
A Type System For Certified Runtime Type Analysis

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Bratin Saha

Dissertation Director: Professor Zhong Shao

December 2002

Abstract

A Type System For Certified Runtime Type Analysis

Bratin Saha

2002

Modern programming paradigms are increasingly giving rise to applications that require type

information at runtime. For example, services like garbage collection, marshalling, and serializa-

tion need to analyze type information at runtime. When compiling code which uses runtime type

inspections, most existing compilers use untyped intermediate languages and discard type informa-

tion at an early stage. Unfortunately, such an approach is incompatible with type-based certifying

compilation.

A certifying compiler generates not only the code but also a proof that the code obeys a security

policy. Therefore, one need not trust the correctness of a compiler generating certified code, instead

one can verify the correctness of the generated code. This allows a code consumer to accept code

from untrusted sources which is specially advantageous in a networked environment. In practice,

most certifying compilers use a type system for generating and encoding the proofs. These systems

are called type-based certifying compilers.

This dissertation describes a type system that can be used for supporting runtime type analysis

in type-based certifying compilers. The type system has two novel features.

First, type analysis can be applied to the type of any runtime value. In particular quantified

types such as polymorphic and existential types can also be analyzed, yet type-checking remains

decidable. This allows the system to be used for applications such as a copying garbage collector.

Type analysis plays the key role in formalizing the contract between the mutator and the collector.

Second, the system integrates runtime type analysis with the explicit representation of proofs

and propositions. Essentially, it integrates an entire proof language into the type system for a com-

piler intermediate language. Existing certifying compilers have focussed only on simple memory

and control-flow safety. This system can be used for certifying more advanced properties while

still retaining decidable type-checking.

Copyright c© 2002 by Bratin Saha

All rights reserved.

i

Acknowledgements

First and foremost, I want to thank my advisor Professor Zhong Shao for his encouragement and

support during my graduate study. He was a constant source of ideas, sound advice, and enthu-

siasm. He exposed me to a wealth of knowledge in programming languages, and has taught me

by example the skills of a good researcher. In my first summer at Yale, he put in a huge effort in

helping me get up to speed with the SML/NJ compiler. I am particularly grateful for his efforts on

our “Optimal Type Lifting” paper to improve my writing. I am indebted to him for all the other

things that he has taught me: giving talks, writing research proposals, and much more. This work

would not have been possible without the tremendous effort that he put into guiding me. I was

privileged to be his student.

I would like to thank my collaborators in the FLINT group. Valery Trifonov helped out a great

deal with the work on intensional type analysis. I worked with Stefan Monnier on the application

of intensional type analysis to type-safe garbage collectors. Stefan was always there to lend a hand

with system administration issues. I would like to thank Chris League for many useful discussions

and specially for Latex related help.

I would like to thank Carsten Schurmann, Arvind Krishnamurthy, John Peterson, and Dana

Angluin in the Yale Computer Science department. All of them have helped me in various ways

during my graduate study and have taken an active interest in my work. Arvind and John served

on my thesis committee. Carsten helped me refine my thoughts through stimulating discussions. I

would also like to thank all the people in the administrative offices at Yale – specially Judy Smith

and Linda Dobb for helping me out with all the paperwork.

I want to thank Andrew Appel and Robert Harper for their help in various stages of my graduate

study. Andrew served on my thesis committee and also helped me in other ways. Robert Harper

shaped my thoughts through several stimulating discussions. His papers are an education in type-

theory.

ii

Finally, my deepest thanks to my parents without whom I would not be here. They have

provided me with loving support throughout my childhood and adulthood, and have been a great

source of inspiration. I am very grateful to my brother-in-law Prasantada, my sister Gargi, Buni and

Bublu for their constant love and support. I am indebted to Atrayee for her love and encouragement.

Graduating during an economic depression can be particularly depressing. She was always there

to cheer me up. The later part of graduate study can get particularly stressful specially in trying to

tie up all the loose ends; she was always there to lend me a hand. Without Atrayee’s cheerful and

constant support this work would have been impossible. I also wish to thank all my friends in Yale

and outside – specially Narayan and Kishnan.

This work was sponsored in part by the Defense Advanced Research Projects Agency under

contract F30602-99-1-0519 and by the National Science Foundation under contracts CCR 9633390,

CCR 9901011, CCR 0081590. I am grateful to both these organizations.

iii

Contents

1 Introduction 1

1.1 Runtime type analysis . 1

1.2 Certifying compilation . 2

1.3 Fully reflexive type analysis . 3

1.4 Integrating type analysis with a proof system . 4

1.5 Summary of contributions . 4

1.6 Outline of this dissertation . 5

2 Overview Of The Typed Lambda Calculi 7

2.1 The simply typed lambda calculus . 7

2.2 The polymorphically typed lambda calculus . 10

2.3 The third order lambda calculus . 12

2.4 The ω order lambda calculus . 13

2.5 Pure type systems . 14

3 A Language For Runtime Type Analysis 18

3.1 Introduction . 18

3.2 Background . 19

3.3 Analyzing quantified types . 24

3.4 Type erasure semantics . 36

3.5 Translation from λω
i to λω

R . 44

3.6 The untyped language . 48

3.7 Related work . 50

iv

4 Applying Runtime Type Analysis: Garbage Collection 52

4.1 Introduction and motivation . 52

4.2 Source language λCLOS . 55

4.3 Target language λGC . 56

4.4 Translating λCLOS to λGC . 63

4.5 Summary and related work . 66

5 Integrating Runtime Type Analysis With a Proof System 67

5.1 Introduction . 67

5.2 Approach . 68

5.3 The type language λi
CC . 72

5.4 Formalization of λi
CC . 76

5.5 The computation language λH . 81

5.6 Summary and related work . 89

6 Implementation 91

6.1 Implementing a pure type system . 94

6.2 Rationale for design decisions . 98

6.3 Implementation Details . 99

6.4 Representing the base kind . 102

6.5 Performance measurement . 106

6.6 Related Work . 109

7 Conclusions and Future Work 110

7.1 Summary of contributions . 111

7.2 Future work . 112

Appendix 113

A Formal Properties of λω
i 114

A.1 Soundness of λω
i . 114

A.2 Strong normalization . 120

A.3 Confluence . 137

v

B Formal Properties Of λGC 145

C Formal Properties of λi
CC 154

C.1 Subject reduction . 154

C.2 Strong normalization . 168

C.3 Church-Rosser property . 201

C.4 Consistency . 204

Bibliography 204

vi

Chapter 1

Introduction

This dissertation describes a type system for supporting runtime type analysis in a certifying com-

piler. Why is this important ? Runtime type analysis plays a crucial role in many applications, and

modern language implementations are progressively targeting the generation of certified code. The

following sections show how runtime type analysis plays a crucial role, and why it is important to

support it in a certifying framework.

1.1 Runtime type analysis

Modern programming paradigms are increasingly giving rise to applications that rely critically on

type information at runtime. For example:

• Java adopts dynamic linking as a key feature, and to ensure safe linking, an external module

must be dynamically verified to satisfy the expected interface type.

• A garbage collector must keep track of all live heap objects, and for that type information

must be kept at runtime to allow traversal of data structures.

• In a distributed computing environment, code and data on one machine may need to be

pickled for transmission to a different machine, where the unpickler reconstructs the data

structures from the bit stream. If the type of the data is not statically known at the destination

(as is the case for the environment components of function closures), the unpickler must use

type information, encoded in the bit stream, to correctly interpret the encoded value.

1

• Type-safe persistent programming requires language support for dynamic typing: the pro-

gram must ensure that data read from a persistent store is of the expected type.

• Finally, in polymorphic languages like ML, the type of a value may not be known statically;

therefore, compilers have traditionally used inefficient, uniformly boxed data representation.

To avoid this, several modern compilers use runtime type information to support unboxed

data representation.

Existing compilers can not type-check the code that involves runtime type inspections. When

compiling such code they use untyped intermediate languages, and reify runtime types into values

at some early stage. However, discarding the type information during compilation makes this

approach incompatible with certifying compilation.

1.2 Certifying compilation

A certifying compiler [Nec98] generates not only the object code, but also a machine-checkable

proof that the code satisfies a given security policy. A valid proof is an incontrovertible certificate

of safety. Both the code and the proof are shipped to the consumer. Before execution, the consumer

checks that the proof is correct and that it follows logically from the code.

Code certification is appealing for a number of reasons. If a compiler can generate certified

code, we no longer need to trust the correctness of the compiler; instead, we can verify the correct-

ness of the generated code. Checking a compiler-generated proof is much easier than proving the

correctness of a compiler. Second, with the growth of web-based computing, programs and ser-

vices are increasingly being developed or hosted at remote sites, and then downloaded by clients

for execution. Client programs may also download modules dynamically as they need them. In a

certifying system, clients can accept code from untrusted sources and verify it before execution.

Certified compilation is simply a general approach for applying programming language tech-

niques for constructing secure systems. We still have to address the problem of constructing a

certifying compiler. How does one arrange for a compiler to generate both the code and the proof

of its safety ? Morrisett et al. [MWCG98] showed that a fully type-preserving compiler is a prac-

tical basis for a certifying compiler. Unlike in a conventional compiler, a type preserving com-

piler [Sha97b, TMC+96] does not discard types after the source program has been type-checked.

Instead, each phase propagates the type information so that the code finally generated by the com-

2

piler can be type-checked. The safety policy enforced is type-safety, and the proof of the safety lies

in the type annotations in the generated code.

Therefore, a certifying compiler for type analyzing applications must support runtime type

analysis in a type-preserving framework. This dissertation describes a type system that makes this

possible. The following sections describe two key features included in the type system for writing

certified applications.

1.3 Fully reflexive type analysis

Many type-analyzing applications must operate on arbitrary runtime values. For example, a pickler

must be able to pickle any value on the heap. Similarly, a garbage collector must be able to traverse

all data structures on the heap to track live objects. Therefore, a language must support the analysis

of the type of all runtime values; we call this fully reflexive type analysis.

Supporting type analysis in a type-safe framework has been an active area of research. Previous

researchers in type-directed compilation [HM95, CW99] have designed frameworks for runtime

type analysis. Unfortunately, none of these frameworks can support fully reflexive type analysis.

Consequently, none of these approaches can be used for writing type-analyzing services like a

garbage collector. Type-safe services like garbage collectors are desirable for many reasons. First,

the security of a computing system depends on the safety of the underlying garbage collector. In

existing systems, it is part of the trusted computing base (TCB): that part of the code that is assumed

to be correct and remains unverified. Writing it in a type-safe language and verifying independently

will take it out of the TCB. This makes a system more secure, specially because these services are

often complex pieces of code and can introduce subtle bugs. Moreover, a type-safe implementation

would make the interface to the garbage collector explicit, and type-checking could then ensure that

the interface is always respected.

The type system presented in this dissertation supports fully reflexive type analysis. In partic-

ular, it supports the analysis of quantified types like polymorphic and existential types. This is the

first work that shows how to support the analysis of arbitrary quantified types. We also show that

the system can be used for writing a type-safe copying garbage collector. Type analysis plays the

key role in capturing the contract between the mutator and the collector.

3

1.4 Integrating type analysis with a proof system

Existing type-based certifying compilers have focussed only on proving conventional type-safety

properties (like simple memory and control-flow safety) for the generated code. On the other

hand, the concept of certifying compilation, as pioneered by Necula and Lee through their proof

carrying code (PCC) framework [Nec98], involves a logical system that can be used for certi-

fying more complex specifications. For example, the foundational proof carrying code (FPCC)

system [AF00b] can certify any property expressible in Church’s higher-order logic. Type-based

certifying compilers cannot certify properties that are as general because the type systems can not

match the expressiveness of the logic used in these frameworks.

One of the challenges then in type-based certifying compilation is to come up with type systems

that can be used for certifying more advanced properties than conventional type-safety. In essence,

we want to express logical assertions and propositions through the type system.

The main motivation for this line of work comes from the close relationship between logical

systems and type systems. The Curry-Howard isomorphism [How80] (also known as the formula-

as-types principle) shows how proofs and propositions map into a typed lambda calculus: types

represent propositions and the expressions represent proofs. For example, a proof of an implica-

tion P ⊃ Q can be considered a function object: it is a function that when applied to a proof of

proposition P yields a proof of proposition Q. Most type-based proof assistants are based on this

principle. Barendregt et al. [Bar99, Bar91] give a good survey of previous work in this area.

Accordingly, in Chapter 5, we show a type system that integrates type analysis with the explicit

representation of proofs and propositions. As far as we know, our work is the first comprehensive

study on how to incorporate higher-order predicate logic and runtime type analysis into a single

type system for compiler intermediate languages. Since the type system can now internalize a very

expressive logic, formal reasoning traditionally done at the meta level can now be expressed inside

the actual language itself.

1.5 Summary of contributions

The core contribution of this dissertation is a type system for analyzing the type of runtime values,

but this system has other important ramifications. The type system can be used for type-checking

the copy function in a stop-and-copy garbage collector, and thus provides a significant basis for

4

writing provably type-safe garbage collectors. The underlying ideas can also be used for integrating

logical assertions in a type system, and enforcing more sophisticated invariants. To sum up:

• We show the design of a type system that supports the analysis of quantified types, both

at the type level and at the term level. We prove that the resulting type system is strongly

normalizing and confluent. We also show an encoding of the calculus in a type-erasure

semantics. We prove that this encoding is sound by establishing a correspondence with

reductions in an untyped language.

• We show that this type system can be applied for writing the copy function in a copying

garbage collector in a type-safe manner. We show that type-checking this function relies

crucially on the ability to analyze quantified types, like existential types. We prove that the

language in which the copy function is written is sound. Our formalization does exclude

some features of an industrial-strength collector, nevertheless it represents a significant step

towards designing a type system that can be used for realistic garbage collectors.

• We show that the ideas (underlying the analysis of quantified types) can be extended to

integrate runtime type analysis with the explicit representation of logical proofs and proposi-

tions. Again, we prove that the resulting type system is strongly normalizing and confluent,

and the underlying logic is consistent.

• We show empirically that the type system can be used in an industrial-strength compiler. For

this, we implemented the system in an experimental version of the SML/NJ compiler and

compared its performance with version 110.34 of the compiler. On a set of large benchmarks,

our measurements show that the new type system incurs a reasonable compilation overhead.

1.6 Outline of this dissertation

In Chapter 2 we give a brief overview of the typed lambda calculi. This is a useful introduction for

much of the type-theoretic work presented in the later part of the dissertation. Chapters 3 through 6

constitute the core of this dissertation. In Chapter 3, we show in detail the design of the type system

for fully reflexive type analysis. We prove its meta-theoretic properties in Appendix A. Chapter 4

shows how this type system can be applied for writing a type-safe copying garbage collector. The

meta-theoretic properties of the languages are proved in Appendix B. In Chapter 5 we show how

5

the type system can be augmented to explicitly represent and manipulate proofs and propositions.

Appendix C proves the meta-theoretic properties of this type system. In Chapter 6 we describe the

implementation of the type system in an experimental version of the Standard ML of New Jersey

compiler. We also compare the performance of our implementation to that of the SML/NJ compiler

(version 110.34) on some large benchmarks.

History

The contents of Chapters 3 and Appendix A are based on [STS00b]. This work was also published

as [TSS00] and [STS00a]. The contents of Chapter 4 and Appendix B are based on [MSS00].

This work was also published as [MSS01]. The contents of Chapter 5 and Appendix C are based

on [SSTP01]. This work was published as [SSTP02].

6

Chapter 2

Overview Of The Typed Lambda

Calculi

In this chapter, we will give a brief overview of the typed lambda calculi. This will ease the

transition to the type systems presented later in the dissertation. The typed λ-calculi is actually an

infinite sequence of languages, each more powerful than the other. The sequence starts off with

the simply-typed lambda calculus and culminates in Fω . In the last section we will also give a

brief overview of the Pure Type Systems. We will show how a Pure Type System may be used for

modelling many of these typed lambda calculi, and even type systems with dependent types. There

is a lot of excellent literature available on these topics: the reader may refer to [PDM89, Geu93,

Bar91].

2.1 The simply typed lambda calculus

The pure simply typed lambda calculus, also called F1, may be defined as in Figure 2.1. Here τ is

the set of types, e is the set of terms, x ranges over variables, λx : τ. e is a lambda term, and e e ′ is

an application. In the term λx :τ. e, the variable x is the bound variable in the function body e.

(types) τ ::= τ → τ ′

(terms) e ::= x | λx :τ. e | e e′

Figure 2.1: Syntax of F1

7

(prog) P ::= De | DP

(ind) D ::= Ind I with (C)

(constr) C ::= x :τ | x :τ ;C

(types) τ ::= I | τ → τ ′

(terms) e ::= x | λx :τ. e | e e′

Figure 2.2: Syntax of F i
1

The reduction rule is the β-reduction where the bound variable is substituted by the argument

in the function body: (λx :τ. e) e′ ; [e′/x]e.

Unfortunately, the language above is not very useful since the set of types is empty. To make

it practical we need some mechanism of introducing primitive types and operations over these

types. We could introduce some primitives in an ad-hoc manner, but we would rather use a general

mechanism. This brings us to F i
1 (Figure 2.2) which is F1 augmented with a general facility for

introducing inductively defined types. Here P is a program, D is an inductive definition, C are the

constructors of an inductive definition, and I is the name for an inductively defined type.

For example, we can define the natural numbers and the booleans as:

Ind Nat with (zero :Nat; succ :Nat → Nat)

Ind Bool with (true :Bool; false :Bool)

Associated with each inductive definition is an iterator. The iterator takes a set of functions

corresponding to each constructor of an inductive definition I , a value of type I , and performs

structural induction over the value. For example, an iterator over the natural numbers (iterNat)

would behave as follows:

iterNat zero z s ; z

iterNat (succ e) z s ; s (iterNat e z s)

The iterator can be used to implement all the ordinary primitive recursive functions over natural

numbers, like addition. Note that the iterator can return a value of any type. In essence, an induc-

tively defined type generates an infinite set of iterators, one for each return type. To ensure that the

language still remains terminating, we need to constrain the definition of inductive types suitably.

8

Definition 2.1.1 The set of positively occuring variables Pos(τ) is defined as:

Pos(I) = I

Pos(τ → τ ′) = Neg(τ) + Pos(τ ′)

Neg(I) = φ

Neg(τ → τ ′) = Pos(τ) + Neg(τ ′)

In an inductive definition, the defined type can occur only positively in the type of the arguments

to the constructors. Formally, an inductively defined type I is shown below. Here the xi are the

constructors. The defined type I occurs positively in the τij .

Ind I with

x1 :τ11 → τ12 → . . . → I;

x2 :τ21 → τ22 → . . . → I;

. . .

xn :τn1 → τn2 → . . . → I

Each such definition generates an iteration scheme iterI
τ with an instance of the iterator for

every type τ . The iterator takes a value of type I , a function for every constructor of I , and returns

a result of type τ . The type of the iterator is:

iterI
τ :I → (τ11 → τ12 → . . . → τ)

→ (τ21 → τ22 → . . . → τ)

. . .

→ (τn1 → τn2 → . . . → τ)

→ τ

Here τij is equivalent to τij with I replaced by τ . Functionally, the iterator takes a term of type

I , walks over its structure, and replaces every constructor with the function corresponding to that

constructor. In addition, it also recursively processes the arguments of the constructor. Expressed

as a reduction rule, this is equivalent to:

iterI
τ (xi ei1 . . . eim) e′1 . . . e′n ; e′i(ei1 . . . eim)

where xi is the ith constructor of I , eij are its arguments, e′i is the function corresponding to the

ith constructor, and eij is the result of recursively processing the argument: that is replacing every

9

(types) τ ::= τ → τ ′ | α | ∀α :Ω. τ

(terms) e ::= x | λx :τ. e | e e′ | Λα :Ω. e | e [τ]

Figure 2.3: Syntax of F2

subterm e of type I with iterI
τ e e′1 . . . e′n.

The key point about F i
1 is that all programs are terminating and that all reduction sequences

are confluent.

2.2 The polymorphically typed lambda calculus

The problem with F i
1 is that there is no way to parametrize a function over the type of its arguments.

For example, we can define the identity function over the natural numbers as follows:

idNat = λx :Nat. x

But the identity function makes sense for values of other types as well. In F i
1 we have to repeat the

definition for every instance at which we want to use it. Instead what we would like is a mechanism

to abstract the type of the arguments and then instantiate the type when we actually use the function.

The identity function would now look like:

id = Λα :Ω. λx :α. x idNat = id [Nat]

This says that the first argument to the identity function is a type. When this function is used, the

type is passed as an explicit argument. We also say that the identity function is polymorphic since

it can take arguments of any type. This brings us to the polymorphically typed lambda calculus, or

F2 [Gir72, Rey74]. The syntax for F2 is shown in Figure 2.3.

At the type level, we have a new construct (∀α :Ω. τ) to type polymorphic functions. For now,

consider the Ω classifier to be a syntactic artifact. The typing rule for polymorphic functions and

10

type applications says:

∆, α :Ω; Γ ` e :τ α /∈ ∆

∆;Γ ` Λα :Ω. e :∀α :Ω. τ

∆;Γ ` e :∀α :Ω. τ

∆;Γ ` e [τ ′] : [τ ′/α]τ

Here ∆ is the environment that keeps track of free type variables. Γ is the value environment; it

maps a variable to its type. For example, the identity function now has the type ∀α :Ω. α → α.

2.2.1 Encoding F i
1 inductive definitions in F2

If we examine the type calculus of F2 (Figure 2.3), then again the definition does not contain

any primitive types. However, unlike in F1, we do not need to add a mechanism for introducing

primitive types and operations over these types. Instead, Böhm and Berarducci [BB95] proved that

we can encode all of the inductive types of F i
1 and the associated iteration operators in F2.

As an example we will consider the encoding of the natural numbers. Suppose the inductive

type Nat is given the closed type

Nat ≡ ∀α :Ω. α → (α → α) → α

Nat takes two arguments, one of them representing zero and the other representing the successor

of a natural number. Instances of the natural numbers now have the following term representation:

0 ≡ Λα :Ω. λx :α. λf :α → α. x

1 ≡ Λα :Ω. λx :α. λf :α → α. f x

2 ≡ Λα :Ω. λx :α. λf :α → α. f (f x)

. . .

The key idea is that the term representation of the natural numbers captures the structure of the

corresponding induction in F i
1. We said in F i

1 that an iterator can return a value of any type. Since

we want to capture iteration as well, we give Nat a polymorphic type. When we are iterating over

natural numbers, Nat will be instantiated to the return type. In essence, the F2 representation of

a F i
1 inductive value serves as its own iterator. In F2 the iterator over natural numbers has the

11

following form:

iterNat
τ n ≡ n [τ]

Here n is a number defined inductively in F i
1, while n is its representation in F2.

We know that F2 is powerful enough to define the primitive recursive functions, but actually

we can define more. In particular, we can also define Ackermann’s function in F2. However, F2

still remains a strongly normalizing language: we cannot express non-terminating computations in

F2. Moreover, all reduction sequences in F2 are confluent.

2.2.2 Adding inductive types to F2

We could still go ahead and add a mechanism for adding inductively defined types to F2. Unlike

in F i
1, the constructors can now have polymorphic types. But as in the previous case, F i

2 can be

encoded in F3, the next language in the hierarchy. In fact, Pfenning [Pfe88] proved that inductively

defined types with polymorphic constructors in the nth order λ-calculus can be translated into the

pure (n + 1)th order λ-calculus.

However, with the addition of polymorphic types we need to redefine the notion of positive and

negative occurrences.

Definition 2.2.1 The set of positively occuring variables Pos(τ) is defined as:

Pos(α) = α

Pos(τ → τ ′) = Neg(τ) + Pos(τ ′)

Pos(∀α :Ω. τ) = Pos(τ)

Neg(α) = φ

Neg(τ → τ ′) = Pos(τ) + Neg(τ ′)

Neg(∀α :Ω. τ) = Neg(τ)

2.3 The third order lambda calculus

Suppose we wanted to represent type constructors in our language. Let us consider the Vector

type. The type Vector is in itself not the type of any object. We need to apply it to another type

before we get something that is the type of an object; for example, a vector of integers. Therefore,

a vector is a form of a type constructor, or a function from types to types. Programming languages

12

(kinds) κ ::= Ω | Ω → κ

(types) τ ::= τ → τ ′ | α | ∀α :κ. τ | λα :κ. τ | τ τ ′

(terms) e ::= x | λx :τ. e | e e′ | Λα :κ. e | e [τ]

Figure 2.4: Syntax of F3

(kinds) κ ::= Ω | κ → κ′

(types) τ ::= τ → τ ′ | α | ∀α :κ. τ | λα :κ. τ | τ τ ′

(terms) e ::= x | λx :τ. e | e e′ | Λα :κ. e | e [τ]

Figure 2.5: Syntax of Fω

have many examples of type constructors, for example Array and List. We can define a particular

instance of the List constructor in F2; for example, we could define a list of integers. But if we

then needed a list of booleans, we would have to define a new type. Instead, what we would like is

to define a List type constructor, and then create different instances from this constructor.

This brings us to F3 where we add the ability of express functions from types to types. The

syntax is shown in Figure 2.4. We denote type functions with a similar syntax to the term functions.

We use τ τ ′ to denote the application of a type τ to another type τ ′. However, since we introduced

functions at the type level, we need some mechanism for ensuring that our types are well-formed.

For this we add a new layer that we call kinds. In essence, kinds are the “types” of types. We have

a constant kind that we call Ω. This is the kind of the types of terms, for example the types τ → τ ′

and ∀α :κ. τ belong to Ω. A type function (λα :Ω. τ) has the function kind (Ω → κ).

As before, F3 is also a strongly normalizing language with all reductions being confluent.

2.4 The ω order lambda calculus

From F3, we get to the languages F4, F5, etc by making the set of legal kinds larger. In other

words, while F3 allows only first order type constructors, these languages allow higher order type

constructors. In the limit we reach Fω where the kinds are completely general. The syntax of Fω

is shown in Figure 2.5.

13

Fω has a number of interesting properties:

• All expressions (terms, types, and kinds) in Fω have a unique normal form.

• Fω
i = Fω . Inductive type definitions whose constructors have types in Fω can be translated

into closed types in Fω.

• Fn can express all functions whose totality is provable in nth order arithmetic [Gir88].

2.5 Pure type systems

An alternative method of describing the typed lambda calculi is through the framework of Pure

Type Systems (PTS). This is a general framework that can capture a large class of typed lambda

calculi. In this section, we give a short tutorial on PTS using a very small expression language.

The reader may refer to [Bar91] for details. The syntax of PTS pseudo-terms is

(pseudo-terms) A,B ::= c | X | λX :A.B | A B | ΠX :A.B

and the semantics is based on the usual notion of β reduction:

(λX :A.B) A′
;β [A′/X]B

The first four productions in the syntax are familiar—they are constants c drawn from a set C, vari-

ables, abstractions, and applications. The language is explicitly typed: The abstraction has a type

annotation for the bound variable. Note that this type annotation is again an expression, in other

words, types and terms share the same syntax. Moreover, the same productions form abstraction

and application for both terms and types. For example, consider the following expression in F2

Λα :Ω. λx :α. id[α] x

In the above expression, Ω is a kind, the Λ binds a type variable α of kind Ω, the λ binds a term

variable x of type α. In the body of the function, the polymorphic identity function is first applied

to the type variable α and then to the term variable x. In contrast, in our PTS, the above expression

would be written as

λX :Ω. λX ′ :X. (id X) X ′

14

The Π production is a key feature and subsumes both function and polymorphic types. In fact,

it is the only type forming operator in the language. Intuitively the term ΠX : A.B is the type of

functions from values of type A to values of type B. Moreover, the type B may depend on the

value of the argument. It is obvious that Π subsumes the function type

A→B = Π :A.B

Now consider the expression ΠX : Ω. A. This is the type of functions from values of type Ω

to values of type A where X may occur free in A. But this is precisely the meaning of the type

∀α :Ω. A′ in F2 (with A′ = [α/X]A).

We use a type system to define the well formed expressions—in turn, the type system relies on

a specification.

Definition 2.5.1 The specification of a PTS is a triple (S , A, R) where

• S ⊆ C is called the set of sorts

• A ⊆ C × S is a set of axioms

• R ⊆ S × S × S is a set of rules.

We will use (s1, s2) as an abbreviation for elements of R of the form (s1, s2, s2). In the rest of this

section we will only consider these simpler PTSs: these are sufficient to describe the type systems

of interest to us. We will also use s to denote any particular sort. The formation rules for terms of

the PTS (S , A, R) are as follows.

(c, s) ∈ A

` c : s
(AX)

∆ ` A : s
∆, X :A ` X : A

(VAR)

∆ ` A : B ∆ ` C : s
∆, X :C ` A : B

(WEAK)

∆ ` A : ΠX :B ′. A′ ∆ ` B : B′

∆ ` A B : [B/X]A′ (APP)

∆, X :A ` B : B ′ ∆ ` ΠX :A.B ′ : s

∆ ` λX :A.B : ΠX :A.B ′
(FUN)

15

∆ ` A : s1 ∆, X :A ` B : s2 (s1, s2) ∈ R

∆ ` ΠX :A.B : s2
(PROD)

∆ ` A : B ∆ ` B ′ : s B =β B′

∆ ` A : B′
(CONV)

The first three rules are fairly straightforward. The AX rule merely specifies the sorts and the rela-

tion between them. In the VAR and the WEAK rules, we ensure that the type of the variable is well

formed. The APP rule is more interesting. Note that in the type for A, the variable X can occur

free in the body A′; therefore, the result type is obtained by substituting for the variable X . In the

special case of an arrow type, the variable X does not occur free in the body A ′. Therefore, the

substitution has no effect and the typing derivation reduces to the usual rule for function applica-

tion. Moreover, the rule is sufficient for dealing with type applications. Consider the rule for type

application in F2 that we saw before:

∆;Γ ` e :∀α :Ω. τ

∆;Γ ` e [τ ′] : [τ ′/α]τ

The APP rule is equivalent to the above rule when we consider that the polymorphic type ∀α :Ω. τ

can be written as a product type ΠX :Ω. A, and there is only a single syntactic category of terms.

The FUN and the CONV rule hold no new surprises. The equality in the CONV rule is defined

as the reflexive, symmetric and transitive closure of the one step reduction (;β). The PROD rule

describes when a Π expression is a valid type. The PTS contains as many copies of this rule as

there are members in the set R. Through this rule, the set R specializes the PTS to a particular

type system.

Suppose we specialize a PTS to the following specification:

S = (Ω, Kind) A = (Ω, Kind) R = {(Ω,Ω)}

In the PROD rule, both A and B must belong to Ω which means that they are both types. This

implies (from the FUN rule) that we can abstract a term variable over a term expression. Since this

is the only kind of abstractions that we are allowed to construct, essentially we have the simply

typed lambda calculus.

16

Consider the PTS with the following specification:

S = (Ω, Kind) A = (Ω, Kind) R = {(Ω,Ω), (Kind,Ω)}

We will now have two instances of the PROD rule. Specializing to (Kind,Ω) we get

∆ ` A : Kind ∆, X :A ` B : Ω

∆ ` ΠX :A.B : Ω

This means that A is a kind and B is a type; which implies that X is a type variable. In other words,

we now have a polymorphic type. Correspondingly, we now also have polymorphic abstractions in

addition to term abstractions. Therefore, the above specification describes the system F2.

Before closing this section, we would like to show how a PTS can also specify systems with

dependent types. Consider adding the pair (Ω, Kind) to R.

∆ ` A : Ω ∆, X :A ` B ′ : Kind
∆ ` ΠX :A.B ′ : Kind

∆, X :A ` B : B ′ ∆ ` ΠX :A.B ′ : Kind
∆ ` λX :A.B : ΠX :A.B ′

In the PROD rule, B ′ is a kind while A is a type, and X is a term variable. In the FUN rule, since

ΠX : A.B′ is a kind, the abstraction is a function at the type level. But this function expects a

term level expression as an argument. Hence, the value of this type expression depends on a term

expression which implies that we are in the realm of dependent types.

The following table lists some type systems that are instances of a PTS with the above S and

A. They form part of what is popularly called the λ-cube.

System R

simply typed λ-calculus (Ω,Ω)

F2 (Ω,Ω), (Kind,Ω)

Fω (Ω,Ω), (Kind,Ω), (Kind, Kind)

Calculus of constructions (Ω,Ω), (Kind,Ω), (Kind, Kind), (Ω, Kind)

17

Chapter 3

A Language For Runtime Type Analysis

3.1 Introduction

Runtime type analysis is used extensively in various applications and programming situations.

Runtime services such as garbage collection and dynamic linking, applications such as marshalling

and pickling, type-safe persistent programming, and unboxing implementations of polymorphic

languages all analyze types to various degrees at runtime. Most existing compilers use untyped

intermediate languages for compilation; therefore, they support runtime type inspection in a type-

unsafe manner.

This chapter presents a statically typed intermediate language that allows runtime type analysis

to be coded within the language. Therefore, it can be used to support runtime type analysis in

a type-safe manner. The system presented here builds on existing work [HM95] but makes the

following new contributions:

• It supports fully reflexive type analysis at the term level. Consequently, programs can analyze

any runtime value such as function closures and polymorphic data structures.

• It supports fully reflexive type analysis at the type level. Therefore, type transformations

operating on arbitrary types can be encoded in our language.

• We prove that the language is sound and that type reduction is strongly normalizing and

confluent.

• We show a translation into a type erasure semantics.

18

By fully reflexive we mean that type analyzing operations are applicable to the type of any

runtime value in the language. In particular, the language provides both type-level and term-level

constructs for analyzing quantified types such as polymorphic and existential types.

3.2 Background

Harper and Morrisett [HM95] proposed intensional type analysis and presented a type-theoretic

framework for expressing computations that analyze types at runtime. They introduced two explicit

type-analysis operators: one at the term level (typecase) and another at the type level (Typerec);

both use induction over the structure of types. Type-dependent primitive functions use these op-

erators to analyze types and select the appropriate code. For example, a polymorphic subscript

function for arrays might be written as the following pseudo-code:

sub = Λα : Ω. typecase α of

int ⇒ intsub

real⇒ realsub

β ⇒boxedsub [β]

Here sub analyzes the type α of the array elements and returns the appropriate subscript function.

We assume that arrays of type int and real have specialized representations (defined by types, say,

intarray and realarray), and therefore special subscript functions, while all other arrays use the

default boxed representation.

Typing this subscript function is more interesting, because it must have all of the types

intarray → int → int, realarray → int → real, and ∀α : Ω. boxedarray (α) → int → α.

To assign a type to the subscript function, we need a construct at the type level that parallels the

typecase analysis at the term level. In general, this facility is crucial since many type-analyzing

operations like flattening and marshalling transform types in a non-uniform way. The subscript

operation would then be typed as

19

(kinds) κ ::= Ω | κ → κ′

(cons) τ ::= int | τ → τ ′ | α | λα :κ. τ | τ τ ′

| Typerec τ of (τint; τ→)

(types) σ ::= τ | ∀α :κ. σ

Figure 3.1: The type language of Harper and Morrisett

sub : ∀α : Ω. Array (α) → int → α

where Array = λα : Ω. Typecase α of

int ⇒ intarray

real⇒ realarray

β ⇒boxedarray β

The Typecase construct in the above example is a special case of the Typerec construct in [HM95],

which also supports primitive recursion over types.

3.2.1 The problem

The language of Harper and Morrisett splits the type language into two universes, constructors and

types (Figure 3.1), with the constructors containing just the monotypes. Type analysis is restricted

to the constructors; they do not support analysis of types with binding structure (e.g., polymorphic,

or existential types). Therefore, type analyzing primitives that handle polymorphic code blocks,

or closures (since closures are represented as existentials [MMH96]), cannot be written in their

language. The constructor-kind calculus (Figure 3.1) is essentially a simply typed lambda calculus

augmented with the constant Ω. The Typerec operator analyzes only constructors of kind Ω:

int : Ω

→ : Ω → Ω → Ω

The kinds of these constructors’ arguments do not contain any negative occurence (Section 2.1) of

the kind Ω, so int and → can be used to define Ω inductively. The Typerec operator is essentially

20

an iterator over this inductive definition; its reduction rules can be written as:

Typerec int of (τint; τ→) ; τint

Typerec (τ1 → τ2) of (τint; τ→) ;

τ→ τ1 τ2 (Typerec τ1 of (τint; τ→)) (Typerec τ2 of (τint; τ→))

Here the Typerec operator examines the head constructor of the type being analyzed and chooses

a branch accordingly. If the type is int, it reduces to the τint branch. If the type is τ1 → τ2, the

analysis proceeds recursively on the subtypes τ1 and τ2. The Typerec operator then applies the

τ→ branch to the original component types, and to the result of analyzing the components; thus

providing a form of primitive recursion.

Types with binding structure can be constructed using higher-order abstract syntax. For exam-

ple, the polymorphic type constructor ∀∀ can be given the kind (Ω → Ω) → Ω, so that the type

∀α : Ω. α → α is represented as ∀∀ (λα : Ω. α → α). It would seem plausible to define an iterator

with the reduction rule:

Typerec (∀∀ τ) of (τint; τ→; τ∀)

; τ∀ τ (λα :Ω. Typerec τ α of (τint; τ→; τ∀))

However the negative occurence of Ω in the kind of the argument of ∀∀ poses a problem: this iterator

may fail to terminate! Consider the following example, assuming τ = λα :Ω. α and

τ∀ = λβ1 :Ω → Ω. λβ2 :Ω → Ω. β2 (∀∀β1)

the following reduction sequence will go on indefinitely:

Typerec (∀∀τ) of (τint; τ→→; τ∀)

; τ∀ τ (λα :Ω. Typerec τ α of (τint; τ→; τ∀))

; Typerec (τ (∀∀ τ)) of (τint; τ→; τ∀)

; Typerec (∀∀τ) of (τint; τ→→; τ∀)

; . . .

Clearly this makes typechecking Typerec undecidable.

Another serious problem in analyzing quantified types involves both the type-level and the

21

term-level operators. Typed intermediate languages like FLINT [Sha97b] and TIL [Tar96] are

based on the Fω calculus [Gir72, Rey74], which has higher order type constructors. In a quantified

type, say ∃β :κ. τ , the quantified variable β is no longer restricted to the base kind Ω, but can have

an arbitrary kind κ. Consider the term-level typecase in such a scenario:

sub = Λα : Ω. typecase α of

int ⇒ eint

. . .

∃β :κ. τ ⇒ e∃

To do anything useful in the e∃ branch, even to open a package of this type, we need to know the

kind κ. We can get around this by having an infinite number of branches in the typecase, one

for each kind; or by restricting type analysis to a finite set of kinds. Both of these approaches are

clearly impractical. Recent work on typed compilation of ML and Java has shown that both would

require an Fω-like calculus with arbitrarily complex kinds [Sha98, Sha99, LST99].

3.2.2 Requirements for a solution

Before getting to the solution, we will enumerate the properties that it should have.

First, our language must support type analysis in the manner of Harper/Morrisett. That is, we

want to include type analysis primitives that will analyze the entire syntax tree representing a type.

Second, we want the analysis to continue inside the body of a quantified type; handling quantified

types parametrically, or in a uniform way by providing a default case, is insufficient. As we will

see later, many interesting type-directed operations require these two properties. Third, we do not

want to restrict the kind of the (quantified) type variable in a quantified type; we want to analyze

types where the quantification is over a variable of arbitrary kind.

Consider a type-directed pickler that converts a value of arbitrary type into an external rep-

resentation. Suppose we want to pickle a closure. With a type-preserving compiler, the type of

a closure would be represented as an existential with the environment held abstract. Even if the

code is handled uniformly, the function must inspect the type of the environment (which is also the

witness type of the existential package) to pickle it. This shows that at the term level, the analysis

must proceed inside a quantified type. In Section 3.3.1, we show the encoding of a polymorphic

equality function in our calculus; the comparison of existential values requires a similar technique.

22

The reason for not restricting the quantified type variable to a finite set of kinds is twofold.

Restricting type analysis to a finite number of kinds would be ad hoc and there is no way of

satisfactorily predetermining this finite set (this is even more the case when we compile Java into

a typed intermediate language [LST99]). More importantly, if the kind of the bound variable is a

known constant in the corresponding branch of the Typerec construct, then it is easy to generalize

the non-termination example of the previous section and break the decidability of the type system.

3.2.3 The solution

The key problem in analyzing quantified types such as the polymorphic type ∀α : Ω. α → α is to

determine what happens when the iteration reaches the quantified type variable α, or (in the general

case of type variables of higher kinds) a normal form which is an application with a type variable

in the head.

One approach would be to leave the type variable untouched while analyzing the body of the

quantified type. The equational theory of the type language then includes a reduction of the form

(Typerec α of . . .) ; α so that the iterator vanishes when it reaches a type variable. However

this would break the confluence of the type language—the application of λα :Ω. Typerec α of . . .

to τ would reduce in general to different types if we perform the β-reduction step first or eliminate

the iterator first.

Crary and Weirich [CW99] propose another method for solving this problem. Their language

LX allows the representation of terms with bound variables using deBruijn notation and an encod-

ing of natural numbers as types. To analyze quantified types, the iterator carries an environment

mapping indices to types; when the iterator reaches a type variable, it returns the corresponding

type from the environment. This method has several disadvantages.

• It is not fully reflexive, since it does not allow analysis of all quantified types—their analysis

is restricted to types with quantification only over variables of kind Ω.

• The technique is “limited to parametrically polymorphic functions, and cannot account for

functions that perform intensional type analysis” [CW99, Section 4.1]. For example poly-

morphic types such as ∀α :Ω. Typerec α of . . . are not analyzable in their framework.

• The correctness of the structure of a type encoded using deBruijn notation cannot be verified

by the kind language (indices not corresponding to bound variables go undetected, so the

23

environment must provide a default type for them), which does not break the type soundness

but opens the door for programmer mistakes.

To account for non-parametrically polymorphic functions, we must analyze the quantified type

variable. Moreover, we want to have confluence of the type language, so β-reduction should be

transparent to the iterator. This is possible only if the analysis gets suspended when it reaches a

type variable (or an application with a type variable in the head), and resumes when the variable

gets substituted. Therefore, we consider (Typerec α of . . .) to be a normal form. For example, the

result of analyzing the body (α → int) of the polymorphic type ∀α :κ. α → int is

Typerec (α → int) of (τint; τ→; τ∀) ; τ→ α int (Typerec α of (τint; τ→; τ∀)) (τint)

We will formalize the analysis of quantified types while presenting the type reduction rules of the

Typerec construct (Figure 3.6).

The other problem is to analyze quantified types when the quantified variable can be of an

arbitrary kind. In our language the solution is similar at both the type and the term levels: we use

kind polymorphism! We introduce kind abstractions at the type level (Λj. τ) and at the term level

(Λ
+

j. e) to bind the kind of the quantified variable. (See Section 3.3 for details.)

It is important to note that our language provides no facilities for kind analysis. Thus every type

function of polymorphic kind is parametrically polymorphic. Analyzing the kind κ of the bound

variable α in the type ∀∀ (λα :κ. τ) would let us synthesize a type of the same kind, for every kind

κ. This type could then be used to create non-terminating reduction sequences [HM99].

3.3 Analyzing quantified types

In the impredicative Fω calculus, the polymorphic types ∀α :κ. τ can be viewed as generated by an

infinite set of type constructors ∀κ of kind (κ → Ω) → Ω, one for each kind κ. The type ∀α :κ. τ

is then represented as ∀κ (λα : κ. τ). The kinds of constructors that can generate types of kind Ω

24

(kinds) κ ::= Ω | κ → κ′ | j | ∀j. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+

| α | Λj. τ | λα :κ. τ | τ [κ] | τ τ ′

| Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+)

(values) v ::= i | Λ
+

j. e | Λα :κ. e | λx :τ. e | fix x :τ. v

(terms) e ::= v | x | e [κ]
+

| e [τ] | e e′

| typecase[τ] τ ′ of (eint; e→; e∀; e
∀
+)

Figure 3.2: Syntax of the λω
i language

τ → τ ′ ≡ ((→→) τ) τ ′

∀α :κ. τ ≡ (∀∀ [κ]) (λα :κ. τ)

∀
+

j. τ ≡ ∀∀
+

(Λj. τ)

Figure 3.3: Syntactic sugar for λω
i types

then would be

int : Ω

→→ : Ω → Ω → Ω

∀Ω : (Ω → Ω) → Ω

. . .

∀κ : (κ → Ω) → Ω

. . .

We can avoid the infinite number of ∀κ constructors by defining a single constructor ∀∀ of polymor-

phic kind ∀j. (j → Ω) → Ω and then instantiating it to a specific kind before forming polymorphic

types. More importantly, this technique also removes the negative occurrence of Ω from the kind

of the argument of the constructor ∀Ω. Hence we extend Fω with polymorphic kinds and add a type

constant ∀∀ of kind ∀j. (j → Ω) → Ω to the type language. The polymorphic type ∀α :κ. τ is now

represented as ∀∀ [κ] (λα :κ. τ).

We define the syntax of the λω
i calculus in Figure 3.2, and some derived forms of types in

Figure 3.3. The static semantics of λω
i is shown in Figures 3.4, 3.5 and 3.6 as a set of rules for

25

Kind formation E ` κ

E ` Ω

j ∈ E

E ` j

E ` κ E ` κ′

E ` κ → κ′

E , j ` κ

E ` ∀j. κ

Type environment formation E ` ∆

E ` ε

E ` ∆ E ` κ

E ` ∆, α :κ

Type formation E ;∆ ` τ : κ

E ` ∆

E ;∆ ` int : Ω
E ;∆ ` (→→) : Ω → Ω → Ω
E ;∆ ` ∀∀ : ∀j. (j → Ω) → Ω

E ;∆ ` ∀∀
+

: (∀j.Ω) → Ω

E ` ∆ α :κ in ∆

E ;∆ ` α : κ

E , j;∆ ` τ : κ

E ;∆ ` Λj. τ : ∀j. κ

E ;∆ ` τ : ∀j. κ E ` κ′

E ;∆ ` τ [κ′] : [κ′/j]κ

E ;∆, α :κ ` τ : κ′

E ;∆ ` λα :κ. τ : κ → κ′

E ;∆ ` τ : κ′ → κ E ;∆ ` τ ′ : κ′

E ;∆ ` τ τ ′ : κ

E ;∆ ` τ : Ω
E ;∆ ` τint : κ
E ;∆ ` τ→ : Ω → Ω → κ → κ → κ
E ;∆ ` τ∀ : ∀j. (j → Ω) → (j → κ) → κ
E ;∆ ` τ

∀
+ : (∀j.Ω) → (∀j. κ) → κ

E ;∆ ` Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+) : κ

Figure 3.4: Type formation rules of λω
i

26

Term environment formation E ;∆ ` Γ

E ` ∆

E ;∆ ` ε

E ;∆ ` Γ E ;∆ ` τ : Ω

E ;∆ ` Γ, x :τ

Term formation E ;∆; Γ ` e : τ

E ;∆; Γ ` e : τ E ;∆ ` τ ; τ ′ : Ω

E ;∆; Γ ` e : τ ′

E ;∆ ` Γ

E ;∆; Γ ` i : int

E ;∆ ` Γ x :τ in Γ

E ;∆; Γ ` x : τ

E , j;∆; Γ ` v : τ

E ;∆; Γ ` Λ
+

j. v : ∀
+

j. τ

E ;∆, α :κ; Γ ` v : τ

E ;∆; Γ ` Λα :κ. v : ∀α :κ. τ

E ;∆; Γ, x :τ ` e : τ ′

E ;∆; Γ ` λx :τ. e : τ → τ ′

E ;∆; Γ, x :τ ` v : τ

τ = ∀
+

j1 . . . jn.∀α1 :κ1 . . . αm :κm :τ1 → τ2.
n ≥ 0,m ≥ 0

E ;∆; Γ ` fix x :τ. v : τ

E ;∆; Γ ` e : ∀∀
+

τ E ` κ

E ;∆; Γ ` e [κ]
+

: τ [κ]

E ;∆; Γ ` e : ∀∀ [κ] τ E ;∆ ` τ ′ : κ

E ;∆; Γ ` e [τ ′] : τ τ ′

E ;∆; Γ ` e : τ ′ → τ E ;∆; Γ ` e′ : τ ′

E ;∆; Γ ` e e′ : τ

E ;∆ ` τ : Ω → Ω
E ;∆ ` τ ′ : Ω
E ;∆; Γ ` eint : τ int
E ;∆; Γ ` e→ : ∀α :Ω.∀α′ :Ω. τ (α → α′)

E ;∆; Γ ` e∀ : ∀
+

j.∀α :j → Ω. τ (∀∀ [j]α)

E ;∆; Γ ` e
∀
+ : ∀α : (∀j.Ω). τ (∀∀

+

α)

E ;∆; Γ ` typecase[τ] τ ′ of (eint; e→; e∀; e
∀
+) : τ τ ′

Figure 3.5: Term formation rules of λω
i

27

Type reduction E ;∆ ` τ1 ; τ2 : κ

E ;∆, α :κ′ ` τ : κ E ;∆ ` τ ′ : κ′

E ;∆ ` (λα :κ′. τ) τ ′
; [τ ′/α]τ : κ

E , j;∆ ` τ : ∀j. κ E ` κ′

E ;∆ ` (Λj. τ) [κ′] ; [κ′/j]τ : [κ′/j]κ

E ;∆ ` τ : κ → κ′ α /∈ ftv(τ)

E ;∆ ` λα :κ. τ α ; τ : κ → κ′

E ;∆ ` τ : ∀j ′. κ j /∈ fkv(τ)

E ;∆ ` Λj. τ [j] ; τ : ∀j ′. κ

E ;∆ ` Typerec[κ] int of (τint; τ→; τ∀; τ
∀
+) : κ

E ;∆ ` Typerec[κ] int of (τint; τ→; τ∀; τ
∀
+) ; τint : κ

E ;∆ ` Typerec[κ] τ1 of (τint; τ→; τ∀; τ
∀
+) ; τ ′

1 : κ
E ;∆ ` Typerec[κ] τ2 of (τint; τ→; τ∀; τ

∀
+) ; τ ′

2 : κ

E ;∆ ` Typerec[κ] ((→→) τ1 τ2) of (τint; τ→; τ∀; τ
∀
+) ; τ→ τ1 τ2 τ ′

1 τ ′
2 : κ

E ;∆, α :κ′ ` Typerec[κ] (τ α) of (τint; τ→; τ∀; τ
∀
+) ; τ ′ : κ

E ;∆ ` Typerec[κ] (∀∀ [κ′] τ) of (τint; τ→; τ∀; τ
∀
+)

; τ∀ [κ′] τ (λα :κ′. τ ′) : κ

E , j;∆ ` Typerec[κ] (τ [j]) of (τint; τ→; τ∀; τ
∀
+) ; τ ′ : κ

E ;∆ ` Typerec[κ] (∀∀
+

τ) of (τint; τ→; τ∀; τ
∀
+) ; τ

∀
+ τ (Λj. τ ′) : κ

Figure 3.6: λω
i type reduction rules

28

judgements using the following environments:

kind environment E ::= ε | E , j

type environment ∆ ::= ε | ∆, α :κ

term environment Γ ::= ε | Γ, x :τ

The Typerec operator analyzes polymorphic types with bound variables of arbitrary kind. The

corresponding branch of the operator must bind the kind of the quantified type variable; for that

purpose the language provides kind abstraction (Λj. τ) and kind application (τ [κ]) at the type level.

