The distribution provides utilities to simplify some tedious works
beside proof development, tactics writing or documentation.
13.1 Building a toplevel extended with user tactics
The native-code version of Coq cannot dynamically load user tactics
using Objective Caml code. It is possible to build a toplevel of Coq,
with Objective Caml code statically linked, with the tool coqmktop.
For example, one can build a native-code Coq toplevel extended with a tactic
which source is in tactic.ml with the command
% coqmktop -opt -o mytop.out tactic.cmx
where tactic.ml has been compiled with the native-code
compiler ocamlopt. This command generates an executable
called mytop.out. To use this executable to compile your Coq
files, use coqc -image mytop.out.
A basic example is the native-code version of Coq (coqtop.opt),
which can be generated by coqmktop -opt -o coqopt.opt.
Application: how to use the Objective Caml debugger with Coq.
One useful application of coqmktop is to build a Coq toplevel in
order to debug your tactics with the Objective Caml debugger.
You need to have configured and compiled Coq for debugging
(see the file INSTALL included in the distribution).
Then, you must compile the Caml modules of your tactic with the
option -g (with the bytecode compiler) and build a stand-alone
bytecode toplevel with the following command:
% coqmktop -g -o coq-debug <your .cmo files>
To launch the Objective Caml debugger with the image you need to execute it in
an environment which correctly sets the COQLIB variable.
Moreover, you have to indicate the directories in which
ocamldebug should search for Caml modules.
A possible solution is to use a wrapper around ocamldebug
which detects the executables containing the word coq. In
this case, the debugger is called with the required additional
arguments. In other cases, the debugger is simply called without additional
arguments. Such a wrapper can be found in the dev/
subdirectory of the sources.
13.2 Modules dependencies
In order to compute modules dependencies (so to use make),
Coq comes with an appropriate tool, coqdep.
coqdep computes inter-module dependencies for Coq and
Objective Caml programs, and prints the dependencies on the standard
output in a format readable by make. When a directory is given as
argument, it is recursively looked at.
Dependencies of Coq modules are computed by looking at Require
commands (Require, Require Export, Require Import,
Require Implementation), but also at the command Declare ML Module.
Dependencies of Objective Caml modules are computed by looking at
open
commands and the dot notation module.value. However,
this is done approximatively and you are advised to use ocamldep
instead for the Objective Caml modules dependencies.
See the man page of coqdep for more details and options.
13.3 Creating a Makefile for Coq modules
When a proof development becomes large and is split into several files,
it becomes crucial to use a tool like make to compile Coq
modules.
The writing of a generic and complete Makefile may be a tedious work
and that's why Coq provides a tool to automate its creation,
coq_makefile. Given the files to compile, the command coq_makefile prints a
Makefile on the standard output. So one has just to run the
command:
% coq_makefile file1.v ... filen.v > Makefile
The resulted Makefile has a target depend which computes the
dependencies and puts them in a separate file .depend, which is
included by the Makefile.
Therefore, you should create such a file before the first invocation
of make. You can for instance use the command
% touch .depend
Then, to initialize or update the modules dependencies, type in:
% make depend
There is a target all to compile all the files file1
... filen, and a generic target to produce a .vo file from
the corresponding .v file (so you can do make file.vo
to compile the file file.v).
coq_makefile can also handle the case of ML files and
subdirectories. For more options type
% coq_makefile --help
Warning: To compile a project containing Objective Caml files you must keep
the sources of Coq somewhere and have an environment variable named
COQTOP that points to that directory.
13.4 Documenting Coq files with coqdoc
coqdoc is a documentation tool for the proof assistant
Coq, similar to javadoc or ocamldoc.
The task of coqdoc is
-
to produce a nice LATEX and/or HTML document from the Coq
sources, readable for a human and not only for the proof assistant;
- to help the user navigating in his own (or third-party) sources.
Documentation is inserted into Coq files as special comments.
Thus your files will compile as usual, whether you use coqdoc or not.
coqdoc presupposes that the given Coq files are well-formed (at
least lexically). Documentation starts with
(**, followed by a space, and ends with the pending *).
The documentation format is inspired
by Todd A. Coram's Almost Free Text (AFT) tool: it is mainly
ASCII text with some syntax-light controls, described below.
coqdoc is robust: it shouldn't fail, whatever the input is. But
remember: ``garbage in, garbage out''.
