Verified Compilation of C Programs with a Nominal
Memory Model

YUTING WANG, Shanghai Jiao Tong University, China
LING ZHANG, Shanghai Jiao Tong University, China
ZHONG SHAQO, Yale University, USA

J EREMIE KOENIG, Yale University, USA

Memory models play an important role in verified compilation of imperative programming languages. A
representative one is the block-based memory model of CompCert—the state-of-the-art verified C compiler.
Despite its success, the abstraction over memory space provided by CompCert’s memory model is still primitive
and inflexible. In essence, it uses a fixed representation for identifying memory blocks in a global memory
space and uses a globally shared state for distinguishing between used and unused blocks. Therefore, any
reasoning about memory must work uniformly for the global memory; it is impossible to individually reason
about different sub-regions of memory (i.e., the stack and global definitions). This not only incurs unnecessary
complexity in compiler verification, but also poses significant difficulty for supporting verified compilation of
open or concurrent programs which need to work with contextual memory, as manifested in many previous
extensions of CompCert.

To remove the above limitations, we propose an enhancement to the block-based memory model based on
nominal techniques; we call it the nominal memory model. By adopting the key concepts of nominal techniques
such as atomic names and supports to model the memory space, we are able to 1) generalize the representation
of memory blocks to any types satisfying the properties of atomic names and 2) remove the global constraints
for managing memory blocks, enabling flexible memory structures for open and concurrent programs.

To demonstrate the effectiveness of the nominal memory model, we develop a series of extensions of
CompCert based on it. These extensions show that the nominal memory model 1) supports a general framework
for verified compilation of C programs, 2) enables intuitive reasoning of compiler transformations on partial
memory; and 3) enables modular reasoning about programs working with contextual memory. We also
demonstrate that these extensions require limited changes to the original CompCert, making the verification
techniques based on the nominal memory model easy to adopt.

CCS Concepts: « Software and its engineering — Software verification; Compilers; « Theory of com-
putation — Program verification.

Additional Key Words and Phrases: Memory Models, Nominal Techniques, Verified Compilation

ACM Reference Format:

Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig. 2022. Verified Compilation of C Programs
with a Nominal Memory Model. Proc. ACM Program. Lang. 6, POPL, Article 25 (January 2022), 31 pages.
https://doi.org/10.1145/3498686

Authors’ addresses: Yuting Wang, John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, China,
yuting. wang@sjtu.edu.cn; Ling Zhang, John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, China,
ling.zhang@sjtu.edu.cn; Zhong Shao, Yale University, USA, zhong.shao@yale.edu; Jérémie Koenig, Yale University, USA,
jeremie.koenig@yale.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART25

https://doi.org/10.1145/3498686

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-3990-2418
HTTPS://ORCID.ORG/0000-0001-7190-6983
HTTPS://ORCID.ORG/0000-0001-8184-7649
HTTPS://ORCID.ORG/0000-0002-3168-5925
https://doi.org/10.1145/3498686
https://orcid.org/0000-0003-3990-2418
https://orcid.org/0000-0001-7190-6983
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0002-3168-5925
https://doi.org/10.1145/3498686

25:2 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

1 INTRODUCTION

Memory models are critical components for formalizing the semantics of imperative programming
languages. They determine an abstraction over memory and provide necessary operations for
manipulating memory states at the corresponding level of abstraction. In the setting of verified
compilation of imperative programs, a memory model with appropriate abstraction not only reduces
the complexity of verification but also enables rich forms of semantics preservation. Therefore, a
lot of research has been done for developing memory models for verified compilation, ranging
from highly abstract models that treat memory states as mappings from addresses to values to
highly concrete ones that capture the linear layout of physical memory [Tuch et al. 2007].
Among the memory models developed so far, the most representative one is the block-based
memory model [Leroy et al. 2012; Leroy and Blazy 2008] defined in CompCert—the state-of-the-art
verified C compiler [Leroy 2021]. It provides a medium level of abstraction—neither too abstract
nor too concrete—by modeling memory space as a collection of contiguous memory regions (also
called blocks). Isolation between different memory blocks is simply captured by giving each of those
memory blocks a unique identifier (called its block id). Furthermore, pointers are naturally defined
as pairs of block ids and offsets to memory cells, and definitions of pointer operations follow in a
straightforward manner. The block-based memory model has been highly successful. By uniformly
applying it to all of CompCert’s languages, the developers of CompCert were able to verify over
20 compiler passes containing advanced optimizations. It has also been widely adopted in other
verification projects, including various extensions of CompCert for supporting compositionality
and concurrency (e.g., [Besson et al. 2017; Jiang et al. 2019; Kang et al. 2016; Sevcik et al. 2011,
2013; Song et al. 2020; Stewart et al. 2015; Wang et al. 2019, 2020]) and formalization of language
semantics for program verification and program analysis (e.g., [Appel 2011; Gu et al. 2015, 2018]).

1.1 Deficiency of the Block-Based Memory Model

Despite its previous success, CompCert’s block-based memory model is still quite primitive and
inflexible, making it difficult to support intuitive and flexible reasoning in verified compilation.
This includes the following points:

o Inflexibility 1: Fixed Representation of Block IDs. In the block-based memory model,
block ids are represented by a fixed type, i.e., positive numbers. With this uniform and fixed
representation, it is impossible to distinguish between memory regions playing different
roles (such as the stack, heap, and memory regions for global definitions). Therefore, it is
difficult to reason about specific parts of memory in isolation.

¢ Inflexibility 2: Sequential Numbering of Valid Blocks. In any memory state, a special
positive number named nextblock provides the next available block id. The global memory
space is divided by nextblock into two parts: blocks with ids less than nextblock have already
been allocated (called valid blocks), while the remaining blocks are waiting to be allocated
(called invalid blocks). In any program semantics, the ids of valid blocks must be numbered
sequentially by [1,..., nextblock — 1]. This creates unintuitive and unnecessary dependency
between valid blocks playing different roles.

¢ Inflexibility 3: Global Constraint for Allocation. In any memory state, there is only a
single nextblock for assigning new block ids upon allocation. In the setting where multiple
open programs or threads work on the same memory state, every open program or thread
must keep track of how other programs or threads modify nextblock. This global constraint
imposes a complex dependency between open programs and threads.

Because of the complex dependencies created by the above inflexibilities, verification of any
compiler transformation must treat the memory space as a whole. This incurs significant difficulties

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:3

both in verified compilation of whole programs and in that of open programs. Specifically, in the
former setting, many compiler transformations only work on certain sub-regions of memory (e.g.,
transformations on stack frames). However, because of Inflexibilities 1 and 2, the reasoning must
be lifted to the whole memory, therefore becoming significantly more involved and less intuitive. In
the latter setting, one would like to get a compositional approach to verifying open or concurrent
programs. However, such an approach must be compatible with the evolution of nextblock which
is inherently non-compositional by Inflexibilities 2 and 3. This problem plagues many projects
on extending CompCert to support compositionality or concurrency (e.g., CASCompCert [Jiang
et al. 2019] and Thread-Safe CompCertX [Gu et al. 2018]). To circumscribe it, various ad hoc
modifications to the block-based memory model were invented, leading to verification results that
are overly technical and less reusable.

1.2 Nominal Memory Model and Verified Compilation

In this paper, we develop a systematic, clean and lightweight approach to eliminating the above in-
flexibilities of the block-based memory model. Our approach is based on nominal techniques [Gabbay
and Pitts 2002; Pitts 2016]. Specifically, by adopting the very basic concepts of nominal techniques to
formally model the block-based memory space, we obtain a natural generalization of the block-based
memory model which we call the nominal memory model. Our key ideas include the following:

e Generalizing Block IDs to Atomic Names. In nominal techniques, the elements of count-
ably infinite sets are used to represent available names; they are called atomic names. By
generalizing the fixed type of block ids to a type parameter representing countably infinite
sets, we allow block ids to be freely instantiated by any kinds of atomic names. For example,
because the positive numbers are countably infinite, the original block ids become a special
case after the generalization. More importantly, the type of block ids may be instantiated
with rich data types, by which we can divide global memory into separate memory regions
with clear roles. This eliminates Inflexibility 1.

e Generalizing Valid Blocks to Supports. In nominal techniques, dependency of objects on
names is described via the concept of supports. In its most basic form, the support of an object
is a finite set of atomic names that the object contains. By generalizing valid blocks to a type
parameter that satisfies the basic requirements of supports, we allow new names to be freely
generated as long as they are fresh w.r.t. the support. This eliminates Inflexibility 2.

¢ Eliminating Global Constraints via Supports. Like the type of atomic names, the support
type can also be instantiated with sophisticated data types. This enables formalization of
memory space with complex structures (e.g., multiple call stacks) and separate growth of
memory regions for individual open modules or threads. This eliminates Inflexibility 3.

To demonstrate that the nominal memory model can indeed enable more flexible and intuitive
reasoning about compiler transformations on both whole programs and open programs, we develop
a series of extensions of CompCert based on it. First, we develop Nominal CompCert, a full extension
of CompCert with a basic nominal memory model that is parameterized over the types of block
ids and supports. Nominal CompCert provides a skeleton for developing richer extensions of
CompCert that exploit the full power of the above generalization. Second, we instantiate the block
ids and supports with rich data types for explicitly dividing global memory into separate regions
based on their roles. With this specialized nominal memory space, we give precise definitions
of transformations on partial memory as concrete injection functions, resulting in more intuitive
proofs for the key passes of CompCert. Third, we exploit rich instantiation of the support type to
verify compilation of open concurrent programs. Specifically, we develop Multi-Stack CompCert, a
combination of Nominal CompCert and Stack-Aware CompCert [Wang et al. 2019] with additional

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:4 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

support for multiple call stacks. With the flexibility to independently grow individual stacks, Multi-
Stack CompCert becomes the first compiler that supports verified compilation of C programs all the
way down to multi-stack machines, which provides a new foundation for thread-safe compilation
of Certified Concurrent Abstraction Layers [Gu et al. 2018].