The formation rules for these constructs, excerpted from Figure 3.4, are

E , j;∆ ` τ : κ

E ;∆ ` Λj. τ : ∀j. κ

E ;∆ ` τ : ∀j. κ E ` κ′

E ;∆ ` τ [κ′] : [κ′/j]κ

Similarly, while analyzing a polymorphic type, the term-level construct typecase must bind the

kind of the quantified type variable. Therefore, we introduce kind abstraction (Λ
+

j. e) and kind ap-

plication (e [κ]
+

) at the term level. To type the term-level kind abstraction, we need a type construct

∀
+

j. τ that binds the kind variable j in the type τ . The formation rules are shown below.

E , j;∆; Γ ` v : τ

E ;∆; Γ ` Λ
+

j. v : ∀
+

j. τ

E ;∆; Γ ` e : ∀
+

j. τ E ` κ

E ;∆; Γ ` e [κ]
+

: [κ/j]τ

However, since our goal is fully reflexive type analysis, we need to analyze kind-polymorphic types

as well. As with polymorphic types, we can represent the type ∀
+

j. τ as the application of a type

constructor ∀∀
+

of kind (∀j.Ω) → Ω to a kind abstraction Λj. τ . Thus the kinds of the constructors

for types of kind Ω are

int : Ω

→→ : Ω → Ω → Ω

∀∀ : ∀j. (j → Ω) → Ω

∀∀
+

: (∀j.Ω) → Ω

None of these constructors’ arguments have the kind Ω in a negative position; hence the kind Ω

can now be defined inductively in terms of these constructors. The Typerec construct is then the

iterator over this inductive definition. The formation rule for Typerec follows naturally from the

type reduction rules (Figure 3.6). Depending on the head constructor of the type being analyzed,

29

Typerec chooses one of the branches. At the int type, it returns the τ int branch. At the function

type τ → τ ′, it applies the τ→ branch to the components τ and τ ′ and to the result of the iteration

over τ and τ ′.

When analyzing a polymorphic type, the reduction rule is

Typerec[κ] (∀α :κ′. τ) of (τint; τ→; τ∀; τ
∀
+) ;

τ∀ [κ′] (λα :κ′. τ) (λα :κ′. Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+))

Thus the ∀-branch of Typerec receives as arguments the kind of the bound variable, the abstraction

representing the quantified type, and a type function encapsulating the result of the iteration on the

body of the quantified type. Since τ∀ must be parametric in the kind κ′ (there are no facilities

for kind analysis in the language), it can only apply its second and third arguments to locally

introduced type variables of kind κ′. We believe this restriction, which is crucial for preserving

strong normalization of the type language, is quite reasonable in practice. For instance τ∀ can yield

a quantified type based on the result of the iteration.

The reduction rule for analyzing a kind-polymorphic type is

Typerec[κ] (∀
+

j. τ) of (τint; τ→; τ∀; τ
∀
+) ;

τ
∀
+ (Λj. τ) (Λj. Typerec[κ] τ of (τint; τ→; τ∀; τ

∀
+))

The arguments of the τ
∀
+ are the kind abstraction underlying the kind-polymorphic type and a kind

abstraction encapsulating the result of the iteration on the body of the quantified type.

At the term level type analysis is carried out by the typecase construct; however, it is not

iterative since the term language has a recursion primitive, fix. The e∀ branch of typecase binds

the kind and the type abstraction carried by the type constructor ∀∀, while the e
∀
+ branch binds the

kind abstraction carried by ∀∀
+

.

typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e
∀
+) ; e∀ [κ]

+

[τ ′]

typecase[τ] (∀∀
+

τ ′) of (eint; e→; e∀; e
∀
+) ; e

∀
+ [τ ′]

The operational semantics of the term language of λω
i is presented in Figure 3.7.

The language λω
i has the following important properties. The proofs are given in Appendix A.

Theorem 3.3.1 Reduction of well-formed types is strongly normalizing.

30

(λx :τ. e) v ; [v/x]e

(Λα :κ. v)[τ] ; [τ/α]v

(Λ
+

j. v)[κ]
+

; [κ/j]v

(fix x :τ. v) v′ ; ([fix x :τ. v/x]v) v′

(fix x :τ. v)[τ] ; ([fix x :τ. v/x]v)[τ]

(fix x :τ. v)[κ]
+

; ([fix x :τ. v/x]v)[κ]
+

e ; e′

e e1 ; e′ e1

e ; e′

v e ; v e′

e ; e′

e[τ] ; e′[τ]

e ; e′

e[κ]
+

; e′[κ]
+

typecase[τ] int of (eint; e→; e∀; e
∀
+) ; eint

typecase[τ] (τ1 → τ2) of (eint; e→; e∀; e
∀
+) ; e→ [τ1] [τ2]

typecase[τ] (∀∀ [κ] τ) of (eint; e→; e∀; e
∀
+) ; e∀ [κ]

+

[τ]

typecase[τ] (∀∀
+

τ) of (eint; e→; e∀; e
∀
+) ; e

∀
+ [τ]

ε; ε ` τ ′
;

∗ ν ′ :Ω ν ′ is a normal form

typecase[τ] τ ′ of (eint; e→; e∀; e
∀
+) ;

typecase[τ] ν ′ of (eint; e→; e∀; e
∀
+)

Figure 3.7: Operational semantics of λω
i

Theorem 3.3.2 Reduction of well-formed types is confluent.

Theorem 3.3.3 If ε; ε; ε ` e :τ then either e is a value or there exists an e′ such that e ; e′.

3.3.1 Example: Polymorphic equality

For ease of presentation, we will use ML-style pattern matching syntax to define a type involving

Typerec. Instead of

τ = λα :Ω. Typerec[κ] α of (τint; τ→; τ∀; τ
∀
+)

where τ→ = λα1 :Ω. λα2 :Ω. λα′
1 :κ. λα′

2 :κ. τ ′
→

τ∀ = Λj. λα :j → Ω. λα′ :j → κ. τ ′
∀

τ
∀
+ = λα : (∀j.Ω). λα′ : (∀j. κ). τ ′

∀
+

31

We will write

τ (int) = τint

τ (α1 → α2) = [τ (α1), τ (α2)/α
′
1, α

′
2]τ

′
→

τ (∀∀ [j]α1) = [λα :j. τ (α1 α)/α′]τ ′
∀

τ (∀∀
+

α1) = [Λj. τ (α1 [j])/α′]τ ′

∀
+

To illustrate the type-level analysis we will use the Typerec operator to define the class of types

admitting equality comparisons [HM95]. To make the example non-trivial we extend the language

with a product type constructor ×× of the same kind as →→, and with existential types with type

constructor ∃∃ of kind identical to that of ∀∀. We will write ∃α : κ. τ for ∃∃ [κ] (λα : κ. τ). Corre-

spondingly we extend Typerec with a product branch τ× and an existential branch τ∃ which behave

in exactly the same way as the τ→ branch and the τ∀ branch respectively. We will use Bool instead

of int.

A polymorphic function eq comparing two objects for equality is not defined on values of

function or polymorphic types. We will enforce this restriction statically by defining a type operator

Eq of kind Ω → Ω, which maps function and polymorphic types to the type Void ≡ ∀α : Ω. α (a

type with no values), and require the arguments of eq to be of type Eq τ for some type τ . Thus,

given any type τ , the function Eq serves to verify that a non-equality type does not occur inside τ .

Eq (Bool) = Bool

Eq (α1 → α2) = Void

Eq (α1×α2) = Eq (α1)×Eq (α2)

Eq (∀∀ [j]α) = Void

Eq (∀∀
+

α) = Void

Eq (∃∃ [j]α) = ∃∃ [j] (λα1 :j. Eq (α α1))

The property is enforced even on hidden types in an existentially typed package by the reduction

rule for Typerec which suspends its action on normal forms with a type variable at the head. For

instance a term e can only be given a type Eq (∃α : Ω. α × α) = ∃α : Ω. Eq α × Eq α if it can be

shown that e is a pair of terms of type Eq τ for some τ , i.e., terms of equality type.

The term-level analysis of quantified types is illustrated by the polymorphic equality function.

The term constructs for introduction and elimination of existential types have the usual formation

32

letrec
heq :∀α :Ω.∀α′ :Ω. Eq α → Eq α′ → Bool
= Λα :Ω.Λα′ :Ω.

typecase[λγ :Ω. Eq γ → Eq α′ → Bool] α of
Bool ⇒ λx :Bool.

typecase[λγ :Ω. Eq γ → Bool] α′ of
Bool ⇒ λy :Bool. primEqBool x y
. . . ⇒ . . . false

β1×β2 ⇒ λx :Eq β1×Eq β2.
typecase[λγ :Ω. Eq γ → Bool] α′ of

β′
1×β′

2 ⇒ λy :Eq β′
1×Eq β′

2.
heq [β1] [β

′
1] (π1(x)) (π1(y)) and

heq [β2] [β
′
2] (π2(x)) (π2(y))

. . . ⇒ . . . false
∃∃ [j]β ⇒ λx : (∃β1 :j. Eq (β β1)).

typecase[λγ :Ω. Eq γ → Bool] α′ of
∃∃ [j′]β′ ⇒ λy : (∃β′

1 :j′. Eq (β′ β′
1)).

open x as 〈β1 :j, xc :Eq (β β1)〉 in
open y as 〈β ′

1 :j′, yc :Eq (β ′ β′
1)〉 in

heq [β β1] [β
′ β′

1] xc yc
. . . ⇒ . . . false

. . .
in let eq = Λα :Ω. λx :Eq α. λy :Eq α. heq [α] [α] x y
in . . .

Figure 3.8: Polymorphic equality in λω
i

rules:

E ;∆; Γ ` e : (λα :κ. τ) τ ′

E ;∆; Γ ` 〈α :κ = τ ′, e :τ〉 : ∃α :κ. τ

E ;∆; Γ ` e : ∃∃ [κ] τ E ;∆ ` τ ′ : Ω

E ;∆, α :κ; Γ, x :τ α ` e′ : τ ′

E ;∆; Γ ` open e as 〈α :κ, x :τ α〉 in e′ : τ ′

The polymorphic equality function eq is defined in Figure 3.8 (the letrec construct can be derived

from the fix). The domain type of the function is restricted to types of the form Eq τ to ensure that

only values of types admitting equality are compared.

Consider the two packages v = 〈α : Ω = Bool, false : α〉 and v ′ = 〈α : Ω = Bool×

Bool, 〈true, true〉 :α〉. Both are of type ∃α : Ω. α, which makes the invocation eq [∃α : Ω. α] v v ′

legal. But when the packages are open, the types of the packaged values may (as in this example)

turn out to be different. Therefore we need the auxiliary function heq to compare values of possibly

33

different types by comparing their types first. The function corresponds to a matrix on the types of

the two arguments, where the diagonal elements compare recursively the constituent values, while

off-diagonal elements return false and are abbreviated in the figure.

The only interesting case is that of values of an existential type. Opening the packages provides

access to the witness types β1 and β′
1 of the arguments x and y. As shown in the typing rules, the

actual types of the packaged values, x and y, are obtained by applying the corresponding type

functions β and β ′ to the respective witness types. This yields a perhaps unexpected semantics of

equality. Consider this invocation of the eq function which evaluates to true:

eq [∃α :Ω. α]

〈α :Ω = ∃β :Ω. β, 〈β :Ω = Bool, true :Eq β〉 :Eq α〉

〈α :Ω = ∃β :Ω → Ω. β Bool, 〈β :Ω → Ω = λγ :Ω. γ, true :Eq (β Bool)〉 :Eq α〉

At runtime, after the two packages are opened, the call to heq is

heq [∃β :Ω. β] [∃β :Ω → Ω. β Bool]

〈β :Ω = Bool, true :Eq β〉

〈β :Ω → Ω = λγ :Ω. γ, true :Eq (β Bool)〉

This term evaluates to true even though the type arguments are different. The reason is that what

is being compared are the actual types of the values before hiding their witness types. Tracing the

reduction of this term to the recursive call heq [β β1] [β
′ β′

1] xc yc we find out it is instantiated to

heq [(λβ :Ω. β) Bool] [(λβ :Ω → Ω. β Bool) (λγ :Ω. γ)] true true

which reduces to heq [Bool] [Bool] true true and thus to true.

This result is justified since the above two packages of type ∃α : Ω. α will indeed behave

identically in all contexts. An informal argument in support of this claim is that the most any

context could do with such a package is open it and inspect the type of its value using typecase,

but this will only provide access to a type function τ representing the inner existential type. Since

the kind κ of the domain of τ is unknown statically, the only non-trivial operation on τ is its

application to the witness type of the package, which is the only available type of kind κ. As we

saw above, this operation will produce the same result (namely Bool) in both cases. Thus, since the

34

two arguments to eq are indistinguishable by λω
i contexts, the above result is perfectly sensible.

3.3.2 Discussion

Before moving on, it would be worthwhile to analyze the λω
i language. Specifically, what is the

price in terms of complexity of the type theory that can be attributed to the requirements that were

imposed?

In Section 3.2.2 we saw that an iterative type operator is essential to typechecking many type-

directed operations. Even when restricted to compiling ML we still have to consider analysis of

polymorphic types of the form ∀α :Ω. τ , and their ad hoc inclusion in kind Ω makes the latter non-

inductive. Therefore, even for this simple case, we need kind polymorphism in an essential way to

handle the negative occurrence of Ω in the domain of ∀∀. In turn, kind polymorphism allows us to

analyze at the type level types quantified over any kind; hence the extra expressiveness comes for

free. Moreover, adding kind polymorphism does not entail any heavy type-theoretic machinery—

the kind and type language of λω
i is a minor extension (with primitive recursion) of the well-studied

calculus F2; we use the basic techniques developed for F2 [GLT89] to prove properties of our type

language.

The kind polymorphism of λω
i is parametric, i.e., kind analysis is not possible. This property

prevents in particular the construction of non-terminating types based on variants of Girard’s J

operator using a kind-comparing operator [HM99].

For analysis of quantified types at the term level we have the new construct Λ
+

j. e. This does not

result in any additional complexity at the type level—although we introduce a new type constructor

∀∀
+

, the kind of this construct is defined completely by the original kind calculus, and the kind

and type calculus is still essentially F2. The term calculus becomes an extension of Girard’s λU

calculus [Gir72], hence it is not normalizing; however it already includes the general recursion

construct fix, necessary in a realistic programming language.

Restricting the type analysis at the term level to a finite set of kinds would help avoid the

term-level kind abstraction. However, even in this case, we would still need kind abstraction to

implement a type erasure semantics. On the other hand, having kind abstraction at the term level

of λω
i adds no complications to the transition to type erasure semantics.

35

(kinds) κ ::= Ω | T | κ → κ′ | j | ∀j. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+

| R
| Tint | T→ | T∀ | T

∀
+ | T

R

| α | Λj. τ | τ [κ] | λα :κ. τ | τ τ ′

| Tagrec[κ] τ of (τint; τ→; τ∀; τ
∀
+; τ

R
)

(values) v ::= i | Λ
+

j. v | Λα :κ. v | λx :τ. e | fix x :τ. v
| Rint | R→ | R→ [τ] | R→ [τ] v
| R→ [τ] v [τ ′] | R→ [τ] v [τ ′] v′

| R∀ | R∀ [κ]
+

| R∀ [κ]
+

[τ] | R∀ [κ]
+

[τ] [τ ′]

| R∀ [κ]
+

[τ] [τ ′] v
| R

∀
+ | R

∀
+ [τ] | R

∀
+ [τ] v

| R
R

| R
R

[τ] | R
R

[τ] v

(terms) e ::= v | x | e [κ]
+

| e [τ] | e e′

| repcase[τ] e of (eint; e→; e∀; e
∀
+; eR)

Figure 3.9: Syntax of the λω
R language

3.4 Type erasure semantics

The main motivation for developing type systems for runtime type analysis is to use them in a type-

based certifying compiler. Crary et al. [CWM98] proposed a framework that helps in propagating

types through a type-preserving compiler. From an implementor’s point of view, this framework

(hereafter referred to as the CWM framework) seems to simplify some phases in a type preserving

compiler; most notably, typed closure conversion [MMH96]. The main idea is to construct and

pass terms representing types, instead of the types themselves, at runtime. This allows the use of

pre-existing term operations to deal with runtime type information. Semantically, singleton types

are used to connect a type to its representation.

However, the framework proposed in [CWM98] supports the analysis of inductively defined

types only; it does not support the analysis of quantified types. In this section, we show how

λω
i can be translated into a type-erasure language. We call this language λω

R. Figure 3.9 shows the

syntax of the λω
R language. To make the presentation simpler, we will describe many of the features

in the context of the translation from λω
i .

36

3.4.1 The analyzable components in λω
R

In λω
R, the type calculus is split into types and tags: While types classify terms, tags are used for

analysis. We extend the kind calculus to distinguish between the two. The kind Ω includes the

set of types, while the kind T includes the set of tags. For every constructor that generates a type

of kind Ω, we have a corresponding constructor that generates a tag of kind T; for example, int

corresponds to Tint and →→ corresponds to T→. The type analysis construct at the type level is

Tagrec and operates only on tags.

At the term level, we add representations for tags. The term level operator (now called repcase)

analyzes these representations. All the primitive tags have corresponding term level representa-

tions; for example, Tint is represented by Rint. Given any tag, the corresponding term representa-

tion can be constructed inductively.

3.4.2 Typing term representations

The type calculus in λω
R includes a unary type constructor R of kind T → Ω to type the term

level representations. Given a tag τ (of kind T), the term representation of τ has the type R τ .

For example, Rint has the type RTint. Semantically, R τ is interpreted as a singleton type that is

inhabited only by the term representation of τ [CWM98].

If the tag τ is of a function kind κ → κ′, then the term representation of τ is a polymorphic

function from representations to representations:

Rκ→κ′ (τ) ≡ ∀β :κ.Rκ (β) → Rκ′ (τ β)

However a problem arises if τ is of a variable kind j. The only way of knowing the type of its

representation Rj is to construct it when j is instantiated. Hence programs translated into λω
R must

be such that for every kind variable j in the program, a corresponding type variable αj , representing

the type of the term representation for a tag of kind j, is also available.

This is why we need to go beyond the CWM framework. Their source language does not in-

clude kind polymorphism; therefore, they can compute the type of all the representations statically.

This is also the reason that we need to introduce a new set of primitive type constructors and split

the type calculus into types and tags. Consider the ∀∀ and the ∀∀
+

type constructors in λω
i . The ∀∀

constructor binds a kind κ. When it is translated into λω
R, the translated constructor must also, in

37

|Ω| = T |κ → κ′| = |κ| → |κ′|
|j| = j |∀j. κ| = ∀j. (j → Ω) → |κ|

Figure 3.10: Translation of λω
i kinds to λω

R kinds

addition, bind a type of kind κ → Ω. Therefore, we need a new constructor T∀. Similarly, the

∀∀
+

constructor binds a type function of kind ∀j.Ω. When it is translated into λω
R, the translated

constructor must bind a type function of kind |∀j.Ω|. (See Figure 3.10.) Therefore, we introduce

a new constructor T
∀
+. Furthermore, if we only have Ω as the primitive kind, it will no longer be

inductive. (The inductive definition would break for T
∀
+). Therefore, we introduce a new kind T

(for tags), and allow analysis only over tags.

This leads us to the kind translation from λω
i to λω

R (Figure 3.10). Since the analyzable compo-

nent of λω
R is of kind T, the λω

i kind Ω is mapped to T. The polymorphic kind ∀j. κ is translated to

∀j. (j → Ω) → |κ|. Note that every kind variable j must now have a corresponding type variable

αj . Given a tag of variable kind j, the type of its term representation is given by αj . Since the type

of a term is always of kind Ω, the variable αj has the kind j → Ω.

Lemma 3.4.1 |[κ′/j]κ| = [|κ′|/j]|κ|

Proof By induction over the structure of κ. 2

Figure 3.11 shows the function Rκ. Suppose τ is a λω
i type of kind κ and |τ | is its translation

into λω
R. The function Rκ gives the type of the term representation of |τ |. Since this function is

used by the translation from λω
i to λω

R, it is defined by induction on λω
i kinds.

Lemma 3.4.2 [|κ′|, Rκ′/j′, αj′](Rκ) = R[κ′/j′]κ

Proof By induction over the structure of κ. 2

The formation rules for tags are displayed in Figure 3.12. Since the translation maps λω
i type

constructors to these tags, a type constructor of kind κ is mapped to a corresponding tag of kind

|κ|. Thus, while the ∀∀ type constructor has the kind ∀j. (j → Ω) → Ω, the T∀ tag has the kind

∀j. (j → Ω) → (j → T) → T.

Figure 3.13 also shows the type of the term representation of the primitive type construc-

tors. These types agree with the definition of the function Rκ; for example, the type of R→ is

RΩ→Ω→Ω (T→). The term formation rules in Figure 3.13 use a tag interpretation function F that is

38

E ` ∆

E ;∆ ` RΩ ≡ R : T → Ω

E ;∆ ` αj : j → Ω

E ;∆ ` Rj ≡ αj : j → Ω

E ;∆ ` Rκ ≡ τ : |κ| → Ω E ;∆ ` Rκ′ ≡ τ ′ : |κ′| → Ω

E ;∆ ` Rκ→κ′ ≡ λα : |κ → κ′|.∀β : |κ|. τ β → τ ′ (α β) : |κ → κ′| → Ω

E , j;∆, αj :j → Ω ` Rκ ≡ τ : |κ| → Ω

E ;∆ ` R∀j. κ ≡ λα : |∀j. κ|.∀
+

j.∀αj :j → Ω. τ (α [j]αj) : |∀j. κ| → Ω

Figure 3.11: Types of representations at higher kinds

explained in Section 3.4.4.

3.4.3 Tag analysis in λω
R

We now consider the tag analysis constructs in more detail. The term level analysis is done by

the repcase construct. Figure 3.13 and Figure 3.14 show its static and dynamic semantics respec-

tively. The expression being analyzed must be of type R τ ; therefore, repcase always analyzes

term representation of tags. Operationally, it examines the representation at the head, selects the

corresponding branch, and passes the components of the representation to the selected branch.

Thus the rule for analyzing the representation of a polymorphic type is

repcase[τ] R∀ [κ]
+

[τκ] [τ ′] (e′) of (eint; e→; e∀; e
∀
+; eR; eµ; epl) ; e∀ [κ]

+

[τκ] [τ ′] (e′)

Type level analysis is performed by the Tagrec construct. The language must be fully reflexive, so

Tagrec includes an additional branch for the new type constructor T
R

.

Figure 3.15 shows the reduction rules for the Tagrec, which are similar to the reduction rules

for the source language Typerec: given a tag, it calls itself recursively on the components of the

tag and then passes the result of the recursive calls, along with the original components, to the

corresponding branch. Thus the reduction rule for the function tag is

Tagrec[κ] (T→ τ τ ′) of (τint; τ→; τ∀; τ
∀
+; τ

R
) ;

τ→ τ τ ′ (Tagrec[κ] τ of (τint; τ→; τ∀; τ
∀
+; τ

R
)) (Tagrec[κ] τ ′ of (τint; τ→; τ∀; τ

∀
+; τ

R
))

39

Kind formation E ` κ

E ` T

Type formation E ;∆ ` τ : κ

E ` ∆

E ;∆ ` R : T → Ω
E ;∆ ` Tint : T
E ;∆ ` T→ : T → T → T
E ;∆ ` T∀ : ∀j. (j → Ω) → (j → T) → T
E ;∆ ` T

∀
+ : (∀j. (j → Ω) → T) → T

E ;∆ ` T
R

: T → T

E ;∆ ` τ : T
E ;∆ ` τint : κ
E ;∆ ` τ→ : T → T → κ → κ → κ
E ;∆ ` τ∀ : ∀j. (j → Ω) → (j → T) → (j → κ) → κ
E ;∆ ` τ

∀
+ : (∀j. (j → Ω) → T) → (∀j. (j → Ω) → κ) → κ

E ;∆ ` τ
R

: T → κ → κ

E ;∆ ` Tagrec[κ] τ of (τint; τ→; τ∀; τ
∀
+; τ

R
) : κ

Figure 3.12: Formation rules for the new type constructs in λω
R

40

Term formation E ;∆; Γ ` e : τ

E ;∆ ` Γ

E ;∆; Γ ` Rint : R Tint

E ;∆; Γ ` R→ : RΩ→Ω→Ω (T→)
E ;∆; Γ ` R∀ : R∀j. (j→Ω)→Ω (T∀)

E ;∆; Γ ` R
∀
+ : R(∀j. Ω)→Ω (T

∀
+)

E ;∆; Γ ` R
R

: RΩ→Ω (T
R
)

E ;∆ ` τ : T → Ω
E ;∆; Γ ` e : R τ ′

E ;∆; Γ ` eint : τ Tint

E ;∆; Γ ` e→ : ∀α1 :T. R α1 → ∀α2 :T. R α2 → τ (T→ α1 α2)

E ;∆; Γ ` e∀ : ∀
+

j.∀αj :j → Ω.
∀α :j → T. Rj→Ω (α) → τ (T∀ [j]αj α)

E ;∆; Γ ` e
∀
+ : ∀α :∀j. (j → Ω) → T. R∀j.Ω (α) → τ (T

∀
+ α)

E ;∆; Γ ` e
R

: ∀α :T. R α → τ (T
R

α)

E ;∆; Γ ` repcase[τ] e of (eint; e→; e∀; e
∀
+; eR) : τ τ ′

Figure 3.13: Formation rules for the new term constructs in λω
R

Similarly, the reduction for the polymorphic tag is

Tagrec[κ] (T∀ [κ] τκ τ) of (τint; τ→; τ∀; τ
∀
+; τ

R
) ;

τ∀ [κ] τκ τ (λα :κ. Tagrec[κ] (τ α) of (τint; τ→; τ∀; τ
∀
+; τ

R
))

3.4.4 The tag interpretation function

Programs in λω
R pass tags at runtime since only tags can be analyzed. However, abstractions and the

fixpoint operator must still carry type information for type checking. Therefore, these annotations

must use a function mapping tags to types. Since these annotations are always of kind Ω, this

function must map tags of kind T to types of kind Ω. This implies that we can use an iterator over

41

(λx :τ. e) v ; [v/x]e

(fix x :τ. v) v′ ; ([fix x :τ. v/x]v) v′

(Λα :κ. v) [τ] ; [τ/α]v

(fix x :τ. v) [τ] ; ([fix x :τ. v/x]v) [τ]

(Λ
+

j. v) [κ]
+

; [κ/j]v

(fix x :τ. v) [κ]
+

; ([fix x :τ. v/x]v) [κ]
+

e ; e1

e e′ ; e1 e′

e ; e1

v e ; v e1

e ; e1

e [τ] ; e1 [τ]

e ; e1

e [κ]
+

; e1 [κ]
+

repcase[τ] Rint of (eint; e→; e∀; e
∀
+; eR) ; eint

repcase[τ] R
∀
+ [τ ′] (e′) of (eint; e→; e∀; e

∀
+; eR) ; e

∀
+ [τ ′] (e′)

repcase[τ] R
R

[τ ′] (e′) of (eint; e→; e∀; e
∀
+; eR) ; e

R
[τ ′] (e′)

repcase[τ] R→ [τ1] (e1) [τ2] (e2) of (eint; e→; e∀; e
∀
+; eR; eµ; epl) ; e→ [τ1] (e1) [τ2] (e2)

repcase[τ] R∀ [κ]
+

[τκ] [τ ′] (e′) of (eint; e→; e∀; e
∀
+; eR; eµ; epl) ; e∀ [κ]

+

[τκ] [τ ′] (e′)

e ; e′

repcase[τ] e of (eint; e→; e∀; e
∀
+; eR) ; repcase[τ] e′ of (eint; e→; e∀; e

∀
+; eR)

Figure 3.14: Term reduction rules of λω
R

42

E ;∆ ` Tagrec[κ] Tint of (τint; τ→; τ∀; τ
∀
+; τ

R
) : κ

E ;∆ ` Tagrec[κ] Tint of (τint; τ→; τ∀; τ
∀
+; τ

R
) ; τint : κ

E ;∆ ` Tagrec[κ] τ1 of (τint; τ→; τ∀; τ
∀
+; τ

R
) ; τ ′

1 : κ
E ;∆ ` Tagrec[κ] τ2 of (τint; τ→; τ∀; τ

∀
+; τ

R
) ; τ ′

2 : κ

E ;∆ ` Tagrec[κ] (T→ τ1 τ2) of (τint; τ→; τ∀; τ
∀
+; τ

R
) ; τ→ τ1 τ2 τ ′

1 τ ′
2 : κ

E ;∆, α :κ′ ` Tagrec[κ] (τ2 α) of (τint; τ→; τ∀; τ
∀
+; τ

R
) ; τ ′ : κ

E ;∆ ` Tagrec[κ] (T∀ [κ′] τ1 τ2) of (τint; τ→; τ∀; τ
∀
+; τ

R
) ; τ∀ [κ′] τ1 τ2 (λα :κ′. τ ′) : κ

E , j;∆, αj :j → Ω ` Tagrec[κ] (τ [j]αj) of (τint; τ→; τ∀; τ
∀
+; τ

R
) ; τ ′ : κ

E ;∆ ` Tagrec[κ] (T
∀
+ τ) of (τint; τ→; τ∀; τ

∀
+; τ

R
) ; τ

∀
+ τ (Λj. λαj :j → Ω. τ ′) : κ

E ;∆ ` Tagrec[κ] τ of (τint; τ→; τ∀; τ
∀
+; τ

R
) ; τ ′ : κ

E ;∆ ` Tagrec[κ] (T
R
τ) of (τint; τ→; τ∀; τ

∀
+; τ

R
) ; τ

R
τ τ ′ : κ

Figure 3.15: Reduction rules for λω
R Typerec

tags to define the function as follows (using the pattern matching syntax as before):

F (Tint) = int

F (T→ α1 α2) = F (α1) → F (α2)

F (T∀ [j]αj α) = ∀β :j. αj β → F (α β)

F (T
∀
+ α) = ∀j.∀αj :j → Ω. F (α [j]αj)

F (T
R

α) = int

The function F takes a type tree in the T kind space and converts it into the corresponding tree in

the Ω kind space. Therefore, it converts the tag Tint to the type int. For the other tags, it recursively

converts the components into the corresponding types. The branch for the T
R

tag is bogus but of

the correct kind. The language λω
R is only intended as a target for translation from λω

i —the only

interesting programs in λω
R are the ones translated from λω

i ; therefore, the T
R

branch of F will

remain unused.

The type interpretation function has the following properties.

Lemma 3.4.3 [τ ′/α](F (τ)) = F ([τ ′/α]τ)

Proof Follows from the fact that none of the branches of F has free type variables. 2

43

Lemma 3.4.4 [κ/j](F (τ)) = F ([κ/j]τ)

Proof Follows from the fact that none of the branches of F has free kind variables. 2

The language λω
R has the following properties. The proofs are the same as the proofs for the

corresponding properties of λω
i which are shown in Appendix A.

Proposition 3.4.5 (Type Reduction) Reduction of well formed types is strongly normalizing and

confluent.

Proposition 3.4.6 (Type Safety) If ` e : τ , then either e is a value, or there exists a term e ′ such

that e ; e′ and ` e′ :τ .

3.5 Translation from λω
i to λω

R

In this section, we show a translation from λω
i to λω

R. The languages differ mainly in two ways.

First, the type calculus in λω
R is split into tags and types, with types used solely for type checking

and tags used for analysis. Therefore, type passing in λω
i will get converted into tag passing in

λω
R. Second, the typecase operator in λω

i must be converted into a repcase operating on term

representation of tags.

Figure 3.16 shows the translation of λω
i types into λω

R tags. The primitive type constructors get

translated into the corresponding tag constructors. The Typerec gets converted into a Tagrec. The

translation inserts an arbitrarily chosen well-kinded result into the branch for the T
R

tag since the

source contains no such branch.

The term translation is shown in Figure 3.17. The translation must maintain two invariants.

First, for every accessible kind variable j, it adds a corresponding type variable αj; this variable

gives the type of the term representation for a tag of kind j. At every kind application, the trans-

lation uses the function Rκ (Figure 3.11) to compute this type. Thus, the translations of kind

abstractions and kind applications are

|Λ
+

j. v| = Λ
+

j.Λαj :j → Ω. |v| |e [κ]
+

| = |e| [|κ|]
+

[Rκ]

Second, for every accessible type variable α, a term variable xα is introduced, providing the cor-

responding term representation of α. At every type application, the translation uses the function

44

|α| = α

|int|=Tint |Λj. τ |= Λj. λαj :j → Ω. |τ |

|→→|= T→ |τ [κ]|= |τ | [|κ|]Rκ

|∀∀| = T∀ |λα :κ. τ |= λα : |κ|. |τ |

|∀∀
+

| = T
∀
+ |τ τ ′|= |τ | |τ ′|

|Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+)| =

Tagrec[|κ|] |τ | of (|τint|; |τ→|; |τ∀|; |τ∀+|; λ :T. λ : |κ|. |τint|)

Figure 3.16: Translation of λω
i types to λω

R tags

|i| = i

|x| = x

|Λ
+

j. v| = Λ
+

j.Λαj :j → Ω. |v|

|e [κ]
+

| = |e| [|κ|]
+

[Rκ]

|Λα :κ. v| = Λα : |κ|. λxα :Rκ α. |v|

|e [τ]| = |e| [|τ |]<(τ)

|λx :τ. e| = λx :F |τ |. |e|

|e e′| = |e| |e′|

|fix x :τ. v| = fix x :F |τ |. |v|

|typecase[τ] τ ′ of (eint; e→; e∀; e
∀
+)|

= repcase[λα :T. F (|τ |α)] <(τ ′) of
Rint ⇒|eint|
R→ ⇒|e→|
R∀ ⇒|e∀|
R
∀
+ ⇒|e

∀
+|

R
R

⇒Λβ :T. λx :R β. fix x :F (|τ | (T
R

β)). x

Figure 3.17: Translation of λω
i terms to λω

R terms

45

<(int) = Rint

<(→→) = Λα :T. λxα :R α.Λβ :T. λxβ :R β.
R→ [α] (xα) [β] (xβ)

<(∀∀) = Λ
+

j.Λαj :j → Ω.Λα :j → T. λxα :Rj→Ω (α).

R∀ [j]
+

[αj] [α] (xα)

<(∀∀
+

) = Λα : (∀j. (j → Ω) → T). λxα :R∀j.Ω (α).
R
∀
+ [α] (xα)

<(α) = xα

<(Λj. τ) = Λ
+

j.Λαj :j → Ω.<(τ)

<(τ [κ]) = <(τ) [|κ|]
+

[Rκ]

<(λα :κ. τ) = Λα : |κ|. λxα :Rκ α.<(τ)

<(τ τ ′) = <(τ) [|τ ′|] (<(τ ′))

<(Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+)) =

(fix f :∀α :T. R α → R (τ ∗ α).
Λα :T. λxα :R α.
repcase[λα :T. R (τ ∗ α)] xα of

Rint ⇒<(τint)
R→ ⇒Λα :T. λxα :R α.Λβ :T. λxβ :R β.

<(τ→) [α] (xα) [β] (xβ)
[τ∗ α] (f [α]xα) [τ∗ β] (f [β]xβ)

R∀ ⇒Λ
+

j.Λαj :j → Ω.Λα :j → T. λxα :Rj→Ω (α).

<(τ∀) [j]
+

[αj] [α] (xα) [λβ :j. τ ∗ (α β)]
(Λβ :j. λxβ :αj β. f [α β] (xα [β]xβ))

R
∀
+ ⇒Λα : (∀j. (j → Ω) → T). λxα :R∀j.Ω (α).

<(τ
∀
+) [α] (xα) [Λj. λαj :j → Ω. τ ∗ (α [j]αj)]

(Λ
+

j.Λαj :j → Ω. f [α [j]αj] (xα [j]
+

[αj]))
R

R
⇒Λα :T. λxα :R α.<(τint)

) [|τ |]<(τ)

where
τ∗ = |λα :Ω. Typerec[κ] α of (τint; τ→; τ∀; τ

∀
+)|

Figure 3.18: Representation of λω
i types as λω

R terms

46

<(τ) (Figure 3.18) to construct this representation. Furthermore, type application gets replaced

by an application to a tag, and to the term representation of the tag. Thus the translations for type

abstractions and type applications are

|Λα :κ. v| = Λα : |κ|. λxα :Rκ α. |v| |e [τ]| = |e| [|τ |]<(τ)

As pointed out before, the translations of abstraction and the fixpoint operator use the tag

interpretation function F to map tags to types.

We show the term representation of types in Figure 3.18. The primitive type constructors get

translated to the corresponding term representation. The representations of type and kind functions

are similar to the term translation of type and kind abstractions. The only involved case is the term

representation of a Typerec. Since Typerec is recursive, we use a combination of a repcase and

a fix. We will illustrate only one case here; the other cases can be reasoned about similarly.

Consider the reduction of Ty (τ ′ → τ ′′). (Ty τ stands for Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+))

This type reduces to τ→ τ ′ τ ′′ (Ty (τ ′)) (Ty (τ ′′)) . Therefore, in the translation, the term represen-

tation of τ→ must be applied to the term representations of τ ′, τ ′′, and the result of the recursive

calls to the Typerec. The representations of τ ′ and τ ′′ are bound to the variables xα and xβ; by

assumption the representations for the results of the recursive calls are obtained from the recursive

calls to the function f.

In the following propositions the original λω
i kind environment ∆ is extended with a kind

environment ∆(E) which binds a type variable αj of kind j → Ω for each j ∈ E . Similarly the

term-level translations extend the type environment Γ with Γ(∆), binding a variable xα of type

Rκ α for each type variable α bound in ∆ with kind κ.

Proposition 3.5.1 If E ;∆ ` τ : κ holds in λω
i , then |E|; |∆|, ∆(E) ` |τ | : |κ| holds in λω

R.

Proof Follows directly by induction over the structure of τ . 2

Proposition 3.5.2 If E ;∆ ` τ : κ and E ;∆ ` Γ hold in λω
i , then |E|; |∆|, ∆(E); |Γ|, Γ(∆) `

<(τ) : Rκ |τ | holds in λω
R.

Proof By induction over the structure of τ . The only interesting case is that of a kind application

which uses Lemma 3.4.2. 2

47

(values) v ::= i | λx.e | fix x.v
| Rint | R→ | R→ 1 | R→ 1 v
| R→ 1 v 1 | R→ 1 v 1 v′

| R∀ | R∀ 1 | R∀ 1 1 | R∀ 1 1 1
| R∀ 1 1 1 v
| R

∀
+ | R

∀
+ 1 | R

∀
+ 1 v

| Rµ | Rµ 1 | Rµ 1 v
| Rpl | Rpl 1 | Rpl 1 v
| R

R
| R

R
1 | R

R
1 v

(terms) e ::= v | x | e e′

| repcase e of (eint; e→; e∀; e
∀
+; eR)

Figure 3.19: Syntax of the untyped language λω
R
◦

Proposition 3.5.3 If E ;∆; Γ ` e : τ holds in λω
i , then |E|; |∆|, ∆(E); |Γ|, Γ(∆) ` |e| : F |τ |

holds in λω
R.

Proof This is proved by induction over the structure of e, using Lemmas 3.4.3 and 3.4.4. 2

3.6 The untyped language

This section shows that in λω
R types are not necessary for computation. Figure 3.19 shows an

untyped language λω
R
◦. We show a translation from λω

R to λω
R
◦ in Figure 3.20. The expression 1 is

the integer constant one.

The translation replaces type and kind applications (abstractions) by a dummy application (ab-

straction), instead of erasing them. In the typed language, a type or a kind can be applied to a

fixpoint. This results in an unfolding of the fixpoint. Therefore, the translation inserts dummy

applications to preserve this unfolding.

The untyped language has the following property which shows that term reduction in λω
R
◦

parallels term reduction in λω
R.

Proposition 3.6.1 If e ;
∗ e1, then e◦ ;

∗ e1
◦.

Proof Follows by induction over the reduction relation. 2

48

i◦ = i

(Λ
+

j. v)
◦

= λ .v◦

(Λα :κ. v)◦ = λ .v◦

(λx :τ. e)◦ = λx.e◦

(fix x :τ. v)◦ = fix x.v◦

(e [κ]
+

)
◦

= e◦ 1

(e [τ])◦ = e◦ 1

(e e1)
◦ = e◦ e1

◦

Rint
◦ = Rint

R→
◦ = R→

(R→ [τ])◦ = R→ 1

(R→ [τ] e)◦ = R→ 1 e◦

(R→ [τ] e [τ ′])◦ = R→ 1 e◦ 1

(R→ [τ] e [τ ′] e1)
◦ = R→ 1 e◦ 1 e1

◦

R∀
◦ = R∀

(R∀ [κ]
+

)
◦

= R∀ 1

(R∀ [κ]
+

[τ])
◦

= R∀ 1 1

(R∀ [κ]
+

[τ] [τ ′])
◦

= R∀ 1 1 1

(R∀ [κ]
+

[τ] [τ ′] e)
◦

= R∀ 1 1 1 e◦

R
∀
+
◦ = R

∀
+

(R
∀
+ [τ])◦ = R

∀
+ 1

(R
∀
+ [τ] e)◦ = R

∀
+ 1 e◦

Rµ
◦ = Rµ

(Rµ [τ])◦ = Rµ 1

(Rµ [τ] e)◦ = Rµ 1 e◦

Rpl
◦ = Rpl

(Rpl [τ])◦ = Rpl 1

(Rpl [τ] e)◦ = Rpl 1 e◦

R
R

◦ = R
R

(R
R

[τ])◦ = R
R

1

(R
R

[τ] e)◦ = R
R

1 e◦

(repcase[τ] e of (eint; e→; e∀; e
∀
+; eR))◦ = repcase e◦ of (eint

◦; e→
◦; e∀

◦; e
∀
+
◦; eR

◦)

Figure 3.20: Translation of λω
R to λω

R
◦

49

3.7 Related work

The work of Harper and Morrisett [HM95] introduced intensional type analysis and pointed out the

necessity for type-level type analysis operators which inductively traverse the structure of types.

The domain of their analysis is restricted to a predicative subset of the type language, which pre-

vents its use in programs which must support all types of values, including polymorphic functions,

closures, and objects. This chapter builds on their work by extending type analysis to include the

full type language. Crary et al. [CW99] propose a very powerful type analysis framework. They

define a rich kind calculus that includes sum kinds and inductive kinds. They also provide prim-

itive recursion at the type level. Therefore, they can define new kinds within their calculus and

directly encode type analysis operators within their language. They also include a novel refinement

operation at the term level. However, their type analysis is “limited to parametrically polymor-

phic functions, and cannot account for functions that perform intensional type analysis” [CW99,

Section 4.1]. The type analysis presented here can also handle polymorphic functions that ana-

lyze the quantified type variable. Moreover, their type analysis is not fully reflexive since they can

not handle arbitrary quantified types; quantification must be restricted to type variables of kind Ω.

Duggan [Dug98] proposes another framework for intensional type analysis; however, he allows

the analysis of types only at the term level and not at the type level. Yang [Yan98] presents some

approaches to enable type-safe programming of type-indexed values in ML which is similar to

term-level analysis of types.

The idea of programming with iterators is explained in Pierce’s notes [PDM89]. Pfenning and

Mohring [PL89] show how inductively defined types can be represented by closed types. They also

construct representations of all primitive recursive functions over inductively defined types.

The work on type-erasure semantics uses the framework proposed in Crary et al. [CWM98].

However, as we pointed out before, they consider a language that analyzes inductively defined types

only. Extending the analysis to arbitrary types makes the translation much more complicated. The

splitting of the type calculus into types and tags, and defining an interpretation function to map

between the two, is somewhat related to the ideas proposed by Crary and Weirich for the language

LX [CW99].

The erasure framework also resembles the dictionary passing style in Haskell [PJ93]. The term

representation of a type may be viewed as the dictionary corresponding to the type. However,

the authors consider dictionary passing in an untyped calculus; moreover, they do not consider

50

the intensional analysis of types. Dubois et al. [DRW95] also pass explicit type representations

in their extensional polymorphism scheme. However, they do not provide a mechanism for con-

necting a type to its representation. Minamide’s [Min97] type-lifting procedure is also related to

this work. His procedure maintains interrelated constraints between type parameters; however, his

language does not support intensional type analysis. Aspinall [Asp95] studied a typed λ-calculus

with subtypes and singleton types.

51

Chapter 4

Applying Runtime Type Analysis:

Garbage Collection

4.1 Introduction and motivation

In this chapter, we use fully reflexive type analysis for building a type-safe garbage collector (GC).

We show that analysis of quantified types is crucial for accurately modelling the contract between

the collector and the mutator. Type-safe GC is important because most type-safe systems rely

critically on the type-safety of an underlying garbage collector. This also holds for Proof-Carrying

Code (PCC) [Nec97] and Typed Assembly Languages (TAL) [MWCG98]. Indeed, constructing a

verifiably type-safe garbage collector is widely considered as one of the major open problems in

the area of certifying compilation [Mor00, Cra00].

A type-safe GC is not only desirable from the point of view of safety, but also for software-

engineering purposes. A type-safe GC must make explicit the contract between the collector and

the mutator, and type-checking makes sure that this contract is always respected. This can also aid

in the process of choosing between GC variants without risking the integrity of the system. Writing

GC inside a type-safe language also makes it possible to achieve principled interoperation between

garbage collection and other memory-management mechanisms (e.g., those based on malloc-free

and regions).

Recently, Wang and Appel [WA01] proposed to tackle the problem by building a tracing

garbage collector on top of a region-based calculus, thus providing both type safety and completely

automatic memory management. Their approach relies on monomorphization and defunctionaliza-

52

F...
×F

@@
...
×F

@@
int

��
int

��

⇒

T...
×T

@@
...
×T

@@
int

��
int

��
int

copy : ∀F.∀T.∀α.(α −→ [T/F]α)

Figure 4.1: Stop-and-Copy from region F to region T.

tion (a form of closure conversion due to Tolmach [TO98]). Our region calculus is similar to Wang

and Appel, but we use runtime type analysis instead of monomorphization. The system presented

in this chapter makes the following new contributions:

• Wang and Appel’s collector [WA01] relies on whole-program analysis and code duplication

to support higher-order and polymorphic languages; this breaks separate compilation. We

show how to use runtime type analysis to write our GC as a library (thus no code duplication)

and how to directly support higher-order polymorphic functions.

• Monomorphization is not applicable in the presence of recursive polymorphism or existential

packages, so their type-safe GC cannot handle languages with polymorphic recursion or

abstract types. Our system does not have this disadvantage.

4.1.1 The problem

A region calculus [TT94] annotates the type of every heap object with the region in which it is

allocated. For example, a pair of values will have the type σ1 ×
ρ σ2, where ρ is the region in which

the pair is allocated. Thus the type of all the live values reflect all the live regions; any region that

does not appear in any of the currently live types can be safely reclaimed.

In a type-safe copying GC, we make no correctness guarantees. Suppose that the collector gets

invoked when a region F gets filled. Rather than prove that the copy function faithfully copies the

heap to a new region T, we simply show that it has the type ∀α.(α → ([T/F]α)) where ([T/F]α)

denotes the type α with the region annotation T substituted for F (see Fig. 4.1). The region calculus

will then allow us to safely reclaim F.

53

The main problem is to write this copy function in a way that allows it to trace through arbitrary

heap structures at runtime, and to design a type system that is sophisticated enough to express its

type.

4.1.2 Our solution

The substitution present in the return type of copy as well as the need to observe types at runtime

leads one very naturally to the framework presented in Chapter 3. The substitution can be expressed

in a straightforward way by using the Typerec construct, while we can use the typecase construct

to inspect types at runtime. In fact, there are only a few remaining issues involved in getting the

right framework.

Consider again the type ∀α.(α → ([T/F]α)) of the copy function. The type of an object grows

every time it is copied. If the object had the type σ to begin with, then the type changes to [T/F]σ,

and then to [T′/T]([T/F]σ) (where T′ is the new region after the second collection), Since σ

may contain type variables, the substitution may not get reduced away: [T/F]α cannot be reduced

further until α is instantiated. In other words, a type such as ∃α.[T/F]α is a normal form. This

causes a problem since [T′/F]α is not equal to [T′/T]([T/F]α). Thus we must ensure that the input

and output types of copy are symmetric. We first define Sρ(σ) as substituting ρ for any region

annotation and then redefine copy to have type ∀F.∀T.∀α.(SF(α) → ST(α)). This ensures that

GC does not increase the size of the type anymore, and also gets rid of the special case before the

first collection.

The above solution looks good until we try to copy existential packages ∃α∈Θ.σ, that are used

for encoding closures. The Θ annotation bounds the set of regions that can appear in the witness

type hidden under the type variable α. Opening an existential package of type ∃α∈F.SF(α), gives

us the witness type σ, and a value of type SF(σ). After getting copied this package should have

the type ∃α ∈ T.ST(α). Recursively applying copy to the value will return a new value of type

ST(σ), but what happens to the witness type? Reusing σ for the witness type will not do since σ

is not constrained to T but to F. A witness of ST(σ) does not work either; the only correctly typed

package we can produce then is 〈α=ST(σ), v : α〉 which has type ∃α∈T.α.

The problem arises because, on the one hand, an existential type reveals no information about

the witness type; on the other, we need to suitably constrain the region annotation for the witness

type. We will get around this problem by defining a parallel set of non-annotated types τ (that

54

we will call tags). The witness for an existential type will now be a tag. Note that contrary

to common practice, our tags are not attached to their corresponding objects but are managed

completely independently.

Such a split between types and tags is reminiscent of the type system for predicative languages

where tags were called constructors [HM95, CW99]. But, in these languages, the projection from

tags to types is essentially an identity (Section 3.2.1). Here tags take on more significance and will

be mapped to actual types via type-level operators that enhance the tags with a lot more information.

In essence, this information encapsulates the constraints that mutator data has to satisfy in order

for the collector to do its job.

4.2 Source language λCLOS

For simplicity of the presentation, the source language we propose to compile and garbage collect

is the simply typed λ-calculus. In order to be able to use our region calculus, we need to convert

the source program into a continuation passing style form (CPS). We also need to close our code to

make all data manipulation explicit, so we turn all closures into existential packages. We will not

go into the details of how to do the CPS conversion [DF92] and the closure conversion [MMH96,

HM98] since the algorithms are well known.

The language used after CPS conversion and closure conversion is the language λCLOS shown

below.