Coq material inside documentation.
Coq material is quoted between the
delimiters [ and ]. Square brackets may be nested,
the inner ones being understood as being part of the quoted code (thus
you can quote a term like [x:T]u by writing
[[x:T]u]). Inside quotations, the code is pretty-printed in
the same way as it is in code parts.
Pre-formatted vernacular is enclosed by [[ and
]]. The former must be followed by a newline and the latter
must follow a newline.
Pretty-printing.
coqdoc uses different faces for identifiers and keywords.
The pretty-printing of Coq tokens (identifiers or symbols) can be
controlled using one of the following commands:
(** printing token %...LATEX...% #...HTML...# *)
or
(** printing token $...LATEX math...$ #...HTML...# *)
It gives the LATEX and HTML texts to be produced for the given Coq
token. One of the LATEX or HTML text may be ommitted, causing the
default pretty-printing to be used for this token.
The printing for one token can be removed with
(** remove printing token *)
Initially, the pretty-printing table contains the following mapping:
-> |
-> |
|
<- |
<- |
|
* |
× |
|
<= |
<= |
|
>= |
>= |
|
=> |
=> |
|
<> |
!= |
|
<-> |
<-> |
|
|- |
|- |
|
\/ |
\/ |
|
/\ |
/\ |
|
~ |
not |
|
Any of these can be overwritten or suppressed using the
printing commands.
Important note: the recognition of tokens is done by a (ocaml)lex
automaton and thus applies the longest-match rule. For instance,
->~
is recognized as a single token, where Coq sees two
tokens. It is the responsability of the user to insert space between
tokens or to give pretty-printing rules for the possible
combinations, e.g.
(** printing ->~ %\ensuremath{\rightarrow\lnot}% *)
Sections.
Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the
line). One star is a section, two stars a sub-section, etc.
The section title is given on the remaining of the line.
Example:
(** * Well-founded relations
In this section, we introduce... *)
Lists.
List items are introduced by 1 to 4 leading dashes.
Deepness of the list is indicated by the number of dashes.
List ends with a blank line.
Example:
This module defines
- the predecessor [pred]
- the addition [plus]
- order relations:
-- less or equal [le]
-- less [lt]
Rules.
More than 4 leading dashes produce an horizontal rule.
Escapings to LATEX and HTML.
Pure LATEX or HTML material can be inserted using the following
escape sequences:
-
$...LaTeX stuff...$
inserts some LATEX material in math mode.
Simply discarded in HTML output.
%...LaTeX stuff...%
inserts some LATEX material.
Simply discarded in HTML output.
#...HTML stuff...#
inserts some HTML material. Simply
discarded in LATEX output.
Verbatim.
Verbatim material is introduced by a leading <<
and closed by
>>
. Example:
Here is the corresponding caml code:
<<
let rec fact n =
if n <= 1 then 1 else n * fact (n-1)
>>
Hyperlinks.
Hyperlinks can be inserted into the HTML output, so that any
identifier is linked to the place of its definition.
In order to get hyperlinks you need to first compile your Coq file
using coqc --dump-glob file; this appends
Coq names resolutions done during the compilation to file
file. Take care of erasing this file, if any, when
starting the whole compilation process.
Then invoke coqdoc --glob-from file to tell
coqdoc to look for name resolutions into the file file.
Identifiers from the Coq standard library are linked to the Coq
web site at http://coq.inria.fr/library/. This behavior can be
changed using command line options --no-externals and
--coqlib; see below.
Hiding / Showing parts of the source.
Some parts of the source can be hidden using command line options
-g and -l (see below), or using such comments:
(* begin hide *)
some Coq material
(* end hide *)
Conversely, some parts of the source which would be hidden can be
shown using such comments:
(* begin show *)
some Coq material
(* end show *)
The latter cannot be used around some inner parts of a proof, but can
be used around a whole proof.
coqdoc is invoked on a shell command line as follows:
coqdoc <options and files>
Any command line argument which is not an option is considered to be a
file (even if it starts with a -
). Coq files are identified
by the suffixes .v
and .g
and LATEX files by the
suffix .tex
.
-
HTML output
-
This is the default output.
One HTML file is created for each Coq file given on the command line,
together with a file index.html (unless option
-no-index is passed). The HTML pages use a style sheet
named style.css. Such a file is distributed with coqdoc.