1.3 Contributions
We summarize our contributions as follows:

e We introduce the nominal memory model, a natural extension of the block-based memory
based on nominal techniques (Sec. 3.2). It enables flexible formalization of block identifiers
and memory space and eliminates global assumptions on memory states in the original block-
based memory model. The block-based memory model aligns well with such generalization
as it becomes an instance of the nominal memory model.

e We develop Nominal CompCert, an extension to CompCert with its full compilation chain
verified based on the nominal memory model (Sec. 3.3). Nominal CompCert is a general
framework for verified compilation of C programs in the following sense: with its interface
for supporting nominal names established, the compiler and its proofs work regardless what
instances of block ids (names) and valid blocks (supports) are provided through this interface.

e We develop two extensions of Nominal CompCert that illustrate its power in verified compi-
lation of whole programs and open programs. The first one enables intuitive reasoning of
compiler transformations on partial memory (Sec. 4), while the second one enables modular
reasoning about open programs working with contextual memory (Sec. 5).

o We demonstrate that the above developments require limited changes to CompCert, making
verification techniques based on the nominal memory model lightweight and easy to adopt.

The developments presented in this paper are based on CompCert version 3.8 and fully formalized
in the Coq proof assistant version 8.12.0. The complete artifact in Coq is located at https://doi.org/
10.5281/zenodo.5553752.

1.4 Structure of the Paper

In Sec. 2, we first introduce the necessary background of the block-based memory model and
elaborate on its problems. We then present the nominal memory model in its full detail and discuss
how to extend CompCert to Nominal CompCert in Sec. 3. In the subsequent two sections, we
successively introduce the key applications of the nominal memory model and Nominal CompCert,
including verification of transformations on partial memory (in Sec. 4) and verification of open
programs working with contextual memory (in Sec. 5). We provide an evaluation of our proof effort
in Sec. 6. Finally, we give a comparison with existing work in Sec. 7 and conclude in Sec. 8.

2 BACKGROUND AND APPROACH

We first give a brief introduction to the block-based memory model and verified compilation of C
programs based on it. We then elaborate on the deficiency of this memory model that prevents it
from supporting intuitive proofs for verified compilation of whole programs and open programs.

2.1 The Block-Based Memory Model

In the block-based memory model, the memory space is represented as a countably infinite set of
blocks where each block is given a unique identifier called its block id (denoted by b). CompCert
uses positive numbers to represent block ids. The entire memory space is divided into two parts by
a special block id called nextblock. A block with id less than nextblock has been allocated (called a
valid block). Otherwise, it has not been allocated yet (called an invalid block). nextblock—initially

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

https://doi.org/10.5281/zenodo.5553752
https://doi.org/10.5281/zenodo.5553752

Verified Compilation of C Programs with a Nominal Memory Model 25:5

Definition block : Type := positive. alloc: mem — Z — Z — mem X block
Record mem: Type := { free : mem — block > Z — Z — |mem|
mem_contents: block — Z — memval; load : mem — chunk — block — Z — |val]
nextblock: block; }. store: mem — chunk — block — Z — val — |[mem]
(a) Blocks and Memory States (b) Memory Operations

Fig. 1. Definitions for the Block-Based Memory Model

with the value 1—denotes the id of the next block to be allocated and will be increased after each
allocation. A valid memory block is a finite array of bytes with a lower and upper bound. A memory
state (denoted by m) consists of a mapping from addresses to in-memory values in valid blocks and
the value of nextblock. Its type mem is defined in Fig. 1a where block is the type of block ids, Z is
the type of integers, memval is the type of in-memory values, and m.(mem_contents) bo =v iff bisa
valid block in m and v is the in-memory value at the o-th memory cell (byte) of b.

A pointer or a memory address is a pair (b, 0) where b is the memory block it points to and o
is an index to a memory cell in block b (also called an offset). Pointer arithmetic is represented
by adjustments to offsets. For example, (b, 0) + n is defined as (b, o + n). This simple block-based
abstraction already provides basic support for memory isolation, in the sense that given a pointer
to block b; we can never reach b, by performing pointer arithmetic if b; # b,.

The main operations over memory are depicted in Fig. 1b where val is the type of regular values
defined as follows:

Inductive val := Vundef | Vint isy | Vlong ies | Vsingle f32 | Vfloat foa | Vptr (b, 0).

Here, Vundef represents undefined values, Vptr (b, 0) represents a pointer (b, 0), and the remaining
forms denote 32- and 64-bit integer and floating point values. chunk is the type of memory chunks
containing information necessary for performing conversion between in-memory values and regular
values. Note that the option type | | is used to describe the possible failure of some operations. Given
a memory state m, a lower bound ! and a higher bound h, alloc m I h returns a new block whose
id is m.(nextblock) and whose valid offsets are in the range of [/, h). It also returns a new memory
state where nextblock is increased by 1 and the newly allocated memory cells are initialized with
undefined values. Note that alloc always succeeds because the memory space has infinitely many
blocks. The free operation frees memory cells in a certain range. Given m, k b and o, load mk b o
loads a value starting from the address (b, 0) such that the size and type of value are determined by
k. Conversely, store stores a value into a certain location in memory. Note that we have omitted a
discussion of permissions in the block-based memory as they are mostly orthogonal to this research.

2.2 Memory Injections

A main task of compilers is to transform abstract data structures (e.g., stacks) for describing the
semantics of the high-level source languages into concrete data structures for the low-level target
languages. These transformations may drastically change the structure of memory.

CompCert introduces injections to capture such changes. An injection j is a partial function of
type block — |block x Z|, such that j(b) = [(b, 0)] iff a block b is inserted into block b” at offset o
by the transformation. If j(b) = @ (we use 0 to represent the None constructor), then b is removed
from the memory after the transformation.

Given an injection function j, we can relate the source and target values via a binary relation
~'—>;’ called a value injection. v, '—>;’ vy trivially holds iff vy is Vundef, indicating that undefined
values can be relaxed to more concrete values by compiler transformations. If v; = Vptr (b,0),

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:6 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

optimizations

C Clight |------ RTL |------ Mach Asm

Fig. 2. Verified Compilation Chain of CompCert

then v; f—>§’ vy holds iff j(b) = [(b',0")] and vz =Vptr (b’,0+0’), i.e., the original address is
shifted by injection j accordingly. If v; is neither undefined nor a pointer, then v; <7 0, holds
iff 1 = v,. A similar injection relation '—>; is defined for in-memory values of which we elide a
discussion. The in-memory value injection is lifted to an injection relation <" between memory
states (i.e., memory injections). Roughly speaking, m; <" mj holds if 1) given any two valid
addresses of m; and m, related by j, the in-memory values at these addresses are related by
%j., and 2) certain well-formedness conditions are satisfied, including that invalid blocks in m;
must be mapped to 0 and if j(b) = [(b’,0")] then b’ must be valid in my. A memory extension
is a specialized memory injection with an identity injection function (i.e., j(b) = [(b,0)]) and
my.(nextblock) = ma.(nextblock). Memory extensions are used to describe transformations that do
not change the structure of memory.

2.3 Correctness of Compilation in CompCert

CompCert takes C modules (parsed from .c files) as input, transforms them through a sequence
of compiler passes (about 20 of them) to an architecture-independent language called Mach, from
which it finally generates assembly programs on a pre-configured architecture, as depicted in Fig. 2.

Much of the success of CompCert comes from the block-based memory model used uniformly
across the whole compilation and a uniform interface for describing the semantics of all of its
languages. In any language £ of CompCert, a program P is represented as a list of global definitions
associated with its own identifiers and a main function as its entry point:

Record program (F V: Type) := { prog_defs: list (ident « globdef F V); prog_main: ident }.

These identifiers are also represented by using positive numbers and have a global scope. To
describe the semantics of P, a global environment G(P) of type genv is generated which provides
two pieces of information: a mapping from definition identifiers to memory blocks holding such
definitions and a mapping from the ids of these blocks to actual definitions. By using G(P), the
semantics of P is described as a small-step transition system labeled with traces of events, given by
the following initialization and step relations where state is the type of abstract machine states:

initial_state: mem X state — Prop step: (mem X state) — trace — (mem X state) — Prop.

The memory is initialized by allocating one block for every global definition. As the execution
goes on, more blocks will be allocated (e.g., stack blocks created by function calls). We denote this
semantics as [[P]]» and write [[P]] for [[P]] x when the language is known from the context.

Given a compiler pass C, its correctness property is formulated as follows where > is a forward
simulation relation between the semantics of the source and target programs:

VPP.C(P)=LP'| = [[P']] = [[P]l.
That is, if P’ is the result of compiling P by C, then any transitions performed by P can be simulated
by corresponding ones by P’. To prove this theorem, one needs to establish an invariant between

the source and target program states. A critical component of this invariant is a memory injection
between the source and target memory states that should hold throughout the entire execution.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:7

Clight Clight | | C#minor Cminor | | Linear Mach
| | | : e
LU 3 IECHNNC o osb B
=l =
I .
> | | | |
(a) SimplLocals (b) Cminorgen (c) Stacking

Fig. 3. Compiler Passes Transforming Stack Frames in CompCert

The complete CompCert compiler Ceompcert: C.program — |Asm.program] is a transitive composi-
tion of its passes Cy, . . ., C,. By composing the forward simulation proofs of C;, we get

VP Py, Ccompcert (Ps) = LPtJ == [[Pt]] = [[Ps]]~

In the end, we would like know if all the behaviors of executable target code are exhibited at the
source level. For this, one can flip the forward simulation into a backward simulation by exploiting
the facts that the target semantics of CompCert is determinate and the source one is receptive [Sevcik
et al. 2013]. The final correctness theorem of CompCert is stated as follows:

THEOREM 2.1 (CORRECTNESS OF COMPCERT).

VP; Py, Ccompcert (Ps) = LPtJ Sl [[Pt]] =< [[Ps]]~

2.4 Problems

Having discussed the block-based memory model in detail, we can see that it indeed has the
inflexibilities described in Sec. 1.1. Now, we elaborate on the problems they cause in verified
compilation of whole programs and open programs.