(types) τ ::= Int | α | τ1 × τ2 | τ → 0 | ∃α.τ

(values) v ::= n | f | x | (v1, v2) | 〈α=τ1, v : τ2〉

(terms) e ::= let x = v in e | let x = πiv in e | v1(v2)

| open v as 〈α, x〉 in e | halt v

(programs) p ::= letrec
−−−−−−−−−→
f = λ(x : τ).e in e

Since functions are in CPS, they never return, which we represent with the arbitrary return

type 0, often referred to as void. The construct (v1, v2) represents a pair while πiv selects its ith

element. To represent closures, the language includes existential packages 〈α=τ1, v : τ2〉 of type

∃α.τ2. The abstract type α hides the witness type τ1. Therefore, the value v has the actual type

[τ1/α]τ2. The construct open v as 〈α, x〉 in e takes an existential package v, binds the witness type

to α and the value to x, and then executes e. The complete program letrec
−−−−−−−−−−−→
fi = λ(xi : τi).ei in e

55

(regions) ρ ::= ν | r
(kinds) κ ::= Ω | Ω −→ Ω

(tags) τ ::= α | Int | τ1 × τ2 | τ → 0 | ∃α.τ
| λα :κ. τ | τ1 τ2

(types) σ ::= int | σ1 × σ2 | ∀[~α : κ][~r](~σ) → 0 | ∃α : κ.σ | σ at ρ
| Mρ(τ)

(values) v ::= n | x | ν.` | (v1, v2) | 〈α=τ, v : σ〉 | λ[~α : κ][~r](−−→x : σ).e

(operations) op ::= v | πiv | put[ρ]v | get v

(terms) e ::= v[~τ][~ρ](~v) | let x = op in e | halt v | ifgc ρ e1 e2

| open v as 〈α, x〉 in e | let region r in e | only Θ in e
| typecase τ of (ei; e→;α1α2.e×;αe.e∃)

(normal tags) τ ′ ::= α| Int| τ ′ → 0 | τ ′
1 × τ ′

2 | ∃α.τ ′ | λα :κ. τ ′ | α τ ′

Figure 4.2: Syntax of λGC

consists of a list of mutually recursive closed function declarations followed by the main term to

be executed.

4.3 Target language λGC

We translate λCLOS programs into our target language λGC. The target language is also used to write

the garbage collector. λGC extends λCLOS with regions [TT94] and fully reflexive intensional type

analysis. The syntax of λGCis shown in Figure 4.2. The static semantics is shown in Figures 4.3

through 4.5.

4.3.1 Functions and code

Since programs in λGC are completely closed, we can separate code from data. The memory

configuration enforces this by having a separate dedicated region cd for all the code blocks. A

value λ[~α : κ][~r](−−→x : σ).e is only an array of instructions (which can contain references to other

values in cd) and needs to be put into a region to get a function pointer before one can call it.

In practice, functions are placed into the cd region when translating code from λCLOS and never

directly appear in λGC code.

The indirection provided by memory references allows us to do away with letrec. For conve-

nience, we will use fixf.e in examples, but in reality, e will be placed at the location ` in the cd

region and all occurrences of f will be replaced by cd.`. We treat cd as a special region. It cannot

56

be freed and can only contain functions, no other kind of data.

4.3.2 The type calculus

Since the garbage collector needs to know the type of values at runtime, the language λGC must

support the runtime analysis of types. Therefore, conceptually, types need to play a dual role in

this language. As in the source language λCLOS, they are used at compile time to type-check well

formed terms. However, they are also used at runtime, as tags, to be inspected by the garbage

collector. To enforce this distinction, we split types into a tag language and a type language. The

tags correspond to the runtime entity, while the types correspond to the compile time entity.

The tag for a value is constructed during the translation from λCLOS to λGC. In fact, the tags

closely resemble the λCLOS types. We only need to add tag-level functions (λα :κ. τ) and tag-level

applications (τ τ1) to support tag analysis. In turn, this requires adding the function kind Ω −→ Ω.

The type-level analysis is done by the M operator that is defined using a Typerec. As before

(Section 3.3.1), we will use ML-style pattern matching to define this type:

Mρ(Int) = int

Mρ(τ1 × τ2) = (Mρ(τ1) × Mρ(τ2)) at ρ

Mρ(∃α.τ) = (∃α : Ω.Mρ(τ)) at ρ

Mρ(τ → 0) = ∀[][r](Mr(τ)) → 0 at cd

Mρ(τ) is the type corresponding to the tag τ augmented with region annotations ρ. The definition

of M captures the invariant that all objects are allocated in the same region.

Types are used to classify terms. The type language includes the existential type for typing

closures and the code type ∀[~α][~r](~σ) → 0 for fully closed CPS functions. Moreover, types in the

target language must include the region in which the corresponding value resides. Therefore, we

use the notation σ at ρ for the type of a value of type σ in region ρ.

4.3.3 The term calculus

The term language must support region based memory management and runtime type analysis.

New regions are created through the let region r in e construct which allocates a new region ν at

runtime and binds r to it. A term of the form put[ρ]v allocates a value v in the region ρ. Data is

read from a region in two ways. Functions are read implicitly through a function call. Data may

also be read through the get v construct.

57

�

�

�

�∆ ` τ : κ

· ` Int : Ω

∆(α) = κ

∆ ` α : κ
∆ ` τ1 : Ω ∆ ` τ2 : Ω

∆ ` τ1 × τ2 : Ω

∆ ` τi : Ω

∆ ` ~τ → 0 : Ω

∆, α :Ω ` τ : Ω

∆ ` ∃α.τ : Ω

∆, α :Ω ` τ : Ω

∆ ` λα :Ω. τ : Ω −→ Ω

∆ ` τ1 : Ω −→ Ω ∆ ` τ2 : Ω

∆ ` τ1 τ2 : Ω

�

�

�

�
Θ;∆ ` σ

Θ;∆ ` int
Θ;∆ ` σ1 Θ;∆ ` σ2

Θ;∆ ` σ1 × σ2

~r; ~α : κ ` σi

Θ;∆ ` ∀[~α : κ][~r](~σ) → 0

Θ;∆, α :κ ` σ

Θ;∆ ` ∃α : κ.σ

Θ;∆ ` σ ρ ∈ Θ

Θ;∆ ` σ at ρ

∆ ` τ : Ω ρ ∈ Θ

Θ;∆ ` Mρ(τ)

Figure 4.3: Type and tag formation rules

58

Operationally, get takes a memory address ν.` and dereferences it. Since our region calculus

does not admit dangling references, and since each reference implicitly carries a region handle, get

does not need a region argument, as opposed to put.

Deallocation is handled implicitly through the only Θ in e construct [WA99]. It asserts stati-

cally that the expression e can be evaluated using only the set of regions in Θ ′ (i.e. Θ extended with

the cd region), which is a subset of the regions currently in scope. At runtime, an implementation

would treat the set of regions in Θ′ as live and reclaim all other regions.

Θ′ = Θ, cd Ψ|Θ′ ; Θ′;∆; Γ|Θ′ ` e Θ′ ⊂ Θ′′

Ψ;Θ′′;∆; Γ ` only Θ in e

The construct |Θ′ restricts an environment to the set of regions in Θ′, i.e. Ψ|Θ′ is the subset of

the heap restricted to the regions in Θ′. Similarly, Γ|Θ′ eliminates from Γ all variables whose type

refers to regions not mentioned in Θ′.

The use of only was chosen for its simplicity. Other approaches either do not work with a

CPS language or carry a significant added complexity to handle the problem of aliasing. The

only construct side steps this difficulty by making the actual deletion implicit: instead of explicitly

requesting the deletion of a region (say r1), the program will request to keep a region (say r2).

At runtime the system checks to see that r1 is not aliased to r2 and only then deletes it. In order

to trigger GC, ifgc allows us to check whether a region is full. We will not consider the exact

mechanism for implementing this check.

The runtime type analysis is handled through a typecase construct. Depending on the head of

the tag being analyzed, typecase chooses one of the branches for execution. When analyzing a

tag variable α, we refine types containing α in each of the branches [CWM98].

∆ ` α : Ω

Ψ;Θ;∆; [int/α]Γ ` [int/α]ei

. . .

Ψ;Θ;∆; Γ ` typecase α of (ei; e→;α1α2.e×;αe.e∃)

In the ei branch, we know that the tag variable α is bound to Int and can therefore substitute it

away. A similar rule is applied to the other cases.

Programs in λGC use an allocation semantics which makes the allocation of data in memory

59

�

�

�

�
Ψ;Θ;∆; Γ ` v : σ Ψ;Θ;∆; Γ ` op : σ

Ψ;Θ;∆; Γ ` n : int
Γ(x) = σ

Ψ;Θ;∆; Γ ` x : σ

Ψ(ν.`) = σ Dom(Ψ); · ` σ at ν

Ψ;Θ;∆; Γ ` ν.` : σ at ν

cd, ~r; ~α : κ ` σi Ψ|cd; cd, ~r;−−→α : κ;−−→x : σ ` e

Ψ;Θ;∆; Γ ` λ[~α : κ][~r](−−→x : σ).e : ∀[~α : κ][~r](~σ) → 0

Ψ;Θ;∆; Γ ` v1 : σ1 Ψ;Θ;∆; Γ ` v2 : σ2

Ψ;Θ;∆; Γ ` (v1, v2) : σ1 × σ2

Ψ;Θ;∆; Γ ` v : σ1 × σ2

Ψ;Θ;∆; Γ ` πiv : σi

Ψ;Θ;∆; Γ ` v : σ at ρ

Ψ;Θ;∆; Γ ` get v : σ

∆ ` τ : κ Ψ;Θ;∆; Γ ` v : [τ/α]σ

Ψ;Θ;∆; Γ ` 〈α=τ, v : σ〉 : ∃α : κ.σ

Ψ;Θ;∆; Γ ` v : σ ρ ∈ Θ

Ψ;Θ;∆; Γ ` put[ρ]v : σ at ρ

Figure 4.4: Formation rules for λGC values

60

�

�

�

�
Ψ;Θ;∆; Γ ` e

Ψ;Θ;∆; Γ ` v : ∀[~α : κ][~r](~σ) → 0 at ρ
Ψ;Θ;∆; Γ ` vi : [~ρ, ~τ/~r, ~α]σi ∆ ` τi : κi ρi ∈ Θ

Ψ;Θ;∆; Γ ` v[~τ][~ρ](~v)

Ψ;Θ;∆; Γ ` op : σ Ψ;Θ;∆; Γ, x : σ ` e

Ψ;Θ;∆; Γ ` let x = op in e

Ψ;Θ;∆; Γ ` v : ∃α′ : κ.σ Ψ;Θ;∆, α : κ; Γ, x : [α/α′]σ ` e

Ψ;Θ;∆; Γ ` open v as 〈α, x〉 in e

Ψ;Θ;∆; Γ ` e1 Ψ;Θ;∆; Γ ` e2 ρ ∈ Θ

Ψ;Θ;∆; Γ ` ifgc ρ e1 e2

Ψ;Θ, r;∆; Γ ` e

Ψ;Θ;∆; Γ ` let region r in e

Ψ;Θ;∆; Γ ` v : int
Ψ;Θ;∆; Γ ` halt v

Ψ|Θ′ ; Θ′, cd;∆|Θ′ ; Γ|Θ′ ` e Θ′ ⊂ Θ

Ψ;Θ;∆; Γ ` only Θ′ in e

Ψ;Θ;∆; Γ ` ei
Ψ;Θ;∆; Γ ` typecase Int of (ei; e→;α1α2.e×;αe.e∃)

Ψ;Θ;∆; Γ ` e→
Ψ;Θ;∆; Γ ` typecase ~τ → 0 of (ei; e→;α1α2.e×;αe.e∃)

Ψ;Θ;∆; Γ ` [τ1, τ2/α1, α2]e×

Ψ;Θ;∆; Γ ` typecase (τ1 × τ2) of (ei; e→;α1α2.e×;αe.e∃)

Ψ;Θ;∆; Γ ` [λα :Ω. τ/αe]e∃
Ψ;Θ;∆; Γ ` typecase ∃α.τ of (ei; e→;α1α2.e×;αe.e∃)

∆ ` α : Ω
Ψ;Θ;∆; [int/α]Γ ` [int/α]ei
Ψ;Θ;∆; Γ ` e→
Ψ;Θ;∆, α1 : Ω, α2 : Ω; [α1 × α2/α]Γ ` [α1 × α2/α]e×
Ψ;Θ;∆, αe : Ω −→ Ω; [∃α′.αe α′/α]Γ ` [∃α′.αe α′/α]e∃

Ψ;Θ;∆; Γ ` typecase α of (ei; e→;α1α2.e×;αe.e∃)

Figure 4.5: Term formation rules of λGC.

61

(M,ν.`[~τ][~ρ](~v)) ; (M,ν.`[~τ ′][~ρ](~v))

(M,ν.`[~τ ′][~ρ](~v))
where M(ν.`) = (λ[~α : κ][~r](~x : ~σ).e)

; (M, e[~ρ, ~τ ′, ~v/~r, ~α, ~x])

(M, let x = v in e) ; (M, e[v/x])

(M, let x = πi(v1, v2) in e) ; (M, e[vi/x])

(M, let x = put[ν]v in e)
where ` /∈ Dom(M(ν))

; (M{ν.` 7→ v}, [ν.`/x]e)

(M, let x = get ν.` in e) ; (M, [v/x]e) where M(ν.`) = v

(M, open 〈α=τ, v : σ〉 as 〈α, x〉 in e) ; (M, open 〈α=τ ′, v : σ〉 as 〈α, x〉 in e)

(M, open 〈α=τ ′, v : σ〉 as 〈α, x〉 in e) ; (M, e[τ ′, v/α, x])

(M, ifgc ρ e1 e2) ; (M, e1) if ρ is full

(M, ifgc ρ e1 e2) ; (M, e2) if ρ is not full

(M, let region r in e)
where ν 6∈ Dom(M)

; (M{ν 7→ {}}, e[ν/r])

(M, only Θ in e) ; (M |Θ, e)

(M, typecase τ of (ei; e→;α1α2.e×;αe.e∃)) ;

(M, typecase τ ′ of (ei; e→;α1α2.e×;αe.e∃))

(M, typecase Int of (ei; e→;α1α2.e×;αe.e∃)) ; (M, ei)

(M, typecase τ → 0 of (ei; e→;α1α2.e×;αe.e∃)) ; (M, e→)

(M, typecase τ1 × τ2 of (ei; e→;α1α2.e×;αe.e∃)) ; (M, [τ1, τ2/α1, α2]e×)

(M, typecase ∃α.τ of (ei; e→;α1α2.e×;αe.e∃)) ; (M, [λα :Ω. τ/αe]e∃)

Figure 4.6: Operational semantics of λGC

explicit. The operational semantics, defined in Fig. 4.6, maps a machine state P to a new machine

state P ′. A machine state is a pair (M, e) of a memory M and a term e being executed. A memory

consists of a set of regions; hence, it is defined formally as a map between region names ν and

regions R. A region, in turn, is a map from offsets ` to storable values v. Therefore, an address

is given by a pair of a region and an offset ν.`. We assign a type to every location allocated in a

region with the memory environment Ψ. Figure 4.7 shows the form of environments.

The language λGC obeys the following properties. The proofs are given in Appendix B.

Proposition 4.3.1 (Type Preservation) If ` (M, e) and (M, e) ; (M ′, e′) then ` (M ′, e′).

Proposition 4.3.2 (Progress) If ` (M, e) then either e = halt v or there exists a (M ′, e′) such

that (M, e) ; (M ′, e′).

62

�

�

�

�Θ ` Υ ` Ψ

Θ; · ` σi

Θ ` `1 : σ1, . . . , `n : σn

ν1, . . . , νn ` Υi

` ν1 : Υ1, . . . , νn : Υn

Υcd = `1 : ∀[~τ1][~r1](
−−−−→v1 : σ1) → 0, . . . , `n : ∀[~τn][~rn](−−−−→vn : σn) → 0

�

�

�

�Ψ ` R : Υ ` M : Ψ

Ψ;Dom(Ψ); ·; · ` vi : σi

Ψ ` `1 7→ v1, . . . , `n 7→ vn : `1 : σ1, . . . , `n : σn

` ν1 : Υ1, . . . , νn : Υn ν1 : Υ1, . . . , νn : Υn ` Ri : Υi

` ν1 7→ R1, . . . , νn 7→ Rn : ν1 : Υ1, . . . , νn : Υn

Figure 4.7: Environment formation rules.

4.4 Translating λCLOS to λGC

The translation of terms from λCLOS to λGC (Fig. 4.8) is mostly directed by the type translation Mρ

presented earlier: each function takes the current region as an argument and begins by checking if

a garbage collection is necessary. All operations on data are slightly rewritten to account for the

need to allocate them in the region or to fetch them from the region. For example a λCLOS function

like:

fix swap(x : Int × Int).

let x1 = π1x in let x2 = π2x in let x′ = (x2, x1) in halt 0

will be turned into the following λGC function:

cd.` = λ[][r](x : (int × int) at r).

ifgc r (gc[Int × Int][r](cd.`, x))

let x = get x in

let x1 = π1x in

let x2 = π2x in

let x′ = put[r](x2, x1) in

halt 0

The mapping between λCLOS identifiers like swap and λGC location like cd.` is kept in the

63

�

�

�

�
F ` λCLOS ⇒ λGC

F `v n ⇒ n F `v f ⇒ cd.F (f) F `v x ⇒ x

F `v v1 ⇒ v′1 F `v v2 ⇒ v′2
F `v (v1, v2) ⇒ put[r](v′1, v

′
2)

F `v v ⇒ v′

F `v 〈α=τ1, v : τ2〉 ⇒ put[r]〈α=τ1, v
′ : Mr(τ2)〉

F `v v1 ⇒ v′1 F `v v2 ⇒ v′2
F `e v1(v2) ⇒ v′1[][r](v

′
2)

F `v v ⇒ v′

F `e halt v ⇒ halt v′

F `e e ⇒ e′ F `v v ⇒ v′

F `e open v as 〈α, x〉 in e ⇒ open (get v′) as 〈α, x〉 in e′

F `e e ⇒ e′ F `v v ⇒ v′

F `e let x = v in e ⇒ let x = v′ in e′

F `e e ⇒ e′ F `v v ⇒ v′

F `e let x = πiv in e ⇒ let x = πi(get v′) in e′

F `e e ⇒ e′ ` = F (f)

`f (f = λ(x : τ).e)
⇒ λ[][r](x : Mr(τ)).ifgc r (gc[τ][r](cd.`, x)) e′

F = f1 7→ `1, . . . , fn 7→ `n

F `f fi = λ(xi : τi).ei ⇒ f ′
i F `e e ⇒ e′

`p letrec
−−−−−−−−−−−→
fi = λ(xi : τi).ei in e

⇒ (cd 7→ `1 7→ f ′
1, . . ., let region r in e′)

Figure 4.8: Translation of λCLOS terms.

64

fix gc[α : Ω][r1](f : ∀[][r](Mr(α)) → 0, x : Mr1
(α)).

let region r2 in
let y = copy[α][r1, r2](x) in
only r2 in f [][r2](y)

fix copy[α : Ω][r1, r2](x : Mr1
(α)) : Mr2

(α).
typecase α of

Int ⇒ x
→ ⇒ x

α1 × α2 ⇒ let x1 = copy[α1][r1, r2](π1(get x)) in
let x2 = copy[α2][r1, r2](π2(get x)) in
put[r2](x1, x2)

∃αe ⇒ open (get x) as 〈α, y〉 in
let z = copy[αe α][r1, r2](y) in
put[r2]〈α=α, z : Mr2

(αe α)〉

Figure 4.9: The garbage collector proper.

environment F . The region argument r refers to the current region. It is initially created at the very

beginning of the program and is changed after each garbage collection.

An important detail here is that the garbage collector receives the tag τ rather than the type σ

of the argument. The GC receives the tags for analysis as they were in λCLOS rather than as they

are translated in λGC.

To make the presentation simpler, the garbage-collection code in Fig. 4.9 uses some syntactic

sugar and resorts to a direct-style presentation of the copy function. In [MSS00] we show the

same code after CPS and closure conversion. The conversion does not present any new technical

difficulties, but just makes the code a lot harder to understand. We will therefore stick to the

direct style presentation here. The garbage collector itself is very simple: it first allocates the to

region, asks copy to move everything into it and then frees the from region before jumping to its

continuation (which uses the new region).

The copy function is similarly straightforward, recursing over the whole heap and copying in a

depth-first way. The direct style here hides the stack. When the code is CPS converted and closed,

we have to allocate that stack of continuations in an additional temporary region and unless our

language is extended with some notion of stack, none of those continuations would be collected

until the end of the whole garbage collection. The size of this temporary region can be bounded by

the size of the to region since we can’t allocate more than one continuation per copied object, so it

65

is still algorithmically efficient, although this memory overhead is a considerable shortcoming.

4.5 Summary and related work

In this chapter, we focussed on a simple stop-and-copy collector. In separate work [MSS01] we

have shown how to augment the system presented here to support forwarding pointers and genera-

tional collection. In both these cases, type analysis (specifically the Typerec operator on quantified

types) is crucial to capturing the invariants that the mutator must satisfy. There are still some more

issues that remain to be solved before we can implement a type-safe industrial-strength garbage

collector. For example, our generational scheme is feasible only in a language where side-effects

are rare. Our scheme also does not handle cyclic data structures.Nevertheless we believe that our

current contributions constitute a significant step towards the goal of providing a practical type-safe

garbage collector.

Wang and Appel [WA99] proposed to build a tracing garbage collector on top of a region-

based calculus, thus providing both type safety and completely automatic memory management.

They rely on a closure conversion algorithm due to Tolmach [TO98] that represents closures as

datatypes. This makes closures transparent, making it easier for the copy function to analyze,

but it requires whole program analysis. We believe it is more natural to represent closures as

existentials [MMH96, HM98] and we show how to use intensional analysis of quantified types to

typecheck the GC-copy function.

Tofte and Talpin [TT94] proposed to use region calculus to type check memory management

for higher-order functional languages. Crary et al [CWM99] presented a low-level typed inter-

mediate language that can express explicit region allocation and deallocation. Our λGC language

borrows the basic organization of memories and regions from Crary et al [CWM99]. The main

difference is that we don’t require explicit capabilities—region deallocation is handled through the

only primitive.

66

Chapter 5

Integrating Runtime Type Analysis

With a Proof System

5.1 Introduction

Until now we have considered type analysis in a system where we can only certify conventional

type-safety. However, certifying compilation as originally envisaged by Necula and Lee [NL96,

Nec97] through their proof carrying code (PCC) framework, can be used to certify complex spec-

ifications [Nec98, AF00a]. For example, the Foundational PCC system [AF00b] can certify any

property expressible in Church’s higher-order logic.

In this chapter we describe a type system that supports both runtime type analysis and the

explicit representation of proofs and propositions. As far as we know, our work is the first com-

prehensive study on how to integrate higher-order predicate logic and type analysis into typed

intermediate languages. Existing type-based certifying compilers [NL98, CLN+00] have focused

on simple memory and control-flow safety only. Typed intermediate languages [HM95] and typed

assembly languages [MWCG98] also do not rival the expressiveness of the logic used in some PCC

systems [AF00b].

This chapter builds upon a large body of previous work in the logic and theorem-proving com-

munity [Bar99, Bar91], but makes the following new contributions:

• We show how to design new typed intermediate languages that are capable of representing

and manipulating propositions and proofs. We show how these propositions can enforce

67

more sophisticated program invariants. For example, we can assign an accurate type to

unchecked vector (or array) access (see Section 5.5.2). Xi and Pfenning [XP99] can achieve

the same using constraint checking, but their system does not support arbitrary propositions

and (explicit) proofs, so it is less general than ours.

• We show how to support fully reflexive type analysis in such a type system. We achieve this

by using inductive definitions to define the base kind (the kind containing the types of terms).

In a sense it generalizes the work presented in Chapter 3.

• We give rigorous proofs for the meta-theoretic properties (subject reduction, strong normal-

ization, confluence, and consistency of the underlying logic) of our type system.

5.2 Approach

Before getting into the details, we first establish a few naming conventions (Figure 5.1). Until now,

our typed intermediate languages had three levels. We will now require a fourth level which we

call kind schema (kscm). We divide the typed intermediate language into a type sub-language and a

computation sub-language. The type language contains the top three levels. Kind schemas classify

kind terms while kinds classify type terms. We often say that a kind term κ has kind schema u,

or a type term τ has kind κ. We assume all kinds used to classify type terms have kind schema

Kind, and all types used to classify expressions have kind Ω. For example, both the function type

τ1 → τ2 and the polymorphic type ∀α : κ. τ have kind Ω. Following the tradition, we sometimes

say “a kind κ” to imply that κ has kind schema Kind, “a type τ” to imply that τ has kind Ω, and “a

type constructor τ” to imply that τ has kind “κ→ · · ·→Ω.” Kind terms with other kind schemas,

or type terms with other kinds are strictly referred to as “kind terms” or “type terms.”

The computation language is the lowest level which is where we write the actual program. This

language will eventually be compiled into machine code. We often use names such as computation

terms, computation values, and computation functions to refer to various constructs at this level.

5.2.1 Representing propositions and proofs

The first step is to represent propositions and proofs for a particular logic in a type-theoretic setting.

The most established technique is to use the formulae-as-types principle (a.k.a. the Curry-Howard

correspondence) [How80] to map propositions and proofs into a typed λ-calculus. The essential

68

THE TYPE LANGUAGE:

(kscm) u ::= Kind | . . .

(kind) κ ::= κ1→κ2 | Ω | . . .

(type) τ ::= α | λα :κ. τ | τ1 τ2 | τ1→τ2 | ∀α :κ. τ | . . .

THE COMPUTATION LANGUAGE:

(exp) e ::= x | λx :τ. e | e1 e2 | Λα :κ. e | e[τ] | . . .

Figure 5.1: Typed intermediate language – notations

idea, which is inspired by constructive logic, is to use types (of kind Ω) to represent propositions,

and expressions to represent proofs. A proof of an implication P ⊃Q is a function object that yields

a proof of proposition Q when applied to a proof of proposition P . A proof of a conjunction P ∧Q

is a pair (e1, e2) such that e1 is a proof of P and e2 is a proof of Q. A proof of disjunction P ∨Q is a

pair (b, e)—a tagged union—where b is either 0 or 1 and if b=0, then e is a proof of P ; if b=1 then

e is a proof of Q. There is no proof for the false proposition. A proof of a universally quantified

proposition ∀x∈B.P (x) is a function that maps every element b of the domain B into a proof of

P (b) where P is a unary predicate on elements of B. Finally, a proof of an existentially quantified

proposition ∃x∈B.P (x) is a pair (b, e) where b is an element of B and e is a proof of P (b). Proof-

checking in the logic now becomes typechecking in the corresponding typed λ-calculus. There has

been a large body of work done along this line in the last 30 years; most type-based proof assistants

are based on this fundamental principle. Barendregt et al. [Bar99, Bar91] give a good survey on

previous work in this area.

Unfortunately, the above scheme fails to work in the context of typed intermediate languages.

The problem arises because representing predicates introduces dependent types. For example, sup-

pose Nat is the domain for natural numbers and Prime is a unary predicate that asserts an element

of Nat as a prime number. To represent this in a typed setting, we need a type nat representing

Nat , and a type constructor prime representing Prime . This type constructor must take a number

as an argument (to check whether it is prime): therefore the type constructor is dependent on values

and has the kind nat→Ω.

Dependent types introduce problems when used in a typed intermediate language. First, real

programs often involve effects such as assignment, I/O, or non-termination. Effects interact badly

69

with dependent types. It is possible to use the effect discipline [SG90] to force types to be de-

pendent on pure computation only, but this does not work in some typed λ-calculi; for example, a

“pure” term in Girard’s λU [Gir72] could still diverge. Second, many type preserving compilers

perform typed CPS conversion [MWCG98], but in the presence of dependent types, this is a very

difficult problem [BHS99]. Third, it is important to maintain a phase distinction between compile-

time typechecking and run-time evaluation. Having dependent types makes it harder to preserve

this property.

5.2.2 Separating the type and computation languages

We solve these problems by making sure that our type language is never dependent on the compu-

tation language. Because the actual computation term has to be compiled down to assembly code

in any case, it is a bad idea to treat it as part of types. This separation immediately gives us back

the phase-distinction property.

To represent propositions and proofs, we lift everything one level up: we use kinds to represent

propositions, and type terms for proofs. The domain Nat is represented by a kind Nat; the predicate

Prime is represented by a dependent kind term Prime which maps a type term of kind Nat into a

proposition. A proof for proposition Prime(n) certifies that the type term n is a prime number.

To maintain decidable typechecking, we insist that the type language is strongly normalizing

and free of side effects. This is possible because the type language no longer depends on any

runtime computation. Essentially, we circumvent the problems with dependent types by replacing

them with dependent kinds.

To reason about actual programs, we still have to connect terms in the computation language

with those in the type language. We follow Xi and Pfenning [XP99] and use singleton types [Hay91]

to relate computation values to type terms. In the previous example, we introduce a singleton type

constructor snat of kind Nat→Ω. Given a type term n of kind Nat, if a computation value v has

type snat(n), then v denotes the natural number represented by n.

A certified prime number package now contains three parts: a type term n of kind Nat, a proof

for the proposition Prime(n), and a computation value of type snat(n). We can pack it up into an

existential package and make it a first-class value with type:

∃n :Nat.∃α :Prime(n).snat(n).

70

Here we use ∃ rather than Σ to emphasize that types and kinds are no longer dependent on com-

putation terms. Under the erasure semantics this certified package is just an integer value of type

snat(n) at run time.

We can also certify programs that involve effects. Assume again that f is a function in the

computation language which may not terminate on some inputs. Suppose we want to certify that

if the input to f is a prime, and the call to f does return, then the result is also a prime. We can

achieve this in two steps. First, we construct a type-level function g of kind Nat→Nat to simulate

the behavior of f (on all inputs where f does terminate) and show that f has the following type:

∀n :Nat. snat(n) → snat(g(n))

Here following Figure 5.1, we use ∀ and → to denote the polymorphic and function types for the

computation language. The type for f says that if it takes an integer of type snat(n) as input and

does not loop forever, then it will return an integer of type snat(g(n)). Second, we construct a

proof τp showing that g always maps a prime to another prime. The certified binary for f now also

contains three parts: the type-level function g, the proof τp, and the computation function f itself.

We can pack it into an existential package with type:

∃g :Nat→Nat. ∃p : (Πt :Nat.Prime(t)→Prime(g(t))).

∀n :Nat. snat(n) → snat(g(n))

Notice this type also contains function applications such as g(n), but g is a type-level function

which is always strongly normalizing, so typechecking is still decidable.

5.2.3 Designing the type language

We can incorporate propositions and proofs into a type system, but in addition the type language

must fulfill its usual responsibilities. First, it must provide a set of types (of kind Ω) to classify the

computation terms. Second, it must support the intensional analysis of these types.

Our approach to this is to generalize the solution (for type analysis) given in Chapter 3. There

we introduced kind polymorphism so that the types could be defined in a way that made the base

kind inductive. Here we will go a step further and provide a general mechanism of defining induc-

tive kinds. The base kind Ω is then defined inductively using this mechanism. Inductive definitions

also greatly increase the programming power of our type language. We can introduce new data ob-

71

(kscm) u ::= z | Πα :κ. u | Πj :u1. u2 | Kind

(kind) κ ::= j | λα :κ1. κ2 | κ[τ] | λj :u. κ | κ1 κ2 | Πα :κ1. κ2 | Πj :u. κ
| Πz :Kscm. κ | Ind(j :Kind){~κ} | Elim[κ′, u](τ){~κ}

(type) τ ::= α | λα :κ. τ | τ1 τ2 | λj :u. τ | τ [κ] | λz :Kscm. τ | τ [u]
| Ctor (i, κ) | Elim[κ′, κ](τ ′){~τ}

Figure 5.2: Syntax of λi
CC

jects (e.g., integers, lists) and define primitive recursive functions, all at the type level; these in turn

are used to help model the behaviors of the computation terms.

In the rest of this chapter, we first give a formal definition of our type language (which will be

named as λi
CC from now on) in Section 5.3. To show how this type system can be used, we then

present a sample computation language λH in Section 5.5.

5.3 The type language λi
CC

Our type language λi
CC resembles the calculus of inductive constructions (CIC) implemented in the

Coq proof assistant [HPM+00]. We do not directly use CIC as our type language for the following

reasons: first, CIC contains some features designed for program extraction [Pau89] which are not

required in our case (where proofs are only used as specifications for the computation terms).

Second, as far as we know, there are still no formal studies covering the entire CIC language.

The syntax for λi
CC is shown in Figure 5.2. Here kind schemas (kscm) classify kind terms

while kinds classify type terms. There are variables at all three levels: kind-schema variables z,

kind variables j, and type variables α. We have an external constant Kscm classifying all the kind

schemas; essentially, λi
CC has an additional level above kscm, of which Kscm is the sole member.

A good way to comprehend λi
CC is to look at its five Π constructs: there are three at the kind

level and two at the kind-schema level. Each Π term is used to typecheck a λ-function and its

application form defined at a level below. We use a few examples to explain why each of them is

necessary. Following the tradition, we use arrow terms (e.g., κ1 →κ2) as a syntactic sugar for the

non-dependent Π terms (e.g., Πα :κ1. κ2 is non-dependent if α does not occur free in κ2).

• Kinds Πα : κ1. κ2 and κ1 → κ2 are used to typecheck the type-level function λα : κ. τ and

its application form τ1 τ2. Assuming Ω and Nat are inductive kinds (defined later), we can

write a type term such as λα :Ω. α which has kind Ω→Ω, or a type-level arithmetic function

72

such as plus which has kind Nat→Nat→Nat.

• Kinds Πj :u. κ and u→κ are used to typecheck the type-level kind abstraction λj :u. τ and

its application form τ [κ]. As we saw before, this is needed to support intensional analysis of

quantified types. It can also be used to define logic connectives and constants, e.g.

True : Kind = Πj :Kind. j→j

False : Kind = Πj :Kind. j

True has the polymorphic identity as a proof:

id : True = λj :Kind. λα :j. α

but False is not inhabited (this is essentially the consistency property of λi
CC which we will

show later).

• Kind Πz :Kscm. κ is used to typecheck the type-level kind-schema abstraction λz :Kscm. τ

and its application form τ [u]. This is not in the core calculus of constructions [CH88]. We

use it in the inductive definition of Ω (see Section 5.5) where both the ∀∀Kscm and ∃∃Kscm

constructors have kind Πz :Kscm. (z→Ω)→Ω. These two constructors in turn allow us to

typecheck predicate-polymorphic computation terms, which occurs during closure conver-

sion [SSTP01].

• Kind schemas Πα :κ. u and κ→u are used to typecheck the kind-level type abstraction λα :

κ1. κ2 and its application form κ[τ]. The predicate Prime has kind schema Nat→Kind. A

predicate with kind schema Πα :Nat. Prime(α)→Kind is only applicable to prime numbers.

We can also define e.g. a binary relation:

LT : Nat→Nat→Kind

so that LT α1 α2 is a proposition asserting that the natural number represented by α1 is less

than that of α2.

• Kind schemas Πj : u1. u2 and u1 → u2 are used to typecheck the kind-level function λj :

u. κ and its application form κ1 κ2. We use it to write higher-order predicates and logic

73

connectives. For example, the logical negation operator can be written as follows:

Not : Kind → Kind = λj :Kind. (j→False)

The consistency of λi
CC implies that a proposition and its negation cannot be both inhabited—

otherwise applying the proof of the second to that of the first would yield a proof of False.

λi
CC also provides a general mechanism of inductive definitions [Pau93]. The term Ind(j :

Kind){~κ} introduces an inductively defined kind j containing a list of constructors whose kinds

are specified by ~κ. Here j must only occur “positively” (Section 5.4) inside each κi. The term

Ctor (i, κ) refers to the i-th constructor in an inductive kind κ. For presentation, we will use a more

friendly syntax in the rest of this chapter. An inductive kind I = Ind(j : Kind){~κ} will be written

as shown below. We give an explicit name ci to each constructor, so ci is just an abbreviation of

Ctor (i, I).

Inductive I : Kind := c1 : [I/j]κ1

| c2 : [I/j]κ2
...

| cn : [I/j]κn

λi
CC provides two iterators to support primitive recursion on inductive kinds. The small elimi-

nation Elim[κ′, κ](τ ′){~τ} takes a type term τ ′ of inductive kind κ′, performs the iterative operation

specified by ~τ (which contains a branch for each constructor of κ′), and returns a type term of kind

κ[τ ′] as the result. The large elimination Elim[κ′, u](τ){~κ} takes a type term τ of inductive kind

κ′, performs the iterative operation specified by ~κ, and returns a kind term of kind schema u as the

result. These iterators generalize the Typerec operator defined in Chapter 3.

Figure 5.3 gives a few examples of inductive definitions including the inductive kinds Bool

and Nat and several type-level functions which we will use in Section 5.5. The small elimination

for Nat takes the following form Elim[Nat, κ](τ ′){τ1; τ2}. Here, κ is a dependent kind with kind

schema Nat → Kind; τ ′ is the argument which has kind Nat. The term in the zero branch, τ1,

has kind κ[τ ′]. The term in the succ branch, τ2, has kind Nat → κ[τ ′] → κ[τ ′]. We denote the

iterator operation in λi
CC as the ι-reduction. For example, the two ι-reduction rules for Nat work

74

Inductive Bool : Kind := true : Bool
| false : Bool

Inductive Nat : Kind := zero : Nat
| succ : Nat→Nat

plus : Nat→Nat→Nat

plus(zero) = λα :Nat. α
plus(succ α) = λα′ :Nat. succ ((plus α) α′)

ifez : Nat→(Πj :Kind. j→(Nat→j)→j)

ifez(zero) = λj :Kind. λα1 :j. λα2 :Nat→j. α1

ifez(succ α) = λj :Kind. λα1 :j. λα2 :Nat→j. α2 α

le : Nat→Nat→Bool

le(zero) = λα :Nat. true
le(succ α) = λα′ :Nat. ifez α′ Bool false (le α)

lt : Nat→Nat→Bool

lt = λα :Nat. le (succ α)

Cond : Bool→Kind→Kind→Kind

Cond(true) = λj1 :Kind. λj2 :Kind. j1

Cond(false) = λj1 :Kind. λj2 :Kind. j2

Figure 5.3: Examples of inductive definitions

as follows:

Elim[Nat, κ](zero){τ1; τ2};ι τ1

Elim[Nat, κ](succ τ){τ1; τ2};ι τ2 τ (Elim[Nat, κ](τ){τ1; τ2})

In Figure 5.3, plus is a function which calculates the sum of two natural numbers. The function

ifez behaves like a switch statement: if its argument is zero, it returns a function that selects the

first branch; otherwise, the result takes the second branch and applies it to the predecessor of the

argument. The function le evaluates to true if its first argument is less than or equal to the second.

The function lt performs the less-than comparison.

The definition of function Cond, which implements a conditional with result at the kind level,

uses large elimination on Bool. It has the form Elim[Bool, u](τ){κ1;κ2}, where τ is of kind Bool;

both the true and false branches (κ1 and κ2) have kind schema u.

75

5.4 Formalization of λi
CC

In this section, we formalize our type language. It is easier to do this in terms of a PTS specification

(Section 2.5). Notice from Figure 5.2 that all the three layers in our type language essentially

consist only of abstractions, applications, and constructs related to inductive definitions. A PTS

specification allows us to factor out this commonality.

The syntax for the PTS pseudoterms is:

(ctxt) ∆ ::= · | ∆, X :A

(sort) s ::= Kind | Kscm | Ext

(var) X ::= z | j | α

(ptm) A,B ::= s | X | λX :A.B | A B | ΠX :A.B | Ind(X :Kind){ ~A}

| Ctor (i, A) | Elim[A′, B′](A){ ~B}

In addition to the symbols defined in the syntax, we will also use C to denote general terms,

Y and Z for variables, and I for inductive definitions. We use ~A to denote a sequence of terms

A1,. . ., An. Also, we distinguish between A and ~A since every element in ~A would be referred as

Ai anyway.

λi
CC has the following PTS specification which will be used to derive its typing rules:

S = Kind, Kscm, Ext

A = Kind :Kscm, Kscm :Ext

R = (Kind, Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

In order to ensure that the interpretation of inductive definitions remains consistent, and they

can be interpreted as terms closed under their introduction rules, we impose positivity constraints

on the constructors of an inductive definition. The positivity constraints are defined in Defini-

tion 5.4.1 and 5.4.2.

Definition 5.4.1 A term A is strictly positive in X if A is either X or ΠY : B.A′, where A′ is

strictly positive in X , X does not occur free in B, and X 6= Y .

Definition 5.4.2 A term C is a well-formed constructor kind for X (written wfcX(C)) if it has one

of the following forms:

76

1. X;

2. ΠY :B.C ′, where Y 6= X , X is not free in B, and C ′ is a well-formed constructor kind for

X; or

3. A→C ′, where A is strictly positive in X and C ′ is a well-formed constructor kind for X .

Note that in the definition of wfcX(C), the second clause covers the case where C is of the form

A → C ′, and X does not occur free in A. Therefore, we only allow the occurrence of X in the

non-dependent case.

We often write the well-formed constructor kind for X as Π~Y : ~B.X . We also denote terms

that are strictly positive in X by Π~Y : ~B.X , where X is not free in ~B.

Definition 5.4.3 Let C be a well-formed constructor kind for X . Then C is of the form Π~Y : ~A.X .

If all the Y ’s are α’s, that is, C is of the form Π~α : ~A.X , then we say that C is a small constructor

kind (or just small constructor when there is no ambiguity) and denote it as small (C).

Our inductive definitions reside in Kind, whereas a small constructor does not make universal

quantification over objects of type Kind. Therefore, an inductive definition with small constructors

is a predicative definition. While dealing with impredicative inductive definitions, we must forbid

projections on universes equal to or bigger than the one inhabited by the definition. In particular,

we restrict large elimination to inductive definitions with only small constructors.

Next, we define the set of reductions on our terms. The definition of β- and η-reduction is

standard. The ι-reduction defines primitive recursion over inductive objects.

Definition 5.4.4 Let C be a well-formed constructor kind for X and let A′, B′, and I be pseu-

doterms. We define ΦX,I,B′(C,A′) recursively based on the structure of C:

ΦX,I,B′(X,A′)
def
= A′

ΦX,I,B′(ΠY :B.C ′, A′)
def
= λY :B.ΦX,I,B′(C ′, A′ Y)

ΦX,I,B′((Π~Y : ~B.X)→C ′, A′)
def
= λZ : (Π~Y : ~B. I).ΦX,I,B′(C ′, A′ Z (λ~Y : ~B.B′ (Z ~Y)))

77

Definition 5.4.5 The reduction relations on our terms are defined as:

(λX :A.B) A′
;β [A′/X]B

λX :A. (B X) ;η B, if X /∈ FV (B)

Elim[I,A′′](Ctor (i, I) ~A){ ~B} ;ι (ΦX,I,B′(Ci, Bi)) ~A

where
I = Ind(X :Kind){ ~C}

B′ = λY :I. (Elim[I,A′′](Y){ ~B})

By �β , �η , and �ι we denote the relations that correspond to the rewriting of subterms using the

relations ;β , ;η , and ;ι respectively. We use ; and � for the unions of the above relations. We

also write �
∗ and �

+ (respectively �
∗
β etc.) for the reflexive-transitive and transitive closures of

� (respectively �β etc.) and =βηι for the reflexive-symmetric-transitive closure of �. We say that

a sequence of terms A1,. . ., An, such that A � A1 � A2 . . . � An, is a chain of reductions starting

from A.

Let us examine the ι-reduction in detail. In Elim[I,A′′](A){ ~B}, the term A of type I is being

analyzed. The sequence ~B contains the set of branches for Elim, one for each constructor of I . In

the case when Ci = X , which implies that A is of the form Ctor (i, I), the Elim just selects the Bi

branch:

Elim[I,A′′](Ctor (i, I)){ ~B} ;ι Bi

In the case when Ci = Π~Y : ~B.X where X does not occur free in ~B, then A must be in the form

Ctor (i, I) ~A with Ai of type Bi. None of the arguments are recursive. Therefore, the Elim should

just select the Bi branch and pass the constructor arguments to it. Accordingly, the reduction yields

(by expanding the Φ macro):

Elim[I,A′′](Ctor (i, I) ~A){ ~B} ;ι Bi
~A

The recursive case is the most interesting. For simplicity assume that the i-th constructor has the

form Π~Y : ~B′. X → Π ~Y ′ : ~B′′. X . Therefore, A is of the form Ctor (i, I) ~A with A1 being the

recursive component of type Π~Y : ~B′. X , and A2 . . . An being non-recursive. The reduction rule

then yields:

Elim[I,A′′](Ctor (i, I) ~A){ ~B} ;ι Bi A1 (λ~Y : ~B′. Elim[I,A′′](A1
~Y){ ~B}) A2 . . . An

78

The Elim construct selects the Bi branch and passes the arguments A1,. . ., An, and the result of

recursively processing A1. In the general case, it would process each recursive argument.

Definition 5.4.6 defines the Ψ macro which represents the type of the large Elim branches.

Definition 5.4.7 defines the ζ macro which represents the type of the small elimination branches.

The different cases follow from the ι-reduction rule in Definition 5.4.5.

Definition 5.4.6 Let C be a well-formed constructor kind for X and let A′ and I be two terms. We

define ΨX,I(C,A′) recursively based on the structure of C:

ΨX,I(X,A′)
def
= A′

ΨX,I(ΠY :B.C ′, A′)
def
= ΠY :B.ΨX,I(C

′, A′)

ΨX,I(A→C ′, A′)
def
= [I/X]A→ [A′/X]A→ΨX,I(C

′, A′)

where X is not free in B and A is strictly positive in X .

Definition 5.4.7 Let C be a well-formed constructor kind for X and let A′, I , and B′ be terms.

We define ζX,I(C,A′, B′) recursively based on the structure of C:

ζX,I(X,A′, B′)
def
= A′ B′

ζX,I(ΠY :B.C ′, A′, B′)
def
= ΠY :B. ζX,I(C

′, A′, B′ Y)

ζX,I(Π~Y : ~B.X → C ′, A′, B′)
def
= ΠZ : (Π~Y : ~B. I).Π~Y : ~B. (A′ (Z ~Y)) → ζX,I(C

′, A′, B′ Z)

where X is not free in B and ~B.

Definition 5.4.8 We use ∆|α,j to denote that the environment does not contain any z variables.

Here are the complete typing rules for λi
CC . The three weakening rules make sure that all variables

are bound to the right classes of terms in the context. There are no separate context-formation

rules; a context ∆ is well-formed if we can derive the judgment ∆ ` Kind : Kscm (notice we can

only add new variables to the context via the weakening rules).

· ` Kind : Kscm (AX1)

· ` Kscm : Ext (AX2)

∆ ` C : Kind ∆ ` A : B α /∈ Dom(∆)

∆, α :C ` A : B
(WEAK1)

79

∆ ` C : Kscm ∆ ` A : B j /∈ Dom(∆)

∆, j :C ` A : B
(WEAK2)

∆ ` C : Ext ∆ ` A : B z /∈ Dom(∆)

∆, z :C ` A : B
(WEAK3)

∆ ` Kind : Kscm X ∈ Dom(∆)

∆ ` X : ∆(X)
(VAR)

∆, X :A ` B : B ′ ∆ ` ΠX :A.B ′ : s

∆ ` λX :A.B : ΠX :A.B ′
(FUN)

∆ ` A : ΠX :B ′. A′ ∆ ` B : B′

∆ ` A B : [B/X]A′ (APP)

∆ ` A : s1 ∆, X :A ` B : s2 (s1, s2) ∈ R

∆ ` ΠX :A.B : s2
(PROD)

for all i ∆, X :Kind ` Ci : Kind wfcX(Ci)

∆ ` Ind(X :Kind){ ~C} : Kind
(IND)

∆ ` I : Kind where I = Ind(X :Kind){ ~C}

∆ ` Ctor (i, I) : [I/X]Ci

(CON)

∆ ` A : I ∆ ` A′ : I → Kind

for all i ∆ ` Bi : ζX,I(Ci, A
′, Ctor (i, I))

∆ ` Elim[I,A′](A){ ~B} : A′ A

where I = Ind(X :Kind){ ~C}

(ELIM)

∆ ` A : I ∆|α,j ` A′ : Kscm

for all i small(Ci) ∆ ` Bi : ΨX,I(Ci, A
′)

∆ ` Elim[I,A′](A){ ~B} : A′

where I = Ind(X :Kind){ ~C}

(L-ELIM)

∆ ` A : B ∆ ` B ′ : s ∆ ` B : s B =βηι B′

∆ ` A : B′

(CONV)

We will merely state λi
CC ’s meta-theoretic properties here and defer the proofs to Appendix C.

Theorem 5.4.9 Reductions of well-formed terms is strongly normalizing and confluent.

We will next show a sample computation language and show how the expressivity of the type

language may be put to use.

80

(exp) e ::= x | n | tt | ff | f | fix x :A. f | e e′ | e[A] | 〈X =A, e :A′〉
| open e as 〈X, x〉 in e′ | 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A,A′](e, X1. e1, X2. e2)

where n ∈ N

(fun) f ::= λx :A. e | ΛX :A. f

(arith) aop ::= + | . . .
(cmp) cop ::= < | . . .

Figure 5.4: Syntax of the computation language λH .

5.5 The computation language λH

The language of computations λH can use proofs and propositions (constructed in the type lan-

guage) to represent program invariants expressible in higher-order predicate logic. This allows us

to assign a more refined type to programs when compared to other higher-order typed calculi.

In this section we often use the unqualified “term” to refer to a computation term (expression)

e, with syntax defined in Figure 5.4. Most of the constructs are borrowed from standard higher-

order typed calculi. We will only consider constants representing natural numbers (n is the value

representing n ∈ N) and boolean values (tt and ff). The term-level abstraction and application are

standard; type abstractions and fixed points are restricted to function values since we use call-by-

value semantics. The type variable bound by a type abstraction, as well as the one bound by the

open construct for packages of existential type, can have either a kind or a kind schema. Dually,

the type argument in a type application, and the witness type term A in the package construction

〈X =A, e :A′〉 can be either a type term or a kind term.

The constructs implementing tuple operations, arithmetic, and comparisons have nonstandard

static semantics, on which we focus in section 5.5.1, but their runtime behavior is standard. The

branching construct is parameterized at the type level with a proposition (which is dependent on

the value of the test term) and its proof; the proof is passed to the executed branch.

