coercions), 256

Back, 117
Begin Silent ,118
Bind Scope , 205

Canonical Structure , 62

Cd, 115

Check, 109

Close Scope , 204

Coercion , 64, 255

Coercion Local , 255, 256
CoFixpoint , 40

CoFixpoint ... where ... , 201
Colnductive , 37

Colnductive (and coercions), 256
Conjecture , 32

Declare Left Step , 147
Declare ML Module , 115
Declare Right Step , 147
Defined , 41, 122

Definition , 33,123
Delimit Scope , 205
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Derive Dependent Inversion , 153

Derive Dependent
Inversion_clear , 153

Derive Inversion , 153

Derive Inversion_clear , 153

Drop, 118

End, 49, 51, 52

End Silent ,118

Eval , 110

Export , 56

Extract Constant , 269
Extract Inductive , 270
Extraction , 110, 267
Extraction Inline , 269
Extraction Language , 268
Extraction Module , 267
Extraction Nolnline , 269

Fact , 41, 123

Fixpoint , 38

Fixpoint ... where ... , 201
Focus, 125

Functional Scheme , 165,178

Goal, 41, 121

Hint , 161

Hint Constructors , 162

Hint Extern 162

Hint Immediate , 161

Hint Resolve , 161

Hint Rewrite , 160

Hint Unfold , 162

Hypotheses , 32

Hypothesis , 32

Hypothesis  (and coercions), 256

Identity Coercion , 256
Implicit Arguments , 59
Import , 55

Inductive , 34
Inductive (and coercions), 256
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Inductive ... where ... , 201 Qed, 41, 121
Infix , 201 Quit , 118
Inspect , 109

Record , 43
Lemma41l, 122 Recursive Extraction , 267
Let , 33 Recursive Extraction Module , 267
Load, 114 Remark, 41, 123
Load Verbose , 114 Remove LoadPath , 116
Local , 123 Remove Printing If ident, 48
Locate , 113, 202 Remove Printing Let ident, 48
Locate File 117 Require , 114
Locate Library 117 Require Export 114
Ltac , 174 ReservedNotation , 201

Reset , 117
Module , 50, 51 Reset Extraction Inline , 269
Module Type , 51 Reset Initial , 117
Mutual Inductive , 36 Restart , 124

Restore State ,117
Notation , 197, 208 Resume, 124
Opaque, 110 Save, 41, 122
Open Scope, 204 Scheme, 164, 177

Search , 111
Parameter , 32 SearchAbout , 111
Parameter (and coercions), 256 SearchPattern , 112
Parameters , 32 SearchPattern ... inside ... ,
Print , 109 112
Print Al , 109 SearchPattern ... outside ... ,
Print Classes , 257 112
Print Coercion Paths , 257 SearchRewrite , 113
Print Coercions , 257 Section , 49
Print Extraction Inline , 269 Set Contextual Implicit , 61
Print Grammar constr , 199 Set Extraction Autolnline , 269
Print Graph , 257 Set Extraction Optimize , 268
Print Hint 164 Set Firstorder Depth , 157
Print HintDb |, 164 Set Hyps Limit 126
Print Implicit , 62 Set Implicit Arguments , 61
Print LoadPath , 116 Set Printing All , 64
Print ML Modules , 115 Set Printing Coercion , 257
Print ML Path ,116 Set Printing Coercions , 257
Print Module , 56 Set Printing Depth , 119
Print Module Type ,56 Set Printing Implicit , 62
Print Modules , 115 Set Printing Notations , 201

Print Section , 109

Print Table Printing If , 48
Print Table Printing Let , 48
Print Term , 109

Print XML , 226

Proof , 41, 123

Pwd, 115

Set Printing Synth , 47
Set Printing Width , 119
Set Printing Wildcard , 47
Set Strict Implicit , 61
Set Undo , 124

Show, 125

Show Conjectures , 125
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Show Implicits , 125
Show Intro , 126
Show Intros , 126
Show Proof , 125
Show Script , 125
Show Tree, 125

Show XML Proof, 226
Structure , 257
SubClass , 256
Suspend , 123

Tactic Definition , 165
Test Printing Depth , 119
Test Printing If ident, 48
Test Printing Let ident, 48
Test Printing Synth , 47
Test Printing Width , 119
Test Printing Wildcard , 47
Theorem, 41, 122

Time, 118

Transparent , 110

Undo, 124

Unfocus , 125

Unset Contextual Implicit , 61
Unset Extraction Autolnline , 269
Unset Extraction Optimize , 268
Unset Hyps Limit 126

Unset Implicit Arguments , 61
Unset Printing All , 64

Unset Printing Coercion , 257
Unset Printing Coercions , 257
Unset Printing Depth , 119
Unset Printing Implicit , 62
Unset Printing Notations , 201
Unset Printing Synth , 47