2.4.1 Verifying Transformation on Partial Memory. The vanilla CompCert only supports simulation
proofs for whole programs. Even in this setting, one compiler pass only operates on certain part of
memory and has local effects. More specifically, excluding advanced optimizations such as tail-call
elimination and inlining, only four of CompCert’s passes change the memory structure, of which
three change the stack frame by frame, as depicted in Fig. 3. Those are:

e SimplLocals. In a source language called Clight, a stack frame consists of a collection of
blocks, one for each local variable in the associating function. For example, the left column
of Fig. 3 shows a stack frame containing three blocks (b;, b, and bs3) for three local variables
in some function. The SimplLocals pass transforms Clight programs by turning scalar local
variables whose address are not taken into temporary variables, effectively removing their
blocks from the stack frame. For example, in Fig. 3 the local variable associated with bs is
turned into a temporary one. The remaining local variables are called stack-allocated variables.

e Cminorgen. This pass transforms programs in C#minor (a variant of Clight) into programs
in an intermediate language called Cminor. The stack-allocated variables are merged into a
single block called the stack-allocated data (sb in Fig. 3). From this point on, a stack frame
only contains a single block.

e Stacking. This pass lays out the concrete stack frame containing function parameters, return
addresses, spilled registers, etc. (the gray areas in Fig. 3). The stack-allocated data is inserted
into the middle of the concrete frame.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:8 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

gb1 gb, gbs gbs gbs gbi gb; gbg
Global Defs. Blocks . .
,,,,,,,,,,,,,,,,,,,, :> e e -
Stack Blocks @000-00 oo-ooo
sby sby sb] sb,

Fig. 4. Transformation of Memory by Unusedglob

The remaining pass transforming memory is called Unusedglob. It drops static global definitions
which are unused by the program. Fig. 4 shows an example where the blocks for the second and
fourth global definitions (gb, and gb4) are dropped by Unusedglob (where the numbers represent
block ids). For this pass, the stack memory is completely untouched.

When proving the correctness of the above passes, one would expect that we could exploit the
locality of memory transformations to construct intuitive proofs. For example, for SimplLocals,
Cminorgen and Stacking, one would like to exploit the facts that 1) blocks for global definitions
are unchanged, and 2) the changes to individual stack frames cannot interfere with each other.
However, it is impossible to formalize these facts directly because we can neither distinguish blocks
for global definitions from blocks in stack frames, nor tell the differences between blocks in different
stack frames: they are all indexed by positive numbers. To bypass this problem, CompCert relies on
extra invariants for classifying block ids into different ranges of positive numbers. Furthermore,
it introduces general memory injections for relating source and target blocks, essentially lifting
reasoning about local stack transformations to a global level. As we can see, the above problems
are exactly caused by Inflexibility 1 introduced in Sec. 1.1.

For Unusedglob, because it only drops certain blocks for global definitions, one would expect
that its memory invariant uses a partial identity mapping. However, in contrast to this intuition,
the memory invariant for Unusedglob cannot be anything less than a general memory injection.
To understand this, note that blocks for global definitions are allocated before any stack blocks.
Because valid block ids must be consecutive integers starting from 1, dropping even a single global
definition will result in shifting of all the block ids allocated after. This situation is illustrated by
the example in Fig. 4 where the removal of gb, and gb, causes the ids of gb; and gbs to change
from 3 to 2 and 5 to 3, respectively. Moreover, all the stack block ids are shifted by —2. In the end, a
non-trivial memory injection is required to connect the source and target blocks. With this injection
the correctness proof of Unusedglob involves complicated reasoning over stack memory even when
the stack is not touched at all. These problems are exactly caused by Inflexibility 2 in Sec. 1.1.

2.4.2 Verifying Transformations on Open Programs. Verification techniques for open programs are
compositional only if the semantics of open programs are compatible with each other. However,
the existence of a global nextblock makes this compatibility very difficult to establish, even when
different open programs operate on completely separate memory regions.

We take the compilation and linking of Certified Concurrent Abstraction Layers (CCAL) as an
example to illustrate the above problem [Gu et al. 2018]. A concurrent certified abstraction layer L
consists of shared and private memory states, abstract states, and a set of possibly shared primitive
operations (like external functions). The semantics of a language (e.g., C or assembly) built on top
of L forms an abstract machine in which concurrent programs can be formally described. A CCAL
object is a formally verified open program built on top of some layer L. A multi-threaded program
is developed by abstracting individual threads into CCAL objects. These objects are then compiled
by an extension of CompCert called Thread-Safe CompCertX into assembly code. Finally, CCAL
objects need to be linked together to form a complete program.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:9

Thread 1 Thread 2 Threads {1, 2}

Thread Linking

-

a8

Fig. 5. Linking of Multiple Stacks into a Single Stack in CCAL

For the above linking to be possible, the views of memory of CCAL objects must be compatible
with each other. Achieving this compatibility is a non-trivial task. To understand this, observe
that a new stack block is allocated for every function call in CompCert’s assembly. To link threads
together, it is necessary for each thread to have the same sequences of stack blocks and nextblock,
meanwhile preventing one thread from accessing the private stack memory of the others.

To solve the above problem, the authors of Thread-Safe CompCertX modify the assembly
semantics so that when a thread yields to its context, a sequence of dummy stack blocks is allocated
to increase nextblock in accordance with the actual allocation of stack blocks by the context.
Moreover, to avoid any interference between memory operations on the stacks in different threads,
the dummy blocks do not carry any read or write permission—they are “dead” memory cells from
the perspective of the focused thread. With those devices, it is possible to “thread” the private stack
frames of each thread into a single stack. As an example, the linking of stacks for two threads is
depicted in Fig. 5. Here, the call to the yield primitive from thread 1 to 2 in the function g allocates
two dummy blocks (marked with diagonal lines) for the corresponding execution in thread 2.
Accesses to these dummy blocks are invalid in thread 1.

The solution above has two problems. First, intuitively, each thread should have it own private
stack: the context should not interfere with operations on this stack. Contrary to this assumption, the
growth of dummy frames depends on how contextual threads change nextblock. This introduces
unnecessary complication to verification of compilation. Second, in the linked program, stack
frames for different threads are interleaved with each other. This makes the semantics of linked
programs much more complex. It is also extremely difficult to further verify their compilation to
actual machine code where each thread should have its own contiguous and private stack. As we
can see, the above problems are exactly caused by Inflexibility 2 and 3 in Sec. 1.1.

2.5 Our Approach

As we have discussed in the introduction, we shall solve the above problems by getting rid of the
inflexibilites of the block-based memory model through a generalization based on nominal tech-
niques. We shall present this nominal memory model and the development of Nominal CompCert
in Sec. 3. After that, we demonstrate how the two kinds of problems discussed above can be solved
by further extending Nominal CompCert in Sec. 4 and Sec. 5.

3 NOMINAL MEMORY MODEL AND VERIFIED COMPILATION

3.1 Key ldeas

Nominal techniques [Gabbay and Pitts 2002; Pitts 2016] provide a mathematical foundation for
managing named resources. In this setting, any countably infinite set A can represent a set of avail-
able names. Elements in these sets are called atomic names (or simply names in short). Dependency

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:10 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

Module Type BLOCK.

Parameter block : Type.

Parameter eq_block: ¥V x y: block, {x = y} + {x # y}.
End BLOCK.

Module Type SUP.

Parameter sup: Type.

(*x Operations x)

Parameter sup_empty : sup. (* Empty support *)

Parameter fresh_block : sup — block. (x Generation of fresh blocks *)

Parameter sup_incr : sup — sup. (* Increment of supports x)

Parameter sup_in: block — sup — Prop. (* Check validity of block ids x)

(x* Properties *)

Parameter sup_dec:V b s, {sup_in b s} + {=sup_in b s}.

Parameter empty_in: V b, =sup_in b sup_empty.

Parameter freshness: Vs, —sup_in (fresh_block s) s.

Parameter sup_incr_in:VY as,sup_in a (sup_incr s) < a = (fresh_block s) V sup_in as.
End SUP.

Fig. 6. Interfaces of the Nominal Memory Model

of objects upon names is captured by the notions of permutations and supports. A permutation 7 is
a bijection from A to itself that only renames a finite subset of names in A. Given a set of objects X
and some x € X, A C A supports x (or A is a support of x) iff, for any permutation 7 on A that is
an identity mapping for names in A, we have 7 - x = x where _- _ denotes the “application” (known
as an action) of 7 to the object x. This effectively means that x is independent of any name outside
of A. Only objects that can be supported by a finite set of names are of interest to us. A binary
relation called freshness makes the independence relation concrete. A name a € A is fresh w.r.t. x
(written as a#x) iff x is supported by some finite set A C A and a ¢ A.

The above concepts can be used to characterize the block-based memory model. By taking
memory states as objects containing names, we adopt the following analogies:

e Block ids represent names that memory states depend upon;
e Given a memory state m, the set of valid blocks in m represents a support of m;
e Given a memory state m, its nextblock is fresh w.r.t. m.

Note that the set of valid blocks is always finite. To some extent, the existing memory operations in

CompCert already exploit the properties of atomic names and supports. For example, alloc always

succeeds because there is always an infinite amount of ids outside the set of valid blocks.
However, the block-based memory also makes rigid assumptions about names and supports:

e Block ids are fixed to positive numbers;
e For any memory state m whose nextblock is n, its support must be the fixed set of consecutive
numbers {1,...,n—1};
o For any memory state m whose nextblock is n, its fresh block must be assigned with the id n.
As we have seen in Sec. 2.4, these rigid assumptions cause serious problems in compiler verification.
We shall remove those assumptions by generalizing the block-based memory model to work with
any valid atomic names, supports and freshness relations.
Note that, since memory injection already provides a notion of permutation, it is natural to
consider actions over memory states and permutation or swapping of names (block ids). We do
not expand on this idea in the rest of this paper, because we will only consider programs with

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:11

Module Block < : BLOCK.
Definition block := positive. Definition eq_block := peq.
End Block.

Module Sup < : SUP.

Definition sup := list block. Definition sup_in (b: block) (s: sup) : Prop:= b €s.
Definition sup_empty : sup := []. Definition fresh_block (s: sup) := (find_max_pos s) + 1.
Definition sup_incr (s :sup):= (fresh_block s):s.

End Sup.

Fig. 7. Block-based Memory Model as an Instance

fixed assignment of block ids. Permutations will be needed to avoid clashing of names for verifying
compositional compilation in general, which we will investigate in the future (more on this in Sec. 8).

3.2 The Nominal Memory Model

Following the above ideas, we generalize the block-based memory model into the nominal memory
model by introducing an abstraction of block ids and supports as module types, as depicted in Fig. 6.
By the definition of BLOCK, block ids are names with decidable equality. By the definition of SUP, a
support type must be accompanied by four kinds of operations: checking the membership of blocks
in supports (sup_in), creating an empty support (sup_empty), generating fresh blocks (fresh_block)
and increasing supports with new blocks (sup_incr). Furthermore, those operations must satisfy
some well-formedness properties. Note that after the above abstraction, the rigid assumptions for
block-based memory model are removed.