Dynamic semantics We present a small step call-by-value operational semantics for λH in the

style of Wright and Felleisen [WC94]. The values are defined as shown below. The reduction

81

(λx :A. e) v ; [v/x]e (R-β)

(ΛX :B. f)[A] ; [A/X]f (R-TY-β)

sel[A](〈v0, . . . vn−1〉,m) ; vm (m < n) (R-SEL)

open 〈X ′=A, v :A′〉 as 〈X, x〉 in e
; [v/x][A/X]e

(R-OPEN)

(fix x :A. f) v ; ([fix x :A. f/x]f) v (R-FIX)

(fix x :A. f)[A′] ; ([fix x :A. f/x]f)[A′] (R-TYFIX)

m+n ; m + n (R-ADD)

m<n ; tt (m < n) (R-LT-T)

m<n ; ff (m ≥ n) (R-LT-F)

if[B,A](tt, X1. e1, X2. e2) ; [A/X1]e1 (R-IF-T)

if[B,A](ff, X1. e1, X2. e2) ; [A/X2]e2 (R-IF-F)

Figure 5.5: Dynamic semantics

relation ; is specified in Figure 5.5.

v ::= n | tt | ff | f | fix x :A. f | 〈X =A, v :A′〉 | 〈v0, . . . vn−1〉

An evaluation context E encodes the call-by-value discipline:

E ::= • | E e | v E | E[A] | 〈X =A, E :A′〉 | open E as 〈X, x〉 in e

| open v as 〈X, x〉 in E | 〈v0, . . . vi, E, ei+2, . . . , en−1〉 | sel[A](E, e)

| sel[A](v,E) | E aop e | v aop E | E cop e | v cop E

| if[A,A′](E, X1. e1, X2. e2)

The notation E{e} stands for the term obtained by replacing the hole • in E by e. The single step

computation 7→ relates E{e} to E{e′} when e ; e′, and 7→∗ is its reflexive transitive closure.

As shown the semantics is standard except for some additional passing of type terms in R-SEL

and R-IF-T/F. However an inspection of the rules shows that types are irrelevant for the evaluation,

hence a type-erasure semantics, in which all type-related operations and parameters are erased,

would be entirely standard.

82

5.5.1 Static semantics

The static semantics of λH shows the benefits of using a type language as expressive as λi
CC . We

can now define the type constructors of λH as constructors of an inductive kind Ω, instead of having

them built into λH .

Inductive Ω : Kind := snat : Nat→Ω

| sbool : Bool→Ω

| →→ : Ω→Ω→Ω

| ×× : Nat→(Nat→Ω)→Ω

| ∀∀Kind : Πj :Kind. (j→Ω)→Ω

| ∃∃Kind : Πj :Kind. (j→Ω)→Ω

| ∀∀Kscm : Πz :Kscm. (z→Ω)→Ω

| ∃∃Kscm : Πz :Kscm. (z→Ω)→Ω

Informally, all well-formed computations have types of kind Ω, including singleton types of nat-

ural numbers snat A and boolean values sbool B, as well as function, tuple, polymorphic and

existential types. To improve readability we also define the syntactic sugar

A → B ≡→→ A B

∀sX :A.B

∃sX :A.B

≡

≡

∀∀s A (λX :A.B)

∃∃s A (λX :A.B)



 where s ∈ {Kind, Kscm}

and often drop the sort s when s = Kind; e.g. the type void, containing no values, is defined as

∀α :Ω. α ≡ ∀∀Kind Ω (λα :Ω. α).

Using this syntactic sugar we can give a familiar look to many of the formation rules for λH

expressions and functional values. Figure 5.6 contains the inference rules for deriving judgments

of the form ∆; Γ ` e : A, which assign type A to the expression e in a context ∆ and a type

environment Γ defined by

(type env) Γ ::= · | Γ, x :A

We introduce some of the notation used in these rules in the course of the discussion.

Rules E-NAT, E-TRUE, and E-FALSE assign singleton types to numeric and boolean constants.

83

∆ ` Kind : Kscm
∆ ` · ok

(TE-MT)

∆ ` Γ ok ∆ ` A : Ω
∆ ` Γ, x :A ok

(TE-ADD)

∆ ` Γ ok

∆; Γ ` x : Γ(x)
(E-VAR)

∆ ` Γ ok

∆; Γ ` n : snat n̂
(E-NAT)

∆ ` Γ ok

∆; Γ ` tt : sbool true
(E-TRUE)

∆ ` Γ ok

∆; Γ ` ff : sbool false
(E-FALSE)

∆ ` A : Ω ∆; Γ, x :A ` f : A

∆; Γ ` fix x :A. f : A
(E-FIX)

∆ ` A : Ω ∆; Γ, x :A ` e : A′

∆; Γ ` λx :A. e : A → A′
(E-FUN)

∆; Γ ` e1 : A → A′ ∆; Γ ` e2 : A

∆; Γ ` e1 e2 : A′
(E-APP)

∆ ` B : s ∆, X :B; Γ ` f : A

∆; Γ ` ΛX :B. f : ∀sX :B.A

(
X /∈ ∆
s 6= Ext

)
(E-TFUN)

∆; Γ ` e : ∀sX :B.A′ ∆ ` A : B

∆; Γ ` e[A] : [A/X]A′
(s 6= Ext) (E-TAPP)

∆ ` A : B ∆ ` B : s

∆; Γ ` e : [A/X]A′

∆; Γ ` 〈X =A, e :A′〉 : ∃sX :B.A′
(s 6= Ext)

(E-PACK)

∆; Γ ` e : ∃sX
′ :B.A ∆ ` A′ : Ω

∆, X :B; Γ, x : [X/X ′]A ` e′ : A′

∆; Γ ` open e as 〈X, x〉 in e′ : A′

(
X /∈ ∆
s 6= Ext

)
(E-OPEN)

∆; Γ ` e : snat A ∆; Γ ` e′ : snat A′

∆; Γ ` e+ e′ : snat (plus A A′)
(E-ADD)

∆; Γ ` e : snat A ∆; Γ ` e′ : snat A′

∆; Γ ` e< e′ : sbool (lt A A′)
(E-LT)

Figure 5.6: Static semantics of the computation language λH

84

for all i < n ∆; Γ ` ei : Ai

∆; Γ ` 〈e0, . . . en−1〉
: ×× n̂ (nth (A0:: . . . ::An−1::nil))

(E-TUP)

∆; Γ ` e : ×× A′′ B ∆; Γ ` e′ : snat A′

∆ ` A : LT A′ A′′

∆; Γ ` sel[A](e, e′) : B A′

(E-SEL)

∆ ` B : Bool→Kind ∆; Γ ` e : sbool A′′

∆ ` A : B A′′ ∆, X1 :B true; Γ ` e1 : A′

∆ ` A′ : Ω ∆, X2 :B false; Γ ` e2 : A′

∆; Γ ` if[B,A](e, X1. e1, X2. e2) : A′

(E-IF)

∆; Γ ` e : A A =βηι A′ ∆ ` A′ : Ω

∆; Γ ` e : A′
(E-CONV)

Figure 5.6: Static semantics of the computation language λH (contd.)

For instance the constant 1 has type snat (succ zero) in any valid environment. In rule E-NAT we

use the meta-function ·̂ to map natural numbers n ∈ N to their representations as type terms. It is

defined inductively by 0̂ = zero and n̂+1 = succ n̂, so ∆ ` n̂ : Nat holds for all valid ∆ and

n ∈ N.

Singleton types play a central role in reflecting properties of values in the type language, where

we can reason about them constructively. For instance rules E-ADD and E-LT use respectively the

type terms plus and lt (defined in Section 5.3) to reflect the semantics of the term operations into

the type level via singleton types.

However, if we could only assign singleton types to computation terms, in a decidable type

system we would only be able to typecheck terminating programs. We regain expressiveness of

the computation language using existential types to hide some of the too detailed type information.

Thus for example one can define the usual types of all natural numbers and boolean values as

nat : Ω = ∃α :Nat. snat α

bool : Ω = ∃α :Bool. sbool α

For any term e with singleton type snat A the package 〈α = A, e : snat α〉 has type nat. Since

in a type-erasure semantics of λH all types and operations on them are erased, there is no runtime

85

overhead for the packaging. For each n ∈ N there is a value of this type denoted by n̂ ≡ 〈α =

n̂, n :snat α〉. Operations on terms of type nat are derived from operations on terms of singleton

types of the form snat A; for example an addition function of type nat → nat → nat is defined as

the expression

add = λx1 :nat. λx2 :nat.

open x1 as 〈α1, x′1〉 in open x2 as 〈α2, x′2〉 in

〈α=plus α1 α2, x′1 + x′2 :snat α〉

Rule E-TUP assigns to a tuple a type of the form ×× A B, in which the ×× constructor is applied

to a type A representing the tuple size, and a function B mapping offsets to the types of the tuple

components. This function is defined in terms of operations on lists of types:

Inductive List : Kind := nil : List

| cons : Ω→List→List

nth : List→Nat→Ω

nth nil = λα :Nat. void

nth (cons α1 α2) = λα :Nat. ifez α Ω α1 (nth α2)

Thus nth L n̂ reduces to the n-th element of the list L when n is less than the length of L, and

to void otherwise. We also use the infix form A::A′ ≡ cons A A′. The type of pairs is derived:

A × A′ ≡ ×× 2̂ (nth (A::A′::nil)). Thus for instance ·;· ` 〈42, 7〉 : snat 4̂2 × snat 7̂ is a valid

judgment.

The rules for selection and testing for the less-than relation refer to the kind term LT with

kind schema Nat → Nat → Kind. Intuitively, LT represents a binary relation on kind Nat, so

LT m̂ n̂ is the kind of type terms representing proofs of m < n. LT can be thought of as the

parameterized inductive kind of proofs constructed from instances of the axioms ∀n ∈ N. 0 < n+1

and ∀m,n ∈ N.m < n ⊃ m+1 < n+1:

Inductive LT : Nat→Nat→Kind

:= ltzs : Πα :Nat. LT zero (succ α)

| ltss : Πα :Nat.Πα′ :Nat. LT α α′→LT (succ α) (succ α′)

In our type language we allow inductive kinds of kind scheme Kind only. Thus we actually need

86

to use a Church encoding of LT (see [SSTP01] for the encoding).

In the component selection construct sel[A](e, e′) the type A represents a proof that the value

of the subscript e′ is less than the size of the tuple e. In rule E-SEL this condition is expressed as an

application of the type term LT. Due to the consistency of the logic represented in the type language,

only the existence and not the structure of the proof object A is important. Since its existence is

ensured statically in a well-formed expression, A would be eliminated in a type-erasure semantics.

The branching construct if[B,A](e, X1. e1, X2. e2) takes a type term A representing a proof

of the proposition encoded as either B true or B false, depending on the value of e. The proof

is passed to the appropriate branch in its bound type variable (X1 or X2). The correspondence

between the value of e and the kind of A is again established through a singleton type.

5.5.2 Example: bound check elimination

A simple example of the generation, propagation, and use of proofs in λH is a function which

computes the sum of the components of any vector of naturals. Let us first introduce some auxiliary

types and functions. The type assigned to a homogeneous tuple (vector) of n terms of type A is

βηι-convertible to the form vec n̂ A for

vec : Nat→Ω→Ω

vec = λα :Nat. λα′ :Ω.×× α (nth (repeat α α′))

where

repeat : Nat→Ω→List

repeat zero = λα′ :Ω. nil

repeat (succ α) = λα′ :Ω. α′::(repeat α) α′

87

Then we can define a term which sums the elements of a vector with a given length as follows:

sumVec : ∀α :Nat. snat α → vec α nat → nat

≡ Λα :Nat. λn :snat α. λv :vec α nat.

(fix loop :nat → nat → nat.

λi :nat. λsum :nat.

open i as 〈α′, i′〉 in

if[LTOrTrue α′ α, ltPrf α′ α]

(i′ <n,

α1. loop (add i 1̂) (add sum (sel[α1](v, i′))),

α2 . sum)) 0̂ 0̂

where

LTOrTrue : Nat→Nat→Bool→Kind

LTOrTrue = λα1 :Nat. λα2 :Nat. λα :Bool. Cond α (LTα1 α2)True

The comparison i′ <n, used in this example as a loop termination test, checks whether the

index i′ is smaller than the vector size n. If it is, the adequacy of the type term lt with respect to

the less-than relation ensures that the type term ltPrf α′ α represents a proof of the corresponding

proposition at the type level, namely LT α′ α. This proof is then bound to α1 in the first branch of

the if, and the sel construct uses it to verify that the i′-th element of v exists, thus avoiding a second

test. The type safety of λH (Theorem 5.5.1) guarantees that implementations of sel need not check

the subscript at runtime. Since the proof α2 is ignored in the “else” branch, ltPrf α′ α is defined to

reduce to the trivial proof of True when the value of i′ is not less than that of n.

As an aside, the usual vector type, which keeps the length packaged with the content, is then:

vector : Ω→Ω = λα :Ω.∃α′ :Nat. snat α′ × vec α′ α.

We won’t give here the proof of type-safety for this sample computation language λH . The

interested reader may refer to [SSTP01] for the details. The proof does not contain any new sub-

tleties.

Theorem 5.5.1 (Safety of λH) If ·;·` e : A, then either e is a value or there exists an e′ such that

88

e 7→ e′ and ·;·` e′ : A.

5.6 Summary and related work

To sum up, an intermediate language is now constructed by combining our type language λi
CC

with a particular computation language. The type system for the particular computation language

is created by giving the inductive definition for the base kind Ω. For example, the computation

language here was λH with the base kind defined at the beginning of Section 5.5.1.

Our type language is a variant of the calculus of constructions [CH88] extended with inductive

definitions (with both small and large elimination) [Pau93, Wer94]. We support η-reduction in

our language while the official Coq system does not. The proofs for the properties of λi
CC are

adapted from Geuvers [Geu93] and Werner [Wer94]; the main difference is that our language has

kind-schema variables and a new product formation rule (Ext, Kind) which are not in Werner’s

system.

The Coq proof assistant provides support for extracting programs from proofs [Pau93]. It

separates propositions and sets into two distinct universes Prop and Set. We do not distinguish

between them because we are not aiming to extract programs from our proofs, instead, we are using

proofs as specifications for our computation terms.

Xi and Pfenning’s DML [XP99] is the first language that nicely combines dependent types with

programs that may involve effects. Our ideas of using singleton types and lifting the level of the

proof language are directly inspired by their work. Xi’s system, however, does not support arbitrary

propositions and explicit proofs. It also does not define the Ω kind as an inductive definition so it is

unclear how it interacts with intensional type analysis [TSS00] and how it preserves proofs during

compilation.

We have discussed the relationship between our work and those on PCC, typed assembly lan-

guages, and intensional type analysis in Section 5.1. Inductive definitions subsume and general-

ize earlier systems on intensional type analysis [HM95, CWM99, TSS00]; the type-analysis con-

struct in the computation language can be eliminated using the technique proposed by Crary et

al. [CWM98].

Crary and Vanderwaart [CV01] recently proposed a system called LTT which also aims at

adding explicit proofs to typed intermediate languages. LTT uses Linear LF [CP96] as its proof

89

language. It shares some similarities with our system in that both are using singleton types [XP99]

to circumvent the problems of dependent types. However, since LF does not have inductive def-

initions and the Elim construct, it is unclear how LTT can support intensional type analysis and

type-level primitive recursive functions [CW00].

90

Chapter 6

Implementation

In this chapter we discuss the implementation details of the type system for certified runtime type

analysis. We implemented the type system in an experimental version of the Standard ML of New

Jersey compiler [AM91]. The motivation for the implementation was two-fold. First, we wanted

to create an infrastructure that can be used for writing certified applications. Second we wanted

to measure the overhead of implementing such an expressive type system in an industrial-strength

compiler.

The current SML/NJ compiler (v110.34) is a type-preserving compiler; in fact, types are prop-

agated through all optimizations and right till code generation. The intermediate language of the

compiler is based on the predicative Fω calculus [Sha97b]. The type language, by itself, is similar

to the simply typed lambda calculus.

Our implementation uses the frontend and the code generator from the existing compiler. The

type preserving phase is new, and uses the certifying type system described in Chapter 5. We im-

plemented this system since it integrates runtime type analysis and a logical system inside a single

framework. We implemented the new type system and the associated type manipulation opera-

tions, and then re-wrote all the optimizations to use this new type system. Thus the type-preserving

phases in both the compilers are the same: we do inlining, specialization, loop optimizations, lay

down efficient data representations, etc. Figure 6.1 illustrates the design of the two compilers.

We have not used the new type system to prove safety properties of programs; however, the

implementation maintains all the information that is needed to write certified applications. In the

old implementation the base kind Ω (the kind for the type of terms) was an in-built primitive kind.

As shown in Chapter 5, the new type system provides a mechanism for defining kinds inductively.

91

FLINT = Computation language (CL) +
type language (TL)

TL = Simply typed lambda calculus

Code Generator
(Back-end)

Optimizations:
Inlining

Specialization
Loop Optimizations
Data representation

etc

Type
Preserving
Phases

Uses
FLINT

?

Types Erased
Here

-
?

Translation into
FLINT

?

SML Front-end

SML/NJ v110.34

Optimizations:
Inlining

Specialization
Loop Optimizations
Data representation

etc

Type
Preserving
Phases

Uses
New FLINT

?

Translation into
New FLINT

?

�

Our compiler

New FLINT = Computation language (CL) +
type language (TL’)

TL’ = λi
CC

Figure 6.1: Comparing the implementations

92

Type size distribution
Benchmark No of lines Average type size > 102 > 103 > 104 > 105

Mlyacc 6030 36 510 56
Vliw 3679 73 874 197
CML 6152 81 1359 34 27

Figure 6.2: Size of types generated during compilation

The base kind Ω is now an inductively defined kind (see Section 6.4); type constructors such as

tuples, vectors, arrays, function types, etc are members of this inductive definition. Furthermore,

each of these types carry more information. For example, a tuple type not only carries the type

of each component, but also the length of the tuple. Therefore, the new compiler creates the

scaffolding required for certifying programs; thus, we can measure the overhead introduced by the

new type system.

How does a type system impact the compilation strategy ? To get an idea we took some mea-

surements of the amount of type information generated by the Standard ML of New Jersey compiler

during the compilation process. Figure 6.2 shows the figures on three large benchmarks. Mlyacc is

a parser generator for Standard ML, vliw is an instruction scheduler for a vliw compiler, and CML

is an implementation of Concurrent-ML [Rep91]. The amount of type information is measured in

terms of the number of nodes in a type. Essentially, if we consider a type as a tree, then this table

counts the number of nodes in the tree. For example, a primitive type like int is of size one, a pair

int× int is of size two, a type (int× int) → int is of size three, and so on. The sizes are calculated

without taking any sharing (between types) into consideration. The third column in Figure 6.2

shows the average number of nodes in a type. For example, during the compilation of mlyacc a

type on the average has 36 nodes. The last column shows the spread in the size of the types: during

the compilation of mlyacc we generate 510 types with each of them having more than a hundred

nodes, and 56 types with each of them having more than a thousand nodes.

This table shows that the overhead incurred from a type system is surprisingly large. For

example, on CML the compilation generates a good number of types with more than ten thousand

nodes each. Since the type system in the compiler is similar to the simply typed lambda calculus,

these figures reflect the overhead of using the simplest system in the lambda-cube. Therefore, one

of the key questions is: will the type information that must be maintained for the most expressive

system (in the lambda-cube) overwhelm the compiler ?

93

6.1 Implementing a pure type system

The implementation, like the formalization, uses the PTS specification of the type system. This

allows us to use the same datatype for types, kinds, and kind schemas: therefore, it provides a

tremendous economy in the number of constructs that need to be implemented. The datatype

pterm used for representing the PTS is shown below:

datatype sort

= Kind

| Kscm

| Ext

datatype pterm

= V ar of int * sort (* variables *)

| Srt of sort (* sorts *)

| Pi of pterm * pterm (* product *)

| Fn of pterm * pterm (* abstraction *)

| App of pterm * pterm (* application *)

| Ind of pterm * int * pterm list (* inductive definition *)

| Con of pterm * int * int * pterm list (* constructor of inductive definition *)

| Fix of int list * pterm * int * pterm list (* fixpoint *)

| Case of pterm * pterm * pterm list (* case construct *)

| Seq of pterm list (* record *)

| Proj of pterm * int (* projection *)

| Clos of pterm * int * int * env (* closure *)

datatype env

= Emp (* empty environment *)

| Sub of (int * pterm) * env (* environment with a substitution *)

We use DeBruijn indices [De 80] for variables. Thus a term of the form

λX : A. λY :X. . . . Y . . . X . . . is represented as λ : A. λ :#1. . . . #1 . . . #2 . . . where the vari-

able is denoted by its lexical depth. This is useful because two α-equivalent terms now have the

same representation. The variables contain another bit of information. Since we are using a PTS

94

representation, there is no syntactic distinction between types, kinds, and schemas. But for type-

checking, this information is often useful: the extra bit memoizes this information. Our binding

constructs (Fn and Pi) now only need to store the type of the bound variable. For example,

λX : A.B is represented as Fn(p1, p2) where p1, p2 are the representations for A and B respec-

tively.

The mechanism for inductive definition is more general than that presented in Chapter 5. The

implementation allows mutually recursive, parametrized inductive definitions. The first sub-term

contains the body of the inductive definitions, the integer says which definition we are interested

in, and the list at the end represents the arguments. Consider the inductive definitions shown below.

We first define the natural numbers and then define an integer list that keeps track of its length. The

empty list has zero length. When we cons an integer to a list, we increase its length by one:

Inductive (Nat:Kind)

= zero : Nat

| succ : Nat → Nat

Inductive (ListNat:Nat → Kind)

= nil : ListNat(zero)

| cons : ΠX :Nat. int → ListNat(X) → ListNat(succ(X))

Suppose that we wanted to represent the inductive definition of ListNat. The arrow type →

should be represented as a product type, but we will use the arrow type wherever possible to make

the presentation clearer. We first build the pseudoterm p representing the definition:

p = Fn (Seq [Natpts → Kind],

Seq [

Seq[App(#1,zeropts), Pi(Natpts, int → App(#2, #1) → App(#2, succpts(#1))]

]

)

An inductive definition binds a set of names; we use the Fn construct for this. As is the case

with ordinary functions, the Fn construct carries only the type of the bound variables. Since

we may have mutually inductive definitions, we use the Seq construct that lets us bind a list of

variables. In the example above, the inductive definition introduces a variable of type Nat → Kind;

therefore, Fn binds a Seq [Natpts → Kind]. We use Natpts to denote the PTS representation of the

95

inductive definition Nat. The body of Fn contains the definition of the constructors. The body is a

sequence where every member contains the constructors (as a sequence) for one particular inductive

definition. The variables introduced by the definition (in this case ListNat) are denoted by DeBruijn

indices. We use zeropts and succpts to denote the PTS representation of the constructors zero and

succ An integer list of length one has the type ListNat(succ(zero)). This would be represented

as: Ind(p, 1, [succpts(zeropts)]).

The representation of constructors contains the representation of the inductive definition. For

example, the constructor nil is represented as Con(p, 1, 1, []). This says that nil is the first con-

structor in the first set of definitions in p, and the set of arguments for this constructor is empty.

In the presentation in Chapter 5 we had a built-in primitive recursion operator that we called

Elim. In our implementation, we use two other built-in operators, a Case construct and a recursion

construct (Fix) to simulate this. The formation rules and the reduction rules for these constructs

is entirely standard. This approach was formalized and proved equivalent to the primitive recursive

approach in [Gim98, HPM+00]. We used the same formalization in our implementation.

Case(p, p1, ~p′) ; p′j p′′1 . . . p′′n

where p1 = Con(p3, i, j, [p
′′
1 , . . . , p′′n])

The PTS representation of the case construct is explicitly typed. The first sub-term p gives the

type of the case construct; the next sub-term p1 is the term being analyzed (which must have an

inductive type); and the list ~p′ is the set of branches for the case statement. Every branch must bind

the arguments of the corresponding constructor; these arguments, p′′
1 . . . p′′n, are passed in during

the reduction.

Our recursive construct can include several mutually recursive definitions, but the syntax in-

cludes special restrictions to prevent non-normalizing terms. One of the arguments of the Fix

construct must have an inductive type. This is the argument that we will recurse on. The body of

Fix must start with a case analysis of this inductive argument. As pointed before, the case analysis

binds the arguments of the constructors to variables. Recursive calls are allowed only on these

variables. Intuitively, the recursion can occur only on the subterms of an inductively defined term.

Therefore, the syntax of Fix must specify which argument is being recursed on.

96

The abstract syntax for a set of mutually recursive definitions is the following:

Fixj(f1/i1 :A1 = B1 . . . fn/in :An = Bn)

The body of fk is Bk and it has the type Ak. In the body Bk, we will recurse over the ik
th argument.

We are interested in the jth definition. We will use Fixj(F) to denote this definition. At every

occurrence this fixpoint must be applied to ij arguments, where the ij
th argument must have an

inductive type. The reduction rule (shown below) is standard; however, the reduction is applied

only if A′
ij (the ij

th argument) is syntactically a constructor. This restriction is needed to ensure

strong normalization, and corresponds to the reduction for primitive recursive operators.

Fixj(F) A′
1 . . . A′

ij ; ([(Fixk(F)/fk)k=1...n]Bj) A′
1 . . . A′

ij

The PTS representation of this fixpoint occurrence is shown below:

Fix(~i, p, j, ~p′)

where ~i = [i1, . . . , in]

p = Fn(Seq[A1pts, . . . , Anpts], Seq[B1pts, . . . , Bnpts])

~p′ = [A′
1pts, . . . , A

′
ij−1pts

]

As before we use a Fn construct to bind the sequence of variables f1 . . . fn in the bodies Bipts.

The list of integers ~i specifies the argument in each recursive definition that is being recursed on.

The list of terms ~p′ carries all the arguments previous to the one that is being recursed on.

The Seq and Proj constructs are mainly an implementation aid. The Seq construct is used for

binding a list of pterms, for example the set of constructors in an inductive definition. By using

the Seq construct we ensure through our hash-consing scheme (Section 6.3) that there is only a

single copy of the list in memory. If we use an explicit list of pterms then each component of the

list would be shared; however, we would still have multiple copies of the list. Moreover, the Seq

and Proj constructs allow us to handle a list of terms without any meta-level machinery. Since

environments can also be modelled as a list of bindings, these constructs are also used for sharing

environments.

97

6.2 Rationale for design decisions

The main motivations in designing the representation of PTS terms were to provide fast type manip-

ulation, and to make type-checking convenient. These were reflected mainly in the representation

of inductive definitions, and elimination forms for these inductive definitions. In this section we

will explain why we chose these representations with some simple examples.

Constructors: During type reductions constructors are mainly used for analysis in the Case

construct. Consider the reduction of a case statement: Case(p1, p2, ~p′). We need to figure out

whether p2 is a constructor, and if so, the arguments of the constructor. Since our representation

for a constructor carries all its arguments, we have the invariant that a term is a constructor if

and only if its representation is of the form Con(p1, i, j, ~p′). On the other hand if the constructor

was explicitly applied to arguments, we would have to deconstruct a sequence of applications, and

determine whether the term at the head was a constructor. Moreover, our representation also makes

it easy to recover the arguments.

In the representation for a constructor Con(p1, i, j, ~p′), the term p1 contains the definition of all

the constructors in the corresponding inductive definition. Even though this seems, at first glance,

to be an overkill, it does not incur a significant overhead. First, our hash-consing mechanism

(Section 6.3) ensures that there is only a single copy of p1 in memory; all occurrences of the

constructors of an inductive definition share the same copy.

∆ ` I : A where I = Ind(X :A){ ~C}

∆ ` Ctor (i, I) : [I/X]Ci

Second, consider the typing rule for a constructor shown above (we are considering just a simple

inductive definition). The type of a constructor is obtained by substituting the bound variable by

the inductive definition [I/X]Ci. In the general case of a mutually inductive definition, each of the

bound variables will have to be substituted. Our representation for constructors makes this easy

since p1 encapsulates the entire inductive definition.

Inductive definition: Parametrized inductive definitions are represented as Ind(p1, i, ~p′), where

~p′ are the values of the parameters. Consider the parametrized definition of lists that we saw before:

98

Inductive (ListNat:Nat → Kind)

= nil : ListNat(zero)

| cons : ΠX :Nat. int → ListNat(X) → ListNat(succ(X))

In the type of the constructors, ListNat is fully applied to arguments. Since an inductive def-

inition occurs with its parameters instantiated, we again maintain an invariant similar to the con-

structors: a term is an inductive definition if and only if it has the form Ind(p1, i, ~p′). Moreover,

when we check the positivity condition of the constructors, we have to check that the arguments of

a parametrized definition satisfy certain constraints. Our representation makes it easy to extract the

arguments.

Fixpoint definition: We use a similar mechanism for our fixpoint definitions: namely, the rep-

resentation includes all the arguments till the one that is being recursed on. For example in

Fix(~i, p1, j, ~p′), the list ~p′ includes the first ij − 1 arguments. During type reductions, the fixpoint

(as shown before) is unfolded only if the ithj argument is a constructor. During type-checking, we

have to check that this argument has an inductive type. Our representation makes it easy to access

this argument. The term p1 uses the standard encoding of fixpoints as functions.

6.3 Implementation Details

Implementing a type system in an industrial-strength compiler is a very difficult problem; a naive

implementation can easily add an exponential overhead to the compilation time. Fortunately, previ-

ous researchers have implemented scalable implementations of type-preserving production compil-

ers [SLM98]. We used many of the excellent ideas in [SLM98, Nad94] to make our implementation

efficient. We kept the following criteria in mind: compact space usage, fast equality operation, and

efficient type reductions.

Compact space usage: As we showed in Figure 6.2 large types are ubiquitous in real-world

applications. This happens specially in highly-modularized programs because a module interface

gets exposed through multiple access paths. As a result the amount of type information that needs to

be manipulated multiplies rapidly; however, this type information also has a lot of redundancy. It is

crucial that an implementation exploit this redundancy in representing types efficiently. Therefore

we hash-cons all PTS terms into a global hash table. Our hash-consing scheme guarantees that all

99

PTS terms use the most compact dag representation. To protect against space leaks, we use weak

pointers for every hash entry.

Fast type equality operation: Our hash-consing scheme also enables a very fast type equality

operation. Since we use DeBruijn indices for variables, α-equivalent terms have the same repre-

sentation. Hash-consing ensures that all of these terms share the same representation in memory.

Moreover, for types in normal form, we can test for equality by using pointer equality. If the types

are not in normal form, then we reduce the types to weak-head normal form and check the heads

for equality. If the heads are equal, we continue recursively on the sub-terms. In practice, this leads

to fast equality tests.

Efficient type reductions: We use a combination of lazy reductions and memoization to make

type reductions efficient. For lazy reductions, we add a form of suspension terms [NW90, Nad94,

SLM98] to our PTS calculus through the Clos construct. Intuitively, these suspension terms are

a form of closures: they are a pair of a type and an environment containing the values of the

free variables. Reductions change the nesting depth of PTS terms which changes the DeBruijn

indices of variables. Therefore, the environment formed during a reduction must remember both

the required substitutions and the change in DeBruijn indices. Accordingly, the environments are

represented as a triple (i, j, env) where the first index i indicates the current embedding level of

the term, the second index j indicates the embedding level after the reduction, and the env is a

mapping between variables (DeBruijn indices) to terms.

Figure 6.3 shows how we use these suspension terms. Since the sort of a variable plays no role

in the reductions, we represent variables only by their DeBruijn index. We use V ar(1) to denote

the innermost lambda bound variable. During a β-reduction, instead of performing the substitution

directly, we create a suspension term. The environment represents the following: the term p2 that

was originally in the scope of 1 abstraction is now under none; p3 originally under the scope of

0 abstractions is to be substituted for the first free variable in p2. In the other cases we propagate

the suspensions through to the subterms. This allows us to do the substitution lazily; we query the

environment only when we encounter a variable during type manipulations. In the case of a free

variable, we simply adjust its DeBruijn index; in the case of a bound variable, we use the value

from the environment.

We memoize type reductions to ensure that the same reduction is not repeated. For example,

100

App(Fn(p1, p2), p3) ; Clos(p2, (1, 0, Sub((p3, 0), Emp))) (β − redex)

Clos(V ar(n), (i, j, env)) ; V ar(n − i + j) n > i (free variable)

Clos(V ar(n), (i, j, env)) ; Clos(p1, (0, j − j′, Emp))
nthelement of env = (j ′, p1) (bound variable)

Clos(Fn(p1, p2), (i, j, env)) ; Fn(prenv
i,j (p1), extenv

i,j (p2))

Clos(Pi(p1, p2), (i, j, env)) ; Pi(prenv
i,j (p1), extenv

i,j (p2))

Clos(App(p1, p2), (i, j, env)) ; App(prenv
i,j (p1), prenv

i,j (p2))

Clos(Ind(p1, i, ~p′), (i, j, env)) ; Ind(prenv
i,j (p1), i,

−−−−−−→
prenv

i,j (p′))

Clos(Con(p1, i, j, ~p′), (i, j, env)) ; Con(prenv
i,j (p1), i, j,

−−−−−−→
prenv

i,j (p′))

Clos(Fix(~i, p1, j, ~p′), (i, j, env)) ; Fix(~i, prenv
i,j (p1), j,

−−−−−−→
prenv

i,j (p′))

Clos(Case(p1, p2, ~p′), (i, j, env)) ; Case(prenv
i,j (p1), prenv

i,j (p2),
−−−−−−→
prenv

i,j (p′))

Clos(Seq(~p′), (i, j, env)) ; Seq(
−−−−−−→
prenv

i,j (p′))

Clos(Proj(p1, k), (i, j, env)) ; Proj(prenv
i,j (p1), k)

Clos(Srt(s),) ; Srt(s)

where
prenv

i,j (p) ≡ Clos(p, (i, j, env))

extenv
i,j (p) ≡ Clos(p, (i + 1, j + 1, Sub((j, V ar(1)), env)))

Figure 6.3: Using suspension terms for lazy reduction

101

suppose we have the term p = App(Fn(p1, p2), p3). Suppose the term p gets reduced to the term

p′ = Clos(p2, (1, 0, Sub((p3, 0), Emp))). After the reduction we update the hash entry for p to

contain the term p′. Any future table lookup (during future creations) for the term p will now return

the term p′.

The hash-table entry for every term stores additional information. We memoize the set of free

variables, whether a term is in normal form, and the universe that it resides in (whether it is a type,

kind, or kind schema). The set of free variables is useful in applying substitutions, the normal form

flag is useful in equality testing, and the universe is useful in checking inductive definitions.

6.4 Representing the base kind

We showed in Chapter 5 that the key issue in using our type system for a compiler intermediate

language was to define the base kind Ω. Correspondingly we must also define the types that are

members of Ω such as primitive types, function types, polymorphic types, etc. We also showed

that to support runtime type analysis, the base kind must be defined inductively. In this section, we

show the definition of Ω used in the implementation.

102

Inductive Nat :Kind

:= zero : Nat

| succ : Nat → Nat

Inductive Ω:Kind

:= snat : Nat→Ω (* singleton int *)

| ++ : ΩList→Ω (* sum constructor *)

| µµ : Πj :Kind. (j → j) → (j → Ω) → Ω (* recursive constructor *)

| ∀ : Πj :Kind. (j → Ω) → Ω (* polymorphic constructor *)

| ∃ : Πj :Kind. (j → Ω) → Ω (* existential constructor *)

| →→ : ΩList→ΩList→Ω (* function/functor constructor *)

| ×× : Nat→ΩList→Ω (* tuple/structure constructor *)

| cont : ΩList→Ω (* continuation type *)

| box : Ω→Ω (* box type *)

| azero : Ω (* arity zero primitives *)

| aone : Ω→Ω (* arity one primitives *)

Inductive ΩList :Kind

:= nil : ΩList

| cons : Ω → ΩList → ΩList

The base kind uses the definition of natural numbers shown above. The kind Ω is itself a mu-

tually recursive definition. We use ΩList to encode a list of types. Our function type constructor

works on multiple arguments and return values; therefore it takes arguments of kind ΩList. Our

tuple type constructor carries the length of the tuple. The definition of the polymorphic and existen-

tial constructors follows from Chapter 3. The box type constructor is used for data representation

and the cont type constructor is used during CPS conversion. The azero and aone are used for

primitive types. Arity zero primitive types include int31 (31 bit integers), int32, real, string, void,

and the primitive exception. Arity one primitive types include the list constructor, array, ref, vector,

exception tag, and the primitive box constructor.

6.4.1 Example: Flattening arguments

Standard ML provides single argument/return-value functions; multiple values are simulated by

using tuples. Since it is more efficient to pass the components of the tuple as multiple arguments

103

or return values, the SML/NJ compiler flattens the arguments and the return values of a function.

However, the flattening is done only if the corresponding tuples have less than 9 elements. The type

system in the compiler isn’t powerful enough to express these sort of transformations. The imple-

mentation gets around this in two ways. First, the function type constructor (→→) enjoys a “special”

status: it includes a number of flags that indicate whether the argument or the result are candidates

for flattening. These are term-level boolean flags, and are used for reifying the type translations to

the meta-level. The implementation then checks the value of these flags and performs a number

of ad hoc reductions (solely on the function type) to work around the problem. Second, a lot of

the checking is done at the meta-level and not through the type system. For example, the type sys-

tem does not enforce that only tuples with less than 9 elements will be flattened. Clearly, such an

approach is unsatisfactory and we will show how our type system can obviate these disadvantages.

This example also shows how our type system generalizes previous approaches to intensional

type analysis. In our system we can analyze tuples of arbitrary length, or function types with

an arbitrary number of arguments or return values. This is possible because our mechanism for

inductive definitions allows us to define a list of types ΩList. We can now say that our tuple

type constructor takes a list of types, and abstract away the length. All previous approaches to

intensional type analysis were applicable only to restricted forms, such as pairs, or k-argument

functions. In fact, Morrisett [Mor95] also shows how to use type analysis for flattening function

arguments, but he considers functions with a fixed number of arguments.

We will consider only the type-level transformations; the term-level transformations are well

known. Moreover, the SML/NJ compiler already implements the term-level flattening by using

coercions in the manner of Shao [Sha97a]. Previous researchers have also used similar coercions

for implementing optimizing compilers [SA95, Ler92].

We have already shown the inductive definition of natural numbers used in our implementation.

We use the inductive mechanism to define a boolean kind as well, containing two nullary construc-

tors true and false. We have also implemented a library of useful primitive recursive functions on

values of these inductive kinds. Note that these are type-level functions operating on type-level

values. For example, on natural numbers we provide functions for addition or comparison; on

booleans we provide functions for doing conjunction, disjunction, or negation.

104

flatten = Fn(X :ΩList,

Case X

nil = nil

cons(Y1, Y2) = Case Y2

nil = fbranches Y1

= X)

fbranches = Fn(X ′ :Ω,

Case X ′

×× (N,Y ′) = Case N

zero = [X ′] (* void type *)

succ(N ′) = Case (Leq N ′ 8)

true = Y ′

false = [X ′]

= [X ′])

where [X ′] = cons(X ′, nil)

8 = succ(. . . succ︸ ︷︷ ︸
8

(zero))

We define a type-level flatten operator as shown above. We have taken some liberties with the PTS

syntax to make the presentation clearer: we use named variables instead of DeBruijn indices, elide

some typing annotations, and use pattern matching syntax for case statements. The Leq function

is part of the library of functions that we have implemented. We won’t show the code here since it

is straightforward (specially because we use a unary encoding).

A function with type A1 → A2 has the type flatten A1 → flatten A2 after flattening. The

flatten operator first checks that the function has 1 argument/return-value. If this is true, it calls the

fbranches function. This function checks if the argument is a tuple, and has a length between 1

and 9, before flattening it. The checking is possible since we store the length in the type of a tuple.

105

Benchmark No of lines Description
Mlyacc 6030 parser generator for ML
Vliw 3679 instruction scheduler for a VLIW compiler
CML 6152 concurrent ML implementation by Reppy [Rep91]
Simple 915 a spherical fluid dynamics program
lexgen 1171 lexical analyzer for ML

Figure 6.4: Benchmark programs

Benchmark New Old Ratio
User GC User GC (New/Old)

Lexgen 5.82 1.52 3.48 0.97 1.64
Simple 4.47 0.70 3.70 0.88 1.15
Vliw 35.14 6.13 15.24 5.49 1.99
ML-Yacc 30.61 5.07 14.01 2.57 2.15
CML 17.51 2.85 5.27 0.69 3.41

Figure 6.5: Compilation times (seconds)

6.5 Performance measurement

In this section we compare the performance of our implementation with that of Standard ML of

New Jersey v110.34. This is a highly-tuned industrial strength compiler that is extensively used

inside Bell Labs and many other institutions. We will be comparing only the compilation statistics

since both the compilers generate identical code. To recap, our implementation uses a type system

based on the calculus of inductive constructions, while the current implementation uses a type

system based on the simply typed lambda calculus. Our implementation uses inductively defined

kinds, dependent and polymorphic kinds and supports primitive recursion at the type level.

The set of type-preserving phases is the same in both the compilers. We instrumented the

compilers to measure the amount of type information generated during the compilation. We used

the existing timing mechanism in the Standard ML of New Jersey implementation; the compilation

times were measured with the instrumentation turned off. The measurements were taken on a

Pentium II, 450 MHz machine running Linux with 128MB memory. Figure 6.5 describes the

benchmark programs used in the measurements. As can be seen all of these are substantial real-

world ML applications.

Figures 6.5 through 6.7 present the measurements. We use New to denote our implementa-

tion, and Old to denote the Standard ML of New Jersey v110.34 compiler. Figure 6.5 shows a

106

Benchmark New Old Ratio (New/Old)
Lexgen 329.71 96.98 3.40
Simple 227.07 66.63 3.40
Vliw 886.92 222.86 3.97
ML-Yacc 2930.24 577.86 5.07
CML 1867.34 395.90 4.71

Figure 6.6: Generated type information (in KBytes)

Benchmark Code Size Type Size Ratio (Type/Code)
Lexgen 96.15 18.38 19%
Simple 80.15 12.76 16%
Vliw 262.56 22.99 8%
ML-Yacc 348.62 206.50 59%
CML 125.97 149.03 118%

Figure 6.7: Ratio of type size to code size (in KBytes)

comparison of the compilation times. As the figures show, the maximum overhead incurred by our

implementation is about a factor of three. Correspondingly Figure 6.6 shows that the amount of

type information generated during the compilation process increases by about a factor of four.

The code generated by a type-preserving compiler contains type annotations embedded inside

it. Figure 6.7 compares the size of these type annotations to the size of the generated code. Both the

type size and the code size were measured at the end of the type-preserving phases of the compiler

(just before closure conversion). In a type-based certifying compiler, the types serve as the proof

of safety. Therefore, this table gives a measure of the size of the proof (of type-safety) compared

to the size of the code. In all cases, the type size is a fraction of the code size. The ratio increases

in the case of CML. We assume it happens because CML is heavily functorized which causes the

type information to grow dramatically.

While the figures indicate that the new type system does incur an appreciable overhead, a better

tuned implementation can remove a significant amount of this inefficiency. Our main motivation

was to examine how an expressive type system scales to handle real-world ML applications. We

will elaborate on a number of design decisions that can be changed to make the implementation

significantly faster.

• Our definition of Ω includes a definition of ΩList, and most of our constructors take a list

of types as an argument. By using a more sophisticated encoding of ΩList, the amount

107

of type information being constructed can be reduced. Suppose for example that we want

to build a sum type int + real. In our implementation we would then construct the term

++ (cons(intpts, cons(realpts, nil))). A list of n types requires 2n+1 nodes in this represen-

tation.

We could instead use the following representation for a list of types:

Inductive ΩList : Kind := nil : ΩList

| cons1 : Ω → ΩList

| cons2 : Ω → Ω → ΩList

| cons3 : Ω → Ω → Ω → ΩList

. . .

| cons : Ω → ΩList → ΩList

We have separate constructors till a particular value of n, say m. Lists of length smaller than

m only require an extra node now. Experiments show that the list of types is usually small;

thus only a few constructors would be sufficient.

• In the old compiler type constructors were built-in primitives; they were implemented as

different branches of a datatype. The compiler used pattern matching to check the form of

the constructor at the head: whether it was a function, tuple, sum, array, vector, etc. This

form of pattern matching is specially pervasive in the code that deals with type-directed

optimizations. In the new implementation the type constructors are members of an inductive

definition. The compiler code can no longer use pattern matching to detect the form of a

constructor. The compiler optimizations can be re-written to obviate this problem, but this

would have involved a major redesign of almost the entire type-directed part of the compiler.

Instead we provided some utility functions that simulate pattern matching. These functions

are executed at every pattern matching site in the code; measurements show that this incurs

a considerable overhead.

• For simplicity our type system used a unary encoding of the natural numbers. Again this

introduces a considerable overhead, specially during arithmetic operations. We could remove

this by using the binary encoding of the Coq [HPM+00] math library.

• The type system in the current compiler uses multiple argument functions. Our functions

108

on the other hand (the Fn construct) are single argument functions. Using multiple argu-

ment functions is much more efficient, specially in mutually recursive inductive definitions.

In essence our implementation has to simulate multiple argument functions by passing the

arguments as a record of types, and selecting from this record. Since Ω is a mutually re-

cursive inductive definition, and is ubiquitous, this adds a considerable overhead to the type

manipulations.

6.6 Related Work

Many of the ideas in our implementation have been adapted from Shao et al.’s excellent work

[SLM98] on implementing typed intermediate languages. They were the first to demonstrate that

typed intermediate languages can be used in industrial-strength compilers. Several other compilers

such as TIL [TMC+96], GHC [Pey92], and ML-Kit [Tof98] have demonstrated the benefits of

using typed intermediate languages. The suspension based lambda encoding used in our work is

borrowed directly from the work of Nadathur [Nad94, NW90] on efficient lambda representations.

He has also used his encoding in the λ-Prolog system. Shao and Appel [SA95] also used hash-

consing to enforce dag-representation for types.

We adapted a lot of the theoretical underpinnings of our implementation from the Coq [HPM+00]

system. The combination of the Fix and the Case construct used for simulating primitive recursion

is borrowed directly from there. The Coq system in turn uses the formalism by Gimenez [Gim98].

Our inductive definition mechanism is more sophisticated than the one presented in Chapter 5; in

this case also we used the formalism of the Coq system.

109

Chapter 7

Conclusions and Future Work

Certifying compilation is a promising approach for implementing secure computing systems, since

it provides a static and incontrovertible proof of a program’s safety. Type-preserving compilation

has emerged as the practical basis for constructing a certifying system leading to the concept of

type-based certifying compilers. In a type-based certifying compiler, the type system for the inter-

mediate language is used to encode safety properties; the type annotations in the generated code

serve as the proof of safety.

Modern programming paradigms are increasingly giving rise to applications that require run-

time type analysis. Services such as garbage collection, dynamic linking and reflection, mar-

shalling, and type-safe persistent programming all analyze types to various degrees at runtime.

Existing compilers use an untyped intermediate language for compiling code that involves runtime

type inspection. They reify types into values and discard type information at some early stage dur-

ing compilation. Unfortunately, this approach cannot be used in type-based certifying compilers;

such compilers must support runtime type analysis in a type-safe manner.

Writing these type-analyzing applications in a certifying framework is desirable for a number

of reasons. A computing system is only as secure as the services that it provides: typically these

services include type-analyzing applications like garbage collection, linking, reflection, etc. More-

over, these applications often involve complex coding that can lead to subtle bugs. There is also a

software engineering benefit. For example, in a type-safe garbage collector, the interface and in-

variants must be made explicit through the types. Type-checking now ensures that these invariants

are respected whenever the collector is invoked.

This dissertation describes a type system that can be used for supporting runtime type analysis

110

in type-based certifying compilers. The type system has two novel features. First, it supports the

analysis of quantified types. Second, it supports the explicit representation of logical proofs and

propositions.

7.1 Summary of contributions

The core contribution of this dissertation is a type system for analyzing the type of runtime values,

but this system has other important ramifications. The type system can be used for type-checking

the copy function in a stop-and-copy garbage collector, and thus provides a significant basis for

writing provably type-safe garbage collectors. The underlying ideas can also be used for integrating

logical assertions in a type system, and enforcing more sophisticated invariants. To sum up:

• We show the design of a type system that supports the analysis of quantified types, both

at the type level and at the term level. We prove that the resulting type system is strongly

normalizing and confluent. We also show an encoding of the calculus in a type-erasure

semantics. We prove that this encoding is sound by establishing a correspondence with

reductions in an untyped language.

• We show that this type system can be applied for writing the copy function in a copying

garbage collector in a type-safe manner. We show that type-checking this function relies

crucially on the ability to analyze quantified types, like existential types. We prove that the

language in which the copy function is written is sound. Our formalization does exclude

some features of an industrial-strength collector, nevertheless it represents a significant step

towards designing a type system that can be used for realistic garbage collectors.

• We show that the ideas (underlying the analysis of quantified types) can be extended to

integrate runtime type analysis with the explicit representation of logical proofs and proposi-

tions. Again, we prove that the resulting type system is strongly normalizing and confluent,

and the underlying logic is consistent.

• We show empirically that the type system can be used in an industrial-strength compiler. For

this, we implemented the system in an experimental version of the SML/NJ compiler and

compared its performance with version 110.34 of the compiler. On a set of large benchmarks,

our measurements show that the new type system incurs a reasonable compilation overhead.

111

7.2 Future work

The work presented in this dissertation is a first step towards the goal of building a practical in-

frastructure for certified type analyzing applications. It opens up many possible avenues for future

work.

In this dissertation we showed how a type system for runtime type analysis can be used in

building a type-safe copying garbage collector. But we could use this for many other applications.

Type-safe serialization is a promising candidate for translation into the framework proposed in

Chapter 3. One of the key problems here is the handling of abstract types; we need some mech-

anism to break abstraction barriers. This is similar to the problem we encountered in writing the

polymorphic equality function where we have to compare two objects of existential type (Sec-

tion 3.3.1). Modelling reflection in Java seems another promising candidate since it provides a

facility that is similar to intensional type analysis. However, the framework presented in Chapter 3

relies on structural equivalence of types, whereas Java uses name equivalence of types. Moreover,

translating Java into a type-preserving framework would require the use of recursive types. Extend-

ing intensional type analysis to handle recursive types still remains an open problem. In separate

work [STS00a, TSS00] we have shown different methods of analyzing recursive types, but unfor-

tunately, these approaches turn out to be impractical. We believe that the encoding of recursive

types proposed by Shao [Sha01] (and shown in Chapter 6) will lead to a satisfactory solution, but

the details remain to be worked out.

In Chapter 4 we showed how the copy function in a simple copying garbage collector can be

written in a provably type-safe manner. However, there are still quite a few issues that need to

be resolved before constructing a practical type-safe garbage collector. In separate work [MSS01]

we have shown how generational collectors may be modelled. The solution assumes that we can

maintain a separate region for mutable data that gets scanned at each collection. This assumption

may not be feasible for object-oriented languages where side-effects are more frequent. We will

have to support either card-marking or remembered sets. Our presentation also does not deal with

the problem of cyclic data structures. An interesting area of work would be to model Cheney style

collectors.