Unset Printing Width , 119
Unset Printing Wildcard , 47
Unset Strict Implicit , 61
Unset Undo , 124

Variable , 32
Variable  (and coercions), 256
Variables , 32

Write State , 118
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idents not found, 129

ident; not found, 129

ident already exists, 32, 33, 42
ident not found, 128

A record cannot be recursive, 45

A Setoid Theory is already declared fay 288

All terms must have the same type, 280

already exists, 122

Argument of match does not evaluate to a term,
172

Attempt to save an incomplete proof, 122

Bad magic number, 115
Bound head variable, 161, 162

Can't find fileident on loadpath, 114

Can’t find module toto on loadpath, 115

cannot be used as a hint, 161, 162

Cannot find the source classafalid, 255

Cannot infer a term for this placeholder, 59, 128

Cannot loadident: no physical path bound to
dirpath, 114

Cannot movedent, afteridents: it depends on
identy, 129

Cannot moveident; after idents: it occurs in
identy, 129

Cannot recognizelass; as a source class of
qualid, 255

Cannot refine to conclusions with meta-
variables, 140

Cannot solve the goal, 171

Delta must be specified before, 136

does not denote an evaluable constant, 137

does not respect the inheritance uniform condi-
tion, 255

Don't know what to do with this goal, 280

Failed to progress, 170

File not found on loadpathstring, 115
Found target clasdass instead ofclasso, 255
Funclass cannot be a source class, 255

generated subgoalrm’ has metavariables in it,
131

goal does not satisfy the expected preconditions,
150

| couldn’t solve goal, 157

| don't know how to handle dependent equality,
157

Impossible to unify ... with .., 146

Impossible to unify ... with ..., 131, 141

In environment ... the termterms does not
have typetermy, 33

invalid argument, 128

is already a coercion, 255

is already used, 129

is not a function, 255

is not a module, 56

is not a projectable equality, 150

is not an inductive type, 162

is used in the conclusion, 128

is used in the hypothesis, 128

Loading of ML object file forbidden in a native
Coq, 115

Module/sectiommodule not found, 111
must be a transparent constant, 256

nameident is already used, 130

No applicable tactic, 170

No Declared Ring Theory faerm., 280

No discriminable equalities, 149

No focused proof, 121, 125

No focused proof (No proof-editing in
progress), 123, 124

No focused proof to restart, 124

No matching clauses for match, 172

No matching clauses for match goal, 173

No product even after head-reduction, 129, 130

No proof-editing in progress, 124

No such assumption, 128, 135

no such entry, 117
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No such goal, 125

No such hypothesis, 130, 138, 146

No such hypothesis in current goal, 130

No such labeldent, 51

No such proof, 124

Non exhaustive pattern-matching, 251

Non strictly positive occurrence ofdent in
type, 35

not a context variable, 173

not a defined object, 109

Not a discriminable equality, 148

Not a proposition or a type, 132

Not a valid (semi)ring theory, 282

Not a valid setoid theory, 288

Not an equation, 150

Not an exact proof, 128

Not an inductive product, 138, 140

Not convertible, 134

not declared, 162, 255

Not enough constructors, 138

Not reducible, 136

Not the right number of dependent arguments,
141

Not the right number of missing arguments, 131

Nothing to rewrite inident, 146

omega can't solve this system, 264

omega: Can'’t solve a goal with equality ompe,
264

omega: Can't solve a goal with non-linear prod-
ucts, 264

omega: Can't solve a goal with proposition vari-
ables, 264

omega: Not a quantifier-free goal, 264

omega: Unrecognized atomic proposition:
prop, 264

omega:
ident, 264

omega: Unrecognized proposition, 264

Proof is not complete, 174
guote: not a simple fixpoint, 154, 185
Reached begin of command history, 117

Signature components for labéfent do not
match, 51
Sortclass cannot be a source class, 255

Tactic Failure message (leve), 171
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Unrecognized predicate or connective:

Tactic generated a subgoal identical to the orig-
inal goal, 146

The conclusion is not a substitutive equation,
146

The conclusion otype is not valid; it must be
built from ident, 35

The referenceualid was not found in the cur-
rent environment, 110, 111

the termform has type ... which should be Set,
Prop or Type, 121, 122

The termterm is already declared as a mor-
phism, 288

The termterm is not a product, 288

The termterm should not be a dependent prod-
uct, 288

The term provided does not end with an equa-
tion, 145

The numth argument ofdent must beident’ in
type, 36

This goal is not an equality, 281

This is not the last opened module, 51

This is not the last opened module type, 52

This is not the last opened section, 50

Undo stack would be exhausted, 124
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