We also note that the above generalization does not exactly match with the standard definitions
in nominal techniques. For example, BLOCK does not enforce that block ids are from a countably
infinite set. Instead, the freshness property guarantees that any block fresh w.r.t a support s must
not be already in s. Together with the totality of fresh_block, it implies the existence of an infinite
number of block ids. We also define supports to be any type that has the interface of SUP, instead of
a finite set of block ids. This generalization allows us to instantiate sup with complex data structures
for formalizing memory space in fine-grained styles. We shall exploit this feature extensively
in Sec. 4 and Sec. 5.

To make use of the above interfaces, we instantiate block ids and supports as follows:

Module Block < : BLOCK. ... End Block. Module Sup < : SUP. ... End Sup.

Then the original block type is instantiated with Block.block. Moreover, the memory state carries
a support instead of nextblock:

Record mem: Type := { mem_contents: block — Z — memval; support: Sup.sup;}.

The memory operations are adapted accordingly. For example, checking of valid blocks is done by
using sup_in instead of comparing with nextblock:

Definition valid_block (m:mem) (b:block) := b < m.(nextblock). (* 0ld x)
Definition valid_block (m:mem) (b:block) := sup_in b m.(support). (* New *)

For another example, alloc now invokes fresh_block to allocate a new block instead of consulting
nextblock. The properties of all memory operations can be easily reestablished because they are
already ignorant of particular instantiations of block ids and supports.

Finally, the block-based memory model becomes a special case of the nominal memory model,
as depicted in Fig. 7 where find_max_pos finds the maximal positive number in a list. We shall see
more complex memory models that exploit the full power of the above abstractions later.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:12 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

3.3 Nominal CompCert

We apply the nominal memory model to the full compilation chain of CompCert to get Nominal
CompCert. First, we need to update the semantics of every language of CompCert. This is automati-
cally achieved by replacing the old memory operations with the new ones. We use [[P]|" to denote
the new semantics of a program P. Second, we need to update the simulation proofs. Because the
generalization of block ids and supports is mostly orthogonal to the simulation proofs in CompCert,
the changes are minimal. The only slightly complicated changes are the results of losing the ability
to identify valid blocks via comparison of positive numbers. For example, in the proof of the
inlining optimization, the invariant valid_block m sp asserts that the stack block sp is valid. It also
implies any block in m with id less than sp is also valid. After the generalization, we must make
this fact explicit. This is achieved by breaking the above invariant into two: sp = fresh_block sps
and {sp} U sps € m.(support). Here, sps denotes the blocks allocated before sp and the second new
invariant asserts their validity.

By composing the updated simulation proofs, we get the final correctness theorem of Nominal
CompCert, which is almost identical to Theorem. 2.1 except that the semantics of languages are
based on the nominal memory model:

THEOREM 3.1 (CORRECTNESS OF NOMINAL COMPCERT).
VP P;, Ccompcert(Ps) = I.PtJ S [[Pt]]N =< [[Ps]]N-

We note that Nominal CompCert is a lightweight extension to CompCert. The changes made to it
amount to about 1% of the code (about 1.4k lines) of CompCert 3.8. A majority of these changes are
trivial substitutions of nextblock with supports, except for about 200 lines of code for handling the
complication resulting from the inability to compare block ids mentioned before. We also introduce
about 200 lines of new code for implementing the nominal memory model as described in Sec. 3.2.
A more detailed evaluation of Nominal CompCert can be found in Sec. 6.1.

3.4 Instantiation of Nominal CompCert

Nominal CompCert provides a skeleton for developing further extensions to CompCert that exploit
the full power of nominal memory model. In these extensions, block ids and supports will be
instantiated with more sophisticated structures. However, there is zero immediate overhead to
introduce such instantiations because the entire proof of Nominal CompCert is ignorant of and
holds for any instances of block ids and supports that meet their interfaces. Only after the user
introduces mechanisms for exploiting the internal structures of such instances will any actual
overhead be incurred. Even in those cases, the changes are built on well-defined interfaces and
confined to local definitions and proofs.

As a side effect of CompCert’s uniform implementation of memory model, the current realization
of Nominal CompCert only allows one global instance of block ids and supports shared by the
whole compiler. Therefore, when instantiating Nominal CompCert, we must design the instances of
block ids and supports carefully so that they are rich enough for supporting the desired verification
techniques while remain compatible with the abstract interfaces of Nominal CompCert.

With the above benefits and technical limitation in mind, we shall present a series of instantiations
of Nominal CompCert in Sec. 4 and Sec. 5 that solve the problems in Sec. 2.4. These instantiations are
developed incrementally such that the latter ones contain instances of block ids and supports with
richer structures that subsume the former. In this sense, those instantiations are compatible with
each other, with the final one (i.e., Multi-Stack CompCert) being most rich in features. Moreover,
because they are fully compatible with the interfaces of Nominal CompCert, we can freely decide
whether to leave the proofs for individual passes unchanged or to improve them by exploiting the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:13

internal structures of block ids and supports. In other words, the benefits of instantiating block ids
and supports can be exploited for different compiler passes on an as-needed basis. We shall witness
this in detail in Sec. 4 and Sec. 5.

4 VERIFICATION OF TRANSFORMATIONS ON PARTIAL MEMORY

In this section, we discuss the application of our nominal memory model to verified compilation of
whole programs. We shall first introduce an enriched instantiation of this model where the whole
memory space is divided into memory regions with well-defined structures and clear roles. Based
on this enriched memory model, we get a complete extension of Nominal CompCert. With this
extension, we develop an effective solution to the first problem in Sec. 2.4, i.e., how to construct
intuitive correctness proofs for compiler passes that operate on partial memory.

4.1 Key Ideas

To understand how intuitive correctness proofs for memory transformations may be obtained,
we observe that transformations on memory in CompCert (excluding optimization passes) all
operate on isolated local memory regions (see Sec. 2.4.1). Among them, Unusedglob only changes
the memory for global definitions, leaving the stack untouched. On the other hand, SimplLocals,
Cminorgen and Stacking change the stack frame by frame, leaving the global memory untouched.
Therefore, if we organize the individual local memory regions into certain high-level structure, we
can decompose a memory transformation into two parts: a transformation on local memory regions
and another one on the high-level structure. Furthermore, if the high-level structure is stable under
compilation, then only the local memory transformation needs to be explicitly captured in the
proof invariant for memory states (i.e., memory injections). Because injections are central to the
correctness proofs of memory transformations, this may make proofs much easier to understand.

Based on the above ideas, we divide the memory space into global memory for global variables
and functions and stack memory for data allocated on the stack. We then organize each memory
region into a high-level structure that is stable under compilation. This is easy for global memory:
we only need to assign block ids to global definitions that are independent of compilation (e.g.,
their global names). For stack memory, we need to find a structure that will not be modified by any
of the transformations mentioned previously, with which we can uniquely identify every stack
memory block. Because in program execution the stack is managed by function calls and returns
which are usually organized into a tree structure known as the call tree or call graph, a natural
representation of the stack structure would be a stack tree that mirrors the call tree, except that
its nodes are stack frames allocated by corresponding function calls. Because the above memory
transformations do not change the order of function calls and returns at all, the stack tree remains
stable under compilation. Finally, all the memory blocks allocated on the stack are classified and
grouped into corresponding stack frames. With the stack tree, we will be able to decompose a
transformation on the entire stack into local transformations on individual stack frames.

As we shall see below, we can implement the above structures of memory space by instantiating
blocks and supports with rich data structures. With these instantiations, we are able to explicitly
define the memory injections as concrete functions that precisely capture all the details of memory
transformations. In contrast to the original proofs in CompCert, where memory injections are
“black boxes” given by propositions asserting the existence of some memory injections, our concrete
definitions of memory injections provide transparent formalization of memory transformations.
This in turn leads to intuitive proofs of their correctness, as we shall see shortly in detail.

Note that we have not given a structure to the heap in this work. Instead of explicitly modeling
heap allocation and deallocation (i.e., malloc and free functions) in the memory model by using
the alloc and free operations in CompCert, our work and many others based on CompCert

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:14 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

Definition fid: Type:= |ident]. Definition path: Type:= list nat.
Module Block < : BLOCK.
Inductive block :=
| Stack : fid — path — positive — block
| Global : ident — block.

End Block.

Fig. 8. Definition of Block IDs for Structured Memory Space

(including Stack-Aware CompCert [Wang et al. 2019], Verified Software Toolchain [Appel 2011],
and CertiKOS [Gu et al. 2015, 2018]) treat malloc and free as library functions operating over
a finite heap space represented by a global variable block. This is because alloc (which always
succeeds) in CompCert’s memory model does not capture the possibility of allocation failures
resulting from the finiteness of heap space. An important side effect is that, because all the heap
variables reside in a finite and linear space in our model, the semantics of malloc becomes different
in certain aspects. For example, the following permutation of two mallocs:

p = malloc(2); q = malloc(4); = q = malloc(4); p = malloc(2);

is valid in CompCert because malloc never fails and p and q always reside in isolated blocks. In our
new model, if the finite heap only have 4 bytes free, then for the left code fragment, p = malloc(2)
would succeed but q = malloc(4) would fail, but after the permutation, g = malloc(4) would succeed
and p = malloc(2) would fail. Also, in our new model, p and q are in the same block and q < p has
defined semantics which is not true in CompCert’s heap model.

Another side effect of our treatment is that, after the initialization of global definitions, no new
memory block will be ever allocated except for blocks on the stack. This will actually be useful
when we discuss the implementation of supports later.

Finally, note that the above ideas are also applicable to advanced optimizations passes such as
inlining and tailcall recognition, which are the only two other passes in CompCert that transform
memory structures. However, because they change the structures of stack trees, more sophisticated
instances for blocks and supports will be needed for realizing these ideas. Therefore, we have left
the proofs for inlining and tailcall recognition as they are. This demonstrates that the benefits of
nominal memory model can indeed be exploited as needed, as we have commented in Sec. 3.4. We
will discuss how to improve the proofs for inlining and tailcall recognition in the future in Sec. 8.

4.2 Nominal Memory Model with Structured Memory Space

In this section, we introduce the instantiation of nominal memory model for formalizing the
structured memory space proposed in Sec. 4.1. We first introduce the formal definitions of block ids
and supports, which are driven by the division of memory space into global memory and a stack
tree. In particular, a stack tree data structure is designed to implement the supports. With these
formal definitions, we then define the operations for this new memory model and prove necessary
properties of these operations.