- LATEX output
-
A single LATEX file is created, on standard output. It can be
redirected to a file with option -o.
The order of files on the command line is kept in the final
document. LATEX files given on the command line are copied `as is'
in the final document .
DVI and PostScript can be produced directly with the options
-dvi and -ps respectively.
- TeXmacs output
-
To translate the input files to TeXmacs format, to be used by
the TeXmacs Coq interface
(see http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/).
Command line options
Overall options
- --html
-
Select a HTML output.
- --latex
-
Select a LATEX output.
- --dvi
-
Select a DVI output.
- --ps
-
Select a PostScript output.
- --texmacs
-
Select a TeXmacs output.
- -o file, --output file
-
Redirect the output into the file `file' (meaningless with
-html).
- -d dir, --directory dir
-
Output files into directory `dir' instead of current
directory (option -d does not change the filename specified
with option -o, if any).
- -s , --short
-
Do not insert titles for the files. The default behavior is to
insert a title like ``Library Foo'' for each file.
- -t string,
--title string
-
Set the document title.
- --body-only
-
Suppress the header and trailer of the final document. Thus, you can
insert the resulting document into a larger one.
- -p string, --preamble string
-
Insert some material in the LATEX preamble, right before
\begin{document}
(meaningless with -html).
- --vernac-file file,
--tex-file file
-
Considers the file `file' respectively as a .v
(or .g
) file or a .tex
file.
- --files-from file
-
Read file names to process in file `file' as if they were
given on the command line. Useful for program sources splitted in
several directories.
- -q, --quiet
-
Be quiet. Do not print anything except errors.
- -h, --help
-
Give a short summary of the options and exit.
- -v, --version
-
Print the version and exit.
Index options
Default behavior is to build an index, for the HTML output only, into
index.html.
- --no-index
-
Do not output the index.
- --multi-index
-
Generate one page for each category and each letter in the index,
together with a top page index.html.
Table of contents option
- -toc, --table-of-contents
-
Insert a table of contents.
For a LATEX output, it inserts a \tableofcontents
at the
beginning of the document. For a HTML output, it builds a table of
contents into toc.html.
Hyperlinks options
- --glob-from file
-
Make references using Coq globalizations from file file.
(Such globalizations are obtained with Coq option -dump-glob).
- --no-externals
-
Do not insert links to the Coq standard library.
- --coqlib url
-
Set base URL for the Coq standard library (default is
http://coq.inria.fr/library/).
- -R dir coqdir
-
Map physical directory dir to Coq logical directory
coqdir (similarly to Coq option -R).
Note: option -R only has effect on the files
following it on the command line, so you will probably need
to put this option first.
Contents options
- -g, --gallina
-
Do not print proofs.
- -l, --light
-
Light mode. Suppress proofs (as with -g) and the following commands:
-
[Recursive] Tactic Definition
- Hint / Hints
- Require
- Transparent / Opaque
- Implicit Argument / Implicits
- Section / Variable / Hypothesis / End
The behavior of options -g and -l can be locally
overridden using the (* begin show *) ... (* end
show *) environment (see above).
Language options
Default behavior is to assume ASCII 7 bits input files.
- -latin1, --latin1
-
Select ISO-8859-1 input files. It is equivalent to
--inputenc latin1 --charset iso-8859-1.
- -utf8, --utf8
-
Select UTF-8 (Unicode) input files. It is equivalent to
--inputenc utf8 --charset utf-8.
LATEX UTF-8 support can be found at
http://www.ctan.org/tex-archive/macros/latex/contrib/supported/unicode/.
- --inputenc string
-
Give a LATEX input encoding, as an option to LATEX package
inputenc.
- --charset string
-
Specify the HTML character set, to be inserted in the HTML header.
13.4.3 The coqdoc LATEX style file
In case you choose to produce a document without the default LATEX
preamble (by using option --no-preamble
), then you must insert
into your own preamble the command
\usepackage{coqdoc}
Then you may alter the rendering of the document by
redefining some macros:
- coqdockw, coqdocid
-
The one-argument macros for typesetting keywords and identifiers.
Defaults are sans-serif for keywords and italic for identifiers.
For example, if you would like a slanted font for keywords, you
may insert
\renewcommand{\coqdockw}[1]{\textsl{#1}}
anywhere between \usepackage{coqdoc}
and
\begin{document}
.