The work in Chapter 5 opens up many possibilities in the area of type-based language design

and compilation. Our implementation preserves types through the different optimizations and dis-

cards them before closure conversion. In separate work [SSTP01] we have shown how to propagate

112

types through CPS conversion and closure conversion. One possible area of work is to propagate

these advanced types down to the machine code. Can we use the expressivity to capture more

invariants: for example to enforce fine-grained access policies during memory load and store in-

structions, or to enforce calling conventions for native/foreign methods ? Appel and Felten [AF00a]

have shown that the PCC framework can be used for enforcing a wide variety of security policies

such as correct sequencing of API calls and correct locking protocols; they use Church’s higher

order logic for this. Since our framework is powerful enough to support reasoning in higher-order

predicate logic, it would be interesting to model similar invariants in our system. Another pos-

sible area of research is to augment a source language with the capability of expressing logical

assertions. For many non-trivial invariants, the compiler would need hints from the programmer to

prove that they are satisfied. It would be impractical for the programmer to insert these hints in the

object code: we should rather provide a facility to add these assertions in the source program itself.

From a practical standpoint, our implementation can be made more robust. The measurements

in Chapter 6 show that the compilation time with the new type system increases by a factor of 3-4.

It should be possible to reduce this overhead significantly. In Chapter 6 we listed a number of

design decisions that can be changed to obtain a much better performance, at the cost of making

the implementation more involved. Most importantly, we want to use the implementation to build

realistic certified applications; for example, a type-safe garbage collector. This will give us a true

measure of the overhead involved in writing certified applications.

Finally, we want to apply this technology to the compilation of mainstream languages such

as Java. The object oriented paradigm, and specially Java, present very different challenges from

those encountered in compiling ML-like languages: efficient object encodings in a typed frame-

work, name-based class hierarchy, mutually recursive classes, class loaders, dynamic loading, and

finalization to name a few. We believe that the real test of this technology lies in its successful

application to the compilation of such languages.

The long term goal of our research is to build an industrial-strength certifying framework.

Every piece of code should be shipped with a formal and verifiable proof of its safety. In addition,

the host system should have a really skelatal trusted computing base. The TCB will include the

verifier and some bootstrapping code, but all the other services should be verified independently

and loaded as libraries. We believe this is feasible and is the holy grail of secure computing.

113

Appendix A

Formal Properties of λω
i

In this chapter, we formalize the properties of λω
i . We show that the type system is sound with

respect to the operational semantics. We also show that all reductions in the type language are

terminating and confluent.

A.1 Soundness of λω
i

The operational semantics for λω
i are in Figure A.3. The reduction rules are standard except for

the typecase construct. The typecase chooses a branch depending on the head constructor of

the type being analyzed and passes the corresponding subtypes as arguments. For example, while

analyzing the polymorphic type ∀∀ [κ] τ , it chooses the e∀ branch and applies it to the kind κ and

the type function τ . If the type being analyzed is not in normal form, the typecase reduces the

type to its unique normal form.

We prove soundness of the system by using contextual semantics in Wright/Felleisen

style [WF92]. The evaluation contexts E are shown in Figure A.1. The reduction rules for the

redexes r are shown in Figure 3.7. We assume unique variable names and environments are sets of

variables. The notation ` e :τ is used as a shorthand for ε; ε; ε ` e :τ .

Lemma A.1.1 If ε; ε ` ν : Ω, then ν is one of int, ν1 → ν2, ∀∀ [κ] ν1, or ∀∀
+

ν1.

Proof Since ν is well-formed in an empty environment, it does not contain any free type or kind

variables. Therefore ν can not be a ν0 since the head of a ν0 is a type variable. The lemma now

follows by inspecting the remaining possibilities for ν. 2

114

(value) v ::= i | λx :τ. e | fix x :τ. v | Λα :κ. v | Λ
+

j. v

(context) E ::= [] | E e | v E | E [τ] | E [κ]
+

(redex) r ::= (λx :τ. e) v | (Λα :κ. v) [τ] | (Λ
+

j. e) [κ]
+

| (fix x :τ. v) v′ | (fix x :τ. v) [τ ′]

| (fix x :τ. v) [κ]
+

| typecase[τ] τ ′ of (eint; e→; e∀; e
∀
+)

| typecase[τ] int of (eint; e→; e∀; e
∀
+)

| typecase[τ] τ → τ ′ of (eint; e→; e∀; e
∀
+)

| typecase[τ] ∀∀ [κ] τ of (eint; e→; e∀; e
∀
+)

| typecase[τ] ∀∀
+

τ of (eint; e→; e∀; e
∀
+)

Figure A.1: Term contexts

ν0 ::= α | ν0 ν | ν0 [κ]
| Typerec[κ] ν0 of (νint; ν→; ν∀; ν

∀
+)

ν ::= ν0 | int | →→ | (→→) ν | (→→) ν ν ′

| ∀∀ | ∀∀ [κ] | ∀∀ [κ] ν | ∀∀
+

| ∀∀
+

ν
| λα :κ. ν, where ∀ν0. ν 6= ν0 α or α ∈ ftv(ν0)
| Λj. ν, where ∀ν0. ν 6= ν0 [j] or j ∈ fkv(ν0)

Figure A.2: Normal forms in the λω
i type language

Lemma A.1.2 (Decomposition of terms) If ` e :τ , then either e is a value or it can be

decomposed into unique E and r such that e = E [r].

This is proved by induction over the derivation of ` e :τ , using Lemma A.1.1 in the case of the

typecase construct.

Corollary A.1.3 (Progress) If ` e :τ , then either e is a value or there exists an e ′ such that

e 7→ e′.

Proof By Lemma A.1.2, we know that if ` e :τ and e is not a value, then there exist some E and

redex e1 such that e = E [e1]. Since e1 is a redex, there exists a contraction e2 such that e1 ; e2.

Therefore e 7→ e′ for e′ = E [e2]. 2

Lemma A.1.4 If ` E [e] :τ , then there exists a τ ′ such that ` e :τ ′, and for all e′ such that

` e′ :τ ′ we have ` E [e′] :τ .

115

(λx :τ. e) v ; [v/x]e

(Λα :κ. v)[τ] ; [τ/α]v

(Λ
+

j. v)[κ]
+

; [κ/j]v

(fix x :τ. v) v′ ; ([fix x :τ. v/x]v) v′

(fix x :τ. v)[τ] ; ([fix x :τ. v/x]v)[τ]

(fix x :τ. v)[κ]
+

; ([fix x :τ. v/x]v)[κ]
+

e ; e′

e e1 ; e′ e1

e ; e′

v e ; v e′

e ; e′

e[τ] ; e′[τ]

e ; e′

e[κ]
+

; e′[κ]
+

typecase[τ] int of (eint; e→; e∀; e
∀
+) ; eint

typecase[τ] (τ1 → τ2) of (eint; e→; e∀; e
∀
+) ; e→ [τ1] [τ2]

typecase[τ] (∀∀ [κ] τ) of (eint; e→; e∀; e
∀
+) ; e∀ [κ]

+

[τ]

typecase[τ] (∀∀
+

τ) of (eint; e→; e∀; e
∀
+) ; e

∀
+ [τ]

ε; ε ` τ ′
;

∗ ν ′ :Ω ν ′ is a normal form

typecase[τ] τ ′ of (eint; e→; e∀; e
∀
+) ;

typecase[τ] ν ′ of (eint; e→; e∀; e
∀
+)

Figure A.3: Operational semantics of λω
i

Proof The proof is by induction on the derivation of ` E [e] :τ . The different forms of E are

handled similarly; we will show only one case here.

• case E = E1 e1: We have that ` (E1 [e]) e1 :τ . By the typing rules, this implies that

` E1 [e] :τ1 → τ , for some τ1. By induction, there exists a τ ′ such that ` e :τ ′ and for all e′

such that ` e′ :τ ′, we have that ` E1 [e′] :τ1 → τ . Therefore ` (E1 [e′]) e1 :τ . 2

As usual, the proof of soundness depends on several substitution lemmas; these are shown below.

The proofs are fairly straightforward and proceed by induction on the derivation of the judgments.

The notion of substitution is extended to environments in the usual way.

Lemma A.1.5 If E , j ` κ and E ` κ′, then E ` [κ′/j]κ.

Lemma A.1.6 If E , j;∆ ` τ : κ and E ` κ′, then E ;∆[κ′/j] ` [κ′/j]τ : [κ′/j]κ.

Lemma A.1.7 If E , j;∆; Γ ` e : τ and E ` κ, then E ;∆[κ/j]; Γ[κ/j] ` [κ/j]e : [κ/j]τ .

Lemma A.1.8 If E ;∆, α :κ′ ` τ : κ and E ;∆ ` τ ′ : κ′, then E ;∆ ` [τ ′/α]τ : κ.

116

Lemma A.1.9 If E ;∆, α :κ; Γ ` e : τ and E ;∆ ` τ ′ : κ, then

E ;∆; Γ[τ ′/α] ` [τ ′/α]e : [τ ′/α]τ .

Proof We prove this by induction on the structure of e. We demonstrate the proof here only for a

few cases; the rest follow analogously.

• case e = e1 [τ1]: We have that E ;∆ ` τ ′ : κ. and also that E ;∆, α :κ; Γ ` e1 [τ1] : τ . By

the typing rule for a type application we get that

E ;∆, α :κ; Γ ` e1 : ∀β :κ1. τ2 and

E ;∆, α :κ ` τ1 : κ1 and

τ = [τ1/β]τ2

By induction on e1,

E ;∆; Γ[τ ′/α] ` [τ ′/α]e1 : ∀β :κ1. [τ
′/α]τ2

By Lemma A.1.8, E ;∆ ` [τ ′/α]τ1 : κ1. Therefore

E ;∆; Γ[τ ′/α] ` ([τ ′/α]e1) [[τ ′/α]τ1] : [[τ ′/α]τ1/β]([τ ′/α]τ2)

But this is equivalent to

E ;∆; Γ[τ ′/α] ` ([τ ′/α]e1) [[τ ′/α]τ1] : [τ ′/α]([τ1/β]τ2)

• case e = e1 [κ1]
+

: We have that E ;∆, α :κ; Γ ` e1 [κ1]
+

: τ and E ;∆ ` τ ′ : κ. By the

typing rule for kind application,

E ;∆, α :κ; Γ ` e1 : ∀j. τ1 and

τ = [κ1/j]τ1 and

E ` κ1

By induction on e1,

E ;∆; Γ ` [τ ′/α]e1 : ∀j. [τ ′/α]τ1

Therefore

E ;∆; Γ ` ([τ ′/α]e1) [κ1]
+

: [κ1/j]([τ
′/α]τ1)

Since j does not occur free in τ ′,

[κ1/j]([τ
′/α]τ1) = [τ ′/α]([κ1/j]τ1)

117

• case e = typecase[τ0] τ1 of (eint; e→; e∀; e
∀
+): From the typing rules, we have that

E ;∆ ` τ ′ : κ and E ;∆, α :κ; Γ ` typecase[τ0] τ1 of (eint; e→; e∀; e
∀
+) : τ0 τ1. Using

Lemma A.1.8 on the kind derivation of τ0 and τ1, and the inductive assumption on the

typing rules for the subterms we get,

E ;∆ ` [τ ′/α]τ0 : Ω → Ω and

E ;∆ ` [τ ′/α]τ1 : Ω and

E ;∆; Γ[τ ′/α] ` [τ ′/α]eint : [τ ′/α](τ0 int) and

E ;∆; Γ[τ ′/α] ` [τ ′/α]e→ : [τ ′/α](∀α1 :Ω.∀α2 :Ω. τ0 (α1 → α2)) and

E ;∆; Γ[τ ′/α] ` [τ ′/α]e∀ : [τ ′/α](∀
+

j.∀α :j → Ω. τ0 (∀∀ [j]α)) and

E ;∆; Γ[τ ′/α] ` [τ ′/α]e
∀
+ : [τ ′/α](∀α :∀j.Ω. τ0 (∀∀

+

α))

The above typing judgments are equivalent to

E ;∆ ` [τ ′/α]τ0 : Ω → Ω and

E ;∆ ` [τ ′/α]τ1 : Ω and

E ;∆; Γ[τ ′/α] ` [τ ′/α]eint : ([τ ′/α]τ0) int and

E ;∆; Γ[τ ′/α] ` [τ ′/α]e→ : ∀α1 :Ω.∀α2 :Ω. ([τ ′/α]τ0) (α1 → α2) and

E ;∆; Γ[τ ′/α] ` [τ ′/α]e∀ : ∀
+

j.∀α :j → Ω. ([τ ′/α]τ0) (∀∀ [j]α) and

E ;∆; Γ[τ ′/α] ` [τ ′/α]e
∀
+ : ∀α :∀j.Ω. ([τ ′/α]τ0) (∀∀

+

α)

from which the statement of the lemma follows directly. 2

Lemma A.1.10 If E ;∆; Γ, x :τ ′ ` e : τ and E ;∆; Γ ` e′ : τ ′, then E ;∆; Γ ` [e′/x]e : τ .

Proof Proved by induction over the structure of e. The different cases are proved similarly. We

will show only two cases here.

• case e = Λα :κ. v: We have that

E ;∆; Γ, x :τ ′ ` Λα :κ. v : ∀α :κ. τ and

E ;∆; Γ ` e′ : τ ′

Since e can always be alpha-converted, we assume that α is not previously defined in ∆.

This implies E ;∆, α :κ; Γ, x :τ ′ ` v : τ . Since α is not free in e′, we have

E ;∆, α :κ; Γ ` e′ : τ ′. By induction, E ;∆, α :κ; Γ ` [e′/x]v : τ . Hence

E ;∆; Γ ` Λα :κ. [e′/x]v : ∀α :κ. τ .

• case e = typecase[τ0] τ1 of (eint; e→; e∀; e
∀
+): We have that

118

E ;∆; Γ ` e′ : τ ′ and

E ;∆; Γ, x :τ ′ ` typecase[τ0] τ1 of (eint; e→; e∀; e
∀
+) : τ0 τ1

By the typecase typing rule we get

E ;∆ ` τ0 : Ω → Ω and

E ;∆ ` τ1 : Ω and

E ;∆; Γ, x :τ ′ ` eint : τ0 int and

E ;∆; Γ, x :τ ′ ` e→ : ∀α1 :Ω.∀α2 :Ω. τ0 (α1 → α2) and

E ;∆; Γ, x :τ ′ ` e∀ : ∀
+

j.∀α :j → Ω. τ0 (∀∀ [j]α) and

E ;∆; Γ, x :τ ′ ` e
∀
+ : ∀α :∀j.Ω. τ0 (∀∀

+

α)

Applying the inductive hypothesis to each of the subterms eint, e→, e∀, e∀+ yields directly

the claim. 2

Definition A.1.11 e evaluates to e′ (written e 7→ e′) if there exist E, e1, and e2 such that

e = E [e1] and e′ = E [e2] and e1 ; e2.

Theorem A.1.12 (Subject reduction) If ` e :τ and e 7→ e′, then ` e′ :τ .

Proof By Lemma A.1.2, e can be decomposed into unique E and unique redex e1 such that

e = E [e1]. By definition, e′ = E [e2] and e1 ; e2. By Lemma A.1.4, there exists a τ ′ such that

` e1 :τ ′. By the same lemma, all we need to prove is that ` e2 :τ ′ holds. This is proved by

considering each possible redex in turn. We will show only two cases, the rest follow similarly.

• case e1 = (fix x :τ1. v) v′: Then e2 = ([fix x :τ1. v/x]v) v′. We have that

` (fix x :τ1. v) v′ :τ ′. By the typing rules for term application we get that for some τ2,

` fix x :τ1. v :τ2 → τ ′ and

` v′ :τ2

By the typing rule for fix we get that,

` τ1 = τ2 → τ ′ and

ε; ε; ε, x :τ2 → τ ′ ` v : τ2 → τ ′

Using Lemma A.1.10 and the typing rule for application, we obtain the desired judgment

` ([fix x :τ1. v/x]v) v′ :τ ′

• case e1 = typecase[τ0] τ1 of (eint; e→; e∀; e
∀
+): If τ1 is not in normal form, then the

expression e1 reduces to e2 = typecase[τ0] ν1 of (eint; e→; e∀; e
∀
+), where

119

(kinds) κ ::= Ω | κ → κ′ | j | ∀j. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+

| α | Λj. τ | λα :κ. τ | τ [κ] | τ τ ′

| Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+)

Figure A.4: The λω
i type language

(β1) ::= (λα :κ. τ) τ ′
; [τ ′/α]τ

(β2) ::= (Λj. τ) [κ] ; [κ/j]τ
(η1) ::= λα :κ. τ α ; τ α /∈ ftv(τ)
(η2) ::= Λj. τ [j] ; τ j /∈ fkv(τ)
(t1) ::= Typerec[κ] int of (τint; τ→; τ∀; τ

∀
+) ; τint

(t2) ::= Typerec[κ] (τ1 → τ2) of (τint; τ→; τ∀; τ
∀
+) ;

τ→ τ1 τ2

(Typerec[κ] τ1 of (τint; τ→; τ∀; τ
∀
+))

(Typerec[κ] τ2 of (τint; τ→; τ∀; τ
∀
+))

(t3) ::= Typerec[κ] (∀∀ [κ1] τ1) of (τint; τ→; τ∀; τ
∀
+) ;

τ∀ [κ1] τ1

(λα :κ1. Typerec[κ] (τ1 α) of (τint; τ→; τ∀; τ
∀
+))

(t4) ::= Typerec[κ] (∀∀
+

τ1) of (τint; τ→; τ∀; τ
∀
+) ;

τ
∀
+ τ1

(Λj. Typerec[κ] (τ1 [j]) of (τint; τ→; τ∀; τ
∀
+))

Figure A.5: Type reductions

ε; ε ` τ1 7→∗ ν1 :Ω. The latter implies ε; ε ` τ0 τ1 = τ0 ν1 :Ω, hence ` e2 :τ ′ follows

directly from ` e1 :τ ′.

If τ1 is in normal form ν1, by the second premise of the typing rule for typecase and

Lemma A.1.1 we have four cases for ν1. In each case the contraction has the desired type

τ0 ν1, according to the corresponding premises of the typecase typing rule and the rules for

type and kind applications. 2

A.2 Strong normalization

The type language is shown in Figure A.4. The single step reduction relation (τ ; τ ′) is shown

in Figure A.5.

120

Lemma A.2.1 If E ;∆ ` τ : κ and τ ; τ ′, then E ;∆ ` τ ′ : κ.

Proof (Sketch) The proof follows from a case analysis of the reduction relation (;). 2

Lemma A.2.2 If τ1 ; τ2, then [τ/α]τ1 ; [τ/α]τ2.

Proof The proof is by enumerating each possible reduction from τ1 to τ2.

case β1: In this case, τ1 = (λβ :κ. τ ′) τ ′′ and τ2 = [τ ′′/β]τ ′. This implies that

[τ/α]τ1 = (λβ :κ. [τ/α]τ ′) [τ/α]τ ′′

This beta reduces to

[[τ/α]τ ′′/β]([τ/α]τ ′)

Since β does not occur free in τ , this is equivalent to

[τ/α]([τ ′′/β]τ ′)

case β2: In this case, τ1 = (Λj. τ ′) [κ] and τ2 = [κ/j]τ ′. We get that

[τ/α]τ1 = (Λj. [τ/α]τ ′) [κ]

This beta reduces to

[κ/j][τ/α]τ ′

Since j is not free in τ , this is equivalent to

[τ/α]([κ/j]τ ′)

case η1: In this case, τ1 = λβ :κ. τ ′ β and τ2 = τ ′ and β does not occur free in τ ′. We get that

[τ/α]τ1 = λβ :κ. ([τ/α]τ ′)β

Since this is a capture avoiding substitution, β still does not occur free in [τ/α]τ ′. Therefore this

eta reduces to [τ/α]τ ′.

121

case η2: In this case, τ1 = Λj. τ ′ [j] and τ2 = τ ′ and j does not occur free in τ ′. We get that

[τ/α]τ1 = Λj. ([τ/α]τ ′) [j]

Since this is a capture avoiding substitution, j still does not occur free in [τ/α]τ ′. Therefore, this

eta reduces to [τ/α]τ ′.

case t1: τ1 = Typerec[κ] int of (τint; τ→; τ∀; τ
∀
+) and τ2 = τint. We get that

[τ/α]τ1 = Typerec[κ] int of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+)

But this reduces by the t1 reduction to [τ/α]τint.

case t2: τ1 = Typerec[κ] (τ ′ → τ ′′) of (τint; τ→; τ∀; τ
∀
+) and

τ2 = τ→ τ ′ τ ′′ (Typerec[κ] τ ′ of (τint; τ→; τ∀; τ
∀
+)) (Typerec[κ] τ ′′ of (τint; τ→; τ∀; τ

∀
+))

We get that

[τ/α]τ1 = Typerec[κ] ([τ/α]τ ′ → [τ/α]τ ′′) of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+)

This reduces by t2 to

[τ/α]τ→ ([τ/α]τ ′) ([τ/α]τ ′′)

(Typerec[κ] ([τ/α]τ ′) of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+))

(Typerec[κ] ([τ/α]τ ′′) of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+))

But this is syntactically equal to [τ/α]τ2.

case t3: τ1 = Typerec[κ] (∀∀ [κ′] τ ′) of (τint; τ→; τ∀; τ
∀
+) and

τ2 = τ∀ [κ′] τ ′ (λβ :κ′. Typerec[κ] (τ ′ β) of (τint; τ→; τ∀; τ
∀
+))

We get that

[τ/α]τ1 = Typerec[κ] (∀∀ [κ′] [τ/α]τ ′) of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+)

122

This reduces by t3 to

[τ/α]τ∀ [κ′] ([τ/α]τ ′)

(λβ :κ′. Typerec[κ] (([τ/α]τ ′)β) of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+))

But this is syntactically equivalent to [τ/α]τ2.

case t4: τ1 = Typerec[κ] (∀∀
+

τ ′) of (τint; τ→; τ∀; τ
∀
+) and

τ2 = τ
∀
+ τ ′ (Λj. Typerec[κ] (τ ′ [j]) of (τint; τ→; τ∀; τ

∀
+))

We get that

[τ/α]τ1 = Typerec[κ] (∀∀
+

[τ/α]τ ′) of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+)

This reduces by t4 to

[τ/α]τ
∀
+ ([τ/α]τ ′)

(Λj. Typerec[κ] (([τ/α]τ ′) [j]) of ([τ/α]τint; [τ/α]τ→; [τ/α]τ∀; [τ/α]τ
∀
+))

But this is syntactically equal to [τ/α]τ2. 2

Lemma A.2.3 If τ1 ; τ2, then [κ′/j′]τ1 ; [κ′/j′]τ2.

Proof This is proved by case analysis of the type reduction relation.

case β1: In this case, τ1 = (λβ :κ. τ ′) τ ′′ and τ2 = [τ ′′/β]τ ′. This implies that

[κ′/j′]τ1 = (λβ : [κ′/j′]κ. [κ′/j′]τ ′) [κ′/j′]τ ′′

This beta reduces to

[[κ′/j′]τ ′′/β]([κ′/j′]τ ′)

But this is equivalent to

[κ′/j′]([τ ′′/β]τ ′)

123

case β2: In this case, τ1 = (Λj. τ ′) [κ] and τ2 = [κ/j]τ ′. We get that

[κ′/j′]τ1 = (Λj. [κ′/j′]τ ′) [[κ′/j′]κ]

This beta reduces to

[[κ′/j′]κ/j][κ′/j′]τ ′

Since j is not free in κ′, this is equivalent to

[κ′/j′]([κ/j]τ ′)

case η1: In this case, τ1 = λβ :κ. τ ′ β and τ2 = τ ′ and β does not occur free in τ ′. We get that

[κ′/j′]τ1 = λβ : [κ′/j′]κ. ([κ′/j′]τ ′)β

Again β does not occur free in [κ′/j′]τ ′. Therefore this eta reduces to [κ′/j′]τ ′.

case η2: In this case, τ1 = Λj. τ ′ [j] and τ2 = τ ′ and j does not occur free in τ ′. We get that

[κ′/j′]τ1 = Λj. ([κ′/j′]τ ′) [j]

Since this is a capture avoiding substitution, j still does not occur free in [κ ′/j′]τ ′. Therefore, this

eta reduces to [κ′/j′]τ ′.

case t1: τ1 = Typerec[κ] int of (τint; τ→; τ∀; τ
∀
+) and τ2 = τint. We get that

[κ′/j′]τ1 = Typerec[[κ′/j′]κ] int of ([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+)

But this reduces by the t1 reduction to [κ′/j′]τint.

case t2: τ1 = Typerec[κ] (τ ′ → τ ′′) of (τint; τ→; τ∀; τ
∀
+) and

τ2 = τ→ τ ′ τ ′′ (Typerec[κ] τ ′ of (τint; τ→; τ∀; τ
∀
+)) (Typerec[κ] τ ′′ of (τint; τ→; τ∀; τ

∀
+))

We get that

[κ′/j′]τ1 = Typerec[[κ′/j′]κ] ([κ′/j′]τ ′ → [κ′/j′]τ ′′) of

([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+)

124

This reduces by t2 to

[κ′/j′]τ→ ([κ′/j′]τ ′) ([κ′/j′]τ ′′)

(Typerec[[κ′/j′]κ] ([κ′/j′]τ ′) of ([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+))

(Typerec[[κ′/j′]κ] ([κ′/j′]τ ′′) of ([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+))

But this is syntactically equal to [κ′/j′]τ2.

case t3: τ1 = Typerec[κ] (∀∀ [κ1] τ
′) of (τint; τ→; τ∀; τ

∀
+) and

τ2 = τ∀ [κ1] τ
′ (λβ :κ1. Typerec[κ] (τ ′ β) of (τint; τ→; τ∀; τ

∀
+))

We get that

[κ′/j′]τ1 =

Typerec[[κ′/j′]κ] (∀∀ [[κ′/j′]κ1] [κ
′/j′]τ ′) of

([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+)

This reduces by t3 to

[κ′/j′]τ∀ [[κ′/j′]κ1] ([κ
′/j′]τ ′)

(λβ : [κ′/j′]κ1. Typerec[[κ′/j′]κ] (([κ′/j′]τ ′)β) of

([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+))

But this is syntactically equivalent to [κ′/j′]τ2.

case t4: τ1 = Typerec[κ] (∀∀
+

τ ′) of (τint; τ→; τ∀; τ
∀
+) and

τ2 = τ
∀
+ τ ′ (Λj. Typerec[κ] (τ ′ [j]) of (τint; τ→; τ∀; τ

∀
+))

We get that

[κ′/j′]τ1 =

Typerec[[κ′/j′]κ] (∀∀
+

[κ′/j′]τ ′) of ([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+)

125

This reduces by t4 to

[κ′/j′]τ
∀
+ ([κ′/j′]τ ′)

(Λj. Typerec[[κ′/j′]κ] (([κ′/j′]τ ′) [j]) of ([κ′/j′]τint; [κ′/j′]τ→; [κ′/j′]τ∀; [κ′/j′]τ
∀
+))

But this is syntactically equal to [κ′/j′]τ2. 2

Definition A.2.4 A type τ is strongly normalizable if every reduction sequence from τ terminates

into a normal form (with no redexes). We use ν(τ) to denote the length of the largest reduction

sequence from τ to a normal form.

Definition A.2.5 We define neutral types, n, as

n0 ::= Λj. τ | λα :κ. τ

n ::= α | n0 τ | n τ | n0 [κ] | n [κ]

| Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+)

Definition A.2.6 A reducibility candidate (also referred to as a candidate) of kind κ is a set C of

types of kind κ such that

1. if τ ∈ C, then τ is strongly normalizable.

2. if τ ∈ C and τ ; τ ′, then τ ′ ∈ C.

3. if τ is neutral and if for all τ ′ such that τ ; τ ′, we have that τ ′ ∈ C, then τ ∈ C.

This implies that the candidates are never empty since if α has kind κ, then α belongs to

candidates of kind κ.

Definition A.2.7 Let κ be an arbitrary kind. Let Cκ be a candidate of kind κ. Let CΩ→Ω→κ→κ→κ

be a candidate of kind Ω → Ω → κ → κ → κ. Let C∀j. (j→Ω)→(j→κ)→κ be a candidate of kind

∀j. (j → Ω) → (j → κ) → κ. Let C(∀j.Ω)→(∀j. κ)→κ be a candidate of kind

(∀j.Ω) → (∀j. κ) → κ. We then define the set RΩ of types of kind Ω as

τ ∈ RΩ iff

∀∀τint ∈ Cκ

∀∀τ→ ∈ CΩ→Ω→κ→κ→κ,

∀∀τ∀ ∈ C∀j. (j→Ω)→(j→κ)→κ,

∀∀τ
∀
+ ∈ C(∀j.Ω)→(∀j. κ)→κ

⇒ Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+) ∈ Cκ

126

Lemma A.2.8 RΩ is a candidate of kind Ω.

Proof Suppose τ ∈ RΩ. Suppose that the types τint, τ→, τ∀, and τ
∀
+ belong to the candidates

Cκ, CΩ→Ω→κ→κ→κ, C∀j. (j→Ω)→(j→κ)→κ, C(∀j. Ω)→(∀j. κ)→κ respectively, where the candidates are

of the appropriate kinds (see definition A.2.7).

1. Consider τ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+). By definition this belongs to Cκ. By

property 1 of definition A.2.6, τ ′ is strongly normalizable and therefore τ must be strongly

normalizable.

2. Consider τ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+). Suppose τ ; τ1. Then

τ ′
; Typerec[κ] τ1 of (τint; τ→; τ∀; τ

∀
+). Since τ ′ ∈ Cκ,

Typerec[κ] τ1 of (τint; τ→; τ∀; τ
∀
+) belongs to Cκ by property 2 of definition A.2.6.

Therefore, by definition, τ1 belongs to RΩ.

3. Suppose τ is neutral and for all τ1 such that τ ; τ1, τ1 ∈ RΩ. Consider

τ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+). Since we know that τint, τ→, τ∀, and τ

∀
+ are

strongly normalizable, we can induct over len = ν(τint) + ν(τ→) + ν(τ∀) + ν(τ
∀
+). We

will prove that for all values of len, Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+) always reduces to a

type that belongs to Cκ; given that τint, τ→, τ∀, and τ
∀
+ belong to Cκ, CΩ→Ω→κ→κ→κ,

C∀j. (j→Ω)→(j→κ)→κ, and C(∀j.Ω)→(∀j. κ)→κ respectively (see definition A.2.7).

• len = 0 Then τ ′
; Typerec[κ] τ1 of (τint; τ→; τ∀; τ

∀
+) is the only possible

reduction since τ is neutral. By the assumption on τ1, this belongs to Cκ.

• len = k + 1 For the inductive case, assume that the hypothesis is true for len = k.

That is, for len = k, Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that

belongs to Cκ; given that τint, τ→, τ∀, and τ
∀
+ belong to Cκ, CΩ→Ω→κ→κ→κ,

C∀j. (j→Ω)→(j→κ)→κ, and C(∀j.Ω)→(∀j. κ)→κ respectively. This implies that for

len = k, Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+) belongs to Cκ (by property 3 of

definition A.2.6). For len = k + 1, consider τ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+).

This can reduce to Typerec[κ] τ1 of (τint; τ→; τ∀; τ
∀
+) which belongs to Cκ. The

other possible reductions are to Typerec[κ] τ of (τ ′
int

; τ→; τ∀; τ
∀
+) where

τint ; τ ′
int

, or to Typerec[κ] τ of (τint; τ ′
→; τ∀; τ

∀
+) where τ→ ; τ ′

→, or

Typerec[κ] τ of (τint; τ→; τ ′
∀; τ

∀
+) where τ∀ ; τ ′

∀, or

127

Typerec[κ] τ of (τint; τ→; τ∀; τ ′

∀
+) where τ

∀
+ ; τ ′

∀
+. By property 2 of

definition A.2.6, each of τ ′
int

, τ ′
→, τ ′

∀, and τ ′

∀
+ belongs to the required candidate and

len = k for each of the reducts. Therefore, by the inductive hypothesis, each of the

reducts belongs to Cκ.

Therefore Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that belongs to Cκ.

By property 3 of definition A.2.6, Typerec[κ] τ of (τint; τ→; τ∀; τ
∀
+) also belongs to Cκ.

Therefore, τ ∈ RΩ

2

Definition A.2.9 Let C1 and C2 be two candidates of kinds κ1 and κ2. We then define the set

C1 → C2, of types of kind κ1 → κ2, as

τ ∈ C1 → C2 iff ∀∀τ ′(τ ′ ∈ C1 ⇒ τ τ ′ ∈ C2)

Lemma A.2.10 If C1 and C2 are candidates of kinds κ1 and κ2, then C1 → C2 is a candidate of

kind κ1 → κ2.

Proof

1. Suppose τ of kind κ1 → κ2 belongs to C1 → C2. By definition, if τ ′ ∈ C1, then τ τ ′ ∈ C2.

Since C2 is a candidate, τ τ ′ is strongly normalizable. Therefore, τ must be strongly

normalizable since for every sequence of reductions τ ; τ1 . . . τk . . ., there is a

corresponding sequence of reductions τ τ ′
; τ1 τ ′ . . . τk τ ′

2. Suppose τ of kind κ1 → κ2 belongs to C1 → C2 and τ ; τ ′. Suppose τ1 ∈ C1. By

definition, τ τ1 ∈ C2. But τ τ1 ; τ ′ τ1. By using property 2 of definition A.2.6 on C2,

τ ′ τ1 ∈ C2; therefore, τ ′ ∈ C1 → C2.

3. Consider a neutral τ of kind κ1 → κ2. Suppose that for all τ ′ such that τ ; τ ′,

τ ′ ∈ C1 → C2. Consider τ τ1 where τ1 ∈ C1. Since τ1 is strongly normalizable, we can

induct over ν(τ1). If ν(τ1) = 0, then τ τ1 ; τ ′ τ1. But τ ′ τ1 ∈ C2 (by assumption on τ ′),

and since τ is neutral, no other reduction is possible. If ν(τ1) 6= 0, then τ1 ; τ ′
1. In this

case, τ τ1 may reduce to either τ ′ τ1 or to τ τ ′
1. We saw that the first reduct belongs to C2.

By property 2 of definition A.2.6, τ ′
1 ∈ C1 and ν(τ ′

1) < ν(τ1). By the inductive assumption

128

over ν(τ1), we get that τ τ ′
1 belongs to C2. By property 3 of definition A.2.6, τ τ1 ∈ C2. This

implies that τ ∈ C1 → C2.

2

Definition A.2.11 We use j to denote the set j1, . . . , jn of j. We use a similar syntax to denote a

set of other constructs.

Definition A.2.12 Let κ[j] be a kind where j contains all the free kind variables of κ. Let κ be a

sequence of closed kinds of the same length and C be a sequence of candidates of the

corresponding kind. We now define the set Sκ[C/j] of types of kind [κ/j]κ as

1. if κ = Ω, then Sκ[C/j] = RΩ.

2. if κ = ji, then Sκ[C/j] = Ci.

3. if κ = κ1 → κ2, then Sκ[C/j] = Sκ1
[C/j] → Sκ2

[C/j].

4. if κ = ∀j. κ′, then Sκ[C/j] = the set of types τ of kind [κ/j]κ such that for every kind κ′′

and reducibility candidate C ′′ of this kind, τ [κ′′] ∈ Sκ′ [C, C′′/j, j].

Lemma A.2.13 Sκ[C/j] is a reducibility candidate of kind [κ/j]κ.

Proof For κ = Ω, the lemma follows from lemma A.2.8. For κ = j, the lemma follows by

definition. If κ = κ1 → κ2, then the lemma follows from the inductive hypothesis on κ1 and κ2

and lemma A.2.10. We only need to prove the case for κ = ∀j ′. κ′. We will induct over the size of

κ with the j containing all the free kind variables of κ.

1. Consider a τ ∈ S∀j′. κ′ [C/j]. By definition, for any kind κ1 and corresponding candidate C ′,

τ [κ1] ∈ Sκ′ [C, C′/j, j′]. Applying the inductive hypothesis on κ′, we get that

Sκ′ [C, C′/j, j′] is a candidate. Therefore, τ [κ1] is strongly normalizable which implies that

τ is strongly normalizable.

2. Consider a τ ∈ S∀j′. κ′ [C/j] and τ ; τ1. For any kind κ1 and corresponding candidate C ′,

by definition, τ [κ1] ∈ Sκ′ [C, C′/j, j′]. But τ [κ1] ; τ1 [κ1]. By the inductive hypothesis

on κ′, we get that Sκ′ [C, C′/j, j′] is a candidate. By property 2 of definition A.2.6,

τ1 [κ1] ∈ Sκ′ [C, C′/j, j′]. Therefore, τ1 ∈ S∀j′. κ′ [C/j].

129

3. Consider a neutral τ so that for all τ1, such that τ ; τ1, τ1 ∈ S∀j′. κ′ [C/j]. Consider τ [κ1]

for an arbitrary kind κ1 and corresponding candidate C ′. We have that τ [κ1] ; τ1 [κ1].

This is the only possible reduction since τ is neutral. By the assumption on τ1,

τ1 [κ1] ∈ Sκ′ [C, C′/j, j′]. By the inductive hypothesis on κ′, we get that Sκ′ [C, C′/j, j′] is a

candidate. By property 3 of definition A.2.6, τ [κ1] ∈ Sκ′ [C, C′/j, j′]. Therefore

τ ∈ S∀j′. κ′ [C/j].

2

Lemma A.2.14 S[κ′/j′]κ[C/j] = Sκ[C,Sκ′ [C/j]/j, j ′]

Proof The proof is by induction over the structure of κ. We will show only the case for

polymorphic kinds, the others follow directly by induction. Suppose κ = ∀j ′′. κ′′. Then the LHS

is the set of types τ of kind [κ/j](∀j ′′. [κ′/j′]κ′′) such that for every kind κ′′′ and corresponding

candidate C ′′′, τ [κ′′′] belongs to S[κ′/j′]κ′′ [C, C′′′/j, j′′]. Applying the inductive hypothesis to κ′′,

this is equal to Sκ′′ [C, C′′′,Sκ′ [C, C′′′/j, j′′]/j, j′′, j′]. But j′′ does not occur free in κ′ (variables in

κ′ can always be renamed). Therefore, τ [κ′′′] belongs to Sκ′′ [C, C′′′,Sκ′ [C/j]/j, j ′′, j′]. The RHS

consists of types τ ′ of kind [κ, [κ/j]κ′/j, j′](∀j′′. κ′′) such that for every kind κ′′′ and

corresponding candidate C ′′′, τ ′ [κ′′′] belongs to Sκ′′ [C,Sκ′ [C/j], C′′′/j, j′, j′′]. Also, the kind of

τ ′ is equivalent to [κ/j](∀j ′′. [κ′/j′]κ′′). 2

Proposition A.2.15 From lemma A.2.13, we know that Sκ[C/j] is a candidate of kind [κ/j]κ, that

SΩ→Ω→κ→κ→κ[C/j] is a candidate of kind [κ/j](Ω → Ω → κ → κ → κ), that

S∀j. (j→Ω)→(j→κ)→κ[C/j] is a candidate of kind [κ/j](∀j. (j → Ω) → (j → κ) → κ), and

S(∀j. Ω)→(∀j. κ)→κ[C/j] is a candidate of kind [κ/j]((∀j.Ω) → (∀j. κ) → κ). In the rest of the

section, we will assume that the types τint, τ→, τ∀, and τ
∀
+ belong to the above candidates

respectively.

Lemma A.2.16 int ∈ RΩ = SΩ[C/j]

Proof Consider τ = Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ
∀
+). The lemma holds if

Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ
∀
+) belongs to Sκ[C/κ] is true; given that τint ∈ Sκ[C/j],

and τ→ ∈ SΩ→Ω→κ→κ→κ[C/j], and τ∀ ∈ S∀j. (j→Ω)→(j→κ)→κ[C/j], and

τ
∀
+ ∈ S(∀j.Ω)→(∀j. κ)→κ[C/j].

130

Since τint, τ→, τ∀, and τ
∀
+ are strongly normalizable, we will induct over

len = ν(τint) + ν(τ→) + ν(τ∀) + ν(τ
∀
+). We will prove that for all values of len,

Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that belongs to Cκ; given that

the branches belong to the candidates as in proposition A.2.15.

• len = 0 Then Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ
∀
+) can reduce only to τint which by

assumption belongs to Sκ[C/κ].

• len = k + 1 For the inductive case, assume that the hypothesis holds true for len = k. That

is, for len = k, Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that

belongs to Sκ[C/j]; given that τint, τ→, τ∀, and τ
∀
+ belong to Sκ[C/j], SΩ→Ω→κ→κ→κ[C/j],

S∀j. (j→Ω)→(j→κ)→κ[C/j], and to S(∀j. Ω)→(∀j. κ)→κ[C/j]. This implies that for len = k, the

type Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ
∀
+) belongs to Sκ[C/j] (by property 3 of

definition A.2.6). For len = k + 1, τ can reduce to τint which belongs to Sκ[C/j]. The

other possible reductions are to Typerec[[κ/j]κ] int of (τ ′
int

; τ→; τ∀; τ
∀
+) where

τint ; τ ′
int

, or to Typerec[[κ/j]κ] int of (τint; τ ′
→; τ∀; τ

∀
+) where τ→ ; τ ′

→, or to

Typerec[[κ/j]κ] int of (τint; τ→; τ ′
∀; τ

∀
+) where we have τ∀ ; τ ′

∀, or otherwise to

Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ ′

∀
+) where τ

∀
+ ; τ ′

∀
+. By property 2 of

definition A.2.6, each of τ ′
int

, τ ′
→, τ ′

∀, τ ′

∀
+ belongs to the same candidate. Moreover, len = k

for each of the reducts. Therefore, by the inductive hypothesis, each of the reducts belongs

to Sκ[C/j].

Therefore, Typerec[[κ/j]κ] int of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that belongs to

Sκ[C/j]. By property 3 of definition A.2.6, Typerec[[κ/j]κ] int of (τ int; τ→; τ∀; τ
∀
+) also

belongs to Sκ[C/j]. Therefore, int ∈ RΩ. 2

Lemma A.2.17 →→ ∈ RΩ → RΩ → RΩ = SΩ→Ω→Ω[C/j].

Proof →→ ∈ RΩ → RΩ → RΩ if for all τ1 ∈ RΩ, we get that (→→)τ1 ∈ RΩ → RΩ. This is true

if for all τ2 ∈ RΩ, we get that (→→)τ1 τ2 ∈ RΩ. This is true if

Typerec[[κ/j]κ] (→→)τ1 τ2 of (τint; τ→; τ∀; τ
∀
+) belongs to Sκ[C/j] is true with the conditions in

proposition A.2.15. Since τ1, τ2, τint, τ→, τ∀, and τ
∀
+ are strongly normalizable, we will induct

over len = ν(τ1) + ν(τ2) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ
∀
+). We will prove that for all values

of len, the type Typerec[[κ/j]κ] ((→→)τ1τ2) of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that

131

belongs to Sκ[C/j]; given that τ1 ∈ RΩ, and τ2 ∈ RΩ, and τint ∈ Sκ[C/j], and

τ→ ∈ SΩ→Ω→κ→κ→κ[C/j], and τ∀ ∈ S∀j. (j→Ω)→(j→κ)→κ[C/j], and

τ
∀
+ ∈ S(∀j.Ω)→(∀j. κ)→κ[C/j]. Consider τ = Typerec[[κ/j]κ] ((→→)τ1 τ2) of (τint; τ→; τ∀; τ

∀
+).

• len = 0 The only reduction of τ is

τ ′ = τ→ τ1 τ2 (Typerec[[κ/j]κ] τ1 of (τint; τ→; τ∀; τ
∀
+))

(Typerec[[κ/j]κ] τ2 of (τint; τ→; τ∀; τ
∀
+))

Since both τ1 and τ2 belong to RΩ, we get directly that

Typerec[[κ/j]κ] τ1 of (τint; τ→; τ∀; τ
∀
+) as well as

Typerec[[κ/j]κ] τ2 of (τint; τ→; τ∀; τ
∀
+) belong to Sκ[C/j]. This implies that τ ′ also

belongs to Sκ[C/j].

• len = k + 1 The other possible reductions come from the reduction of one of the individual

types τ1, τ2, τint, τ→, τ∀, and τ
∀
+. The proof in this case is similar to the proof of the

corresponding case in lemma A.2.16.

Since τ is neutral, by property 3 of definition A.2.6, τ belongs to Sκ[C/j]. 2

Lemma A.2.18 If for all τ1 ∈ Sκ1
[C/j], [τ1/α]τ ∈ Sκ2

[C/j], then

λα : [κ/j]κ1. τ ∈ Sκ1→κ2
[C/j].

Proof Consider the neutral type τ ′ = (λα : [κ/j]κ1. τ) τ1. We have that τ1 is strongly

normalizable and [α′/α]τ is strongly normalizable. Therefore, τ is also strongly normalizable.

We will induct over len = ν(τ) + ν(τ1). We will prove that for all values of len, the type

(λα : [κ/j]κ1. τ) τ1 always reduces to a type that belongs to Sκ2
[C/j]; given that τ1 ∈ Sκ1

[C/j]

and [τ1/α]τ ∈ Sκ2
[C/j].

• len = 0 There are two possible reductions. A beta reduction yields [τ1/α]τ which by

assumption belongs to Sκ2
[C/j]. If τ = τ0 α and α does not occur free in τ0, then we have

an eta reduction to τ0 τ1. But in this case [τ1/α]τ = τ0 τ1.

• len = k + 1 For the inductive case, assume that the hypothesis is true for len = k. There

are two additional reductions. The type τ ′ can reduce to (λα : [κ/j]κ1. τ) τ ′′
1 where

τ1 ; τ ′′
1 . By property 2 of definition A.2.6, τ ′′

1 belongs to Sκ1
[C/j]. Therefore, [τ ′′

1 /α]τ

132

belongs to Sκ2
[C/j]. Moreover, len = k. By the inductive hypothesis, (λα :κ1. τ) τ ′′

1

always reduces to a type that belongs to Sκ2
[C/j]. By property 3 of definition A.2.6,

(λα :κ1. τ) τ ′′
1 belongs to Sκ2

[C/j].

The other reduction of τ ′ is to (λα : [κ/j]κ1. τ
′′) τ1 where τ ; τ ′′. By lemma A.2.2,

[τ1/α]τ ; [τ1/α]τ ′′. By property 2 of definition A.2.6, [τ1/α]τ ′′ ∈ Sκ2
[C/j]. Moreover,

len = k for the type τ ′. Therefore, by the inductive hypothesis, (λα : [κ/j]κ1. τ
′′) τ1 always

reduces to a type that belongs to Sκ2
[C/j]. By property 3 of definition A.2.6,

(λα : [κ/j]κ1. τ
′′) τ1 belongs to Sκ2

[C/j].

Therefore, the neutral type τ ′ always reduces to a type that belongs to Sκ2
[C/j]. By property 3 of

definition A.2.6, τ ′ ∈ Sκ2
[C/j]. Therefore, λα : [κ/j]κ1. τ belongs to Sκ1

[C/j] → Sκ2
[C/j]. This

implies that λα : [κ/j]κ1. τ belongs to Sκ1→κ2
[C/j]. 2

Lemma A.2.19 ∀∀ ∈ S∀j. (j→Ω)→Ω[C/j].

Proof This is true if for any kind [κ/j]κ1, ∀∀ [[κ/j]κ1] ∈ S(j→Ω)→Ω[C, Cκ1
/j, j]. This implies

that

∀∀ [[κ/j]κ1] ∈ Sj→Ω[C, Cκ1
/j, j] → SΩ[C, Cκ1

/j, j]

This is true if for all τ ∈ Sj→Ω[C, Cκ1
/j, j], it is true that ∀∀ [[κ/j]κ1] τ ∈ SΩ[C, Cκ1

/j, j]. This in

turn implies that ∀∀ [[κ/j]κ1] τ ∈ RΩ. This is true if

Typerec[[κ/j]κ] (∀∀ [[κ/j]κ1] τ) of (τint; τ→; τ∀; τ
∀
+) belongs to Sκ[C/j] is true with the

conditions in proposition A.2.15. Since each of the types τ , τint, τ→, τ∀, and τ
∀
+ belongs to a

candidate, they are strongly normalizable. We will induct over

len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ
∀
+). We will prove that for all values of len, the type

Typerec[[κ/j]κ] (∀∀ [[κ/j]κ1] τ) of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that belongs to

Sκ[C/j]; given that τ ∈ Sj→Ω[C, Cκ1
/j, j], and τint ∈ Sκ[C/j], and τ→ ∈ SΩ→Ω→κ→κ→κ[C/j],

and τ∀ ∈ S∀j. (j→Ω)→(j→κ)→κ[C/j], and τ
∀
+ ∈ S(∀j. Ω)→(∀j. κ)→κ[C/j].

Consider τ ′ = Typerec[[κ/j]κ] (∀∀ [[κ/j]κ1] τ) of (τint; τ→; τ∀; τ
∀
+)

• len = 0 Then the only possible reduction of τ ′ is

τ ′
1 = τ∀ [[κ/j]κ1] τ (λα : [κ/j]κ1. Typerec[[κ/j]κ] τ α of (τint; τ→; τ∀; τ

∀
+))

133

Consider τ ′′ = Typerec[[κ/j]κ] τ α of (τint; τ→; τ∀; τ
∀
+). For all τ1 ∈ Cκ1

, the type

[τ1/α]τ ′′ reduces to the type Typerec[[κ/j]κ] τ τ1 of (τint; τ→; τ∀; τ
∀
+). By assumption, τ

belongs to Sj [C, Cκ1
/j, j] → SΩ[C, Cκ1

/j, j]. Therefore, τ belongs to Cκ1
→ RΩ which

implies τ τ1 ∈ RΩ. Therefore Typerec[[κ/j]κ] τ τ1 of (τint; τ→; τ∀; τ
∀
+) belongs to

Sκ[C/j]. Therefore, by lemma A.2.18, (replacing Sκ1
[C/j] with Cκ1

in the lemma),

λα : [κ/j]κ1. Typerec[[κ/j]κ] τ α of (τint; τ→; τ∀; τ
∀
+) belongs to Cκ1

→ Sκ[C/j].

By assumption, τ∀ belongs to S∀j. (j→Ω)→(j→κ)→κ[C/j].

Therefore, τ∀ [[κ/j]κ1] belongs to S(j→Ω)→(j→κ)→κ[C, Cκ1
/j, j]. This implies that

τ∀ [[κ/j]κ1] τ belongs to S(j→κ)→κ[C, Cκ1
/j, j].

Consider C = S(j→κ)→κ[C, Cκ1
/j, j]. Then C is equal to

Sj→κ[C, Cκ1
/j, j] → Sκ[C, Cκ1

/j, j]. This is equivalent to

(Cκ1
→ Sκ[C, Cκ1

/j, j]) → Sκ[C, Cκ1
/j, j]. But j does not occur free in κ. So the above

can be written as (Cκ1
→ Sκ[C/j]) → Sκ[C/j]. This implies that τ ′

1 belongs to Sκ[C/j].

• len = k + 1 The other possible reductions come from the reduction of one of the individual

types τ , τint, τ→, τ∀, and τ
∀
+. The proof in this case is similar to the proof of the

corresponding case in lemma A.2.16.