4.2.1 Formalization of Block IDs. We define the type of block ids in Fig. 8. As expected, this
definition captures the fact that a block is either in the global memory or on the stack. A block for
the global definition with the unique name id is denoted by Global id. As discussed in Sec. 4.1, a
block on the stack must reside in some stack frame which is in turn on the stack tree. We note that
this stack frame is allocated by certain function call and is located at a unique node on the stack
tree. If every stack block in the same stack frame has a distinct “local” block id, we can uniquely
identify a stack block by using the position of its associate stack frame on the stack tree together

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:15

extern void g(intx, int«);

void k() {...}

void h(int+ w) {...}

void f(int« e, intx f, int« g) {
int x=+e, y=+f, z=+g;

1

g(&x,&y);

), 00 OO 2606

}

int main() { / y 1
int a,b,c; oot
\ \g h
k()3 L= !

f(&a,&b,&c);
}

Local blockids:a=3,b=7,c=9,x=2,y=6,z=9,...
(a) The Program (b) The Stack Tree

Fig. 9. An Example of Stack Trees

with its local block id. Here, the unique position is represented as a path from the root of stack
tree (corresponding to the entry function) to the stack frame of interest. In particular, a path p is a
list [i1, ip, .. ., in] denoting a sequence of indices to child nodes with which the stack frame can be
reached from the root, i.e., the frame with path p can be reached by first visiting the i;-th child of
the root frame, then the i,-th child of it, and so on until p is traversed.

The Stack constructor formalize the above ideas. For any stack block, if the path to its associating
frame is p and its local id is b, it is denoted by Stack fid p b. The extra argument fid identifies whether
the stack block is allocated by an internal function call or an external one. This is necessary for
defining memory injections for contextual memory which we shall explain later. More specifically,
when fid = | id], the block is allocated by a call to the internal function id. Otherwise, it is allocated
by some external function call.

As an example, Fig. 9 displays a program and a stack tree generated by its execution when the
program counter is in h. Here, the rectangles represent stack frames, besides which the alphabetic
names denote the internal functions that are invoked to create the frames; the rectangles with dashed
borders represent frames allocated by external calls; the squares with rounded corners represent
stack blocks, in which the numbers denote their local blocks ids; finally, the numbers besides arrows
denote the indices to child nodes. With this figure we give some examples of formalized ids for
stack blocks: the last block in f denotes its local variable z and has the id Stack | f] [2] 9; the first
child of f is allocated externally by a call g and its second block has the id Stack 0 [2,0] 4; finally,
the only block in h has the id Stack |h] [2,1] 1.

4.2.2 Formalization of Stack Trees. A stack tree provides a tree structure to stack memory; it also
provides a stack structure for the allocation and deallocation of new stack blocks. The latter is
needed for the implementation of supports (e.g., in the implementation of fresh_block). Therefore,
the formal definition of the data structure for stack trees should look like a tree and a stack at the
same time. This is achieved by separating the list of active frames which are on the right-most
path of the stack tree from inactive ones (or “dead” frames). The active frames form a stack while
the inactive frames form sub-trees that are children of active frames. This data structure is named
stree and formally defined as follows:

Inductive stree: Type :=
| Node: fid — list positive — list stree — [stree| — stree.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:16 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

A term of the form Node fid bs dt at represents a node in the stack tree (i.e., a stack frame) that is
either allocated by the function named id when fid = |id] or allocated by external functions when
fid = 0. The list bs contains stack blocks allocated by the function that created the stack frame. The
child nodes of this stack frame are in dt and at, where dt denotes a list of dead child trees and at
denotes the only child frame that is still active when it is not (. By the definition of stree, we can
traverse the stack of active frames by starting from the root node and repeatedly visit the argument
at until at = 0, at which point we have reached the top of the stack. The remaining frames in this
tree are all dead. An empty tree (empty_stree) is defined as Node 0 [] [] 0.

As an example, consider the tree in Fig. 9 again. Its rightmost path contains the list active frames
allocated by main, f and h, and the remaining frames are all dead ones. It is formalized as t below
where tj and tk denotes its first and second children:

tj= .. tk:= .. tg:=Node 0 [1,4] [] 0 th:=Node |h] [1][] @

tf := Node |f] [2,6,9] [tg] [th] t := Node [main] [3,7,9] [t], tk] [tf]

Note that, although we have only shown an example of stack trees with externally allocated frames
as leaves nodes, the non-leaf occurrences of these frames are allowed by the definition of stree.
Because we do not deal with call back functions in this work, we elide a discussion of such examples.

We then formalize the operations over stree that are necessary for defining supports, including:

® next_stree: stree — ident — stree « path. It is for allocating a new frame. Given a stack
tree ¢ and the name f of the allocating function, next_stree t f pushes a new active frame
onto t and returns the updated tree together with the path to the new frame.

e next_block_stree : stree — fid« positive » path+ stree. It is for allocating a new block in
the newest active frame F. Given a stack tree ¢, it returns the function name corresponding
to F, a new block id that is locally fresh in F, the path to F, and the updated tree.

e return_stree : stree — |stree * path].Itis for deallocating the newest active frame F, mean-
ing that F is moved to the list of dead child trees of its parent. It returns 0 if F does not have
a parent. Otherwise, it returns the path to F and the updated tree.

e stree_in: fid — path — positive — stree — Prop. It is for checking the existence of blocks
in a stack tree. Given a tree ¢, an optional name fid, a path p and a block b, stree_in fid p b ¢
holds when the frame on the path p in t is associated with the name fid and contains b.

Note that, by definition next_block_stree always succeeds, implying the existence of an infinite
supply of stack block ids. This matches the nominal property of block ids in our memory model.

4.2.3 Formalization of Supports. The type of supports and its operations are defined in Fig. 10. By
definition, a support consists of a stack tree together with a list of names for valid global definitions.
Because of the separation of memory into stack and global regions, we introduce four functions
for managing supports: sup_incr_glob: ident — sup — sup for managing global definitions, and
sup_incr_frame: sup — id — sup, sup_return_frame: sup — |sup], and sup_incr_block: sup — sup
for managing the stack. The last three operations are implemented by using the corresponding
operations over stree. Specifically, fresh_block and sup_incr_block make use of next_block_stree
to generate a fresh block in the newest active frame and to update the stack tree, respectively,
sup_incr_frame makes use of next_stree to allocate new frames, and sup_return_frame makes use
of return_stree to convert active frames into dead ones. Note that sup_incr_block also implements
sup_incr because it provides the only way to allocate new blocks after initialization.

4.2.4 Formalization of Memory Operations. With the new definition of supports, we update the
memory operations accordingly. The key change is to introduce four new operations that operate
on finer-grained memory regions. They are listed below, where the definition of memory states mem
stays the same as described in Sec. 3.2:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:17

Module Sup < : SUP.
Record sup: Type := mksup{ stack: stree; global: list ident; }.

Definition sup_empty : sup := Definition sup_incr_glob (i: ident) (s:sup) :=
mksup empty_stree []. mksup (stack s) (i:: s.(global)).
Definition sup_in (b: block) (s:sup): Prop := Definition sup_incr_frame (s:sup) (id:ident): sup :=
match b with let (¢, p) := next_stree s.(stack) id in
| Stack fidpi= mksup ¢’ s.(global).
stree_in fid p i s.(stack)
| Global id = id € s.(global) Definition sup_return_frame (s:sup): [sup] :=
end. match return_stree s.(stack) with
| L(#,p)] = [mksup ¢’ s.(global) |
Definition fresh_block (s:sup): block := |[0=>0
match next_block_stree s.(stack) with end.
| (f,i,p,_) = Stack fpi
end. Definition sup_incr_block (s:sup) :=

let (_,#') := next_block_stree s.(stack) in
mksup ¢’ s.(global).
Definition sup_incr := sup_incr_block.
End Sup.

Fig. 10. Definition of Supports for Structured Memory Space

e alloc_glob: ident — mem — Z — Z — mem « block. alloc_glob id m I h allocates a new block
with range [, h) in m for the global definition id by invoking sup_incr_glob. It returns
the updated memory and the block Global id.

e alloc_frame: mem — ident — mem = path. alloc_frame m id allocates a new active frame in m
by invoking sup_incr_frame and returns the path to this new frame.

e return_frame: mem — |mem]. return_frame m deallocates the newest active frame by invoking
sup_return_frame and returns the updated state.

e alloc_block: mem — Z — Z — mem = block. alloc_block m I h allocates a fresh block with range
[1, h) on the newest active frame of m by invoking sup_incr_block. This block’s id is obtained
by calling fresh_block on m.(support). The updated memory together with this id are returned.

The properties about the new and updated memory operations are proved by following the con-
ventional pattern; we elide a discussion of these changes.

4.3 Nominal CompCert with Structured Memory Space

Even with the previous changes, Theorem. 3.1 still holds as its proof is compatible with any
particular instances of BLOCK and SUP (as we have pointed out in Sec. 3.4). However, we would like
to further exploit the enriched internal structure of the new memory model to improve the proofs
for partial memory transformations. For this, we first need to update the semantics of Nominal
CompCert’s languages. This is achieved as follows:

e Make the global environments directly use identifiers of global definitions instead of block
ids, because they are the same in the new memory model. Also, make use of alloc_glob for
initialization of global memory instead of alloc.

e At every function call and return, invoke alloc_frame and return_frame, respectively.

e Replace all the invocations of alloc for allocating stack blocks with alloc_block.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:18 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

Variable ge: genv. Definition check_block (s:sup) (b:block): bool :=
match b with
Definition struct_meminj (s:sup) (b:block) := | Global id = match (find_symbol ge id) with
if check_block s b | 0 = false| |_] = trueend
then | (b,0)] else 0. | Stack _ _ _ = sup_dec b s end.

Fig. 11. Structural Injection Function for Unusedglob

With the above changes, we reprove the full compilation chain of Nominal CompCert correct by
establishing simulations between the newly introduced operations under compilation. This requires
a few predictable and local modifications to the correctness proof for each pass, including the
advanced optimizations such as inlining and tailcall recognition. This indicates that our extension
is still very compatible with the abstraction provided by Nominal CompCert. In the end, we got a
correctness theorem similar to Theorem. 3.1.

4.4 Intuitive Proofs for Partial Memory Transformations

With the instantiated Nominal CompCert in place, we are ready to show how to construct intuitive
correctness proofs for the transformations on partial memory mentioned in Sec. 2.4.1. We shall
take Unusedglob as the main example to illustrate the key ideas. The proof construction for the
other passes follows a similar pattern, which we shall briefly discuss at the end of this section.