- coqdocmodule
-
One-argument macro for typesetting the title of a .v
file.
Default is
\newcommand{\coqdocmodule}[1]{\section*{Module #1}}
and you may redefine it using \renewcommand
.
13.5 Exporting Coq theories to XML
This section describes the exportation of Coq theories to XML that
has been contributed by Claudio Sacerdoti Coen. Currently, the main
applications are the rendering and searching tool
developed within the HELM1 and MoWGLI2 projects mainly at the University of Bologna and
partly at INRIA-Sophia Antipolis.
13.5.1 Practical use of the XML exportation tool
The basic way to export the logical content of a file into XML format
is to use coqc with option -xml.
When the -xml flag is set, every definition or declaration is
immediately exported to XML once concluded.
The system environment variable COQ_XML_LIBRARY_ROOT must be
previously set to a directory in which the logical structure of the
exported objects is reflected.
For Makefile files generated by coq_makefile
(see section
13.3), it is sufficient to compile the files using
make COQ_XML=-xml
(or, equivalently, setting the environment variable COQ_XML
)
To export a development to XML, the suggested procedure is then:
-
add to your own contribution a valid
Make
file and use
coq_makefile
to generate the Makefile
from the Make
file.
Warning: Since logical names are used to structure the XML
hierarchy, always add to the Make
file at least one "-R"
option to map physical file names to logical module paths.
- set the
COQ_XML_LIBRARY_ROOT
environment variable to
the directory where the XML file hierarchy must be physically
rooted.
- compile your contribution with
"make COQ_XML=-xml"
Remark: In case the system variable COQ_XML_LIBRARY_ROOT is not set,
the output is done on the standard output. Also, the files are
compressed using gzip after creation. This is to save disk space
since the XML format is very verbose.
13.5.2 Reflection of the logical structure into the file system
For each Coq logical object, several independent files associated
to this object are created. The structure of the long name of the
object is reflected in the directory structure of the file system.
E.g. an object of long name ident1.....identn.ident is exported to files in the
subdirectory ident1/.../identn of the directory
bound to the environment variable COQ_XML_LIBRARY_ROOT.
13.5.3 What is exported?
The XML exportation tool exports the logical content of Coq
theories. This covers global definitions (including lemmas, theorems,
...), global assumptions (parameters and axioms), local assumptions or
definitions, and inductive definitions.
Vernacular files are exported to .theory.xml files.
Comments are pre-processed with coqdoc (see section
13.4). Especially, they have to be enclosed within (**
and *) to be exported.
For each inductive definition of name
ident1.....identn.ident, a file named ident.ind.xml is created in the subdirectory ident1/.../identn of the xml library root
directory. It contains the arities and constructors of the type. For mutual inductive definitions, the file is named after the
name of the first inductive type of the block.
For each global definition of base name ident1.....identn.ident, files named
ident.con.body.xml and ident.con.xml are created in the
subdirectory ident1/.../identn. They
respectively contain the body and the type of the definition.
For each global assumption of base name ident1.ident2.....identn.ident, a file
named ident.con.xml is created in the subdirectory ident1/.../identn. It contains the type of the
global assumption.
For each local assumption or definition of base name ident located
in sections ident'1, ..., ident'p of the module ident1.ident2.....identn.ident, a file
named ident.var.xml is created in the subdirectory ident1/.../identn/ident'1/.../ident'p.
It contains its type and, if a definition, its body.
In order to do proof-rendering (for example in natural language), some
redundant typing information is required, i.e. the type of at least
some of the subterms of the bodies and types of the CIC objects. These
types are called inner types and are exported to files of suffix .types.xml by the exportation tool.
The type of a subterm of a construction is called an inner type
if it respects the following conditions.
-
Its sort is
Prop
3.
- It is not a type cast nor an atomic term (variable, constructor or constant).
- If it's root is an abstraction, then the root's parent node is
not an abstraction, i.e. only the type of the outer abstraction of
a block of nested abstractions is printed.
The rationale for the 3rd condition is that the type of the inner
abstractions could be easily computed starting from the type of the
outer ones; moreover, the types of the inner abstractions requires a
lot of disk/memory space: removing the 3rd condition leads to XML
file that are two times as big as the ones exported applying the 3rd
condition.
13.5.5 Interactive exportation commands
There are also commands to be used interactively in coqtop.