Since τ ′ is neutral, by property 3 of definition A.2.6, τ ′ belongs to Sκ[C/j]. 2

Lemma A.2.20 If for every kind κ′ and reducibility candidate C ′ of this kind,

[κ′/j′]τ ∈ Sκ[C, C′/j, j′], then Λj ′. τ ∈ S∀j′. κ[C/j].

Proof Consider the neutral type τ ′ = (Λj′. τ) [κ′] for an arbitrary kind κ′. Since [j ′′/j′]τ is

strongly normalizable, τ is strongly normalizable. We will induct over len = ν(τ). We will prove

that for all values of len, the neutral type (Λj ′. τ) [κ′] always reduces to a type that belongs to

Sκ[C, C′/j, j′]; given that [κ′/j′]τ ∈ Sκ[C, C′/j, j′].

• len = 0 There are two possible reductions. A beta reduction yields [κ′/j′]τ which by

assumption belongs to Sκ[C, C′/j, j′]. If τ = τ0 [j′] and j′ does not occur free in τ0, then we

have an eta reduction to τ0 [κ′]. But in this case [κ′/j′]τ = τ0 [κ′].

• len = k + 1 For the inductive case, assume that the hypothesis is true for len = k. There is

one additional reduction, (Λj ′. τ) [κ′] ; (Λj′. τ1) [κ′] where τ ; τ1. By lemma A.2.3,

134

we know that [κ′/j′]τ ; [κ′/j′]τ1. By property 2 of definition A.2.6,

[κ′/j′]τ1 ∈ Sκ[C, C′/j, j′]. Moreover, len = k for this reduct. Therefore, by the inductive

hypothesis, (Λj ′. τ1) [κ′] always reduces to a type that belongs to Sκ[C, C′/j, j′]. By

property 3 of definition A.2.6, (Λj ′. τ1) [κ′] belongs to Sκ[C, C′/j, j′].

Therefore, the neutral type τ ′ always reduces to a type that belongs to Sκ[C, C′/j, j′]. By property

3 of definition A.2.6, τ ′ ∈ Sκ[C, C′/j, j′]. Therefore, Λj ′. τ belongs to S∀j′. κ[C/j]. 2

Lemma A.2.21 If τ ∈ S∀j. κ[C/j], then for every kind [κ/j]κ′ τ [[κ/j]κ′] ∈ S[κ′/j]κ[C/j].

Proof By definition, τ [[κ/j]κ′] belongs to Sκ[C, C′/j, j], for every kind [κ/j]κ′ and reducibility

candidate C ′ of this kind. Set C ′ = Sκ′ [C/j]. Applying lemma A.2.14 leads to the result. 2

Lemma A.2.22 ∀∀
+

∈ S(∀j. Ω)→Ω[C/j].

Proof This is true if for all τ ∈ S∀j.Ω[C/j], we have ∀∀
+

τ ∈ RΩ. This is true if

Typerec[[κ/j]κ] (∀∀
+

τ) of (τint; τ→; τ∀; τ
∀
+) belongs to Sκ[C/j] with the conditions in

proposition A.2.15. Since all the types are strongly normalizable, we will induct over

len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ
∀
+). We will prove that for all values of len, the type

Typerec[[κ/j]κ] (∀∀
+

τ) of (τint; τ→; τ∀; τ
∀
+) always reduces to a type that belongs to Sκ[C/j];

given that τ ∈ S∀j.Ω[C/j], τint ∈ Sκ[C/j], τ→ ∈ SΩ→Ω→κ→κ→κ[C/j],

τ∀ ∈ S∀j. (j→Ω)→(j→κ)→κ[C/j], and τ
∀
+ ∈ S(∀j. Ω)→(∀j. κ)→κ[C/j]. Consider

τ ′ = Typerec[[κ/j]κ] (∀∀
+

τ) of (τint; τ→; τ∀; τ
∀
+)

• len = 0 Then the only possible reduction of τ ′ is

τ
∀
+ τ (Λj. Typerec[[κ/j]κ] (τ [j]) of (τint; τ→; τ∀; τ

∀
+))

Consider τ ′′ = Typerec[[κ/j]κ] (τ [j]) of (τint; τ→; τ∀; τ
∀
+). For an arbitrary kind κ′,

[κ′/j]τ ′′ is equal to Typerec[[κ/j]κ] τ [κ′] of (τint; τ→; τ∀; τ
∀
+). By the assumption on τ ,

we get that τ [κ′] ∈ RΩ. Therefore, by definition, [κ′/j]τ ′′ ∈ Sκ[C/j]. Since j does not

occur free in κ, we can write this as [κ′/j]τ ′′ ∈ Sκ[C, C′/j, j] for a candidate C ′ of kind κ′.

By lemma A.2.20 Λj. Typerec[[κ/j]κ] (τ [j]) of (τint; τ→; τ∀; τ
∀
+) belongs to S∀j. κ[C/j].

By the assumptions on τ
∀
+ and τ , τ

∀
+ τ (Λj. Typerec[κ] (τ [j]) of (τint; τ→; τ∀; τ

∀
+))

belongs to Sκ[C/j].

135

• len = k + 1 The other possible reductions come from the reduction of one of the individual

types τ , τint, τ→, τ∀, and τ
∀
+. The proof in this case is similar to the proof of the

corresponding case in lemma A.2.16.

Since τ ′ is neutral, by property 3 of definition A.2.6, τ ′ belongs to Sκ[C/j]. 2

We now come to the main result of this section.

Theorem A.2.23 (Candidacy) Let τ be a type of kind κ. Suppose all the free type variables of τ

are in α1 . . . αn of kinds κ1 . . . κn and all the free kind variables of κ, κ1 . . . κn are among

j1 . . . jm. If C1 . . . Cm are candidates of kinds κ′
1 . . . κ′

m and τ1 . . . τn are types of kind

[κ′/j]κ1 . . . [κ′/j]κn which are in Sκ1
[C/j] . . . Sκn [C/j], then [κ′/j]τ [τ/α] belongs to Sκ[C/j].

Proof The proof is by induction over the structure of τ .

1. The cases of int, →→, ∀∀, ∀∀
+

are covered by lemmas A.2.16 A.2.17 A.2.19 A.2.22.

2. Suppose τ = αi and κ = κi. Then [κ′/j]τ [τ/α] = τi. By assumption, this belongs to

Sκi
[C/j].

3. Suppose τ = τ ′
1 τ ′

2. Then τ ′
1 :κ′ → κ for some kind κ′ and τ ′

2 :κ′. By the inductive

hypothesis, [κ′/j]τ ′
1[τ/α] belongs to Sκ′→κ[C/j] and [κ′/j]τ ′

2[τ/α] belongs to Sκ′ [C/j].

Therefore, ([κ′/j]τ ′
1[τ/α]) ([κ′/j]τ ′

2[τ/α]) belongs to Sκ[C/j].

4. Suppose τ = τ ′ [κ′]. Then τ ′ :∀j1. κ1 and κ = [κ′/j1]κ1. By the inductive hypothesis,

[κ′/j]τ ′[τ/α] belongs to S∀j1. κ1
[C/j]. By lemma A.2.21 [κ′/j]τ ′[τ/α] [[κ′/j]κ′] belongs to

S[κ′/j1]κ1
[C/j] which is equivalent to Sκ[C/j].

5. Suppose τ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ
∀
+). Then τ ′ :Ω, and τint :κ, and

τ→ :Ω → Ω → κ → κ → κ, and τ∀ :∀j. (j → Ω) → (j → κ) → κ, and

τ
∀
+ : (∀j.Ω) → (∀j. κ) → κ. By the inductive hypothesis [κ′/j]τ ′[τ/α] belongs to RΩ, and

[κ′/j]τint[τ/α] belongs to Sκ[C/j], and [κ′/j]τ→[τ/α] belongs to SΩ→Ω→κ→κ→κ[C/j], and

[κ′/j]τ∀[τ/α] belongs to S∀j. (j→Ω)→(j→κ)→κ[C/j], and [κ′/j]τ
∀
+[τ/α] belongs to

S(∀j. Ω)→(∀j. κ)→κ[C/j]. By definition of RΩ,

Typerec[[κ′/j]κ] [κ′/j]τ ′[τ/α] of

([κ′/j]τint[τ/α]; [κ′/j]τ→[τ/α]; [κ′/j]τ∀[τ/α]; [κ′/j]τ
∀
+[τ/α])

136

(context) C ::= [] | Λj. C | C [κ] | λα :κ.C | C τ | τ C

| Typerec[κ] C of (τint; τ→; τ∀; τ
∀
+)

| Typerec[κ] τ of (C; τ→; τ∀; τ
∀
+)

| Typerec[κ] τ of (τint; C; τ∀; τ
∀
+)

| Typerec[κ] τ of (τint; τ→; C; τ
∀
+)

| Typerec[κ] τ of (τint; τ→; τ∀; C)

Figure A.6: Type contexts

belongs to Sκ[C/j].

6. Suppose τ = λα′ :κ′. τ1. Then τ1 :κ′′ where the free type variables of τ1 are in

α1, . . . , αn, α′ and κ = κ′ → κ′′. By the inductive hypothesis, [κ′/j]τ1[τ , τ ′/α, α′] belongs

to Sκ′′ [C/j] where τ ′ is of kind [κ′/j]κ′ and belongs to Sκ′ [C/j]. This implies that

[τ ′/α′]([κ′/j]τ1[τ/α]) (since α′ occurs free only in τ1) belongs to Sκ′′ [C/j]. By

lemma A.2.18, λα′ : [κ′/j]κ′. ([κ′/j]τ1[τ/α]) belongs to Sκ′→κ′′ [C/j].

7. Suppose τ = Λj ′. τ ′. Then τ ′ :κ′′ and κ = ∀j′. κ′′. By the inductive hypothesis,

[κ′, κ′/j, j′]τ ′[τ/α] belongs to Sκ′′ [C, C′/j, j′] for an arbitrary kind κ′ and candidate C ′ of

kind κ′. Since j′ occurs free only in τ ′, we get that [κ′/j′]([κ′/j]τ ′[τ/α]) belongs to

Sκ′′ [C, C′/j, j′]. By lemma A.2.20, Λj ′. ([κ′/j]τ ′[τ/α]) belongs to S∀j′. κ′′ [C/j].

2

Suppose SNi is the set of strongly normalizable types of kind κi.

Corollary A.2.24 All types are strongly normalizable.

Proof Follows from theorem A.2.23 by putting Ci = SNi and τi = αi. 2

A.3 Confluence

To prove confluence of the reduction in the type language of λω
i , we first define the compatible

extension 7→ of the one-step reduction ;. Let the set of type contexts (ranged over by C) be

defined inductively as shown in Figure A.6. A context is thus a “type term” with a hole []; the

term C [τ] is defined as the type obtained by replacing the hole in C by τ .

137

Definition A.3.1 τ1 7→ τ2 iff there exist types τ ′
1 and τ ′

2 and a type context C such that

τ1 = C [τ ′
1], τ2 = C [τ ′

2], and τ ′
1 ; τ ′

2.

Let as usual 7→∗ denote the reflexive and transitive closure of 7→.

Lemma A.3.2 If τ 7→ τ ′, then C [τ] 7→ C [τ ′].

Proof From compositionality of contexts, i.e. since for all contexts C1 and C2 and types τ ,

C1 [C2 [τ]] = C [τ] for some context C , which is constructed inductively on the structure of C1. 2

Corollary A.3.3 If τ 7→∗ τ ′, then C [τ] 7→∗ C [τ ′].

The following lemmas are proved by induction on the structure of contexts.

Lemma A.3.4 If τ1 7→ τ2, then [τ/α]τ1 7→ [τ/α]τ2.

Proof sketch Follows from Lemma A.2.2. 2

Lemma A.3.5 If τ1 7→ τ2, then [κ/j]τ1 7→ [κ/j]τ2 .

Proof sketch Follows from Lemma A.2.3. 2

Lemma A.3.6 If E ;∆ ` C [τ] : κ, then there exist E ′, ∆′, and κ′ such that E ′;∆′ ` τ : κ′;

furthermore, if E ′;∆′ ` τ ′ : κ′, then E ;∆ ` C [τ ′] : κ.

By induction on the structure of types we prove the following substitution lemmas.

Lemma A.3.7 If E ;∆, α :κ′ ` τ : κ and E ;∆ ` τ ′ : κ′, then E ;∆ ` [τ ′/α]τ : κ.

Lemma A.3.8 If E , j;∆ ` τ : κ and E ` κ′, then E ;∆[κ′/j] ` [κ′/j]τ : [κ′/j]κ.

Now we can show subject reduction for ;.

Lemma A.3.9 If E ;∆ ` τ : κ and τ ; τ ′, then E ;∆ ` τ ′ : κ.

Proof sketch Follows by case analysis of the reduction relation ; and the substitution

Lemmas A.3.7 and A.3.8. 2

Then we have subject reduction for 7→ as a corollary of Lemmas A.3.9 and A.3.6.

Corollary A.3.10 If E ;∆ ` τ : κ and τ 7→ τ ′, then E ;∆ ` τ ′ : κ.

138

For our confluence proof we need another property of substitution.

Lemma A.3.11 If τ1 7→ τ2, then [τ1/α]τ 7→∗ [τ2/α]τ .

Proof The proof is by induction on the structure of τ . The cases when τ is a constant, τ = α, or

τ = β 6= α, are straightforward.

case τ = Λj. τ ′: Without loss of generality assume that j is not free in τ1, so that

[τ1/α]τ = Λj. ([τ1/α]τ ′); then by subject reduction (Corollary A.3.10) j is not free in τ2, hence

[τ2/α]τ = Λj. ([τ2/α]τ ′). By the induction hypothesis we have that [τ1/α]τ ′ 7→∗ [τ2/α]τ ′. Then

by Corollary A.3.3 for the context Λj. [] we obtain Λj. ([τ1/α]τ ′) 7→∗ Λj. ([τ2/α]τ ′).

The cases of τ = τ ′ [κ] and τ = λβ :κ. τ ′ are similar.

case τ = τ ′ τ ′′: By induction hypothesis we have

(1) [τ1/α]τ ′ 7→∗ [τ2/α]τ ′

(2) [τ1/α]τ ′′ 7→∗ [τ2/α]τ ′′.

Using context [] ([τ1/α]τ ′′), from (1) and Corollary A.3.3 it follows that

[τ1/α]τ = ([τ1/α]τ ′) ([τ1/α]τ ′′) 7→∗ ([τ2/α]τ ′) ([τ1/α]τ ′′);

then using context ([τ2/α]τ ′) [], from (2) and Corollary A.3.3 we have

([τ2/α]τ ′) ([τ1/α]τ ′′) 7→∗ ([τ2/α]τ ′) (([τ2/α]τ ′′)) = [τ2/α]τ

and the result follows since 7→∗ is closed under transitivity.

The case of τ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ
∀
+) is similar. 2

The next step is to prove local confluence of the reduction of well-formed types.

Lemma A.3.12 If E ;∆ ` τ : κ0, τ 7→ τ1, and τ 7→ τ2, then there exists τ0 such that τ1 7→∗ τ0

and τ2 7→∗ τ0.

Proof The proof proceeds by induction on the structure of the derivation of E ;∆ ` τ : κ0. For

the base cases, corresponding to τ being one of the Ω constructors or a type variable, no rules of

reduction apply, so the result is trivial. For the other cases, let C1, C2, τ
′
1, τ

′
2, τ

′′
1 , and τ ′′

2 be such

that τ = C1 [τ ′
1] = C2 [τ ′

2], τ1 = C1 [τ ′′
1], τ2 = C2 [τ ′′

2], and τ ′
1 ; τ ′′

1 , τ ′
2 ; τ ′′

2 .

139

case τ = Λj. τ ′: An inspection of the definition of contexts shows that the only possible forms for

C1 and C2 are [] and Λj. C . Thus, accounting for the symmetry, there are the following three

subcases:

• Both C1 and C2 are []. The only reduction rule that applies then is η2, so τ1 = τ2.

• C1 = Λj. C ′
1 and C2 = Λj. C ′

2. Then the result follows by the inductive hypothesis and

Corollary A.3.3.

• C1 = [] and C2 = Λj. C ′
2. Again. the only reduction for τ ′

1 is η2, so τ ′ = τ ′′ [j] for some

τ ′′. Then there are two cases for τ ′
2. First, if C ′

2 = [], then τ ′
2 = τ ′, and—by inspection of

the rules—in the case of kind application the only possible reduction is via β2, hence

τ ′′ = Λj′. τ ′′′ for some j ′ and τ ′′′. Representing the reductions diagrammatically, we have

immediate confluence (up to renaming of bound variables):

Λj. ((Λj′. τ ′′′) [j])

η2

''

β2

ww

Λj′. τ ′′′ =α Λj. [j/j′]τ ′′′

The second case accounts for all other possibilities for C ′
2 (which must be of the form

C ′′
2 [j]) and reduction rules that can be applied in τ ′′ = C ′′

2 [τ ′
2] to reduce it (by assumption)

to C ′′
2 [τ ′′

2], which we denote by τ ′′
0 . The dashed arrows show the reductions that complete

local confluence.

Λj. (τ ′′ [j])
η2

xxqqqqqqqqqqq
T

''NNNNNNNNNNN

τ ′′

T
&&M

M
M

M
M

M
Λj. (τ ′′

0 [j])

η2
wwp

p
p

p
p

p

τ ′′
0

case τ = τ ′ [κ]: Again by inspection of the rules we have that the contexts are either empty or of

the form C [κ]. The symmetric cases are handled as in the case of kind abstraction above. The

interesting situation is when C1 = [] and C2 = C ′
2 [κ]. The only reduction rule that applies for τ1

is then β2, hence τ ′ = Λj. τ ′′ for some j and τ ′′. Again we have two major cases for τ2: first, if

140

C ′
2 = [], only η2 applies, so τ ′′ = τ ′′′ [j] for some τ ′′′, thus

(Λj. τ ′′′ [j]) [κ]

β2

''

η2

ww

[κ/j]τ ′′′ [j] = τ ′′′ [κ]

In all other cases we have C ′
2 = Λj. C ′′

2 , so τ ′′ = C ′′
2 [τ ′

2] 7→ C ′′
2 [τ ′′

2]; letting τ ′′
0 stand for the latter,

we have the diagram

(Λj. τ ′′) [κ]
β2

xxqqqqqqqqqq
T

''OOOOOOOOOOO

[κ/j]τ ′′

Lemma A.3.5
&&M

M
M

M
M

(Λj. τ ′′
0) [κ]

β2wwo
o

o
o

o
o

[κ/j]τ ′′
0

case τ = λα :κ. τ ′: The contexts can be either empty or of the form λα :κ.C . The symmetric

cases are similar to those above. In the case when C1 = [] and C2 = λα :κ.C ′
2, the only rule that

applies for the reduction of τ ′
1 is η1, so τ ′ = τ ′′ α for some τ ′′. Again, there are two cases for τ ′

2:

First, if C ′
2 = [], we have τ ′

2 = τ ′ = τ ′′ α, and the only reduction rule for application is β1, hence

τ ′′ = λα′ :κ′. τ ′′′ for some α′, κ′, and τ ′′′. Since E ;∆ ` τ : κ0, the subterm (λα′ :κ′. τ ′′′)α must

be well-typed in an environment assigning kind κ to α, hence κ′ = κ, so that

λα :κ. ((λα′ :κ. τ ′′′)α)

η1

''

β1

ww

λα′ :κ. τ ′′′ =α λα :κ. [α/α′]τ ′′′

141

In all other cases for C ′
2 (which are of the form C ′′

2 α), we have τ ′′ = C ′′
2 [τ ′

2] 7→ C ′′
2 [τ ′′

2]; denoting

the latter type by τ ′′
0 , we obtain

λα :κ. (τ ′′ α)
η1

wwppppppppppp
T

((PPPPPPPPPPPP

τ ′′

T
''N

N
N

N
N

N
λα :κ. (τ ′′

0 α)

η1
vvn

n
n

n
n

n

τ ′′
0

case τ = τ ′ τ ′′: There are three possibilities for the contexts C1 and C2: to be empty, of the form

C τ ′, or of the form τ C . The symmetric cases proceed as before.

When C1 = C ′
1 τ ′′ and C2 = τ ′ C ′

2, the redexes in τ ′
1 and τ ′

2 are in different subterms of the type,

hence the reductions commute: we have C ′
1 [τ ′

1] = τ ′ and C ′
2 [τ ′

2] = τ ′′, therefore

τ1 = (C ′
1 [τ ′′

1]) (C ′
2 [τ ′

2]) and τ2 = (C ′
1 [τ ′

1]) (C ′
2 [τ ′′

2]), which both reduce to (C ′
1 [τ ′′

1]) (C ′
2 [τ ′′

2]).

When C1 = [] and C2 = C ′
2 τ ′′, the only reduction rule that applies for τ ′

1 = τ ′ τ ′′ is β1, hence

τ ′ = λα :κ. τ ′′′ for some α, κ, and τ ′′′. As before, there are two cases for C ′
2. If it is empty, then

the only reduction rule that applies to τ ′
2 = τ ′ is η1, hence τ ′′′ = τ IV α for some τ IV , and local

confluence follows by

(λα :κ. (τ IV α)) τ ′′

β1

))

η1

uu

τ IV τ ′′

Alternatively, C ′
2 must be of the form λα :κ.C ′′

2 , where C ′′
2 [τ ′

2] = τ ′′′. Then τ ′′′ 7→ C ′′
2 [τ ′′

2] ≡ τ ′′′
0 ,

and we have

(λα :κ. τ ′′′) τ ′′

β1

wwooooooooooo
T

((QQQQQQQQQQQQQ

[τ ′′/α]τ ′′′

Lemma A.3.4
''O

O
O

O
O

O
(λα :κ. τ ′′′

0) τ ′′

β1vvm m m m m m m

[τ ′′/α]τ ′′′
0

When C1 = [] and C2 = τ ′ C ′
2, again the only reduction rule that applies for τ ′

1 = τ ′ τ ′′ is β1, so

τ ′ = λα :κ. τ ′′′ for some α, κ, and τ ′′′. This time, regardless of the structure of C ′
2, we have that

142

τ ′′ = C ′′
2 [τ ′

2] 7→ C ′′
2 [τ ′′

2] ≡ τ ′′
0 , hence

(λα :κ. τ ′′′) τ ′′

β1

wwooooooooooo
T

((QQQQQQQQQQQQQ

[τ ′′/α]τ ′′′

Lemma A.3.11
''O

O
O

O
O

O
(λα :κ. τ ′′′) τ ′′

0

β1vvm m m m m m m

[τ ′′
0 /α]τ ′′′

case τ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ
∀
+): The contexts can be empty or of the forms

Typerec[κ] C of (τint; τ→; τ∀; τ
∀
+)

Typerec[κ] τ ′ of (C; τ→; τ∀; τ
∀
+)

Typerec[κ] τ ′ of (τint; C; τ∀; τ
∀
+)

Typerec[κ] τ ′ of (τint; τ→; C; τ
∀
+)

Typerec[κ] τ ′ of (τint; τ→; τ∀; C)

The symmetric cases and the non-overlapping cases are handled as before. Accounting for the

symmetry, the remaining cases are when C1 = [] and C2 is not empty. Then the reduction rule for

τ ′
1 must be one of t1, t2, t3, and t4. Since there is no η rule for Typerec, the proofs are

straightforward.

subcase t1: then τ ′ = int. The result of the reduction under C2 is ignored and local confluence is

trivial, unless C2 = Typerec[κ] τ ′ of (C ′
2; τ→; τ∀; τ

∀
+). In the latter case,

Typerec[κ] int of (τint; τ→; τ∀; τ
∀
+)

t1

yysssssssssss
T

%%
KK

KKKKK
KKK

τint

T
%%K

K
K

K
K

K
Typerec[κ] int of (τ ′

int
; τ→; τ∀; τ

∀
+)

t1
yys

s
s

s
s

τ ′
int

subcase t2: then τ ′ = τ ′′ → τ ′′′. We will use Typerec[κ] τ ′ of τ as a shorthand for

Typerec[κ] τ ′ of (τint; τ→; τ∀; τ
∀
+), and similarly for contexts. If C2 = Typerec[κ] C ′

2 of τ , then

there are two subcases for C ′
2 (which must have the → constructor at its head). Thus, if

143

C ′
2 = C ′′

2 → τ ′′′,

Typerec[κ] (τ ′′ → τ ′′′) of τ

t2

||yy
yy

yy
yy

yy

T

""
EE

EE
EE

EE
EE

EE
E

τ→ τ ′′ (Typerec[κ] τ ′′ of τ)

τ ′′′ (Typerec[κ] τ ′′′ of τ)

Lemma A.3.11
��

>
>

>
>

Typerec[κ] (τ ′′
0 → τ ′′′) of τ

t2
���

�
�

�
�

�

τ→ τ ′′
0 (Typerec[κ] τ ′′

0 of τ)

τ ′′′ (Typerec[κ] τ ′′′ of τ)

where τ ′′ = C ′′
2 [τ ′

2] 7→ C ′′
2 [τ ′′

2] ≡ τ ′′
0 . The case of C ′

2 = τ ′′ → C ′′
2 is similar.

Of the other cases we will only show the reduction in the position of τ→, writing τ0 for

(τint; τ→0; τ∀; τ
∀
+), where τ→ 7→ τ→0.

Typerec[κ] (τ ′′ → τ ′′′) of τ

t2

||yy
yy

yy
yy

yy

T

""
EE

EE
EE

EE
EE

EE
E

τ→ τ ′′ (Typerec[κ] τ ′′ of τ)

τ ′′′ (Typerec[κ] τ ′′′ of τ)

Lemma A.3.11
��

>
>

>
>

Typerec[κ] (τ ′′ → τ ′′′) of τ0

t2
���

�
�

�
�

�

τ→0 τ ′′ (Typerec[κ] τ ′′ of τ0)

τ ′′′ (Typerec[κ] τ ′′′ of τ0)

subcases t3 and t4 are similar to t2. 2

Corollary A.3.13 If E ;∆ ` τ : κ, τ 7→∗ ν, and τ 7→∗ τ ′, then τ ′ 7→∗ ν.

Theorem A.3.14 If E ;∆ ` τ : κ, then there exists exactly one ν such that τ 7→∗ ν.

Proof From Corollaries A.2.24 and A.3.13. 2

144

Appendix B

Formal Properties Of λGC

In this chapter we prove the soundness of λGC that we defined in Chapter 4. Throughout this chap-

ter, we assume unique variable names. Our environments are sets with no duplicate occurrences

and no ordering. It is easy to show by induction over judgments that extending environments with

additional bindings is safe. We will assume this in the rest of the chapter.

Definition B.0.15 The judgment ` (M, e) says that the machine state (M, e) is well-formed. It is

defined by:

` M : Ψ Ψ;Dom(Ψ); ·; · ` e

` (M, e)

Contrary to the other environments, Ψ is not explicitly constructed in any of the static rules,

since it reflects dynamic information. Instead, the soundness proof, or more specifically the type

preservation proof, needs to construct some witness Ψ′ for the new state (M ′, e′) based on the Ψ

of the initial state (M, e).

The code region cd is always implicitly part of the environment. We treat it as a constant region.

Even when the environment is restricted to a particular set, say Ψ|Θ, the code region is included

in the restricted set. Therefore Ψ|ν1,...νk
is equivalent to {cd : Υcd, ν1 : Υν1

, . . . νk : Υνk
}. And

Ψ|cd is equivalent to {cd : Υcd}.

Lemma B.0.16 If Θ′, r;∆ ` σ, then [ν/r]Θ;∆ ` [ν/r]σ where Θ′, r = Θ.

Proof The proof is a straightforward induction over the structure of σ. 2

Lemma B.0.17 ([ν/r]Γ)|Θ,ν = [ν/r](Γ|Θ,r)

145

Proof The lemma is proved by induction over the structure of Γ. 2

Lemma B.0.18 If Ψ;Θ′, r;∆; Γ ` op : σ, then

Ψ; [ν/r]Θ;∆; [ν/r]Γ ` [ν/r]op : [ν/r]σ where Θ′, r = Θ.

Proof The proof is by induction over the structure of op. Most of the cases follow directly by

induction. We will show only the case for type packages.

case 〈α=τ1, v : σ2〉: We know that

Ψ;Θ′, r;∆; Γ ` 〈α=τ1, v : σ2〉 : ∃α : κ.σ2

This implies that ∆ ` τ1 and Ψ;Θ′, r;∆; Γ ` v : [τ1/α]σ2. Applying the inductive hypothesis to

the derivation for v, we get that

Ψ; [ν/r]Θ;∆; [ν/r]Γ ` [ν/r]v : [τ1/α]([ν/r]σ2)

This leads to the required result. 2

Lemma B.0.19 If Ψ;Θ′, r;∆; Γ ` e, then Ψ; [ν/r]Θ;∆; [ν/r]Γ ` [ν/r]e where Θ′, r = Θ

Proof The proof is by induction over the derivation of e. Most of the cases follow directly from

the inductive hypothesis. We will consider only one case here.

case only Θ1 in e: We get that

Ψ;Θ, r;∆; Γ ` only Θ1 in e

This implies that

Ψ|Θ1
; Θ1, cd;∆; Γ|Θ1

` e

and Θ1 ⊂ Θ, r. Suppose r /∈ Θ1. Then r does not occur free in e. Also [ν/r]Θ1 = Θ1. Let

Γ|Θ1
= Γ1. Then we have that

[ν/r]Γ|Θ1
= Γ1,Γ2 and Dom(Γ1) ∩ Dom(Γ2) = ∅. Since we can extend environments, we get

that

Ψ|Θ1
; Θ1, cd;∆; Γ1,Γ2 ` e. Also Θ1 ⊂ [ν/r](Θ, r). This leads to the required result.

Suppose now that r ∈ Θ1. Suppose that Θ1 = Θ2, r. Then [ν/r]Θ1 = Θ2, ν. Then we have

that

146

Ψ|Θ2,r; Θ2, r, cd;∆; Γ|Θ2,r ` e

Applying the inductive hypothesis we get that

Ψ|Θ2,r; [ν/r]Θ2, cd;∆; [ν/r]Γ|Θ2 ,r ` [ν/r]e

Applying lemma B.0.17 we get that

Ψ|Θ2,r; [ν/r]Θ1, cd;∆; [ν/r]Γ|Θ2,ν ` [ν/r]e

But we have that Ψ|Θ2,r = Ψ|Θ2
. Moreover, Ψ|Θ2,ν = Ψ|Θ2

,Ψ′. Therefore, we get that

Ψ|Θ2,ν; [ν/r]Θ1, cd;∆; [ν/r]Γ|Θ2 ,ν ` [ν/r]e

We also have that [ν/r]Θ1 ⊂ [ν/r]Θ. This leads to the required result. 2

Lemma B.0.20 If ∆, α :κ′ ` τ : κ and ∆ ` τ ′ : κ′, then ∆ ` [τ ′/α]τ : κ

Proof The proof is a straightforward induction over the structure of τ . 2

Lemma B.0.21 If Θ;∆, α :κ ` σ and ∆ ` τ : κ, then Θ;∆ ` [τ/α]σ

Proof The proof is again a straighforward induction over the structure of σ. 2

Lemma B.0.22 If Ψ;Θ;∆, α : κ; Γ ` op : σ and ∆ ` τ : κ then

Ψ;Θ;∆; [τ/α]Γ ` [τ/α]op : [τ/α]σ

Proof The proof is a straightforward induction over the structure of op. The only unusual case

is when op = ν.`. In this case, Ψ(ν.`) = σ and Dom(Ψ); ·; · ` σ. Therefore, the variable α does

not occur free in σ at ν. 2

Lemma B.0.23 If Ψ;Θ;∆, α : κ; Γ ` e and · ` τ ′ : κ then Ψ;Θ;∆; [τ ′/α]Γ ` [τ ′/α]e

Proof The proof is a straightforward induction over the structure of e. The only interesting case

is for a typecase when the substituted variable is being analyzed.

case typecase α of (ei; e→;α1α2.e×;αe.e∃): Suppose we substitute the type τ ′ for the variable

α. Then τ ′ can only be one of Int, τ ′′ → 0, τ ′
1 × τ ′

2, or ∃α.τ ′′. For a Int, we need to prove that

Ψ;Θ;∆; [Int/α]Γ ` [Int/α](typecase α of (ei; e→;α1α2.e×;αe.e∃))

This implies that we need to prove that

147

Ψ;Θ;∆; [Int/α]Γ ` [Int/α]ei

By definition, we know that

Ψ;Θ;∆, α :Ω; [Int/α]Γ ` [Int/α]ei

Since α is being substituted away, this leads to the required result.

For a code type we need to prove that

Ψ;Θ;∆; [τ ′ → 0/α]Γ ` [τ ′ → 0/α](typecase α of (ei; e→;α1α2.e×;αe.e∃))

This implies that we need to prove that

Ψ;Θ;∆; [τ ′ → 0/α]Γ ` [τ ′ → 0/α]e→

By definition, we get that Ψ;Θ;∆, α : Ω; Γ ` e→. Substituting for α and applying the inductive

hypothesis leads to the result.

For the pair type we need to prove that

Ψ;Θ;∆; [(τ ′
1 × τ ′

2)/α]Γ ` [(τ ′
1 × τ ′

2)/α](typecase α of (ei; e→;α1α2.e×;αe.e∃))

This implies that we need to prove that

Ψ;Θ;∆; [(τ ′
1 × τ ′

2)/α]Γ ` [(τ ′
1 × τ ′

2), τ
′
1, τ

′
2/α, α1, α2]e×

By definition, we know that

Ψ;Θ;∆, α :Ω, α1 : Ω, α2 : Ω; [α1 × α2/α]Γ ` [α1 × α2/α]e×

Note that the variables α1 and α2 do not occur free separately in Γ. Substituting τ ′
1 for α1, τ ′

2 for

α2, and τ ′
1 × τ ′

2 for α1 × α2 leads to the required result.

For the existential type we need to prove that

Ψ;Θ;∆; [∃α1.τ
′/α]Γ ` [∃α1.τ

′/α](typecase α of (ei; e→;α1α2.e×;αe.e∃))

This implies that we need to prove that

Ψ;Θ;∆; [∃α1.τ
′/α]Γ ` [∃α1.τ

′, λα1 :Ω. τ ′/α, αe]e∃

By definition we know that

Ψ;Θ;∆, α :Ω, αe : Ω −→ Ω; [∃α1.αe α1/α]Γ ` [∃α1.αe α1/α]e∃

Substituting (λα1 :Ω. τ ′) for αe and applying the inductive hypothesis we get that

148

Ψ;Θ;∆, α :Ω; [∃α1.τ
′/α]Γ ` [∃α1.τ

′, λα1 :Ω. τ ′/α, αe]e∃

Since α is being substituted away, we can remove it from the type environment. This leads to the

required result. 2

Lemma B.0.24 If Ψ;Θ;∆; Γ, x : σ′ ` op : σ and Ψ;Θ;∆; Γ ` v′ : σ′ then

Ψ;Θ;∆; Γ ` [v′/x]op : σ

Proof The proof is a straightforward induction over the typing derivation for op. 2

Lemma B.0.25 If Ψ;Θ;∆; Γ ` v : σ and Θ1;∆ ` σ and Θ1 ⊂ Θ, then

Ψ|Θ1
; Θ1;∆; Γ|Θ1

` v : σ

Proof The proof is by induction over the derivation for v. Most of the cases follow directly from

the inductive hypothesis. We will consider only one case here.

case ν.`: We have that Ψ;Θ;∆; Γ ` ν.` : σ at ν. This implies that Ψ(ν.`) = σ and Dom(Ψ); · `

σ at ν. However, by assumption we also know that Θ1;∆ ` σ at ν. This implies that ν ∈ Θ1.

This implies that Ψ|Θ1
(ν.`) = σ. Moreover, we also get that Θ1; · ` σ at ν. Therefore, we get that

Dom(Ψ|Θ1
); · ` σ at ν. From here we get that Ψ|Θ1

; Θ1;∆; Γ|Θ1
` ν.` : σ at ν. 2

Lemma B.0.26 If Ψ;Θ;∆; Γ, x : σ ` e and Ψ;Θ;∆; Γ ` v : σ then

Ψ;Θ;∆; Γ ` [v/x]e

Proof The proof is again a straightforward induction over the structure of e. We will only show

the proof for a couple of cases, the rest of them follow similarly.

case only Θ1 in e: We have that

Ψ;Θ;∆; Γ, x : σ ` only Θ1 in e. This implies that

Ψ|Θ1
; Θ1;∆; (Γ, x : σ)|Θ1

` e. If we have that

Θ1;∆ ` σ, then we get that

Ψ|Θ1
; Θ1;∆; Γ|Θ1

, x : σ ` e. By lemma B.0.25 we get that

Ψ|Θ1
; Θ1;∆; Γ|Θ1

` v : σ. Applying the inductive hypothesis gives us that

Ψ|Θ1
; Θ1;∆; Γ|Θ1

` [v/x]e.

In the other case, we get that

Ψ|Θ1
; Θ1;∆; Γ|Θ1

` e. This implies that x does not occur free in e. The required result follows

from here.

149

case typecase α of (ei; e→;α1α2.e×;αe.e∃): By assumption, we get that

∆ ` α : Ω

Ψ;Θ;∆; [Int/α]Γ, x : [Int/α]σ ` [Int/α]ei

Ψ;Θ;∆; Γ, x : σ ` e→

Ψ;Θ;∆, α1 : Ω, α2 : Ω; [α1 × α2/α]Γ, x : [α1 × α2/α]σ ` [α1 × α2/α]e×

Ψ;Θ;∆, αe : Ω −→ Ω; [∃α1.αe α1/α]Γ, x : [∃α1.αe α1/α]σ ` [∃α1.αe α1/α]e∃
By lemma B.0.22, we know that if Ψ;Θ;∆; Γ ` v : σ, then

Ψ;Θ;∆; [τ/α]Γ ` [τ/α]v : [τ/α]σ. Now substitute [Int/α]v in the ei branch, substitute v in the

e→ branch, substitute [α1 × α2/α]v in the e× branch, and substitute [∃α1.αe α1/α]v in the e∃

branch. The required result follows from the inductive hypothesis on each branch. 2

Proposition B.0.27 (Type Preservation) If ` (M, e) and (M, e) ; (M ′, e′) then ` (M ′, e′).

Proof The proof is by induction over the evaluation relation. We will consider only the cases

that do not follow directly from the inductive hypothesis and the substitution lemmas.

case ν.`[~τ][~ν](~v): The lemma follows from the fact that tag reduction is strongly normalizing and

confluent, and preserves kind.

case ν.`[~τ ′][~ν](~v): By definition,

Ψ;Dom(Ψ); ·; · ` ν.`[~τ ′][~ν](~v)

Since M(ν.`) = (λ[~α : κ][~r](~x : ~σ).e), we have that

Ψ;Dom(Ψ); ·; · ` ν.` : ∀[~α : κ][~r](~σ) → 0 at ν

This implies that

Ψ|cd; cd, ~r;−−→α : κ;−−→x : σ ` e

By the typing rule, we get that

Ψ;Dom(Ψ); ·; · ` vi : [~ν, ~τ ′/~r, ~α]σi

and · ` τ ′
i : κi. From lemma B.0.19 we get that

Ψ|cd; cd, ~ν;∆;
−−−−−−→
x : [~ν/~r]σ ` [~ν/~r]e

From lemma B.0.23 we get that

Ψ|cd; cd, ~ν; ·;
−−−−−−−−−−→
x : [~ν, ~τ ′/~r, ~α]σ ` [~ν, ~τ ′/~r, ~α]e

150

Since Ψ|cd ⊂ Ψ and cd, ~ν ⊂ Dom(Ψ), we can extend the environment for deriving e. Applying

lemma B.0.26 we get that

Ψ;Dom(Ψ); ·; · ` e[~ν, ~τ ′, ~v/~r,~t, ~x]

which leads to the result.

case let x = put[ν]v in e: By definition,

Ψ;Dom(Ψ); ·; · ` let x = put[ν]v in e

From the typing rules,

Ψ;Dom(Ψ); ·; · ` put[ν]v : σ at ν

for some type σ, and ν ∈ Dom(Ψ). This implies that

Ψ;Dom(Ψ); ·; · ` v : σ

Again, from the typing rules,

Ψ, ν.` : σ;Dom(Ψ); ·; · ` ν.` : σ at ν

The required result now follows from lemma B.0.26.

case let x = get ν.` in e: By definition,

Ψ;Dom(Ψ); ·; · ` let x = get ν.` in e

From the typing rules we get that

Ψ;Dom(Ψ); ·; · ` ν.` : σ at ν

for some type σ Again from the typing rules, we get that Ψ(ν.`) = σ. This implies that if M(ν.`) =

v, then

Ψ;Dom(Ψ); ·; · ` v : σ

The required result follows from lemma B.0.26.

case let region r in e: By definition,

Ψ;Dom(Ψ); ·; ·; · ` let region r in e

This implies that

Ψ;Dom(Ψ), r; ·; ·; · ` e

By lemma B.0.19,

151

Ψ;Dom(Ψ), ν; ·; ·; · ` [ν/r]e

Since ν is a newly introduced region, we can extend Ψ with it. This implies that

Ψ, ν 7→ {};Dom(Ψ), ν; ·; ·; · ` [ν/r]e

This is the required result.

case only Θ in e: By definition,

Ψ;Dom(Ψ); ·; ·; · ` only Θ in e

This implies that

Ψ|Θ; cd,Θ; ·; ·; · ` e

But cd,Θ = Dom(Ψ|Θ). This implies that

Ψ|Θ;Dom(Ψ|Θ); ·; ·; · ` e

which is the required result.

For all of the typecases, the required result follows directly from the typing rules since the

value environment is empty.

Lemma B.0.28 (Canonical forms)

1. If Ψ;Θ; ·; ·; · ` v : int then v = n.

2. If Ψ;Θ; ·; ·; · ` v : σ at ν then v = ν.`.

3. If Ψ;Θ; ·; ·; · ` v : σ1 × σ2 then v = (v1, v2).

4. If Ψ;Θ; ·; ·; · ` v : ∃α : κ.σ then v = 〈α=τ, v ′ : σ〉.

5. If Ψ;Θ; ·; ·; · ` v : ∀[~α : κ][~r](~σ) → 0 then v = λ[~α : κ][~r](~x : σ).e.

Proof The proof follows from the inspection of the typing rules for values. 2

Proposition B.0.29 (Progress) If ` (M, e) then either e = halt v or there exists a (M ′, e′) such

that (M, e) ; (M ′, e′).

Proof The proof is again by induction over the structure of e. By definition, Ψ;Dom(Ψ); ·; · ` e.

The proof for the individual cases start from this point.

152

case v[~τ][~ν](~v): From the typing rules, v : ∀[~α : κ][~r](~σ) → 0 at ν By lemma B.0.28, v = ν.`.

From the typing rules

M(ν.`) = λ[~α : κ][~r](~x : σ).e This implies that we have a reduction.

case let x = op in e: If op = v, then we have a reduction. If op = πiv, then from the typing rules,

Ψ;Dom(Ψ); ·; · ` v : σ1 × σ2. The required result follows from lemma B.0.28. In the case of

put[ν]v, the result follows directly. The constraint ν ∈ Θ ensures that ν ∈ Dom(Ψ). In the case

for get v, by the typing rules we know that v = ν.` for some ν.`. Again from the typing rule we

know that Ψ(ν.`) = σ. This implies that M(ν.`) = v ′ for some value v′.

For the other cases of e, the proposition follows directly from the operational semantics. 2

153

Appendix C

Formal Properties of λi
CC

In this chapter we prove the meta-theoretic properties of our type language λi
CC . The proofs are

based on the methods in Werner [Wer94]. We use the formalization of the language presented

in Section 5.4. In Section C.1 we prove subject reduction, in Section C.2 we prove the strong

normalization, in Section C.3 we prove the Church-Rosser property, in Section C.4 we prove the

consistency of the underlying logic.

C.1 Subject reduction

The proof is structured as follows:

• We first define a calculus of unmarked terms. These are terms with no annotations at lambda

abstractions. We show that this language is confluent.

• We then prove Geuvers’ lemma – a weak form of confluence. It says that a term that is equal

to one in head normal form can be reduced to an η-expanded version of this head normal

form.

• From Geuvers’ lemma, we are able to prove the inversion lemma which relates the structure

of a term to its typing derivation.

• We are then able to prove the uniqueness of types and subject reduction for βι reduction.

• We are then able to prove that the system preserves sorts – that is, if two terms are convertible

and well sorted, then they have the same sort.

154

• Finally, we prove the strengthening lemma and then subject reduction for η reduction.

C.1.1 Unmarked terms

The PTS language is non-confluent. Nederpelt gave the following counterexample – let A be the

term defined by λX :A1. (λY :A2. Y)X . Then we have that A�βλX :A1. X and A�ηλY :A2. Y .

For our proofs we want to operate in a language that is confluent. We will therefore introduce the

notion of unmarked terms. As non-confluence is due to the presence of type annotations in λ

abstractions, the unmarked terms are obtained by erasing the type annotations.

The set of unmarked terms ‖A‖ are defined below. We are given a marked variable that can

not be used elsewhere.

‖s‖= s

‖X ‖= X

‖A1 A2 ‖= ‖A1 ‖ ‖A2 ‖

‖λX :A1. A2 ‖= λX : . ‖A2 ‖

‖ΠX :A1. A2 ‖= ΠX :‖A1 ‖ . ‖A2 ‖

‖ Ind(X :Kind){ ~A}‖= Ind(X :Kind){
−−→
‖A‖}

‖Ctor (i, A1)‖= Ctor (i, ‖A1 ‖)

‖Elim[I,A2](A1){ ~A}‖= Elim[‖I ‖, ‖A2 ‖](‖A1 ‖){
−−→
‖A‖}

Lemma C.1.1 For all terms A, B, A′, B′, and for all variables X and Y , we have that [λY :

A′. B/X]A =βηι [λY :B′. B/X]A.

Proof Consider A2 = [λZ : A′. (λY :B′. B) Z/X]A. Then A2 �β [(λZ : A′. [Z/Y]B)/X]A

and A2 �η [λY :B′. B/X]A. Alpha converting the first reduct leads to the required result. 2

Lemma C.1.2 For all terms A, we have A =βη‖A‖.

Proof Follows from lemma C.1.1. 2

Definition C.1.3 (ι0 reduction) We say that A �ι0 ‖A′ ‖ iff A �ι A′ and ‖A‖6=‖A′ ‖.

Proposition C.1.4 For all terms A and A′, if A �β A′, then ‖ A ‖ �β ‖ A′ ‖ or ‖ A ‖=‖ A′ ‖.

Similarly, if we have that A�ι A′, then ‖A‖ �ι0 ‖A′ ‖ or ‖A‖=‖A′ ‖. Moreover, if ‖A‖ �βι0 ‖

A′ ‖, then there exists a A′′ such that A �βι A′′ and ‖A′′ ‖=‖A′ ‖.

155

Lemma C.1.5 (Confluence for unmarked terms) For all unmarked terms ‖A‖, the βηι0 reduc-

tion is confluent.

The proof is based on the method of parallel reductions due to Tait and Martin-Löf.

Definition C.1.6 (Parallel reduction) Define →→ on unmarked terms as below, in which we as-

sume that A →→ A′, B →→ B′, etc:

A →→ A

A B →→ A′ B′

λX : . A →→ λX : . A′

ΠX :A.B →→ ΠX :A′. B′

Ind(X :Kind){ ~A} →→ Ind(X :Kind){ ~A′}

Ctor (i, I) →→ Ctor (i, I ′)

Elim[A,C](I){ ~A} →→ Elim[A′, C ′](I ′){ ~A′}

(λX : . A) B →→ [B ′/X]A′

λX : . A X →→ A′ if X /∈ FV (A)

Elim[I, C]((Ctor (i, I) ~B)){ ~A} →→ (ΦX,I′,B′(C ′
i, A

′
i))

~B′

where I = Ind(X :Kind){ ~C}

B′ = λY : . (Elim[I ′, C ′](Y){ ~A′})

The parallel reduction commutes with respect to substitution.

Lemma C.1.7 If A →→ A′ and B →→ B′, then [B/X]A →→ [B ′/X]A′.

Proof By induction over the fact that A →→ A′. 2

The parallel reduction also has the following properties with respect to terms such as products

and inductive definitions. The proof in each case is immediate and follows by induction over the

structure of the term.

Proposition C.1.8 Suppose A = ΠX : ~B. Y ~C . If A can be reduced to A′ through a reduction

relation (→→, �β , etc.), then A′ = ΠX : ~B′. Y ~C ′ where all the ~B and ~C can be reduced to ~B′ and

~C ′ by the same reduction relation.

156

Proposition C.1.9 Suppose A = ΠX : ~B. Y ~C and A′ = ΠX : ~B′. Y ~C ′ be two terms such that

both can be reduced to A′′ through a reduction relation (→→, �β , etc.). Then A′′ = ΠX : ~B′′. Y ~C ′′

where ~B and ~B′ can be reduced to ~B′′ by the same relation and ~C and ~C ′ can be reduced to ~C ′′ by

the same relation.

The parallel reduction is important because it subsumes the single step reduction; that is, if

A � A′, then we have that A →→ A′ which also implies that A �
∗ A′. From here, to show the

confluence of �, it suffices to show the confluence of parallel reduction.

Lemma C.1.10 For all unmarked terms D, D ′, D′′, we have that if D →→ D′ and D →→ D′′, then

there exists a D′′′ such that D′ →→ D′′′ and D′′ →→ D′′′.

Proof The proof is by induction over the structure of D. We will only show one case here.

• Suppose D = Elim[I, C]((Ctor (i, I) ~B)){ ~A}.

– We can then have D′ = (ΦX,I′,B′(C ′
i, A

′
i))

~B′ and D′′ = (ΦX,I′′,B′(C ′′
i , A′′

i))
~B′′. We

have that I ′ = Ind(X : Kind){ ~C ′} and I ′′ = Ind(X : Kind){ ~C ′′}. This implies that

Ci →→ C ′
i and Ci →→ C ′′

i . By applying the induction hypothesis to the subterms, we

get that I ′ →→ I ′′′ and I ′′ →→ I ′′′ and so on for the other subterms. From here and

proposition C.1.9, it follows that we can take D ′′′ = (ΦX,I′′′,B′(C ′′′
i , A′′′

i)) ~B′′′.

– Suppose D′ = Elim[I ′, C ′]((Ctor (i, I ′) ~B′)){ ~A′} and D′′ = (ΦX,I′′,B′(C ′′
i , A′′

i))
~B′′.

As above we can again define I ′′′, C ′′′
i , etc. and take D′′′ = (ΦX,I′′′,B′(C ′′′

i , A′′′
i)) ~B′′′.

– Also D′ = Elim[I ′, C ′]((Ctor (i, I ′) ~B′)){ ~A′} and

D′′ = Elim[I ′′, C ′′]((Ctor (i, I ′′) ~B′′)){ ~A′′}. In this case, we can again take that

D′′′ = Elim[I ′′′, C ′′′]((Ctor (i, I ′′′) ~B′′′)){ ~A′′′}.