4.4.1 Structural Injection Functions. Previously, simulation proofs relying on general memory
injections assume the existence of some memory injection that captures the transformation on
memory. With our new memory model, it is now possible to explicitly define the injection function
that precisely describes the transformation on memory. This definition is composed of three pieces
of information:

o the shape of memory transformation that is statically known and independent of programs
being transformed,;

e the shape of memory transformation that is statically known but depends on programs being
transformed;

e the dynamic information depending on particular execution of programs, e.g., the support of
memory states.

We call it a structural injection function." Unlike the existential injection functions used previously,
structural injections explicitly capture the essence of memory transformations, hence enable
intuitive characterizations of these transformations. As we shall see, concrete injection functions
with the above structure can be derived for all the passes mentioned in Sec. 2.4.1.

We take Unusedglob as an example. Recall that, given a module M, it removes statically defined
global variables or functions that are never used in M. Intuitively, its memory injection should
map removed global blocks to) and any other valid blocks to themselves. The structural injection
function struct_meminj exactly captures this intuition. It is defined in Fig. 11, where ge denotes the
global environment of the target program and check_block s b checks if the source block b should
be mapped to a target block given the support s of the source program.

We explain how the definition in Fig. 11 is composed of the three pieces of information mentioned
above. First, we know the injection function is a partial identity function because Unusedglob only
drops memory blocks. This information is statically known and independent of programs being
transformed. Second, to determine whether a global block id should be mapped to the target
memory, we check if id is in the target environment ge. This information is statically known, but

1t is different from and should not be confused with structured injection in Compositional CompCert [Stewart et al. 2015].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:19

gby gba gbs gbs gbs |} sby sb, gby gby gbs gbs gbs

Source: ..' XX Source: ..

Sbl sz

e

’
’
’
4
Target:

1
by gb; gb: ' sby sb;
9%1 9% 9 : S0y 89, gb] gb;, gb: sb{ sb;
Global Blocks | Stack Blocks Global Blocks Stack Blocks
(a) The Original Injection (b) The Structural Injection
Fig. 12. Comparison of Injections for Unusedglob
Variable ge: genv. Definition unchecked_meminj (b:block) :=
match b with
Definition struct_meminj (s:sup) (b:block) := | Stack lid]pi=
if sup_decbs do 0 « find_frame_offset geidi;
then unchecked_meminj b OK | (Stack id] p 1,0)]
else 0. | — = [(b,0)]end.

Fig. 13. Structural Injection Function for Cminorgen

depends on programs resulting from the transformation. Third, to determine if a stack block b
should be mapped to a target block, we check if it is in the source support s. If not, it is an invalid
block and should be mapped to 0. This information depends on the dynamic execution of programs.

We illustrate the intuitiveness of the above structural injection by comparing it with the original
injection. A concrete example is shown in Fig. 12 where Fig. 12a depicts CompCert’s injection
for the example in Fig. 4 and Fig. 12b depicts the corresponding structural injection. As we can
see, the original injection needs to describe shifting of positive block ids because of deletion of
global definitions, while the new injection is simply a partial identity mapping (we have omitted
the concrete ids for stack blocks for simplicity).

4.4.2 Verification Based on Intuitive Proof Invariants. With structural memory injections, we are
able to improve the proofs of partial memory transformations so that they match with our intuition.

We continue with the Unusedglob example. The main complexity of the existing proof of
Unusedglob lies in reasoning about shifted global definitions and stack frames. More specifically,
the existing proof is based on an invariant of matching stack frames where each frame is associated
with a source and target “bound” for describing the ranges of matching block ids in the source and
target stack frames. The proof establishes an initial memory injection and shows it respects these
bounds. It then shows that this invariant holds as the injection evolves with the allocation and
deallocation of new stack blocks. However, since Unusedglob does not touch stack at all, we would
have not expected such complicated reasoning about stack frames in the first place.

With structural memory injections, the excessive reasoning about stack frames is no longer
needed. The invariant about stack now assumes the existence of identical stack frames w.r.t.
struct_meminj. An intuitive simulation proof for Unusedglob follows from this simplified invariant.

4.4.3 Verification of Other Transformations. The above ideas are applicable to other transformations
in a similar fashion. We take Cminorgen as an example whose structural injection function is defined
in Fig. 13. By definition, Cminorgen injects stack blocks in each frame into a single block of stack-
allocated data for the frame. Therefore, we know that block ids for global definitions are unchanged.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:20 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

Furthermore, because the structure of the stack tree is unchanged, the paths to all stack frames
remain the same after the transformation. Then, a source stack block b is injected into a block with
the same path p, but with an index 1 because there is only one block in each stack frame after the
transformation. Finally, the offset o at which the source stack block is inserted into stack allocated
data is obtained by querying the global environment ge of the source program using the function
find_frame_offset. With this structural memory injection, we are able to convert the reasoning
about the stack as a whole into that about individual stack frames. This makes the simulation proof
of Cminorgen significantly easier to understand than before. Similar observations can be made for
the remaining two transformations on the stack (i.e., SimplLocals and Stacking).

5 VERIFIED COMPILATION OF PROGRAMS WITH CONTEXTUAL MEMORY

In this section, we discuss the application of our nominal memory model to verified compilation of
programs that work with contextual memory. We achieve this by enriching the nominal memory
model with even more fine-grained structures to represent contextual memory. These developments
demonstrate an effective solution to the second problem in Sec. 2.4.

5.1 Key Ideas

The idea of contextual compilation is widely adopted in the research of verified compilation of open
programs (e.g., [Gu et al. 2018; Song et al. 2020; Wang et al. 2019]). It is based on the assumption that,
when compiling multiple open modules or threads, only one of them is compiled while the others
(the context) are fixed. The individually compiled modules or threads are then linked together at
the target level to form the whole program. We have already seen such an example in Sec. 2.4.2.

To verify contextual compilation, we need to not only keep track of how memory is transformed
by internal functions, but also do that for external functions. Since the context is fixed, the trans-
formation on contextual memory should always be described as an identity mapping from source
to target memory blocks, regardless of how complicated the memory transformation is for internal
executions. However, this seemingly simple task is extremely difficult to complete in the original
CompCert because it lacks the ability to distinguish memory blocks allocated by internal functions
from those by external ones.

We argue that the fine-grained representation of block ids together with structural memory
injections provide an elegant solution to contextual compilation of open programs and threads. Let
us first take a look at contextual compilation of open programs worked on by a single thread. Recall
that we have assumed that the whole memory space consists of memory for global definitions and
the stack. Because the former is fixed after initialization, contextual programs can only modify
the stack space by allocating and deallocating new frames. Then, the stack blocks allocated by
external calls should always be mapped to themselves. This is indeed the case in our structural
memory injections: the external stack blocks has the form Stack 0 p b by the definition of block ids
in Sec. 4.2.1 and Stack 0 p b is always mapped to itself at offset 0 by the definitions of structural
injections (e.g., those in Sec. 4.4.1 and Sec. 4.4.3). Based on this observation, we have already proved
that, given any external calls whose semantics simulate themselves under the identity mapping of
contextual memory, they are compatible with the simulation proofs for internal executions. This
indicates that the extension in Sec. 4 already supports contextual compilation to a certain extent.

We also would like to support contextual compilation of multi-threaded programs. As we have
discussed in Sec. 2.4.2, the existing solutions invented ad hoc mechanisms to cope with the global
nextblock which prevent further compilation to a realistic machine model in which each thread has
its own contiguous and private stack. In the rest of this section, we show that by further instantiating
supports with multiple stack trees, we can grow the stacks individually without interference with
each other, thereby eliminating the problems with nextblock. Furthermore, by enriching supports

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:21

with multiple abstract stacks following the idea of Stack-Aware CompCert [Wang et al. 2019], we
are able to compile multi-threaded programs onto multi-stack machine models. These ideas form a
complete solution to thread-safe contextual compilation, which we shall discuss in detail below.

5.2 Stack-Aware Nominal CompCert

We first extend the instance of Nominal CompCert in Sec. 4 to support compilation with a single
and finite stack by incorporating the key ideas in Stack-Aware CompCert [Wang et al. 2019].
Stack-Aware CompCert explicitly manages the call stack by adding a data type called abstract
stack to memory states. The abstract stack records the history of memory consumption incurred
by stack allocation and maintains fine-grained stack permissions. By exploiting that information,
Stack-Aware CompCert achieves contextual compilation of single-threaded C programs into an
assembly language that is aware of a single and finite stack.

In our structured nominal memory model, the abstract stack can be readily absorbed into the
support. Moreover, we decide to drop stack permissions from the abstract stack and deal with
them separately in the future. To understand this design choice, note that there are two different
ways to enforce stack permissions in the literature. One is to embed them explicitly in memory
models like in Stack-Aware CompCert, and the other is to separately enforce them as part of the
reasoning framework (e.g., simulation conventions in CompCertO [Koenig and Shao 2021] and
enriched memory injection in CompCertM [Song et al. 2020]). We notice that in the former approach,
the complexity for reasoning about stack permissions permeates the entire proof development,
while with the latter approach it affects only the specification and composition of simulation
proofs at the top level. Therefore, we decide to follow the second approach in this work. Without
stack permissions, our extensions provide weaker support to contextual compilation than the
original Stack-Aware CompCert does. On the other hand, we are able to prove preservation of
stack consumption by using a much simpler technique thanks to the absence of stack permissions
(as we shall see below). We leave as future work the investigation of techniques for combining
CompCertO or CompCertM with Stack-Aware Nominal CompCert to support stack permissions
without explicitly enforcing them.

Now, our abstract stack only contains information about stack consumption by each function
call. Like the original Stack-Aware CompCert, it is organized into stages of abstract frames where a
stage corresponds to a continuous sequence of tailcalls. It is defined as follows:

Definition 5.1 (Abstract Stack). Abstract frames are records of the type frame := {fsize :
Z;fsize > 0} where fsize contain the sizes of concrete stack frames. A stage is a list of ab-
stract frames stage := 1ist frame allocated by a sequence of tailcalls where its head is the frame
for the active tailcall and the remaining frames have been deallocated by previous tailcalls in the
sequence. Finally, an abstract stack is a list of stages stackadt := list stage.