Print XML qualid
If the variable COQ_XML_LIBRARY_ROOT is set, this command creates
files containing the logical content in XML format of qualid. If
the variable is not set, the result is displayed on the standard
output.
Variants: -
Print XML File string qualid
This writes the logical content of qualid in XML format to files
whose prefix is string.
Show XML Proof
If the variable COQ_XML_LIBRARY_ROOT is set, this command creates
files containing the current proof in progress in XML format. It
writes also an XML file made of inner types. If the variable is not
set, the result is displayed on the standard output.
Variants: -
Show XML File string Proof
This writes the
logical content of qualid in XML format to files whose prefix is
string.
13.5.6 Applications: rendering, searching and publishing
The HELM team at the University of Bologna has developed tools
exploiting the XML exportation of Coq libraries. This covers
rendering, searching and publishing tools.
All these tools require a running http server and, if possible, a
MathML compliant browser. The procedure to install the suite of tools
ultimately allowing rendering and searching can be found on the HELM
web site http://helm.cs.unibo.it/library.html.
It may be easier though to upload your developments on the HELM http
server and to re-use the infrastructure running on it. This requires
publishing your development. To this aim, follow the instructions on
http://mowgli.cs.unibo.it.
Notice that the HELM server already hosts a copy of the standard
library of Coq and of the Coq user contributions.
13.5.7 Technical informations
CIC with Explicit Named Substitutions
The exported files are XML encoding of the lambda-terms used by the
Coq system. The implementative details of the Coq system are hidden as much
as possible, so that the XML DTD is a straightforward encoding of the
Calculus of (Co)Inductive Constructions.
Nevertheless, there is a feature of the Coq system that can not be
hidden in a completely satisfactory way: discharging (see Sect.2.3).
In Coq it is possible
to open a section, declare variables and use them in the rest of the section
as if they were axiom declarations. Once the section is closed, every definition and theorem in the section is discharged by abstracting it over the section
variables. Variable declarations as well as section declarations are entirely
dropped. Since we are interested in an XML encoding of definitions and
theorems as close as possible to those directly provided the user, we
do not want to export discharged forms. Exporting non-discharged theorem
and definitions together with theorems that rely on the discharged forms
obliges the tools that work on the XML encoding to implement discharging to
achieve logical consistency. Moreover, the rendering of the files can be
misleading, since hyperlinks can be shown between occurrences of the discharge
form of a definition and the non-discharged definition, that are different
objects.
To overcome the previous limitations, Claudio Sacerdoti Coen developed in his
PhD. thesis an extension of CIC, called Calculus of (Co)Inductive Constructions
with Explicit Named Substitutions, that is a slight extension of CIC where
discharging is not necessary. The DTD of the exported XML files describes
constants, inductive types and variables of the Calculus of (Co)Inductive
Constructions with Explicit Named Substitutions. The conversion to the new
calculus is performed during the exportation phase.
The following example shows a very small Coq development together with its
version in CIC with Explicit Named Substitutions.
# CIC version: #
Section S.
Variable A : Prop.
Definition impl := A -> A.
Theorem t : impl. (* uses the undischarged form of impl *)
Proof.
exact (fun (a:A) => a).
Qed.
End S.
Theorem t' : (impl False). (* uses the discharged form of impl *)
Proof.
exact (t False). (* uses the discharged form of t *)
Qed.
# Corresponding CIC with Explicit Named Substitutions version: #
Section S.
Variable A : Prop.
Definition impl(A) := A -> A. (* theorems and definitions are
explicitly abstracted over the
variables. The name is sufficient to
completely describe the abstraction *)
Theorem t(A) : impl. (* impl where A is not instantiated *)
Proof.
exact (fun (a:A) => a).
Qed.
End S.
Theorem t'() : impl{False/A}. (* impl where A is instantiated with False
Notice that t' does not depend on A *)
Proof.
exact t{False/A}. (* t where A is instantiated with False *)
Qed.
Further details on the typing and reduction rules of the calculus can be
found in Claudio Sacerdoti Coen PhD. dissertation, where the consistency
of the calculus is also proved.
The CIC with Explicit Named Substitutions XML DTD
A copy of the DTD can be found in the file ``cic.dtd
'' in the
contrib/xml
source directory of Coq.
The following is a very brief overview of the elements described in the DTD.