2

As a corollary of the confluence of unmarked terms we get the following:

Corollary C.1.11 If A and B are two distinct sorts or two distinct variables or a variable and a

sort, then we have that A 6= B.

We will need another lemma – that of the delay of η reduction. But before that, we have to

define another variant of the ι reduction. This essentially says that a ι reduction that would appear

157

only after a series of eta reductions can be reduced straightaway without going through the eta

reductions. For well typed terms, this is equivalent to ι reduction, but it also allows us to retain the

property of delay of η reduction for ill-typed terms.

Elim[I,A′′](λ ~X : ~A′. (Ctor (i, I) ~A) ~C ′){ ~B} �ι′ (ΦX,I,B′(Ci, Bi)) ~A

where I = Ind(X :Kind){ ~C}

B′ = λY :I. (Elim[I,A′′](Y){ ~B})

Ci
′
�η Xi and Xi /∈ FV (~A) ∪ FV (I)

Proposition C.1.12 For all terms A1 and A2, we have that A1 =βηι A2 if and only if A1 =βηι′ A2.

Lemma C.1.13 If A �η A′
�βι′ A′′, then either A �

∗
βι′ A′′, or there exists a A′′′ such that

A �βι′ A′′′
�

∗
η A′′.

Proof The proof is by induction over the structure of A. We will consider only the cases that do

not follow directly from the induction hypothesis.

• A = C D. There are two cases.

– If C �η C ′, then it follows immediately from the induction hypothesis.

– If D �η D′ and C = λX :B.B ′ and A′′ = [D′/X]B′, then take A′′′ = [D/X]B′. The

other cases follow from the induction hypothesis.

• A = λX : C.B X . Suppose A′′ = B′ where B �βι′ B′. But then we also have that

A �βι′ λX :C.B′ X . Since the reduction does not introduce new free variables, this term

can now η-reduce to B ′.

2

Lemma C.1.14 (Delay of η reduction) For all terms A and A′, if A�
∗A′, then there exists a term

A′′ such that A �
∗
βι′ A′′

�
∗
η A′.

Proof Follows from lemma C.1.13. 2

We will next prove Geuvers’ lemma which is essentially a weak form of confluence. This is

enough to prove the uniqueness of types and subject reduction. But before that we need to define

the counterpart of the ι′ reduction for unmarked terms. We define it in the obvious way

158

Definition C.1.15 (ι′0 reduction) We say that A �ι′
0
‖A′ ‖ iff A �ι′ A′ and ‖A‖6=‖A′ ‖.

As before it has the following property:

Proposition C.1.16 Suppose A �ι′ A′. Then either ‖A‖=‖A′ ‖, or ‖A‖ �ι′
0
‖A′ ‖. Moreover,

if ‖A‖ �ι′
0
‖A′ ‖, then A �ι′ A′.

Lemma C.1.17 (Geuvers lemma)

• If A =βηι X ~A, then A �
∗
βι′ λ~Y : ~A′. (X ~B ~C) where for all i, Ai =βηι Bi and for all j,

Cj �
∗
η Yj .

• If A =βηι ΠX : A1. A2, then A �
∗
βι′ λ~Y : ~A′. ((ΠX :A3. A4) ~B) where A1 =βηι A3 and

A2 =βηι A4 and for all i, Bi �
∗
η Yi.

• If A =βηι Ctor (i, I) ~C , then A�
∗
βι′λ

~Y : ~A′. ((Ctor (i, I ′) ~C ′) ~B) where for all i, Ci =βηι C ′
i

and for all j, Bj �
∗
η Yj , and I =βηι I ′.

• If A =βηι Ind(X : Kind){ ~A} ~C , then A �
∗
βι′ λ~Y : ~A′. ((Ind(X :Kind){ ~A′′}) ~C ′) ~B where

for all i, Ai =βηι A′′
i and for all j, Cj =βηι C ′

j , and for all k, Bk �
∗
η Yk.

• If A =βηι Elim[I,A2](A1){ ~A′′} ~C , then A�
∗
βι′λ

~Y : ~A′. (Elim[I ′, B′](B){ ~B} ~C ′) ~B′ where

A1 =βηι B, and A2 =βηι B′, and I =βηι I ′, and for all i, A′′
i =βηι Bi and for all j,

Cj =βηι C ′
j and for all k, B ′

k �
∗
η Yk.

Proof The proof for each of the cases is similar and is by induction over the length of the

equivalence relation. We will show only one case here.

• Suppose A =βηι X ~A. By the induction hypothesis, there exists an A′′ such that

A′′
�

∗
βι′ λ~Y : ~A′. (X ~B ~C) and A �βι A′′ or A′′

�βι A.

– The case where A �βι A′′ is immediate.

– The case where A �η A′′ follows from the lemma of delay of η-reduction.

– If A′′
�βι A, then the required result follows from the confluence of βι′ reduction.

– Suppose A′′
�η A. Then from the confluence of βηι′0 reduction on unmarked terms, we

get that ‖A‖ �
∗X ~D where ‖Bi ‖ �βηι′

0
Di. From the lemma of delay of η-reduction,

we get that

‖A‖ �
∗
βι′

0
λ~Y : . X ~D′ ~F �

∗
η X ~D

159

From proposition C.1.16 we can deduce the existence of a term A1 such that A�
∗
βι′ A1

and ‖A1 ‖= λ~Y : . X ~D′ ~F . The required result follows from here.

2

C.1.2 Classification of terms

Definition C.1.18 We partition the set of terms into four classes: the set of types Ty, the set of

kinds Ki, the set of kind schemas Sc, and Ex. The class of a term is defined as follows:

Cls(Kind)= Sc

Cls(Kscm)= Ex

Cls(α)= Ty

Cls(j)= Ki

Cls(z)= Sc

Cls(A1 A2)= Cls(A1)

Cls(λX :A1. A2)= Cls(A2)

Cls(ΠX :A1. A2)= Cls(A2)

Cls(Ind(X :Kind){ ~A})= Ki

Cls(Ctor (i, A1))= Ty

Cls(Elim[I,A2](A1){ ~A})= Ty if Cls(A2) = Ki, else Ki

We also define the following function:

lift(Ty)= Ki

lift(Ki)= Sc

lift(Sc)= Ex

Lemma C.1.19 If ∆ ` A1 : A2 is derivable, then we have lift(Cls(A1)) = Cls(A2). In particu-

lar, A1 6= Ext. Moreover, for all pairs (X,A) in ∆, we have Cls(A) = lift(Cls(X)).

Proof Immediate by induction over the derivation of the judgment. 2

C.1.3 Well typed terms

We now consider the well typed terms. The following lemmas are proved easily by induction over

the typing derivations.

160

Lemma C.1.20 (Substitution) If we can derive ∆1, (X,A),∆2 ` B : C and ∆1 ` A2 : A, then

we can derive ∆1, ([A2/X]∆2) ` [A2/X]B : [A2/X]C .

Proof Straightforward induction over the structure of the derivation. 2

Lemma C.1.21 If we can derive ∆1, (X,A),∆2 ` B : C , then we also have that ∆1 ` A : s

for some sort s. Moreover, we also have that ∆1, (X,A),∆2 ` A : s.

Proof The proof is by induction over the structure of the derivation. 2

Lemma C.1.22 If we have that ∆ ` ΠX :A.B : s, then we have that ∆, X :A ` B : s.

Proof The only interesting case is for the CONV case which follows from Corollary C.1.11. 2

Lemma C.1.23 If the judgment ∆ ` A : B is derivable, then either B = Ext, or ∆ ` B : s for

some sort s.

Proof The proof is a straightforward induction over the structure of the derivation. 2

161

Lemma C.1.24 (Inversion) If the judgment ∆ ` A : B is derivable, then

A = α ⇒ α ∈ ∆, B =βηι ∆(α), ∆ ` B : Kind

A = j ⇒ j ∈ ∆, B =βηι ∆(j), ∆ ` B : Kscm

A = z ⇒ z ∈ ∆, B =βηι ∆(z), ∆ ` B : Ext

A = Kind ⇒ B =βηι Kscm

A = Kscm ⇒ B = Ext

A = ΠX :A1. A2 ⇒ ∆ ` A1 : s1, ∆, X :A1 ` A2 : s2, B =βηι s2

where s1 is any sort and

s2 = Kind, or, s1 ∈ {Kind, Kscm} and s2 = Kscm

A = λX :A1. A2 ⇒ ∆ ` A1 : s1, ∆, X :A1 ` A2 : A3, ∆ ` A3 : s2

B =βηι ΠX :A1. A3, ∆ ` B : s2

A = A1 A2 ⇒ ∆ ` A1 : ΠX :B′. A′, ∆ ` A2 : B′, B =βηι [A2/X]A′

A = Ind(X :Kind){ ~A} ⇒ ∆, X :Kind ` Ai : Kind, wfcX(Ai), B =βηι Kind

A = Ctor (i, I) ⇒ I = Ind(X :Kind){ ~A}, same conditions on I, B =βηι [I/X]Ai

A = Elim[I,A′](A){ ~B}⇒ I = Ind(X :Kind){ ~A}, same conditions on I

∆ ` A : I, ∆ ` A′ : I → Kind, ∆ ` B : Kind

B =βηι A′ A, ∆ ` Bi : ζX,I(Ai, A
′, Ctor (i, I))

A = Elim[I,A′](A){ ~B}⇒ I = Ind(X :Kind){ ~A}, same conditions on I

∆ ` A : I, ∆ ` A′ : Kscm

∆ ` B : Kscm and B =βηι A′

∆ ` Bi : ΨX,I(Ai, A
′), for all i small(Ai)

Proof By induction over the structure of the derivation. For every case we consider the set of

possible typing derivations. 2

Lemma C.1.25 (Uniqueness of types) If ∆ ` A : A1 and ∆ ` A : A2, then A1 =βηι A2.

162

Proof By induction over the structure of A. We use the fact that if A1 =βηι B and A2 =βηι B,

then A1 =βηι A2. For every case, we use the corresponding clause from lemma C.1.24. 2

Corollary C.1.26 Suppose A is a well typed term. If A �ι′ A′, then A �ι A′.

C.1.4 Reductions on well typed terms

Lemma C.1.27 (Subject reduction for βι reduction) If the judgment ∆ ` A : B is derivable,

and if A �βι A′ and ∆ �βι ∆′, then we have that

∆ ` A′ : B ∆′ ` A : B

Proof The interesting cases are the APP and ELIM.

• APP When only the sub-terms reduce without a reduction at the head, the lemma follows by

using the induction hypothesis on the sub-terms. Suppose that

A = λX :A1. A2
∆ ` A : ΠX :B ′. A′ ∆ ` B : B′

∆ ` A B : [B/X]A′

and A B �β [B/X]A2. We know from lemma C.1.24 that

∆, X :A1 ` A2 : A3

ΠX :A1. A3 =βηι ΠX :B′. A′

∆ ` A1 : s1

∆ ` B′ : s2

This implies that A1 =βηι B′ and A3 =βηι A′. Moreover,

Cls(B′) = Cls(A1) = lift(Cls(X))

Therefore, we get from lemma C.1.19 that

Cls(s2) = Cls(s1) ⇒ s2 = s1

Applying the CONV rule we get that ∆ ` B : A1. By lemma C.1.20 we get that ∆ `

163

[B/X]A2 : [B/X]A3. We can show in a similar manner as before that Cls(A3) = Cls(A′).

This allows us to apply the CONV rule again which leads to the required result.

• L-ELIM We will only consider the case when an ι reduction takes place at the head. The

other cases follow easily by structural induction.

∆ ` A : I ∆ ` A′ : Kscm

for all i ∆ ` Bi : ΨX,I(Ci, A
′)

∆ ` Elim[I,A′](A){ ~B} : A′

where I = Ind(X :Kind){ ~C}and ∀i. small (Ci)

The interesting case is when we consider the reduction

Elim[I,A′](Ctor (i, I) ~A){ ~B} �ι (ΦX,I,B′(Ci, Bi)) ~A

where I = Ind(X :Kind){ ~C}

B′ = λY :I. (Elim[I,A′](Y){ ~B})

Suppose A′′ = (ΦX,I,B′(Ci, Bi)) ~A. Suppose that ~A = A1...n. We have that ∆ ` Bi :

ΨX,I(Ci, A
′). The proof is by induction on the fact that Ci is a kind of a constructor and the

length of ~A. We consider the different cases by which Ci is a kind of a constructor.

– If Ci = X , then A′′ = Bi. From definition 5.4.6 we can see that in this case, Bi has

the type A′.

– If Ci = ΠY :B.C , then

A′′ = (ΦX,I,B′([A1/Y]C,Bi A1)) A2...n. We have that ∆ ` Bi A1 : ΨX,I([A1/Y]C,A′).

By the induction hypothesis, the reduct has type A′.

– If Ci = Π~Y : ~B.X→C , then

A′′ = ΦX,I,B′(C,Bi A1 (λ~Y : ~B.B′ (A1
~Y))) A2...n

From Definition 5.4.6 we have that

∆ ` Bi : [I/X]A → [A′/X]A → ΨX,I(C
′, A′). We also know that ∆ ` A1 :

[I/X]A. From here, we can apply the induction hypothesis and show that the reduct

has type A′.

164

• ELIM We will only consider the case when an ι reduction takes place at the head. The other

cases follow easily by structural induction.

∆ ` A : I ∆ ` A′ : I → Kind

for all i ∆ ` Bi : ζX,I(Ci, A
′, Ctor (i, I))

∆ ` Elim[I,A′](A){ ~B} : A′ A‘

where I = Ind(X :Kind){ ~C}

The interesting case is when we consider the reduction

Elim[I,A′](Ctor (i, I) ~A){ ~B} �ι (ΦX,I,B′(Ci, Bi)) ~A

where I = Ind(X :Kind){ ~C}

B′ = λY :I. (Elim[I,A′](Y){ ~B})

Suppose A′′ = (ΦX,I,B′(Ci, Bi)) ~A. Suppose that ~A = A1...n. We have that ∆ ` Bi :

ζX,I(Ci, A
′, Ctor (i, I)). By using the inversion lemma we can get that ∆ ` B ′ : ΠX :

I.A′ X . By induction on the structure of Ci (where Ci is a kind of a constructor), we can

show that if Ci = Π~Y : ~B.X , then ∆ ` ΦX,I,B′(Ci, Bi) : Π~Y : ~B.A′ Ctor (i, I) ~Y . The

required result follows from here.

2

Corollary C.1.28 Suppose A is a well formed term. If A �
∗
βι′ A′, then A �

∗
βι A′ and A′ is well

formed.

Corollary C.1.29 Suppose A is a well formed term. If A �
∗ A′, then there exists a well formed

term A′′ such that A �
∗
βι A′′

�
∗
η A′.

Lemma C.1.30 Let ∆ ` A : B and ∆ ` A′ : B′ be two derivable judgments. If A =βηι A′, then

Cls(A) = Cls(A′).

Proof We know that ‖A‖ and ‖A′ ‖ have a common reduct, say A2. This implies that

‖A‖ �
∗
βι′

0
B �

∗
η A2 and ‖A′ ‖ �

∗
βι′

0
B′

�
∗
η A2

165

From here we get that

A �
∗
βι B0 and A′

�
∗
βι B′

0 where ‖B0 ‖= B and ‖B ′
0 ‖= B′

Eta reduction does not change the class of a term. Moving from marked to unmarked terms also

does not change the class of a term. Therefore, we get that

Cls(A) = Cls(B0) = Cls(B) = Cls(A2) and

Cls(A2) = Cls(B′) = Cls(B′
0) = Cls(A′)

2

Corollary C.1.31 Let ∆ ` A : s1 and ∆ ` B : s2 be two derivable judgments. If A =βηι B,

then s1 = s2.

Lemma C.1.32 If ∆1, Y : C,∆2 ` A : B and Y /∈ FV (∆2) ∪ FV (A), then there exists a B ′

such that ∆1∆2 ` A : B′. (This also implies that B =βηι B′).

Proof The proof is by induction on the structure of the derivation. We will consider only the

important cases.

• case FUN. We know that

∆1, Y :C,∆2, X :A ` B : B ′ ∆1, Y :C,∆2 ` ΠX :A.B′ : s

∆1, Y :C,∆2 ` λX :A.B : ΠX :A.B ′

Applying the induction hypothesis to the formation of B

∆1∆2, X :A ` B : C ′ B′ =βηι C ′

By lemma C.1.23 we have that

∆1∆2, X :A ` C ′ : s which implies ∆1∆2 ` ΠX :A.C ′ : s

Therefore we get that

∆1∆2 ` λX :A.B : ΠX :A.C ′

166

• case APP We know that

∆1, Y :C,∆2 ` A : ΠX :B′. A′ ∆1, Y :C,∆2 ` B : B′

∆1, Y :C,∆2 ` A B : [B/X]A′

By applying the induction hypothesis we get that

∆1∆2 ` A : A2 and ∆1∆2 ` B : A3 where A2 =βηι ΠX :B′. A′ and A3 =βηι B′

From lemma C.1.17, A2 �βι λ~Y : ~A. (ΠX :B′′. A′′) ~B. Since βι reduction preserves type,

and A2 is well formed, we have that A2 �βι ΠX : B′′. A′′. This implies that A′′ =βηι A′

and B′′ =βηι B′. We also get that A3 =βηι B′′. From corollary C.1.31 we get that A3 and

B′′ have the same sort. By applying the CONV rule we get that

∆1∆2 ` A : ΠX :B′′. A′′ and ∆1∆2 ` B : B′′

Therefore, we get that

∆1∆2 ` A B : [B/X]A′′

2

As a corollary we now get that

Lemma C.1.33 (Strengthening) If ∆1, Y :C,∆2 ` A : B and Y /∈ FV (∆2)∪FV (A)∪FV (B),

then ∆1∆2 ` A : B.

Lemma C.1.34 (Subject reduction for η reduction) If ∆ ` A : B, and A �η A′ and ∆ �η ∆′,

then we have that

∆ ` A′ : B ∆′ ` A : B

Proof The interesting case is that of functions. Suppose that

∆ ` λX :A1. A2 X : B X /∈ FV (A2) λX :A1. A2 X �η A2

167

From lemma C.1.24 we know that

∆, X :A1 ` A2 X : A3 B =βηι ΠX :A1. A3 ∆ ` B : s

Again applying lemma C.1.24 we get that

∆, X :A1 ` A2 : ΠY :B′. A′ B′ =βηι A1 A3 =βηι [X/Y]A′

By applying the CONV rule now, we get that ∆, X :A1 ` A2 : B. By applying lemma C.1.33 we

get that ∆ ` A2 : B. 2

Theorem C.1.35 (Subject reduction) If ∆ ` A : B, and A�A′ and ∆�∆′, then we have that:

∆ ` A′ : B and ∆′ ` A : B.

Proof Follows from lemma C.1.27 and C.1.34. 2

C.2 Strong normalization

The proof is structured as follows:

• We introduce a calculus of pure terms. This is just the pure λ calculus extended with a

recursive filtering operator. We do this so that we can operate in a confluent calculus.

• We define a notion of reducibility candidates. Every schema gives rise to a reducibility

candidate. We also show how these candidates can be constructed inductively.

• We then define a notion of well constructed kinds which is a weak form of typing.

• We associate an interpretation to each well formed kind. We show that under adequate

conditions, this interpretation is a candidate.

• We show that type level constructs such as abstractions and constructors belong to the can-

didate associated with their kind.

• We show that the interpretation of a kind remains the same under βη reduction.

• We define a notion of kinds that are invariant on their domain – these are kinds whose inter-

pretation remains the same upon reduction.

168

• We show that kinds formed with large elimination are invariant on their domain.

• From here we can show the strong normalization of the calculus of pure terms. We show that

if a type is well formed, then the pure term derived from it is strongly normalizing.

• We then reduce the strong normalization of all well formed terms to the strong normalization

of pure terms.

C.2.1 Notation

The syntax for the language is:

(ctxt) ∆ ::= · | ∆, X :A

(sort) s ::= Kind | Kscm | Ext

(var) X ::= z | j | α

(ptm) A,B ::= s | X | λX :A.B | A B | ΠX :A.B | Ind(X :Kind){ ~A}

| Ctor (i, A) | Elim[A′, B′](A){ ~B}

The proof of strong normalization uses the stratification in the language shown below.

(ctxt) ∆ ::= · | ∆, z :Kscm | ∆, j :u | ∆, α :κ

(kscm) u ::= z | Πα :κ. u | Πj :u1. u2 | Kind

(kind) κ ::= j | λα :κ1. κ2 | κ[τ] | λj :u. κ | κ1 κ2 | Πα :κ1. κ2 | Πj :u. κ

| Πz :Kscm. κ | Ind(j :Kind){~κ} | Elim[κ′, u](τ){~κ}

(type) τ ::= α | λα :κ. τ | τ1 τ2 | λj :u. τ | τ [κ] | λz :Kscm. τ | τ [u]

| Ctor (i, κ) | Elim[κ′, κ](τ ′){~τ}

In this section, the types are also referred to as proof terms. We sometimes use I to refer to an

inductive definition.

C.2.2 Pure terms

The pure terms are defined as:

(Λ) a, b, c ::= α | a b | λα.a | Co(n) | match α.{~a}

169

The set of reductions on the pure terms are defined as:

(λα.a) b �β [b/α]a

λα.(a α) �η a if α /∈ FV (a)

match α.{~a} (Co(i) ~b) �ι ([match α.{~a}/α]ai) ~b

The translation from types to pure terms is defined as:

|α |= α

|τ1 τ2 |= |τ1 | |τ2 |

|τ [κ] |= |τ |

|τ [u] |= |τ |

|λα :κ. τ |= λα.|τ |

|λj :u. τ |= |τ |

|λz :Kscm. τ |= |τ |

|Ctor (n, κ) |= Co(n)

|Elim[κ, κ′](τ){~τ}|= (match α.{
−−−−−−−−−−−−−−→
Υ(κi, |τi |, λα2.α α2)}) |τ |

where κ = Ind(j :Kind){~κ} and

Υ(j, a1, a2)= a1

Υ(Πα :κ1. κ2, a1, a2)= λα.Υ(κ2, a1 α, a2)

Υ(Πj :u. κ, a1, a2)= Υ(κ, a1, a2)

Υ(Πz :Kscm. κ, a1, a2)= Υ(κ, a1, a2)

Υ(Π ~X : ~A. j → κ, a1, a2)= λα.Υ(κ, a1 α (λ| ~X |.a2 (α | ~X |)), a2)

Lemma C.2.1 Let τ and τ ′ be two well formed types and let α be a type variable. Then | [τ ′/α]τ |=

[|τ ′ | /α] |τ |.

Proof It is a straightforward proof by induction over the structure of τ . 2

The following lemma uses Definitions 5.4.6 and 5.4.4 in Section C.1 and also the definition of

Υ from above.

Lemma C.2.2 |ΦX,I,B(κ, τ) |= [match α.{
−−−−−−−−−−−−−−→
Υ(κi, |τi |, λα2.α α2)}/α]Υ(κ, |τ |, λα2.α α2)

Proof The proof is by induction on the fact that κ is the kind of a constructor. 2

170

Lemma C.2.3 For all well formed proof terms τ1 and τ2, if τ1 �
i τ2, then | τ1 | �

j | τ2 | where

j ≤ i.

Proof Follows from lemmas C.2.1 and C.2.2. 2

C.2.3 Interpretation of schemas

Definition C.2.4 (Arity) We call ground kind schemas arities denoted as arity(u, Kind). The ari-

ties are defined with the following grammar:

(kscm) u ::= Kind | Πj :u1. u2 | Πα :κ. u

Definition C.2.5 (Schema map) We define a kind schema mapping K as a function mapping kind

schema variables z to arities. We also use K, z : u to say that K has been augmented with the

mapping z 7→ u.

Definition C.2.6 We define the function ρ(u)K as:

ρ(u)K = ρ0(K(u)) where

• ρ0(Kind) is the set of sets of pure terms;

• ρ0(Πj :u1. u2) is the set of functions from ρ0(u1) to ρ0(u2); and

• ρ0(Πα :κ. u) is the set of functions from Λ to ρ0(u).

Definition C.2.7 For each kind schema u and mapping K, we define in ρ(u)K the relation of

partial equivalence written as 'K(u) as follows:

• for all C and C ′ in ρ0(Kind), we have that C 'Kind C ′ ⇐⇒ C = C ′;

• for all C and C ′ in ρ0(Πj : u1. u2), we have C 'Πj:u1. u2
C ′ ⇐⇒ for all C1 and C2 in

ρ0(u1) with C1 'u1
C2 we get that C C1 'u2

C ′ C2; and

• for all C and C ′ in ρ0(Πα :κ. u), we have that C 'Πα:κ. u C ′ ⇐⇒ for all a and b in Λ such

that a =βηι b, we get that C a 'u C ′b.

Definition C.2.8 (Invariant) Given C in ρ(u)K, we say that C is invariant ⇐⇒ C 'K(u) C .

171

Definition C.2.9 (Neutral terms) A term is called neutral if it has neither of the following forms

– λα.a, Co(i) ~a, or match α.{~a}.

Definition C.2.10 We define CR0(Kind) as consisting of all sets C such that:

• if a ∈ C , then a is strongly normalizing;

• if a1 � a2 and a1 ∈ C , then a2 ∈ C; and

• if a is neutral and for all terms a′ such that a � a′ and a′ ∈ C , then a ∈ C .

Definition C.2.11 (Candidates) We define CR(u)K as a subset of ρ(u)K as:

CR(u)K = CR0(K(u)) where

• CR0(Kind) is defined as in Definition C.2.10;

• CR0(Πα : κ. u) is the set of invariant elements C belonging to ρ0(Πα : κ. u) such that

C Λ ⊂ CR0(u); and

• CR0(Πj : u1. u2) is the set of invariant elements C belonging to ρ0(Πj : u1. u2) such that

C (CR0(u1)) ⊂ CR0(u2).

Proposition C.2.12 All reducibility candidates are invariant.

Proposition C.2.13 Let (Ci)i∈I be a family of reducibility candidates of Kind indexed by a set I .

Then ∩i∈ICi is a reducibility candidate of schema Kind.

Lemma C.2.14 Let C ∈ ρ(u)K. If C is invariant, then

C ∈ CR(u)K ⇐⇒ ∀C ′ ∈ Dom(CR(u)K).C C ′ ∈ CR(Kind)K

Proof Straightforward induction over the structure of K(u). 2

Definition C.2.15 Let a1 be a strongly normalizing term. Then the length of the longest sequence

of reductions to a normal form is denoted as ν(a1).

172

Lemma C.2.16 Let a1 and a2 be two terms and let C ∈ CR0(Kind) be a reducibility candidate.

If a2 is strongly normalizing, and if [a2/α]a1 ∈ C , then (λα.a1) a2 ∈ C .

Proof By induction over ν(a1) + ν(a2). 2

Corollary C.2.17 Let a1 be a pure term and let C be a reducibility candidate of schema Kind. Let

~α and ~a′ be respectively a sequence of variables and terms of the same length. If for all i, a ′
i is

strongly normalizing, and if [~a′/~α]a1 ∈ C , then (λ~α.a1) ~a′ ∈ C .

Lemma C.2.18 For all reducibility candidates C of kind Kind, for all sequences of strongly nor-

malizing ~a and ~b and for all i less than the length of ~a, we have that

match α.{~a} (Co(i) ~b) ∈ C ⇐⇒ ([match α.{~a}/α]ai) ~b ∈ C

Proof Follows by induction over ν(ai) + ν(bi) (for all i). 2

Definition C.2.19 (Canonical candidates) Define Can(u)K as:

Can(u)K = Can0(K(u)) where

• Can0(Kind) is the set of all strongly normalizing terms;

• Can0(Πα :κ. u) is the function mapping all pure terms to Can0(u); and

• Can0(Πj :u1. u2) is the function mapping all elements of ρ0(u1) to Can0(u2).

C.2.4 Properties of candidates

In this section, we state some properties of the reducibility candidates. The properties with respect

to the union and the intersection of a family of candidates will be used for the inductive construc-

tions of candidates.

Definition C.2.20 (Order over candidates) For each kind schema u and mapping K, we define in

ρ(u)K the relation <K(u) as follows:

• for all C and C ′ in ρ0(Kind), we have that C <Kind C ′ ⇐⇒ C ⊂ C ′;

173

• for all C and C ′ in ρ0(Πj :u1. u2), we have C <Πj:u1. u2
C ′ ⇐⇒ for all C1 in ρ0(u1), we

get that C C1 <u2
C ′ C1; and

• for all C and C ′ in ρ0(Πα : κ. u), we have that C <Πα:κ. u C ′ ⇐⇒ for all a in Λ, we get

that C a <u C ′ a.

Definition C.2.21 For all schemas u and mapping K, for all families of elements in ρ(u)K, we

define
∧

i∈I Ci as:

• for all Ci ∈ ρ0(Kind),
∧

i∈I Ci = ∩i∈ICi;

• for all Ci ∈ ρ0(Πα :κ. u),
∧

i∈I Ci = b ∈ Λ 7→
∧

i∈I Ci b; and

• for all Ci ∈ ρ0(Πj :u1. u2),
∧

i∈I Ci = C ′ ∈ ρ0(u1) 7→
∧

i∈I Ci C ′.

Lemma C.2.22 Let u be a schema and K a mapping and Ci a family of elements of ρ(u)K. Then

∀j ∈ I ,
∧

i∈I Ci <K(u) Cj .

Proof It follows in a straightforward way by induction over the structure of K(u). 2

The following two propositions also follow easily by induction over the structure of K(u).

Proposition C.2.23 Let u be a schema and K a mapping and Ci a family of elements of ρ(u)K. If

all Ci are invariants, then the same holds for
∧

i∈I Ci.

Proposition C.2.24 Let u be a schema and K a mapping and Ci a family of elements of CR(u)K.

Then we also have that
∧

i∈I Ci ∈ CR(u)K.

Corollary C.2.25 We get that (CR(u)K, <K(u)) is an inf-semi-lattice for all schema u and map-

ping K. We use min(K(u)) to denote the smallest element.

Definition C.2.26 For all schemas u and mapping K, for all families of elements in ρ(u)K, we

define
∨

i∈I Ci as:

• for all Ci ∈ ρ0(Kind),
∨

i∈I Ci = ∪i∈ICi;

• for all Ci ∈ ρ0(Πα :κ. u),
∨

i∈I Ci = b ∈ Λ 7→
∨

i∈I Ci b; and

• for all Ci ∈ ρ0(Πj :u1. u2),
∨

i∈I Ci = C ′ ∈ ρ0(u1) 7→
∨

i∈I Ci C ′.

174

Lemma C.2.27 Let u be a schema and K be a mapping. Let (Ci)i∈I and (C ′
i)i∈I be two families

of elements of ρ(u)K. If for all elements i of I we have that Ci 'K(u) C ′
i, then we also have that

∨
i∈I Ci 'K(u)

∨
i∈I C ′

i.

Proof Straightforward induction over the structure of K(u). 2

Corollary C.2.28 Let u be a schema and K be a mapping. Let (Ci)i∈I be a family of elements of

ρ(u)K. If all Ci are invariant, then
∨

i∈I Ci is also invariant.

Lemma C.2.29 Let u be a schema and K be a mapping. Let (Ci)i∈I be a family of elements of

ρ(u)K and C ∈ ρ(u)K. If for all i, Ci <K(u) C , then
∨

i∈I Ci <K(u) C .

Proof The proof is by induction over the structure of K(u). 2

Lemma C.2.30 Let (Ci)i∈I be a totally ordered family of elements of CR(u)K. Then
∨

i∈I Ci ∈

CR(u)K.

Proof The proof is by induction over the structure of K(u). Suppose
∨

i∈I Ci = C ′.

• K(u) = Kind. We have to make sure that all three conditions in Definition C.2.10 are

satisfied. The first two conditions follow obviously. For the third case, assume that a is

neutral and for all terms ai such that a � ai, we have that ai ∈ C ′. This implies that ai ∈ Cj

for some j. Since there are finitely many such Cj and they are totally ordered, we can choose

a Ck among them that contains all the Cjs. Since this Ck is also a candidate, it contains a.

Therefore, a ∈
∨

i∈I Ci.

• K(u) = Πα :κ. u. Since all the Ci are invariant, it follows from Definitions C.2.7 and C.2.8

that for a term a ∈ Λ, we have that Ci a is invariant. Again from Definition C.2.20, it is

clear that the Ci a are totally ordered. Also from Corollary C.2.28 we get that
∨

i∈I Ci a

is invariant. Applying the induction hypothesis we get that
∨

i∈I Ci a ∈ CR0(u). From

Definition C.2.11, it follows that
∨

i∈I Ci ∈ CR0(Πα :κ. u).

• K(u) = Πj :u1. u2. Similar to the previous case.

2

175

Definition C.2.31 (Schema interpretation) A schema interpretation U is a function that maps a

kind variable j to an element of ρ(u)K. We also use U , j :C to say that U has been augmented with

the mapping j 7→ C .

Definition C.2.32 (Well formed kinds) Let u be a schema, κ be a kind, K be a mapping, and U

be an interpretation. We say that κ is a well formed kind of schema K(u) under K and U iff :

1. κ = j and U(j) = ρ(u)K;

2. κ = Πα : κ1. κ2 with K(u) =βηι Kind and κ1 and κ2 are both well constructed of schema

Kind under K and U ;

3. κ = Πj :u′. κ′ with K(u) =βηι Kind and κ′ is well constructed of schema Kind under K and

U , j :ρ(u′)K;

4. κ = Πz : Kscm. κ′ with K(u) =βηι Kind and for all u′ such that u′ ∈ arity(u1, Kind), we

have that κ′ is well constructed of schema Kind under K, z :u′ and U ;

5. κ = κ1 κ2 if there exists two schemas u1 and u2 with κ2 well constructed of schema K(u2)

under K and U , also κ1 well constructed of schema K(Πj : u2. u1) under K and U , and

ρ(u)K = ρ([κ2/j]u1)K;

6. κ = κ1 τ1 if there exists a schema u2 and kind κ2 such that κ1 is well constructed of schema

K(Πα :κ2. u2) under K and U and ρ(u)K = ρ([τ1/α]u2)K;

7. κ = λj : u1. κ1 if there exists a u2 such that κ1 is well constructed of schema K(u2) under

K and U , j :ρ(u1)K and ρ(u)K = ρ(Πj :u1. u2)K;

8. κ = λα :κ1. κ2 if there exists a u2 such that κ2 is well constructed of schema K(u2) under

K and U and ρ(u)K = ρ(Πα :κ1. u2)K;

9. κ = Ind(j :Kind){~κ} if all κi are kinds of constructors and well constructed of schema Kind

under K and U , j :ρ0(Kind), and ρ(u)K = ρ0(Kind); and

10. κ = Elim[κ′, u′](τ){~κ} if κ′ = Ind(j :Kind){~κ′}, and κ′ is well constructed of schema Kind

under K and U , also u′ is a schema and K(u) =βηι u′, and κi is well constructed of schema

K(Ψj,κ′(κ′
i, u

′)) under K and U .

176

Definition C.2.33 We define compatible mappings and interpretation as:

1. A mapping K is compatible with a context ∆ if for all z ∈ ∆, we have K(z) = arity(u, Kind).

2. An interpretation U is compatible with a context ∆ and a compatible mapping K if for all

pairs (j, u) ∈ ∆, we have U(j) ∈ ρ(u)K.

Lemma C.2.34 If ∆ ` κ : u, then for all compatible K and U , we have that κ is well constructed

of schema K(u).

Proof By induction over the structure of κ. 2

C.2.5 Inductive constructions

Consider an increasing function F in ρ0(Kind) for the order <Kind. Denote the smallest element

of ρ0(Kind) as ⊥. Since ρ0(Kind) is closed under ∩, and (ρ0(Kind), <Kind) is an inf-semi-lattice,

the function F has a least fixed point (lfp). We will construct this least fixed point inductively. We

first define the transfinite iteration of F.

Definition C.2.35 Let C ∈ ρ0(Kind) and o be an ordinal. We define the iteration of order o of F

over C as:

• F 0(C) = C;

• F o+1(C) = F (F o(C)); and

• F lim(U) = ∪o∈UF o(C).

Lemma C.2.36 Let o be an ordinal; we have F o(⊥) <Kind lfp(F).

Proof The proof is by induction over o. If o = 0, then it follows immediately. Otherwise,

• o = o′ + 1 Then we have that F o(⊥) = F (F o′(⊥)). By the induction hypothesis, we get

that F (F o′(⊥)) <Kind F (lfp(F)). This implies that F (F o′(⊥)) <Kind lfp(F).

• o = lim(U) Follows immediately from the induction hypothesis and lemma C.2.29.

2

177

Remark C.2.37 Since we do not consider the degenerate case of F (⊥) = ⊥, it follows from

lemma C.2.36 that for some ordinal o, we have that lfp(F) = F o(⊥).

Lemma C.2.38 Suppose S is a subset of ρ0(Kind) satisfying:

• if (Ci)i∈I is a totally ordered family of elements of S , then ∪i∈ICi ∈ S;

• F (⊥) ∈ S; and

• for all C in S , F (C) ∈ S .

Then lfp(F) ∈ S .

Proof Follows from the fact that lfp(F) = F o(⊥) for some ordinal o. 2

Definition C.2.39 Let a ∈ lfp(F). We define deg(a) as the smallest ordinal such that a ∈

Fdeg(a)(⊥).

Definition C.2.40 To all a ∈ lfp(F), we associate pred(a) defined as F deg(a)−1(⊥).

Lemma C.2.41 For all a, deg(a) is an ordinal successor.

Proof Suppose it is the limit of the set U . From Definition C.2.35, there exists some o ∈ U for

which a ∈ F o(⊥). This leads to a contradiction. 2

Definition C.2.42 (Partial order) Suppose C and C ′ are two elements of CR0(Kind). We say that

C <F C ′ if C = F o(⊥) and C ′ = F o′(⊥), and o < o′.

C.2.6 Interpretation of kinds

In this section we interpret kinds as members of reducibility candidates. First we augment the

schema interpretation

Definition C.2.43 We augment U so that it maps a kind variable to an element of ρ(u)K, and a

type variable to a pure term a.

Definition C.2.44 We denote the interpretation of a type τ as CK
U (τ). To form this, we first con-

struct the corresponding pure term |τ | and then substitute the type variables by the corresponding

pure terms in U . This is equivalent to U(|τ |).

178

Definition C.2.45 (Interpreting kinds) Consider a kind κ, a schema u, a mapping K, and an

interpretation U . Suppose κ is well constructed of schema K(u) under K and U . We define by

recursion on κ:

1. CK
U (j) = U(j)

2. CK
U (Πα :κ1. κ2)={a ∈ Λ,∀a1 ∈ CK

U (κ1), a a1 ∈ CK
U ,α:a1

(κ2)}

3. CK
U (Πj :u1. κ1) = ∩C∈CR(u1)KC

K
U ,j:C(κ1)

4. CK
U (Πz :Kscm. κ1) = ∩

u1∈arity(u,Kind)
CK,z:u1

U
(κ1)

5. CK
U (κ1 τ) = CK

U (κ1) C
K
U (τ)

6. CK
U (κ1 κ2) = CK

U (κ1) C
K
U (κ2)

7. CK
U (λα :κ1. κ2) = a ∈ Λ 7−→ CK

U ,α:a(κ2)

8. CK
U (λj :u1. κ1) = C ∈ CR(u1)K 7−→ CK

U ,j:C(κ1)

9. CK
U (Ind(j : Kind){~κ}) = the least fixed point of the function F from ρ0(Kind) to ρ0(Kind)

defined as :

for all S ∈ ρ0(Kind), for all C ′ in CR(I → Kind)K (where I = Ind(j : Kind){~κ}), for all

sequences of pure terms bi, with for all i,

bi ∈ CK

U ,j:S,A′:C′,B′:Co(i)
(ζj,I(κi, A

′, B′))

F (S) is the union of min(Kind) with the set of pure terms a such that

(match α.{
−−−−−−−−−−−−−−−−−−−−→
CK
U ,ai:bi

(Υ(κi, ai, λα2.α α2))}) a ∈ C ′ a

10. CK
U (Elim[κ, u](τ){~κ′}) = G(CK

U (κ))

where κ = Ind(j :Kind){~κ} is well constructed of schema Kind under K and U and G(C) ∈

ρ(u)K is defined for all C ∈ dom(<κ) as follows (<κ is the order induced by the inductive

definition κ):

• If CK
U (τ) has a normal form b = Co(i) ~a such that b ∈ C

G(C) = CK

U ,α1:G(pred(b))
(Φj,I,α1

(κi, κ
′
i)) (~a)

179

• Can(u)K otherwise

Lemma C.2.46 The function F in Definition C.2.45.9 is monotonic.

Proof We must prove that if C1 <Kind C2, then

CK

U ,j:C2,A′:C′,B′:Co(i)
(ζj,I(κi, A

′, B′)) <Kind CK

U ,j:C1,A′:C′,B′:Co(i)
(ζj,I(κi, A

′, B′))

The proof is by induction on the fact that κi is the kind of a constructor.

• If κi = j, then both sides reduce to C ′ Co(i).

• If κi = ΠX : A1. A2, then it follows directly from the induction hypothesis and because j

does not occur in A1.

• If κi = Π ~X : ~A. j → A2, then

ζj,I(κi, A
′, B′) = ΠZ : (Π ~X : ~A. j).Π ~X ′ : ~A. (A′ (Z ~X ′)) → ζj,I(A2, A

′, B′ Z)

Suppose U ′ = U , j : C ′′, A′ : C ′, B′ : Co(i) where C ′′ is either C1 or C2. The required set

is then

a ∈ Λ, such that ∀a1 ∈ CK
U ′(Π ~X : ~A. j),

∀a2 ∈ CK
U ′,Z:a1

(Π ~X ′ : ~A.A′ (Z ~X ′))

a a1 a2 ∈ CK
U ′,Z:a1

(ζj,I(A2, A
′, B′ Z))

The set of a1 and a2 is larger for the LHS. By the induction hypothesis, the result a a1 a2

must occur in a smaller set for the LHS. The required result follows from this.

2

Remark C.2.47 The previous lemma ensures that the interpretation of an inductive type sets up a

well defined order. This ensures that the interpretation of large elimination (Definition C.2.45.10)

is well formed.

We get a bunch of substitution lemmas. The proof for each of these is similar and follows

directly by induction over the structure of κ. We state them below:

180

Proposition C.2.48 Let κ be a well constructed kind of schema u under K and U . Let α be a type

variable, and τ a type. We have that

CK
U ([τ/α]κ) = CK

U ,α:CK

U
(τ)

(κ)

Proposition C.2.49 Let κ be a well constructed kind of schema u under K and U . Let j be a kind

variable and κ1 a kind such that κ1 is well constructed under K and U of the same schema as U(j).

We have that

CK
U ([κ1/j]κ) = CK

U ,j:CK

U
(κ1)

(κ)

Proposition C.2.50 Let κ be a well constructed kind of schema u under K and U . Let z be a

schema variable, and u1 be a schema such that K(u1) is an arity. We have that

CK
U ([u1/z]κ) = C

K,z:K(u1)
U

(κ)

C.2.7 Candidate interpretation of kinds

Definition C.2.51 We say that U and U ′ are equivalent interpretations if for all j, we have that

U(j) ' U ′(j) and for all α we have that U(α) =βηι U
′(α).

Lemma C.2.52 Let u be a schema, K be a mapping, and U and U ′ be two equivalent inter-

pretations. Suppose κ is well constructed of schema K(u) under K and both U and U ′. Then

CK
U (κ) 'K(u) C

K
U ′(κ).

Proof The proof is by induction over the structure of κ. Most of the cases follow directly from

the induction hypothesis.

• κ = Elim[κ′, u](τ){~κ′}. Here κ′ = Ind(j : Kind){~κ}. First note that CK
U (κ′) = CK

U ′(κ′).

Therefore, the function F whose lfp generates the inductive definition is the same. More-

over, CK
U (τ) =βηι CK

U ′(τ). Since the set of pure terms is confluent, CK
U (τ) and CK

U ′(τ) have

the same normal form. We can now do induction on the structure of κi to prove that

CK

U ,α1:G(pred(b))
(Φj,I,α1

(κi, κ
′
i)) ' CK

U ′,α1:G(pred(b))
(Φj,I,α1

(κi, κ
′
i))

2

181

Lemma C.2.53 Let K be a mapping, U a candidate interpretation, κ be a kind and u be a schema

such that κ is a well constructed kind of schema K(u). Then CK
U (κ) ∈ CR(u)K.

Proof The proof is by induction over the structure of κ. Most of the cases follow in a direct way.

• κ = Ind(j : Kind){~κ}. We will use lemma C.2.38 to prove this. For S ∈ CR0(Kind), the

first condition is satisfied by lemma C.2.30.

– Suppose S = ⊥. If none of the branches is recursive then the function F is a constant

function and the proof is similar to the non-bottom case. Suppose the ith branch is

recursive. Then it is easy to see that the bi defined as:

bi ∈ CK

U ,j:⊥,A′:C,B′:Co(i)
(ζj,I(κi, A

′, B′))

includes the set of all terms, including non-normalizing ones. Therefore, there are no

terms a that would satisfy the condition that:

(match α.{
−−−−−−−−−−−−−−−−−−−−→
CK
U ,ai :bi

(Υ(κi, ai, λα2.α α2))}) a ∈ C a

This implies that F (⊥) = ⊥ and we know that ⊥ ∈ CR0(Kind).

– Consider any other S . We will show that F (S) satisfies the conditions in Defini-

tion C.2.10 and hence belongs to CR0(Kind). F (S) is defined as the union of min(Kind)

with the set of pure terms a such that

(match α.{
−−−−−−−−−−−−−−−−−−−−→
CK
U ,ai :bi

(Υ(κi, ai, λα2.α α2))}) a ∈ C a

Since C is a candidate, the terms a must be strongly normalizing.

To see that the set is closed under reduction, suppose a � a′. Since C is a candidate we

have that (match α.{. . .}) a′ ∈ C a. Moreover, we have that C a = C a′. Therefore,

a′ is also in the generated set.

Suppose a is a neutral term and for all a′ such that a � a′, we have that a′ belongs to

this set. We have to prove that a belongs to this set. This implies that we must prove:

(match α.{
−−−−−−−−−−−−−−−−−−−−→
CK
U ,ai :bi

(Υ(κi, ai, λα2.α α2))}) a ∈ C a

182

Since a is a neutral term, the above term does not have a redex at the head. From the

induction hypothesis, we get that CK

U ,j:S,A′:C,B′:Co(i)
(ζj,I(κi, A

′, B′)) is a candidate

and therefore closed under reduction. Moreover, the bi are strongly normalizing. We

can now consider all possible redices and prove by induction over ν(bi) that the above

condition is satisfied.

• κ = Elim[κ′, u](τ){~κ′} where κ′ = Ind(j : Kind){~κ}. First note that CK
U (κ′) is a can-

didate by induction and gives rise to a well founded order on CR0(Kind). We will do

induction on this order. Suppose CK
U (κ) = G(CK

U (κ′)). We will show that for all sets S

belonging to the order generated by κ′, and for all pure terms b, we have that G(S) ∈

CR(u)K. For the non-recursive case, the proof is immediate. For the recursive case, con-

sider CK

U ,α1:G(pred(b))
(Φj,κ′,α1

(κi, κ
′
i)). Note that pred(b) belongs to the same order. The

required result follows now by doing induction over the structure of κi and applying the

induction hypothesis to G(pred(b)).

2

Definition C.2.54 Suppose ∆ is a context and K and U are a mapping and an interpretation. We

say that K and U are adapted to ∆ if:

• ∀z ∈ ∆, we have that K(z) is an arity and · ` K(z) : Kscm.

• ∀j ∈ ∆, we have that U(j) ∈ CR(∆(j))K.

• ∀α ∈ ∆, we have that U(α) ∈ CK
U (∆(α)).

C.2.8 Interpretation of abstractions

We get a bunch of lemmas that state that an abstraction at the type level belongs to the correspond-

ing kind. The proof of each of these lemmas is straightforward and follows in a similar way. We

will show the proof for only one of the lemmas.

Lemma C.2.55 Let ∆ ` λα : κ. τ : Πα : κ. κ1 be a judgment and K and U be a mapping and a

candidate interpretation adapted to ∆. We have CK
U (λα :κ. τ) ∈ CK

U (Πα :κ. κ1) if and only if for

all pure terms a ∈ CK
U (κ), we have that CK

U ,α:a(τ) ∈ CK
U ,α:a(κ1).

183

Lemma C.2.56 Let ∆ ` λj : u. τ : Πj : u. κ be a judgment and K and U be a mapping and a

candidate interpretation adapted to ∆. We have CK
U (λj :u. τ) ∈ CK

U (Πj :u. κ) if and only if for all

reducibility candidates C ∈ CR(u)K we have that CK
U ,j:C(τ) ∈ CK

U ,j:C(κ) .

Lemma C.2.57 Let ∆ ` λz :Kscm. τ : Πz :Kscm. κ be a judgment and K and U be a mapping

and a candidate interpretation adapted to ∆. We have CK
U (λz : Kscm. τ) ∈ CK

U (Πz : Kscm. κ) if

and only if for all u ∈ arity(u′, Kind) we have that CK
U (τ) ∈ CK,z:u

U (κ).

Proof By definition CK
U (λz :Kscm. τ) = CK

U (τ). Similarly

CK
U (Πz :Kscm. κ) = ∩

u1∈arity(u,Kind)
CK,z:u1

U
(κ). The if part follows directly from the definition.

For the only if, suppose that CK
U (τ) ∈ CK,z:u

U
(κ) for all arities u. This implies that CK

U (τ) ∈

∩
u1∈arity(u,Kind)

CK,z:u1

U (κ). This implies that CK
U (τ) ∈ CK

U (Πz :Kscm. κ). 2

C.2.9 Interpretation of weak elimination

For this section κ = Ind(j : Kind){~κ}. Suppose also that C ∈ CR(κ → Kind)K and τi ∈

CK

U ,A′:C,B′:Co(i)
(ζj,I(κi, A

′, B′)).

Lemma C.2.58 Suppose a ∈ CK
U (κ). We have then

(match α.{
−−−−−−−−−−−−−→
Υ(κi, τi, λα2.α α2)}) a ∈ C a

Proof Follows immediately from the definition of CK
U (κ). 2

Lemma C.2.59 Let ∆ ` Elim[κ, κ1](τ){~τ ′} : κ1 be a derivable judgment where κ1 is a kind.

Suppose K is a mapping and U is a candidate interpretation adapted to ∆. If CK
U (τ) ∈ CK

U (κ) and

CK
U (τ ′

i) ∈ CK
U (ζj,I(κi, κ1, Ctor (i, κ))), then we have

CK
U (Elim[κ, κ1](τ){~τ ′}) ∈ CK

U (κ1)

Proof Follows now from the previous lemma. 2

C.2.10 Interpretation of constructors

For this section, suppose I = κ = Ind(j :Kind){~κ}. Also, suppose C ∈ CR(I → Kind)K.