Given an abstract stack q, its size is the summation of sizes of all the frames in a. We introduce a
constant MAX_STACK that denotes the maximum stack size and enforces finiteness of the stack. We
now extend the support type defined in Sec. 4.2.3 with an abstract stack:

Record sup := mksup { global: list ident; stack: stree; astack: stackadt;}.

The operations for managing the structure of the abstract stack are the following: push_stage :
mem — mem pushes a new stage onto the abstract stack. It is invoked when a regular call happens.
record : mem — frame — |mem| pushes a new frame into the topmost stage of the active stack. It
succeeds only if the stack size after pushing this frame does not exceeds MAX_STACK. It is invoked
either when a regular call or a tailcall happens. Note that only the topmost frame in a stage is “alive”
When a tailcall records a new frame in the topmost stage, the previous frame becomes “dead”,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:22 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

i i push_stage m LJ recordmg L record mh g pop_stage m L i

_ s T —m/m _— _

|)] (e]~{n):

Fig. 14. Effects of the Operations on the Abstract Stack

corresponding to the parent frame deallocated by the tail call. pop_stage : mem — |mem] is invoked
when a regular call followed by a sequence of tailcall returns. It simply pops the topmost stage
from the stack. For example, Fig. 14 illustrates the effects of these operations applied to the abstract
stack where a regular call to g in function f is followed by a tailcall to h which finally returns.

With the enriched memory model, we update the semantics of every language of Nominal
CompCert by inserting push_stage, record and pop_stage operations accordingly. Like in Stack-
Aware CompCert, the semantics of a program P is also parameterized by an oracle stackspace
that provides the sizes of concrete stack frames for each function, which we shall denote as
[P, stackspace]]. In this semantics, a function call to f queries stackspace for the concrete frame
size of f and allocates a new frame of this size; the execution gets stuck if such an allocation
overflows the stack (i.e., gets an undefined behavior if the consumed stack space exceeds MAX_STACK).

Then, we replay the proofs of Stack-Aware CompCert by establishing preservation of semantics
for every pass. This guarantees that if the source semantics are defined (i.e., the stack is not
overflown), then so are the target semantics. The key to these proofs is to show at any matching
point of execution, the stack consumption in the target is no greater than in the source. The
only complication appears when verifying advanced optimizations such as tailcall recognition
and inlining. Because inlining is performed after tailcall recognition, it may lift certain tailcalls
back to regular calls, causing complicated changes in stack consumption. We handle this problem
by assuming every tailcall consumes stack space like a regular call up to inlining, and inserting
an identity transformation (called RTLmach) after inlining for shifting from this assumption to an
accurate account of stack consumption by tailcalls. This greatly simplifies the proofs of preservation
of stack consumption. However, it also means the abstract stack may be out-of-sync with the actual
stack tree before inlining. This is exactly why we choose to keep the abstract stack and the stack
tree separate in the definition of supports.

By composing the proofs for its individual passes, we derive the correctness of Stack-Aware
Nominal CompCert stated as follows:

THEOREM 5.2 (CORRECTNESS OF STACK-AWARE NOMINAL COMPCERT). Let Csa-nominal-compcert
be Stack-Aware Nominal CompCert that compiles C programs into assembly programs with an abstract
stack. We have

VPs P, Csa-nominal-compcert (Ps) = LPr, stackspace| = [[Py, stackspace]] < [[Ps, stackspace]].

where stackspace is an instance of the oracle (a mapping from functions to sizes of stack frames)
generated by the compiler at the Mach level where the concrete layouts of frames are fixed.

5.3 Multi-Stack CompCert

Multi-Stack CompCert is a straightforward extension of Stack-Aware Nominal CompCert by 1)
further compiling assembly programs with abstract stacks into those operating over a contiguous
and finite stack, known as RealAsm programs, and 2) enriching the support with multiple copies
of stack trees and abstract stacks. These extensions guarantee that the target code operates on a
realistic machine model where each thread has its own finite, contiguous and private stack.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:23

L[A] Fg M : Li[A] L[A] F& N : Ly[A]
LA rr M@ N : Li[A] ® L2 [A]
Li[A] kR M : Ly[A] Ly[A] s N : L3[A]
Li[A] Fros M ® N : L3[A]
L1 [A] Fr M: Lg [A] Ll [B] FRrR M: Lg [B] compat(Lz [A],Lg [B])
L,[AUB] rg M : L;[A U B]

HComp

VComp

PComp

Fig. 15. Composition Rules in CCAL

The compilation of assembly programs with abstract stacks into RealAsm programs follows the
approach in Stack-Aware CompCert: we first merge the stack frames in CompCert’s Asm into a
single stack, we then eliminate the pseudo instructions for managing stack frames to get to RealAsm.

The enrichment of supports is achieved by defining the support type as follows:

Record sup := mksup { global: list ident; stack: list stree; astack: list stackadt; sid: nat}.

Compared to the sup type of Stack-Aware Nominal CompCert, it now has a list of stack trees and a
list of abstract stacks. The field sid denotes index to the stack which the running thread operates
on. The functions get_stacktree and get_abststack are then defined for accessing the stack tree
and the abstract stack indexed by sid, respectively.

With the above abstraction, the entire development of Stack-Aware Nominal CompCert is lifted
to work with multiple stacks, resulting in Multi-Stack CompCert. This is possible because we
assume sid is bound to a thread which cannot by itself switch to a different stack. Instead, context
switching must be completed through external mechanisms (e.g., Certified Concurrent Abstraction
Layers [Gu et al. 2018]). With this assumption, a thread simply treats all the stacks except for
its own one as part of the contextual memory. Its semantics is completely unchanged except for
the uses of get_stacktree and get_abststack for accessing its own stack. In the end, we get the
correctness theorem of Multi-Stack CompCert which is exactly like Theorem. 5.2 except for the
updated semantics and the target language (i.e., RealAsm).

Note that, Multi-Stack CompCert can be very easily proved correct because the modification to
contextual stacks is completely irrelevant to the operations on the focused stack. This is in stark
contrast with the situation in the original CompCert where such modification affects nextblock at
a global scope. These developments illustrate the simplicity and power of nominal memory model
in formalizing contextual memory, which we shall further exploit below.

5.4 Thread-Safe Contextual Compilation

To demonstrate the effectiveness of Multi-Stack CompCert in verified compilation of multi-threaded
programs, we apply it to solve the problem of compiling and linking Concurrent Certified Abstrac-
tion Layers (CCAL) as described in Sec. 2.4.2.

54.1 Challenges in Compiling and Linking CCAL Objects. To understand the underlying challenges,
we first give a more detailed introduction to CCAL. CCAL is a generalization of Certified Abstraction
Layers [Gu et al. 2015] for building concurrent programs in a layered style. A certified concurrent
layer L provides shared and private memory states and primitive operations for manipulating them.
Concurrent objects are built on top of a lower layer L and provide implementations of a higher
layer L’. From the point view of the user of L, there is no need to worry about how execution of
objects running on L interleaves in a concurrent setting, because the shared primitives are already
abstracted into atomic operations. A predicate of the form L[A] g M : L’[A] formally describes

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:24 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

Thread 1 Thread 2 Threads {1,2} Thread 1 Thread 2 Threads {1,2}
]] e B e
@ n Thread f 1 Thread 1 | f L
N -7 Linking g (7 Linking ' T271 [7]
- g |/ S |9 J
s r 2747 [P N % I
o = h g = 1 |h 7R
yie £ % V] B
Vrss v77 | r77 v777 |
voos 707 L bl 2200
h v 707 Vbl 2200
voo 720 2 20000
voo 727 22 2500
v ‘% VO
leezzd kecced L beeed tezed 7\
MAX_STACK
(a) Linking at CompCert’s Asm Level (b) Linking at RealAsm Level

Fig. 16. Realistic Linking of CCAL Objects

the implementation M of the layer L’ running on top of the layer L. Given the domain of threads
D, it holds iff concurrent execution of M with a focused subset of threads A € D on L backward
simulates the layer L’ where R is the invariant of the simulation. Because A may be only a subset
of all threads, M is an open multi-threaded program whose execution trace may be interleaved
with that of unknown threads in the context. With the devices above, it is possible to horizontally,
vertically and parallelly compose concurrent layers, as described by the rules in Fig. 15.

The common pattern of developing verified concurrent programs using CCAL is to start with
source modules focusing on a single thread, i.e., layer implementations of the form L[i] g M : L'[i]
where i is the id of the focused thread, then compile these modules as sequential programs, and
finally compose the generated objects at the assembly level.

For the above approach to work, it is essential that the compilation is thread safe, i.e., when
compiling modules focusing on a single thread, the compiler C indeed preserves CCAL:

ViLL MR/L[i] g M:L'[i] = L[i] /g C(M) : L'[i].

As we have discussed in Sec. 2.4.2, thread-safeness as currently implemented has serious problems
in that it relies on introduction of dummy blocks and does not support compilation to realistic
machine models.

5.4.2 Compilation and Linking of CCAL Objects onto Multi-Stack Machine Models. We make
immediate use of Multi-Stack CompCert to overcome the above challenges. Given a CCAL object
L[i] tr M : L'[i] written in C, we assign a unique stack i to M in Multi-Stack CompCert. Then,
M represents a sequential program that is ignorant of its context in a multi-stack memory model,
exactly matching the requirement of source programs for Multi-Stack CompCert. By individually
compiling CCAL objects with Multi-Stack CompCert, we can reduce them to RealAsm programs
that look like sequential assembly codes and that are ignorant of the existence of other threads.
At the target level, the stacks are finite and contiguous and the thread-local data are allocated by
adjusting the stack pointers to private stacks.

To link the generated RealAsm programs, we observe that because the heap is managed by
primitives in abstraction layers in CCAL (the same as our treatment of heaps as discussed in Sec. 4.1),
no new memory blocks will ever be allocated after the initial allocation of global variables and the
finite stacks. Therefore, there is no need to allocate dummy blocks or to synchronize any memory
structure across threads. Furthermore, we observe that the finite stacks for threads are separated
from each other from the beginning and the operations on them never interfere with each other.
Therefore, stack merging becomes trivial. For example, the problematic situation described in Fig. 5
becomes the natural merging of multiple private stacks as described in Fig. 16.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:25

Table 1. Proof Effort for Nominal CompCert Relative to CompCert 3.8

Files CC3.8 | NCC | Additions(+) | % of Additions | Changes(*/+) | % of Changes
Memory.v 3838 4030 192 5.00% 372 9.69%
Memtype.v 866 893 27 3.12% 52 6.00%

Globalenvs.v 1640 1665 25 1.52% 128 7.80%
SimplLocalsproof.v | 1971 1992 21 1.07% 143 7.26%
Cminorgenproof.v 1903 1931 28 1.47% 203 10.67%

Inliningproof.v 1161 1178 17 1.46% 178 15.33%
ValueAnalysis.v 1805 1847 42 2.33% 159 8.81%
Unusedglobproof.v | 1259 1271 12 0.95% 67 5.32%

| Total [136682 [137338 | 656 [048% | 1396 | 1.02% |

With the above changes, we are able to combine Multi-Stack CompCert with CCAL to—for the
first time—realize the development of verified concurrent objects operating on a realistic machine
model with multiple contiguous and finite stacks.