- <ConstantType>
is the root element of the files that correspond to constant types.
- <ConstantBody>
is the root element of the files that correspond to constant bodies.
It is used only for closed definitions and theorems (i.e. when no
metavariable occurs in the body or type of the constant)
- <CurrentProof>
is the root element of the file that correspond to the body of a constant
that depends on metavariables (e.g. unfinished proofs)
- <Variable>
is the root element of the files that correspond to variables
- <InductiveTypes>
is the root element of the files that correspond to blocks
of mutually defined inductive definitions
The elements
<LAMBDA>
, <CAST>
, <PROD>
, <REL>
, <SORT>
,
<APPLY>
, <VAR>
, <META>
, <IMPLICIT>
, <CONST>
, <LETIN>
, <MUTIND>
, <MUTCONSTRUCT>
, <MUTCASE>
,
<FIX>
and <COFIX>
are used to encode the constructors of CIC.
The sort
or type
attribute of the element, if present, is
respectively the sort or the type of the term, that is a sort because of the
typing rules of CIC.
The element <instantiate>
correspond to the application of an explicit
named substitution to its first argument, that is a reference to a definition
or declaration in the environment.
All the other elements are just syntactic sugar.
13.6 Embedded Coq phrases inside LATEX documents
When writing a documentation about a proof development, one may want
to insert Coq phrases inside a LATEX document, possibly together with
the corresponding answers of the system. We provide a
mechanical way to process such Coq phrases embedded in LATEX files: the
coq-tex filter. This filter extracts Coq phrases embedded in
LaTeX files, evaluates them, and insert the outcome of the evaluation
after each phrase.
Starting with a file file.tex containing Coq phrases,
the coq-tex filter produces a file named file.v.tex with
the Coq outcome.
There are options to produce the Coq parts in smaller font, italic,
between horizontal rules, etc.
See the man page of coq-tex for more details.
Remark. This Reference Manual and the Tutorial
have been completely produced with coq-tex.
13.7 Coq and GNU Emacs
13.7.1 The Coq Emacs mode
Coq comes with a Major mode for GNU Emacs, coq.el. This mode provides
syntax highlighting (assuming your GNU Emacs library provides
hilit19.el) and also a rudimentary indentation facility
in the style of the Caml GNU Emacs mode.
Add the following lines to your .emacs
file:
(setq auto-mode-alist (cons '("\\.v$" . coq-mode) auto-mode-alist))
(autoload 'coq-mode "coq" "Major mode for editing Coq vernacular." t)
The Coq major mode is triggered by visiting a file with extension .v,
or manually with the command M-x coq-mode
.
It gives you the correct syntax table for
the Coq language, and also a rudimentary indentation facility:
-
pressing Tab at the beginning of a line indents the line like
the line above;
- extra Tabs increase the indentation level
(by 2 spaces by default);
- M-Tab decreases the indentation level.
An inferior mode to run Coq under Emacs, by Marco Maggesi, is also
included in the distribution, in file coq-inferior.el.
Instructions to use it are contained in this file.
13.7.2 Proof General
Proof General is a generic interface for proof assistants based on
Emacs (or XEmacs). The main idea is that the Coq commands you are
editing are sent to a Coq toplevel running behind Emacs and the
answers of the system automatically inserted into other Emacs buffers.
Thus you don't need to copy-paste the Coq material from your files
to the Coq toplevel or conversely from the Coq toplevel to some
files.
Proof General is developped and distributed independently of the
system Coq. It is freely available at proofgeneral.inf.ed.ac.uk
.
13.8 Module specification
Given a Coq vernacular file, the gallina filter extracts its
specification (inductive types declarations, definitions, type of
lemmas and theorems), removing the proofs parts of the file. The Coq
file file.v gives birth to the specification file
file.g (where the suffix .g stands for Gallina).
See the man page of gallina for more details and options.
13.9 Man pages
There are man pages for the commands coqdep, gallina and
coq-tex. Man pages are installed at installation time
(see installation instructions in file INSTALL, step 6).
- 1
- Hypertextual Electronic Library of
Mathematics
- 2
- Mathematics on the Web, Get it by
Logic and Interfaces
- 3
- or CProp which is the
"sort"-like definition used in C-CoRN (see
http://vacuumcleaner.cs.kun.nl/c-corn) to type
computationally relevant predicative propositions.