184

Lemma C.2.60 For all i, Co(i) ∈ CK
U (κi).

Proof We know that κi is of the form Π ~X : ~A. j. Suppose ~B ∈ CK

U ,j:CK

U
(I)

(~X : ~A). Then we need

to prove that Co(i) ~B ∈ CK
U (I). This means that we need to prove that

(match α.{
−−−−−−−−−−−−−→
Υ(κi, ai, λα2.α α2)}) (Co(i) ~B) ∈ C (Co(i) ~B)

where ai belongs to the appropriate candidate. This implies that we need to prove that

Υ(κi, ai, λα2.match α.{. . .}α2) ~B ∈ C (Co(i) ~B)

This follows directly by an induction over the structure of κi. 2

C.2.11 Invariance under β reduction

In this section, we show that the interpretation of kinds remains invariant under β reduction.

Lemma C.2.61 Let κ be a well constructed kind of schema u under a mapping K and candidate

interpretation U . If κ �β κ′, then κ′ is well constructed of schema u under K and U , and CK
U (κ) =

CK
U (κ′).

Proof The proof is by induction over the structure of κ. Most of the cases follow directly from

the induction hypothesis. We will only consider β reductions at the head.

• κ = (λα :κ1. κ2) τ . By definition,

CK
U ((λα :κ1. κ2) τ) = CK

U (λα :κ1. κ2) C
K
U (τ)

Again by definition this is equal to CK

U ,α:CK

U
(τ)

(κ2). By proposition C.2.48 this is equal to

CK
U ([τ/α]κ2)

• κ = (λj :u1. κ1) κ2. By definition,

CK
U ((λj :u1. κ1) κ2) = CK

U (λj :u1. κ1) C
K
U (κ2)

185

By lemma C.2.53 we have that CK
U (κ2) ∈ CR(u1)K. Therefore, we get that

CK
U ((λj :u1. κ1) κ2) = CK

U ,j:CK

U
(κ2)

(κ1)

By proposition C.2.49 this is equal to CK
U ([κ2/j]κ1).

2

C.2.12 Invariance under η reduction

In this section, we show that the interpretation remains the same under η reduction. The unmarked

terms ‖κ‖ are defined in Section C.1.1.

Lemma C.2.62 Let κ be a well constructed kind of schema u under a mapping K and candidate

interpretation U . If κ �η κ′, then κ′ is well constructed of schema u under K and U , and CK
U (κ) =

CK
U (κ′).

Proof The proof is again by induction over the structure of κ. We will consider only the cases

where the reduction occurs at the head.

• κ = λα :κ1. (κ2 α). By definition CK
U (κ) is equal to:

a ∈ Λ 7−→ CK
U ,α:a(κ2) C

K
U ,α:a(α)

Since α does not occur free in κ2, this is equivalent to

a ∈ Λ 7−→ CK
U (κ2) a

Since a does not occur free now in CK
U (κ2), we get that this is equivalent to CK

U (κ2). Note

from Definition C.2.11 that the domain of CK
U (κ2) is Λ.

• κ = λj :u1. (κ2 j). By definition CK
U (κ) is equal to:

C ∈ CR(u1)K 7−→ CK
U ,j:C(κ2) C

K
U ,j:C(j)

186

Since j does not occur free in κ2, this is equivalent to

C ∈ CR(u1)K 7−→ CK
U (κ2) C

Since C does not occur free now in CK
U (κ2), we get that this is equivalent to CK

U (κ2). Note

from Definition C.2.11 that the domain of CK
U (κ2) is CR(u1)K.

2

Lemma C.2.63 For all well constructed kinds κ of schema u under K and U , we have CK
U (κ) =

CK
U (‖κ‖).

Proof Follows from the fact that κ =βη‖κ‖. 2

C.2.13 Invariance under ι reduction

In this section we essentially show that interpretation remains the same under large elimination.

Lemma C.2.64 Let Elim[κ, u](τ){~κ′} be well constructed of schema K(u) under K and U . Sup-

pose κ = Ind(j : Kind){~κ}. Suppose G is the function used for the interpretation of the large

elimination. If CK
U (τ) ∈ CK

U (κ), then for all C ∈ CR0(Kind) with CK
U (τ) ∈ C , we have that

G(CK
U (κ)) = G(C).

Proof The proof is immediate. 2

Lemma C.2.65 Suppose I = κ = Ind(j : Kind){~κ}. Suppose the constructors of I are all small.

Suppose the mth constructor of I has the form Π~Y : ~B. j and we have a sequence of terms ~b such

that Co(m) ~b ∈ CK
U (I). Then we have that bi ∈ CK

U ,∀k<i.Yk:bk,j:pred(Co(m) ~b)
(Bi).

Proof We can have two cases.

• pred(Co(m) ~b) 6= ⊥

This implies that pred(Co(m) ~b) ∈ CR0(Kind). Suppose

S = CK

U ,∀k<i.Yk:bk,j:pred(Co(m) ~b)
(Bi). Then we have that S is a candidate of schema Kind.

Suppose also that C ′ belongs to CR(I → Kind)K and maps elements in the domain of I →

Kind to S . Then for all indices i′, we have that CK

U ,j:pred(Co(m) ~b),A′:C′
(ζj,I(κi′ , A

′, Ctor (i′, I)))

is a reducibility candidate of Kind.

187

To prove the lemma we need to show that if for all indices i

τi ∈ CK

U ,j:pred(Co(m) ~b),A′:C′
(ζj,I(κi, A

′, Ctor (i, I)))

then we have that Φj,I,B′(κm, τm) can reduce to bi by a head reduction. To have this, for

the indices i 6= m choose τi as some variable. For τm choose the term that returns the ith

argument of the constructor.

• pred(Co(m) ~b) = ⊥ We can show that the constructors now are not recursive. Hence j does

not occur free in any of the Bis. The proof for the previous case can be reused here.

2

Lemma C.2.66 Let ∆ ` Elim[κ, u](τ){~κ′} : u be a derivable judgment. Let K be a mapping and

U be an interpretation adapted to ∆. Suppose I = κ = Ind(j :Kind){~κ}. Suppose CK
U (τ) ∈ CK

U (κ)

and τ �
∗ Ctor (i, κ) ~A. Also suppose B ′ = λα :I. Elim[κ, u](α){~κ′}. We then have that

CK
U (Elim[κ, u](τ){~κ′}) = CK

U (Φj,I,B′(κi, κ
′
i) (~A)).

Proof Let G be the function used for interpreting large elimination. Suppose Co(i) ~a is the

normal form of CK
U (τ). Then given the assumptions we have that:

CK
U (Elim[κ, u](τ){~κ′}) = CK

U ,B′:G(pred(Co(i) ~a))
(Φj,I,B′(κi, κ

′
i)) (~a)

We therefore have to prove that

CK

U ,B′:G(pred(Co(i) ~a))
(Φj,I,B′(κi, κ

′
i)) (~a) = CK

U (Φj,I,B′(κi, κ
′
i) (~A))

• κi = j it follows directly.

• κi = Πα :κ1. κ2 We have to prove that

CK

U ,B′:G(pred(Co(i) ~a)),α:a1

(Φj,I,B′(κ2, κ
′
i α)) (a2..n) = CK

U ,α:a1
(Φj,I,B′(κ2, κ

′
i α) (A2..n))

Applying the induction hypothesis leads to the result.

188

• κi = Π~α :~κ. j → κ2 The LHS becomes

CK
U ′(Φj,I,B′(κ2, κ

′
iα(λ~Y :~κ.B′(α~Y)))) (a2..n)

where U ′ = U , B′ : G(pred(Co(i) ~a)), α : a1

By lemma C.2.65, a1 belongs to CK

U ,j:pred(Co(i) ~a)
(Π~α :~κ. j). This implies that a1

~Y ∈

pred(Co(i) ~a). Moreover, by lemma C.2.64 G(pred(Co(i) ~a))(a1
~Y) is equal to

G(CK
U (κ))(a1

~Y) and which is in turn equal to CK
U (Elim[κ, u](A1

~Y){~κ′}). The required

result follows directly from here by performing one head reduction on the RHS and applying

the induction hypothesis.

2

C.2.14 Kinds invariant on their domain

Definition C.2.67 Let ∆ ` κ : u be a derivable judgment and K and U be a mapping and an

interpretation adapted to ∆. We say (κ, u,∆,K,U) is invariant if:

• u = Kind and for all κ′ such that κ �
∗ κ′, we have that CK

U (κ) = CK
U (κ′);

• u = Πα :κ1. u1 then for all derivable judgments ∆ ` τ : κ1 and CK
U (τ) ∈ CK

U (κ1), we have

that (κ τ, [τ/α]u1,∆,K,U) is invariant;

• u = Πj :u1. u2 then for all derivable judgments ∆ ` κ1 : u1, we have that

(κ κ1, [κ1/j]u2,∆,K,U) is invariant;

• u = z and we have that (K(κ),K(u),K(∆),K,U) is invariant.

Lemma C.2.68 Let ∆ ` κ1 : Kind and ∆ ` κ2 : Kind be two derivable judgments and K and U

be a mapping and an interpretation adapted to ∆. If (κ1, Kind,∆,K,U) and (κ2, Kind,∆,K,U)

are invariant and κ1 =βηι κ2, then CK
U (κ1) = CK

U (κ2).

Proof We know that there exists a B such that ‖ κ1 ‖ �
∗B and ‖ κ2 ‖ �

∗B. This implies that

there exists a κ′
1 and a κ′

2 (lemma C.1.4 and C.1.14) such that κ1 �βι κ′
1 and ‖κ′

1 ‖ �
∗
ηB. Similarly,

κ2 �βι κ′
2 and ‖κ′

2 ‖ �
∗
ηB. From here we get that

CK
U (κ1) = CK

U (κ′
1) = CK

U (B) = CK
U (κ′

2) = CK
U (κ2)

189

2

Proposition C.2.69 If ([τ/α]κ, u,∆,K,U) is invariant, and also ∆ ` (λα : κ1. κ) τ : u, then

((λα :κ1. κ) τ, u,∆,K,U) is invariant.

C.2.15 Interpretation of large elimination

Lemma C.2.70 Let ∆ ` Elim[κ, u](τ){~κ′} : u be a judgment. Suppose I = κ = Ind(j :

Kind){~κ}. Let K and U be a mapping and an interpretation adapted to ∆. Suppose

1. CK
U (τ) ∈ CK

U (κ).

2. for all i, (κ′
i,Ψj,I(κi, u),∆,K,U) is invariant.

Then we have that (Elim[κ, u](τ){~κ′}, u,∆,K,U) is invariant.

Proof Suppose κ1 = Elim[κ, u](τ){~κ′}. Suppose we are given a sequence of terms ~A of the

proper type so that κ1
~A is in Kind. To show the invariance, we have to show that if κ1

~A �
∗ κ2,

then CK
U (κ1

~A) = CK
U (κ2). We will reason by induction on CK

U (τ) over the order defined by I .

• If the term CK
U (τ) can not be reduced to a term of the form Co(i)~a, then it is minimal with

respect to the order defined by I . Then κ2 is necessarily of the form

Elim[κ′, u′](τ ′){ ~κ′′} ~A′ and we have that the interpretation of both κ1
~A and κ2 is Can0(Kind).

• Suppose the term CK
U (τ) can be reduced to a term of the form Co(i)~a, but τ is not reduced

to a term of the form Ctor (i, I) ~C . Then κ2 is again of the form

Elim[κ′′′, u′](τ ′){ ~κ′′} ~A′. By definition, we have that

B1 = CK
U (κ1

~A) = CK
U ,~α:~a(Φj,I,B′(κi, κ

′
i) (~α) ~A)

B2 = CK
U (κ2) = CK

U ,~α:~a(Φj,I′,B′′(~κ′′′
i , ~κ′′

i) (~α) ~A′)

where B′ = λY : I. Elim[κ, u](τ){~κ′}, and B′′ = λY : I ′. Elim[κ′′′, u′](τ ′){ ~κ′′}. It is

evident that B2 is a reduct of B1, and therefore we need to prove that (B1, Kind,∆,K,U) is

invariant.

This follows by an induction over the structure of κi and by using the condition 2. The non-

recursive cases follow directly. For the recursive case, we use lemma C.2.65 to show that B ′

is applied to a smaller argument with respect to the order defined by I .

190

• We are left with the case when τ reduces to a term of the form Ctor (i, I) ~C . In going from

κ1
~A to κ2, we will now have a ι reduction. The sequence of reductions is now

κ1
~A �

∗ Elim[κ, u](Ctor (i, I) ~A){~κ′}

�ι (Φj,I,κ′
i
(κi, B

′) (~B)) ~A

�
∗ κ2

The first reduction does not change the interpretation since we are reducing only a type. By

lemma C.2.66, the second does not change the interpretation. Finally, as above, we can prove

that the result of the ι reduction is invariant over Kind.

2

C.2.16 Instantiation of contexts

Definition C.2.71 Let ∆ be a well formed context. Let Θ be a context and φ be a mapping from

variables to terms such that ∀X /∈ ∆, φ(X) = X .

We say that (Θ, φ) is an instantiation of ∆ if for all variables X ∈ ∆, we have that Θ `

φ(X) : φ(∆(X)).

Lemma C.2.72 Let ∆ ` A : B be a derivable judgment and (Θ, φ) an instantiation of ∆. Then

Θ ` φ(A) : φ(B).

Proof By induction over the structure of A. 2

Definition C.2.73 (Adapted instantiation) We say that an instantiation (Θ, φ) is adapted to a

context ∆ if:

• for all α ∈ ∆, φ(α) ∈ C∅

Can0(Θ)
(φ(∆(α)));

• for all j ∈ ∆, (φ(j), φ(∆(j)),Θ, ∅, Can0(Θ)) is invariant;

• for all z ∈ ∆, (φ(z), Kscm,Θ, ∅, Can0(Θ)) is invariant and φ(z) is an arity.

Definition C.2.74 Suppose ∆ ` κ : u is a derivable judgment. We say that all instantiations of

(κ,u,∆) are invariant if for all instantiations (Θ, φ) adapted to ∆ and for all interpretations U

adapted to Θ, we have that (φ(κ), φ(u),Θ, ∅,U) is invariant.

191

C.2.17 Kind schema invariant on their domain

Definition C.2.75 Let ∆ ` u : Kscm be a derivable judgment and K and U be a mapping and

an interpretation adapted to ∆. We say that (u, Kscm,∆,K,U) is invariant:

• if u = Kind, then (u, Kscm,∆,K,U) is invariant;

• if u = Πα :κ1. u1, then it is invariant if and only if (κ1, Kind,∆,K,U) is invariant and for

all terms τ such that ∆ ` τ : κ1 is derivable and CK
U (τ) ∈ CK

U (κ1), we have that

([τ/α]u1, Kscm,∆,K,U) is invariant;

• if u = Πj :u1. u2, then it is invariant if and only if (u1, Kscm,∆,K,U) is invariant, and for

all kinds κ such that ∆ ` κ : u1 is derivable and (κ, u1,∆,K,U) is invariant, we have that

([κ/j]u2, Kscm,∆,K,U) is invariant;

• if u = z, then it is invariant iff (K(z), Kscm,∆,K,U) is invariant.

Lemma C.2.76 Let ∆ ` κ : u and ∆ ` u′ : Kscm be derivable judgments. Let K and U

be a mapping and an interpretation adapted to ∆. Suppose u =βηι u′, and (u, Kscm,∆,K,U)

and (u′, Kscm,∆,K,U) are invariant. If (κ, u,∆,K,U) is invariant, then (κ, u′,∆,K,U) is also

invariant.

Proof The proof is by induction over the structure of u and u′.

• if u = u′ = Kind, then it is trivially true.

• if u = u′ = z, then again it is trivially true.

• if u = Πα :κ1. u1 and u′ = Πα :κ2. u2, then we have that κ1 =βηι κ2 and u1 =βηι u2. By

assumption, we know that (κ1, Kind,∆,K,U) and (κ2, Kind,∆,K,U) are invariant. This

means that CK
U (κ1) = CK

U (κ2). Moreover, ∆ ` τ : κ1 is true iff ∆ ` τ : κ2 is true.

Applying the induction hypothesis now leads to the required result.

• if u = Πj :u1. u2 and u′ = Πj :u′
1. u

′
2, the proof is similar to the previous case.

2

Definition C.2.77 Suppose ∆ ` u : Kscm is a derivable judgment. We say that all instantiations

of (u,Kscm,∆) are invariant if for all instantiations (Θ, φ) adapted to ∆ and for all interpretations

U adapted to Θ, we have that (φ(u), Kscm,Θ, ∅,U) is invariant.

192

C.2.18 Strong normalization of pure terms

Theorem C.2.78 Let ∆ ` τ : κ be a derivable judgment and K and U be a mapping and an

interpretation adapted to ∆. Then CK
U (τ) ∈ CK

U (κ).

Proof The proof is by induction over the length of the derivation. The induction hypothesis are

as follows:

• if ∆ ` τ : κ and K and U be a mapping and an interpretation adapted to ∆, then CK
U (τ) ∈

CK
U (κ);

• if ∆ ` κ : u, then all instantiations of (κ,u,∆) are invariant;

• if ∆ ` u : Kscm, then all instantiations of (u,Kscm,∆) are invariant;

type formation rules This paragraph deals with rules of the form ∆ ` τ : κ.

• abstractions – Follows directly from the induction hypothesis and lemmas C.2.55 and C.2.56

and C.2.57.

• var – Follows because the interpretation U is adapted to the context ∆.

• weak elimination – Follows from lemma C.2.59.

• constructor – Follows from lemma C.2.60.

• weakening – Follows directly from the induction hypothesis since the mapping and interpre-

tation remain adapted for a smaller context.

• conv – Follows from the recursion hypothesis and lemma C.2.68.

• app – All three cases of app are proved similarly. We will show only one case here.

– ∆ ` τ [u′] : κ. Then we know that ∆ ` τ : Πz : Kscm. κ1 and ∆ ` u′ : Kscm and

[u′/z]κ1 = κ. By the induction hypothesis

CK
U (τ) ∈ ∩

u1∈arity(u,Kind)
CK,z:u1

U
(κ1)

Suppose u′
1 = K(u′). Then we know that CK

U (τ) ∈ C
K,z:u′

1

U (κ1). By proposition C.2.50

we know that CK
U (τ) ∈ CK

U ([u′/z]κ1). But CK
U (τ [u′]) = CK

U (τ).

193

kind formation rules This paragraph deals with rules of the form ∆ ` κ : u.

• product – All the product formation rules are proved in the same way. We show only one

case here.

– Consider the following formation rule

∆, z :Kscm ` κ : Kind
∆ ` Πz :Kscm. κ : Kind

We have to prove that for all instantiations (Θ, φ) we have that

(Πz : Kscm. φ(κ), Kind,Θ, ∅,U) is invariant. This implies that we must prove that

if κ � κ′, then C∅
U
(Πz : Kscm. φ(κ)) = C∅

U
(Πz : Kscm. φ(κ′)). By the induction

hypothesis, for all instantiations (Θ, φ; z :arity(u, Kind)) we have that

(φ; z :arity(u, Kind)(κ), Kind,Θ, ∅,U)

is invariant. This implies that if κ � κ′ then

C
,z:arity(u,Kind)
U

(κ) = C
,z:arity(u,Kind)
U

(κ′)

The required result follows from here.

• var – follows since the instantiation is adapted.

• conv – follows from lemma C.2.76.

• application – Both of the applications are proved similarly and follow directly from the in-

duction hypothesis. We will show only one case here.

– If ∆ ` κ1 κ2 : [κ2/j]u, then given Θ, φ, and U , we must prove that

(φ(κ1 κ2), φ([κ2/j]u),Θ, ∅,U) is invariant. But by the induction hypothesis we know

that (φ(κ1), φ(Πj : u1. u),Θ, ∅,U) is invariant and ∆ ` κ2 : u1. By lemma C.2.72

Θ ` φ(κ2) : φ(u1). This leads to the required result.

• ind – Suppose I = Ind(j :Kind){~κ}. Note that CK
U (I) depends only on

CK

U ,j:S,A′:C,B′:Co(i)
(ζj,I(κi, A

′, B′)) where S ∈ ρ0(Kind) and C ∈ CR(I → Kind)K. By

induction on the structure of κi, we can show that this is invariant. This implies that if κi�κ′
i

194

then the interpretation remains the same. If I � I ′, then for some i, κi � κ′
i. From here we

can deduce that if I � I ′, then CK
U (I) = CK

U (I ′).

• large elim – Follows from lemma C.2.70.

• abstraction – Both of the abstractions are proved similarly. So we will show only one of the

cases.

– ∆ ` λα :κ1. κ2 : Πα :κ1. u. We must prove that (φ(λα :κ1. κ2), φ(Πα :κ1. u),Θ, ∅,U)

is invariant, given Θ, φ, and U . This implies that if Θ ` τ : φ(κ1) and τ belongs to

the appropriate candidate, then we must have (φ(λα :κ1. κ2) τ, [τ/α]φ(u),Θ, ∅,U) is

invariant. By proposition C.2.69 we must prove that

([τ/α]φ(κ2), [τ/α]φ(u),Θ, ∅,U)

is invariant. But (φ, α : τ) is an instantiation that is adapted to (∆, α : κ1). Applying

the induction hypothesis now leads to the result.

schema formation rules This paragraph deals with rules of the form ∆ ` u : Kscm.

• u = Kind follows directly.

• u = z follows since the instantiation is adapted.

• u = Πj : u1. u2 Given Θ, φ, and U we have to prove that (φ(Πj : u1. u2), Kscm,Θ, ∅,U)

is invariant. By the induction hypothesis, we know that (φ(u1), Kscm,Θ, ∅,U) is invariant.

The induction hypothesis also says that

([φ, j : κ](u2), Kscm,Θ, ∅,U) is invariant. We also know that ∆ ` κ : φ(u1) and

(κ, φ(u1),Θ, ∅,U) is invariant since the instantiation is adapted. This implies that

(φ([κ/j]u2), Kscm,Θ, ∅,U) is invariant.

• u = Πα :κ1. u1 the proof is very similar to the above case.

2

Corollary C.2.79 If τ is a well formed type, |τ | is strongly normalizing.

195

Proof Since τ is well formed we have that ∆ ` τ : κ. We only need to construct an interpre-

tation and a mapping. For the interpretation, let U(α) = α for every type variable. Then we get

CK
U (τ) =|τ |.

We can build the rest of U and K as:

• if ∆ = · then U(j) = Can0(Kind) and K(z) = Kind for all variables j and z;

• if ∆ = ∆′, α : κ then return the U ′ and K′ associated with ∆′;

• if ∆ = ∆′, j : u then U = U ′, j : C and K = K′, where C ∈ CR(u)K′ and K′ and U ′ are

associated with ∆′;

• if ∆ = ∆′, z : Kscm then K = K′, z : Kind and U = U ′ where K′ and U ′ are associated

with ∆′.

2

C.2.19 Normalization of terms

In this section, we use an encoding that maps all well formed terms to types. This encoding

preserves the number of reductions. The idea is similar to that of Harper et al [HHP93].

The encoding uses two constants. A is a kind and B is a type. ∗ is a variable that is never used,

it is a wild-card.

A :Kind

B :Πj :Kind. j

∗ unused variable

The encoding for Kscm is as follows:

S(Kscm) = Kscm

U(Kscm) = Kind

K(Kscm) = A

The encoding for schemas is as follows:

196

U(Kind)= Kind

U(Πα :κ. u) =Πα :K(κ). U(u)

U(Πj :u1. u2)=Πj :U(u1).Παj :K(u1). U(u2)

U(z) = z

K(Kind)=A

K(Πα :κ. u) =Πα :K(κ).K(u)

K(Πj :u1. u2)=Πj :U(u1).Παj :K(u1).K(u2)

K(z) = jz

T (Kind)=B A

T (Πα :κ. u) =B[A → Πα :K(κ).A → A]

T (κ)(λα :K(κ). T (u))

T (Πj :u1. u2)=B[A → Πj :U(u1).Παj :K(u1).A → A]

T (u1)(λj :U(u1). λαj :K(u1). T (u2))

T (z) =αz

The encoding for kinds is as follows:

K(j) = j

K(Πα :κ1. κ2)=Πα :K(κ1).K(κ2)

K(Πj :u. κ) =Πj :U(u).Παj :K(u).K(κ)

K(Πz :Kscm. κ) =Πz :Kscm.Πjz :Kind.Παz :A.K(κ)

K(λj :u. κ) =λj :U(u). λαj :K(u).K(κ)

K(λα :κ1. κ2)=λα :K(κ1).K(κ2)

K(κ τ)=K(κ) T (τ)

K(κ1 κ2)=K(κ1) K(κ2)T (κ2)

K(Ind(j :Kind){~κ})= Ind(j :Kind){
−−−→
K(κ)}

K(Elim[κ, u](τ){~κ′})= Elim[K(κ), U(u)](T (τ)){
−−−→
K(κ′)}

197

T (j) =αj

T (Πα :κ1. κ2)=B[A → Πα :K(κ1).A → A]

T (κ1)(λα :K(κ1). T (κ2))

T (Πj :u. κ) =B[A → Πj :U(u).Παj :K(u).A → A]

T (u)(λj :U(u). λαj :K(u). T (κ))

T (Πz :Kscm. κ) =

B[Πz :Kscm.Πjz :Kind.Παz :A.A → A]

(λz :Kscm. λjz :Kind. λαz :A. T (κ))

T (λj :u. κ) =

λj :U(u). λαj :K(u). (λ∗ :A. T (κ))T (u)

T (λα :κ1. κ2)=λα :K(κ1). (λ∗ :A. T (κ2))T (κ1)

T (κ τ)=T (κ) T (τ)

T (κ1 κ2)=T (κ1)[K(κ2)]T (κ2)

T (Ind(j :Kind){~κ}) =

B[(Kind → A → (A → . . . → A) → A) → A]

(λj :Kind. λαj :A. λY : (A → . . . → A). (Y
−−−→
T (κi)))

T (Elim[κ, u](τ){~κ′}) =

Elim[K(κ), (λ∗ :K(κ).K(u))](T (τ))

{
−−−−−−−−−−−−−−−−−−−−−−→
(λ∗ :A. λ∗ :A. T (κ′

i))T (κ)T (u)}

The encoding for types is as follows:

198

T (α) =α

T (λα :κ. τ) =λα :K(κ). (λ∗ :A. T (τ))T (κ)

T (τ1 τ2) =T (τ1)T (τ2)

T (λj :u. τ) =λj :U(u). λαj :K(u). (λ∗ :A. T (τ))T (u)

T (τ [κ]) =T (τ)[K(κ)]T (κ)

T (λz :Kscm. τ) =λz :Kscm. λjz :Kind. λαz :A. T (τ)

T (τ [u]) =T (τ)[U(u)][K(u)]T (u)

T (Ctor (i, κ)) = (λ∗ :A. Ctor (i,K(κ)))T (κ)

T (Elim[κ, κ1](τ){~τ}) =

Elim[K(κ),K(κ1)](T (τ)){
−−−−−−−−−−−−−−−−−−−−−−−→
(λ∗ :A. λ∗ :A. T (τi))T (κ)T (κ1)}

We have to define a similar transformation on contexts:

Γ(·) = ·,A :Kind,B :Πj :Kind. j

Γ(∆, α :κ) = Γ(∆), α :K(κ)

Γ(∆, j :u) = Γ(∆), j :U(u), αj :K(u)

Γ(∆, z :Kscm) = Γ(∆), z :Kscm, jz :Kind, αz :A

C.2.20 Coding and reduction

In this section we state lemmas that prove that the coding preserves the number of reductions. We

omit the proofs since they follow by a straightforward induction over the structure of terms.

Lemma C.2.80 For all well typed terms A, if A �β A′, then we have

T (A) �
1+
β T (A′)

K(A) �
∗
β K(A′)

U(A) �
∗
β U(A′)

Moreover, if ‖A‖ �βA1, then there exists A2 such that ‖A2 ‖= A1 and |T (A) | �
1+ |T (A2) |.

199

Lemma C.2.81 For all well typed terms A, if A �ι A′, then we have

T (A) �
1+
ι T (A′)

K(A) �
∗
ι K(A′)

U(A) �
∗
ι U(A′)

Moreover, if ‖A‖ �ι0A1, then there exists A2 such that ‖A2 ‖= A1 and |T (A) | �
1+ |T (A2) |.

Lemma C.2.82 For all well typed terms A, if A �η A′, then we have

T (A) �
1+
βη T (A′)

K(A) �
∗
βη K(A′)

U(A) �
∗
βη U(A′)

C.2.21 Coding and typing

In this section we show that the coding of a well typed term is also well typed. For this we need to

prove that the coding preserves βηι equality. This requires a confluent calculus. Therefore, we use

the unmarked terms from Section C.1.1. We extend the coding to unmarked terms by defining:

U() =

K() =

T () =

It is now easy to prove by a straightforward induction on the structure of terms that the follow-

ing lemma holds:

Lemma C.2.83 Suppose ∆ ` A : B and B 6= Ext. Then we have that

Γ(∆) ` T (A) : K(B) and Γ(∆) ` K(B) : Kind

Γ(∆) ` K(A) : U(B) and Γ(∆) ` U(B) : Kscm if defined

Γ(∆) ` U(A) : S(B) and Γ(∆) ` S(B) : Ext if defined

Corollary C.2.84 Suppose ∆ ` A : B and B 6= Ext. Then |T (A) | is strongly normalizing.

200

C.2.22 Normalization of unmarked terms

Lemma C.2.85 For all well typed terms A, we have that ‖ A ‖ is strongly normalizing for βηι0

reduction.

Proof Since there can not be an infinite sequence of η reductions and we can delay η reductions,

we need to prove the normalization for βι0 reductions only. Suppose ‖A‖ is not normalizing and

there exists a sequence A1 . . . Ai . . . such that Ai �βι0 Ai+1 and A0 =‖A ‖. By lemma C.2.80

and C.2.81, we get that there exists a sequence of terms A′
1 . . . A′

i . . . such that ‖ A′
i ‖= Ai and

| T (A′
i) | �

1+
βι | T (A′

i+1) | and also | T (A) | �
1+
βι | T (A′

1) |. This implies that | T (A) | is not

strongly normalizing which is a contradiction. 2

C.2.23 Normalization of all terms

Lemma C.2.86 Suppose A �βι B. Then ‖T (A)‖ �
1+
βι ‖T (B)‖.

Proof By induction over the derivation of A �βι B. Note that in taking a term A to T (A), all the

terms C that appear as annotations at lambda abstractions are duplicated with the corresponding

T (C). 2

Lemma C.2.87 Suppose ∆ ` A : B. Then A is strongly normalizing.

Proof We only have to prove normalization for βι reduction. By lemma C.2.86, if A is not

normalizing, then ‖ T (A) ‖ is also not normalizing. But by lemma C.2.83 we have that Γ(∆) `

T (A) : K(B) which implies (lemma C.2.85) that ‖T (A)‖ is strongly normalizing. 2

Theorem C.2.88 (Strong normalization) All well typed terms are strongly normalizing.

Proof Follows from lemma C.2.87. 2

C.3 Church-Rosser property

The proof is structured as follows:

• We first prove that a well typed term A in βι normal form has the same η reductions as ‖A‖.

• From here we know that if A and A′ are in normal form, then ‖A‖ and ‖A′ ‖ are equal. We

then show that the annotations in the λ-abstractions are equal.

201

C.3.1 Structure of normal forms

Lemma C.3.1 All well typed βι normal terms N have the following form:

1. λX :N1. N2.

2. ΠX :N1. N2.

3. s ∈ {Kind, Kscm, Ext}.

4. X ~N .

5. Ind(X :Kind){ ~N}.

6. Ctor (i,N) ~N where N is of the form 5.

7. Elim[N,N2](N1){ ~N} ~N ′ where N is of the form 5 and N1 is of the form 4.

Lemma C.3.2 Let ∆, X :C,∆′ ` A : B be a judgment and A in βι normal form. If X does not

occur in FV (B) ∪ FV (∆′) ∪ FV (‖A‖), then X /∈ FV (A).

Proof The proof is by induction over the size of A. We use lemma C.3.1 to enumerate the

different cases.

• The case where A is a variable or a sort is immediate.

• Suppose ∆, X :C,∆′ ` ΠY :N1. N2 : B. It follows directly from the induction hypothesis

that X does not occur in N1 and N2.

• Suppose ∆, X : C,∆′ ` λY : N1. N2 : B and B = ΠY : N1. A
′. We know that ∆, X :

C,∆′ ` N1 : s and therefore X /∈ FV (N1). Also B �
∗ ΠY :N ′

1. A
′′ and ∆, X :C,∆′, Y :

N1 ` N2 : A′′. Since X /∈ FV (A′′)∪FV (N1), we can apply the induction hypothesis and

therefore X /∈ FV (N2).

• Suppose ∆, X :C,∆′ ` Y ~N : B. This implies that ∆, X :C,∆′ ` Y : ΠZ :A1. A2 and

∆, X :C,∆′ ` N1 : A1. From lemma C.1.32 and C.1.17 we have that ∆, X :C,∆′ ` Y :

ΠZ : A3. A4 where X does not occur free in A3 and A3 =βηι A1 and A4 =βηι A2. From

here we can show that ∆, X :C,∆′ ` N1 : A3. We can now apply the inductive hypothesis

to show that X /∈ FV (N1). Iterating in this way, we can show that X /∈ FV (Ni).

202

• Suppose ∆, X : C,∆′ ` Ind(Y : Kind){ ~N} : B. Follows directly from the induction

hypothesis that X /∈ FV (Ni).

• Suppose ∆, X :C,∆′ ` Ctor (i, I) ~N : B. Follows directly from the induction hypothesis

that X /∈ FV (I). We can then show as above that X /∈ FV (Ni).

• Suppose ∆, X : C,∆′ ` Elim[N,N1](N2){ ~N} ~N ′ : B. Since ∆, X : C,∆′ ` N : Kind,

it follows from the induction hypothesis that X /∈ FV (N). Similarly, since ∆, X :C,∆ ′ `

N1 : Kscm, or ∆, X :C,∆′ ` N1 : N → Kind, it follows that X /∈ FV (N1). Similarly we

can prove directly from the induction hypothesis that X /∈ FV (N2) ∪ FV (~N). Finally, as

above we can prove that X /∈ FV (~N ′). 2

Corollary C.3.3 Let ∆ ` A : B. If A is in normal form, then ‖A‖ is also in normal form.

Proof We must show that ‖A‖ does not contain any η reductions. The interesting case is when

A is of the form λX :N1. N2 X . We want to show that if X /∈ FV (‖N2 ‖), then X /∈ FV (N2).

Since it is well typed we know that ∆ ` λX : N1. N2 X : ΠX : N1. C . We have that X /∈

FV (ΠX : N1. C). From here we get that ∆, X : N1 ` N2 : ΠX : N1. C . This implies that if

X /∈ FV (‖N2 ‖), then X /∈ FV (N2). 2

C.3.2 Church-Rosser

Theorem C.3.4 (Church-Rosser) Let ∆ ` A : B and ∆ ` A′ : B be two derivable judgments.

If A =βηι A′, and if A and A′ are in normal form, then A = A′.

Proof We know that ‖A‖ and ‖A′ ‖ are in normal form. Since the unmarked terms are confluent

we have that ‖A‖=‖A′ ‖. The proof is by induction over the structures of A and A′.

• The case when A = A′ = s or A = A′ = a variable is immediate.

• Suppose A = λX :N1. N2 and A′ = λX :N ′
1. N

′
2. We know that B =βηι ΠX :N1. A3 =βηι

ΠX :N ′
1. A

′
3. This implies that N1 =βηι N ′

1 which implies that both of them have the same

sort. This implies that N1 = N ′
1. We can now apply the induction hypothesis to N2 and N ′

2

to get that N2 = N ′
2.

• Suppose A = ΠX : N1. N2 and A′ = ΠX : N ′
1. N

′
2. Follows directly from the induction

hypothesis.

203

• Suppose A = X ~N and A′ = X ~N ′. We know that in the context ∆, the variable X has

the type Π~Y : ~B.A3. Therefore each of the Ni and N ′
i have the same type. Applying the

induction hypothesis to each of them leads to the required result.

• Suppose A = Ind(X : Kind){ ~N} and A′ = Ind(X : Kind){ ~N ′}. By the typing rules we

know that ∆, X :Kind ` Ni : Kind and ∆, X :Kind ` N ′
i : Kind. Applying the induction

hypothesis leads to Ni = N ′
i .

• Suppose A = Ctor (i,N) ~N and A′ = Ctor (i,N ′) ~N ′. We know that both N and N ′ have

type Kind. The induction hypothesis directly leads to N = N ′. We can then show as above

that Ni = N ′
i .

• Suppose A = Elim[N,N1](N2){ ~N} ~N0 and

A′ = Elim[N ′, N ′
1](N

′
2){

~N ′} ~N ′
0. Since N and N ′ are both of type Kind, it follows that

N = N ′. From here we get that N2 = N ′
2. Since both N1 and N ′

1 have the type Kscm or

have the type N → Kind, it follows that N1 = N ′
1. From this we can show that the Ni and

N ′
i are equal. Finally as above, we can show that the N0i and the N ′

0i are equal. 2

Theorem C.3.5 (Confluence) Let ∆ ` A : B and ∆ ` A′ : B be two judgments. If A =βηι A′,

then A and A′ have a common reduct – there exists a term C such that A �
∗ C and A′

�
∗ C .

Proof We know that both A and A′ reduce to normal forms A1 and A′
1. Due to subject reduction,

both A1 and A′
1 have the same type B. By the previous lemma A1 = A′

1. 2

C.4 Consistency

Theorem C.4.1 (Consistency of the logic) There exists no term A for which · ` A : ΠX :

Kind. X .

Proof Suppose there exists a term A for which · ` A : ΠX :Kind. X . By theorem C.2.88, there

exists a normal form B for A. By the subject reduction · ` B : ΠX :Kind. X . We can show now

that this leads to a contradiction by case analysis of the possible normal forms for the types in the

calculus. 2

204

Bibliography

[AF00a] Andrew W. Appel and Edward W. Felten. Models for security policies in proof-carrying code.

Technical report, Princeton University, Department of Computer Science, July 2000.

[AF00b] Andrew W. Appel and Amy P. Felty. A semantic model of types and machine instructions for

proof-carrying code. In Proc. 27th Annual ACM SIGPLAN-SIGACT Symp. on Principles of

Programming Languages, pages 243–253. ACM Press, 2000.

[AM91] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin Wirsing,

editor, Third Int’l Symp. on Prog. Lang. Implementation and Logic Programming, pages 1–13,

New York, August 1991. Springer-Verlag.

[Asp95] David Aspinall. Subtyping with singleton types. In Proc. 1994 CSL. Springer Lecture Notes

in Computer Science, 1995.

[Bar91] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T. Maibaum,

editors, Handbook of Logic in Computer Science (volume 2). Oxford University Press, 1991.

[Bar99] Henk P. Barendregt. Proof-assistants using dependent type systems. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science Publishers B.V.,

1999.

[BB95] Corrado Bohm and Alessandro Berarducci. Automatic synthesis of typed λ-programs on term

algebras. In Theoretical Computer Science, pages 39:135–154, 1995.

[BHS99] G. Barthe, J. Hatcliff, and M. Sorensen. CPS translations and applications: the cube and

beyond. Higher Order and Symbolic Computation, 12(2):125–170, September 1999.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95–

120, 1988.

[CLN+00] Christopher Cobly, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth Cline.

A certifying compiler for java. In Proc. ACM SIGPLAN ’00 Conf. on Prog. Lang. Design and

Implementation, pages 95–107, New York, 2000. ACM Press.

205

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In Proc. 11th IEEE Symp.

on Logic in Computer Science, pages 264–275, 1996.

[Cra00] Karl Crary. Typed assembly language: Type theory for machine code. Talk presented at 2000

PCC Workshop, Santa Barbara, CA, June 2000.

[CV01] Karl Crary and J Vanderwaart. An expressive, scalable type theory for certified code. Technical

Report CMU-CS-01-113, Carnegie Mellon University, 2001.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proc. 1999 ACM SIGPLAN In-

ternational Conference on Functional Programming, pages 233–248. ACM Press, September

1999.

[CW00] Karl Crary and Stephanie Weirich. Resource bound certification. In Proc. Twenty-Seventh

Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages 184–

198. ACM Press, 2000.

[CWM98] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type-erasure

semantics. In Proc. 1998 ACM SIGPLAN International Conference on Functional Program-

ming, pages 301–312. ACM Press, September 1998.

[CWM99] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of

capabilities. In Symposium on Principles of Programming Languages, pages 262–275, San

Antonio, TX, January 1999.

[De 80] N. De Bruijn. A survey of the project AUTOMATH. In To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus and Formalism, pages 579–606. Edited by J. P. Seldin and J. R.

Hindley, Academic Press, 1980.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control, a study of the cps transformation.

Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[DRW95] Catherine Dubois, Francois Rouaix, and Pierre Weis. Extensional polymorphism. In Proc.

Principles of Programming Languages. ACM Press, 1995.

[Dug98] Dominic Duggan. A type-based semantics for user defined marshalling in polymorphic lan-

guages. In Second Types in Compilation Workshop, 1998.

[Geu93] J. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of Nijmegen, The

Netherland, 1993.

[Gim98] Eduardo Gimenez. A tutorial on recursive types in Coq, May 1998.

[Gir72] J. Y. Girard. Interpretation Fonctionnelle et Elimination des Coupures dans l’Arithmetique

d’Ordre Superieur. PhD thesis, University of Paris VII, 1972.

206

[Gir88] Jean-Yves Girard. Typed lambda-calculus, draft book translated by paul taylor and yves lafont,

1988.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University

Press, 1989.

[Hay91] S Hayashi. Singleton, union, and intersection types for program extraction. In Proc. Interna-

tional Conference on Theoretical Aspects of Computer Software, pages 701–730, 1991.

[HHP93] Bob Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of

the ACM, 40(1):143–184, jan 1993.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analysis.

In Twenty-second Annual ACM Symp. on Principles of Prog. Languages, pages 130–141, New

York, Jan 1995. ACM Press.

[HM98] Robert Harper and Greg Morrisett. Typed closure conversion for recursively-defined func-

tions. In Second International Workshop on Higher Order Operational Techniques in Seman-

tics (HOOTS98, New York, Sep 1998. ACM Press.

[HM99] Robert Harper and John C. Mitchell. Parametricity and variants of Girard’s J operator. Infor-

mation Processing Letters, 70(1):1–5, April 1999.

[How80] W. A. Howard. The formulae-as-types notion of constructions. In To H.B.Curry: Essays on

Computational Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[HPM+00] Gerard Huet, Christine Paulin-Mohring, et al. The Coq proof assistant reference manual. Part

of the Coq system version 6.3.1, May 2000.

[Ler92] Xavier Leroy. Unboxed objects and polymorphic typing. In Nineteenth Annual ACM Symp.

on Principles of Prog. Languages, pages 177–188, New York, Jan 1992. ACM Press. Longer

version available as INRIA Tech Report.

[LST99] Christopher League, Zhong Shao, and Valery Trifonov. Representing Java classes in a typed

intermediate language. In Proc. 1999 ACM SIGPLAN International Conf. on Functional Pro-

gramming (ICFP’99), pages 183–196. ACM Press, September 1999.

[Min97] Yasuhiko Minamide. Full lifting of type parameters. Technical report, RIMS, Kyoto University,

1997.

[MMH96] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In Proc.

23rd Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages

271–283. ACM Press, 1996.

207

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, December

1995. CMU-CS-95-223.

[Mor00] Greg Morrisett. Open problems for certifying compilers. Talk presented at 2000 PCC Work-

shop, Santa Barbara, CA, June 2000.

[MSS00] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. Technical Report

YALEU/DCS/TR1205, Dept. of Computer Science, Yale University, New Haven, CT, Novem-

ber 2000. Available at http://flint.cs.yale.edu.

[MSS01] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. In Proc. 2001 ACM

SIGPLAN Programming Language Design and Implementation (PLDI’01). ACM Press, June

2001.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly

language. In Proc. 25rd Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming

Languages, page (to appear). ACM Press, 1998.

[Nad94] Gopalan Nadathur. A notation for lambda terms II: Refinements and applications. Technical

Report CS-1994-01, Duke University, Durham, NC, January 1994.

[Nec97] George Necula. Proof-carrying code. In Twenty-Fourth Annual ACM Symp. on Principles of

Prog. Languages, New York, Jan 1997. ACM Press.

[Nec98] George Ciprian Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA, September 1998.

[NL96] George Necula and Peter Lee. Safe kernel extensions without runtime checking. In 2nd

USENIX Symposium on Operating System Design and Implementation, pages 229–243, 1996.

[NL98] George Necula and Peter Lee. The design and implementation of a certifying compiler. In

Proc. ACM SIGPLAN ’98 Conf. on Prog. Lang. Design and Implementation, pages 333–344,

New York, 1998. ACM Press.

[NW90] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable for op-

erations on their intensions. In 1990 ACM Conference on Lisp and Functional Programming,

pages 341–348, New York, June 1990. ACM Press.

[Pau89] C. Paulin-Mohring. Extracting fω’s programs from proofs in the calculus of constructions. In

Sixteenth Annual ACM Symp. on Principles of Prog. Languages, pages 89–104, New York, Jan

1989. ACM Press.

[Pau93] C. Paulin-Mohring. Inductive definitions in the system Coq—rules and properties. In

M. Bezem and J. Groote, editors, Proc. TLCA. LNCS 664, Springer-Verlag, 1993.

208

[PDM89] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-order typed

lambda-calculi. Technical Report CMU-CS-89-111, Carnegie Mellon University, 1989.

[Pey92] Simon Peyton Jones. Implementing lazy functional languages on stock hardware: the Spineless

Tagless G-machine. Journal of Functional Programming, 2(2):127–202, April 1992.

[Pfe88] Frank Pfenning. Inductively defined types in the calculus of constructions. Ergo report 88-069,

Dept. of Computer Science, Carnegie Mellon University, November 1988.

[PJ93] John Peterson and Mark P. Jones. Implementing type classes. In Programming Language

Design and Implementation, New York, 1993. ACM Press.

[PL89] Frank Pfenning and Peter Lee. Leap: a language with eval and polymorphism. In International

Joint Conference on Theory and Practice of Software Development, 1989.

[Rep91] John H. Reppy. CML: A higher-order concurrent language. In Proc. ACM SIGPLAN ’91 Conf.

on Prog. Lang. Design and Implementation, pages 293–305. ACM Press, 1991.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Proceedings, Colloque sur la Pro-

grammation, Lecture Notes in Computer Science, volume 19, pages 408–425. Springer-Verlag,

Berlin, 1974.

[SA95] Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML. In Proc. ACM

SIGPLAN ’95 Conf. on Prog. Lang. Design and Implementation, pages 116–129. ACM Press,

1995.

[SG90] Mark A. Sheldon and David K. Gifford. Static dependent types for first class modules. In 1990

ACM Conference on Lisp and Functional Programming, pages 20–29, New York, June 1990.

ACM Press.

[Sha97a] Zhong Shao. Flexible representation analysis. In Proc. 1997 ACM SIGPLAN International

Conference on Functional Programming (ICFP’97), pages 85–98. ACM Press, June 1997.

[Sha97b] Zhong Shao. An overview of the FLINT/ML compiler. In Proc. 1997 ACM SIGPLAN Work-

shop on Types in Compilation, June 1997.

[Sha98] Zhong Shao. Typed cross-module compilation. In Proc. 1998 ACM SIGPLAN International

Conf. on Functional Programming. ACM Press, 1998.

[Sha99] Zhong Shao. Transparent modules with fully syntactic signatures. In Proc. 1999 ACM SIG-

PLAN International Conf. on Functional Programming (ICFP’99), pages 220–232. ACM

Press, September 1999.

[Sha01] Zhong Shao. Yale University, personal communication, 2001.

209

[SLM98] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed intermediate lan-

guages. In Proc. International Conference of Functional Programming. ACM Press, 1998.

[SSTP01] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type system for cer-

tified binaries. Technical Report YALEU/DCS/TR1211, Dept. of Computer Science, Yale

University, New Haven, CT, July 2001. Available at http://flint.cs.yale.edu.

[SSTP02] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type system for cer-

tified binaries. In Proc. 2002 ACM SIGPLAN/SIGACT Principles of Programming Languages

(POPL’02). ACM Press, January 2002.

[STS00a] Bratin Saha, Valery Trifonov, and Zhong Shao. Fully reflexive intensional type analsysis in a

type erasure semantics. In Proc. 2000 Types in Compilation Workshop, September 2000.

[STS00b] Bratin Saha, Valery Trifonov, and Zhong Shao. Intensional analysis of quantified types. Tech-

nical Report YALEU/DCS/TR-1194, Dept. of Computer Science, Yale University, New Haven,

CT, March 2000.

[Tar96] David Tarditi. Design and Implementation of Code Optimizations for a Type-Directed Com-

piler for Standard ML. PhD thesis, Carnegie Mellon University, December 1996. CMU-CS-

97-108.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed

optimizing compiler for ML. In Proc. ACM SIGPLAN ’96 Conf. on Prog. Lang. Design and

Implementation, pages 181–192. ACM Press, 1996.

[TO98] Andrew Tolmach and Dino P. Oliva. From ml to ada: Strongly-typed language interoperability

via source translation. Journal of Functional Programming, 8(4):367–412, July 1998.

[Tof98] Mads Tofte. Region-based memory management (invited talk). In Proc. 1998 Types in Com-

pilation Workshop, March 1998.

[TSS00] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive intensional type analsysis. In

Proc. 2000 ACM SIGPLAN International Conference on Functional Programming (ICFP’00),

pages 82–93. ACM Press, September 2000.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-calculus using

a stack of regions. In Proc. 21st Annual ACM SIGPLAN-SIGACT Symp. on Principles of

Programming Languages, pages 188–201. ACM Press, 1994.

[WA99] Daniel C. Wang and Andrew W. Appel. Safe garbage collection = regions + intensional type

analysis. Technical Report TR-609-99, Princeton University, 1999.

210

[WA01] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors. In Proc. 28th

Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, page (to

appear). ACM Press, 2001.

[WC94] Andrew K. Wright and Robert Cartwright. A practical soft type system for Scheme. In 1994

ACM Conference on Lisp and Functional Programming, pages 250–262, New York, June 1994.

ACM Press.

[Wer94] Benjamin Werner. Une Theorie des Constructions Inductives. PhD thesis, University of Paris,

1994.

[WF92] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness. Technical

report, Dept. of Computer Science, Rice University, June 1992.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proc. Twenty-

Sixth ACM Symp. on Principles of Programming Languages, pages 214–227. ACM Press,

1999.

[Yan98] Zhe Yang. Encoding types in ML-like languages. In Proc. 1998 ACM SIGPLAN International

Conf. on Functional Programming, pages 289–300. ACM Press, 1998.

211