6 EVALUATION

In this section, we discuss the proof effort for our developments. We first present an evaluation of
the changes introduced into Nominal CompCert relative to the original CompCert. It illustrates
the conciseness of the extension for obtaining Nominal CompCert, which is a consequence of the
natural generalization of CompCert’s memory model to the nominal memory model. We then
present an evaluation of the proof effort for further extending Nominal CompCert as described
in Sec. 4 and Sec. 5. It demonstrates that these extensions only require moderate effort to develop,
thanks to the generality of the interfaces for the nominal memory model and, on top of that, the
ability to exploit sophisticated instantiations of the nominal memory model to verify individual
compilation passes on an as-needed basis.

6.1 Proof Effort for Nominal CompCert

It took us 1 person month to develop Nominal CompCert, with much of the effort devoted to
understanding the details in the proofs for CompCert’s passes, especially for those changing the
memory structure. We give the statistics of our Coq implementation of Nominal CompCert (NCC)
relative to CompCert 3.8 (CC 3.8) in Table. 1. Columns 2 and 3 show the lines of code (LOC) for
each file (counted by using cogwc) in CompCert 3.8 and Nominal CompCert, respectively. Column
4 shows the LOC that were added, while column 5 shows them in percentage relative to CompCert
3.8. To better reflect on the actual proof development, we further show the LOC that were modified
or added and their percentage relative to CompCert 3.8 in columns 6 and 7. Due to space limitations,
this table only lists files with substantial (more than 5%) changes in LOC.

As we can see in Table. 1, the total amount of additional LOC is quite small (about 650 lines and
0.5%), with only a few lines for each file except for Memory.v. The substantial additions include 1) an
implementation of the nominal memory model as described in Sec. 3.2 and 2) explicit proofs about
stack pointer and valid blocks as described in Sec. 3.3. The total amount of changes is also relatively
small (about 1.4k lines and 1% changes). It is worth noting that, except for the substantial additions
mentioned above, the remaining changes are mostly trivial substitutions of nextblock with support
that do not increase the LOC. From the above statistics, we can see that our implementation of
Nominal CompCert is indeed lightweight.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:26 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

Table 2. Proof Effort for Extensions Relative to Nominal CompCert

Files NCC NCC-SMS SA-NCC MS-CC
LOC LOC + % LOC + % LOC + %
Memory.v 4030 5485 | 1455 | 36.1% | 6599 | 2569 | 63.7% | 6861 2831 | 70.2%
Globalenvs.v 1665 1803 138 | 8.29% | 1834 | 169 | 10.2% | 1848 183 | 11.0%

SimplLocalsproof.v | 1992 2397 | 405 | 20.3% | 2509 517 | 26.0% | 2533 541 | 27.2%
Cminorgenproof.v | 1931 2358 | 427 | 22.1% | 2518 587 | 30.4% | 2536 605 |31.3%
Unusedglobproof.v | 1271 1478 207 | 16.3% | 1544 | 273 | 21.5% | 1571 300 | 23.6%

Stackingproof.v 1823 2007 184 | 10.1% | 2059 236 | 12.9% | 2128 305 | 16.7%

| Total [137338 [140787 | 3449 [2.51% | 145278 [7940 | 5.78% | 151833 [14495 [10.6%

6.2 Proof Effort for Extending Nominal CompCert

Table. 2 shows the statistics for Nominal CompCert with Structured Memory Space (NCC-SMS)
introduced in Sec. 4 and Stack-Aware Nominal CompCert (SA-NCC) and Multi-Stack CompCert
(MS-CC) introduced in Sec. 5. For each extension, it shows the LOC for the representative files, and
the additional LOC (column +) and their percentages relative to Nominal CompCert (column %).

6.2.1 Proof Effort for NCC-SMS. It took us about 2 person months to implement Nominal CompCert
with Structured Memory Space. A major addition is the implementation of the memory model
with structured space together with the properties of newly added memory operations (in Memory.v
and Globalenvs.v). On top of this, we have improved the proofs for the four non-optimizing passes
in SimplLocalsproof.v, Cminorgenproof.v, Unusedglobproof.v, and Stackingproof.v, by making them
more intuitive as described in Sec. 4. This requires moderate modification to the original files
(about 10-22% additional LOC) as shown in Table. 2. Besides these changes, we have also re-verified
all the remaining compilation passes of CompCert based on the new memory model. The whole
development amounts to about 3.5k additional LOC, which is only about 2.5% more LOC on top
of Nominal CompCert. We are able to finish it with moderate effort because that, thanks to the
abstraction provided by Nominal CompCert, we can reuse most of the old proofs. Note that because
our proofs are still based on the old ones they are not simpler than before, even though the structural
injections do help make the essence of memory transformations explicit. To get simpler proofs, we
will need to rewrite the proofs from scratch, which is left for future work.

6.2.2 Proof Effort for SA-NCC and MS-CC. 1t took us an additional 2 person months to imple-
ment Stack-Aware Nominal CompCert. The main effort includes further enriching the nominal
memory model and proving preservation of stack consumption for every compilation pass. These
changes amount to about 8k more LOC (relative to Nominal CompCert) as shown in Table. 2. They
are significantly less than the 21k additional LOC (relative to CompCert 3.0.1) for the original
Stack-Aware CompCert [Wang et al. 2019]. The main reasons are that 1) we have dropped stack
permissions, 2) we have implemented the abstract stack as part of the support type, with which
the relation between source and target stack consumptions can be easily absorbed into memory
injections, and 3) we have invented a novel technique (introduced in Sec. 5.2) for approximating
stack consumptions before inlining and introduced an identity transformation after inlining to
convert this over approximation into accurate stack consumptions. Finally, Multi-Stack CompCert
is obtained from Stack-Aware Nominal CompCert by adding about 500 LOC for enriching the
support type with multiple stacks and about 6k LOC for extending the compilation chain to RealAsm,
which took us another 1 person month.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:27

7 RELATED WORK

Nominal techniques [Gabbay and Pitts 2002; Pitts 2016] have been widely used to define the se-
mantics of formal calculi with binders (e.g., A-calculus, z-calculus) using inductive definitions of
nominal sets [Pitts 2013]. They have also been used in the game-semantics community [Abramsky
et al. 2004; Laird 2004; Murawski and Tzevelekos 2016] to define the nominal games which led to full
abstraction results for languages with dynamic generative behaviors, such as v-calculus [Abramsky
et al. 2004], higher-order concurrency [Laird 2006], ML references [Murawski and Tzevelekos 2011],
and Interface Middleweight Java [Murawski and Tzevelekos 2014, 2021]. Urban and Berghofer [Ur-
ban and Berghofer 2006; Urban and Tasson 2005] have implemented a “nominal datatype” package
(in the Isabelle/HOL proof assistant) which has been used to mechanize formal proofs and opera-
tional semantics using nominal techniques. However, none of these have attempted to address the
memory semantics and verified compilation of low-level C-like languages.

CompCert uses a unified memory model [Leroy et al. 2012; Leroy and Blazy 2008] for all of its
compiler intermediate and target languages. The memory model treats global variables, and heap
and stack objects as separate memory blocks to enforce isolation. It supports bound-checking (to
give semantics to “undefined behaviors”) and uses the Vundef value to denote results from ill-defined
loads. CompCert memory block identifiers are kept relatively abstract and can be renamed, deleted,
or injected as sub-blocks of bigger blocks while preserving the observable behaviors of programs.
While the abstract block identifiers in CompCert seem to be suitable for a nominal treatment, for a
long time, it was not clear how it should be done and what benefits it would bring. CompCert’s
memory-injection-based simulation proofs are also quite challenging so it is unclear whether
nominal techniques can actually help improve the existing proofs.

What we have shown in this paper is that the nominal techniques can indeed be used to both
generalize and simplify the CompCert memory model in a really clean way. Furthermore, the
nominal extension is backward compatible in that regardless what representations we use for the
block identifiers (“names”), the rest of the compiler (including all the memory-injection-heavy
compilation phases and their proofs) will remain valid. The separation of “global-variables-" and
“stack-" supports allows us to improve the memory-injection-related proofs, but the overall Comp-
Cert memory remains as a mapping from block identifiers to values as before (so the existing proofs
would still work). This is in contrast to previous attempts [Ramananandro et al. 2015; Wang et al.
2019] in which they either had to introduce a “stack tag” for each block [Ramananandro et al. 2015]
or add a separate stack component [Wang et al. 2019]; both required a major overhaul over the
memory-injection-related proofs in CompCert.

There exists abundant work on extending CompCert to support various memory structures for
verified compilation of open and concurrent programs. We shall make comparisons with them
from the following two perspectives:

Stack-Awareness. Stack-Awareness means the support of a memory model with an explicit notion
of stack memory, in particular, how close the memory model of the final target language is to the
actual memory model used by concurrent machine or assembly code.

There has been previous work on translating the unbounded memory of CompCert into some
kind of finite memory. CompCertS [Besson et al. 2017] supports low-level manipulation of pointer
values in a finite memory space; CompCert-TSO [Sevcik et al. 2013] builds in a notion of finite
memory into all levels of CompCert for certifying concurrency in compilation. A lower-level
semantics for CompCert assembly that models pointers as 32-bit values for verifying the peephole
optimization is defined by Mullen et al. [2016].

None of the above work tries to model an explicit stack in memory. Quantitative CompCert
(QCC) [Carbonneaux et al. 2014] does present a more stack-aware view of CompCert; it extends

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:28 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

event traces with call/return events, and then reasons about stack consumption in terms of the same
structure of such call and return events on traces of the source and target programs. The Cerco C
compiler [Amadio et al. 2014] uses a similar approach to QCC for reasoning about stack consumption
and uses a different backend from that of CompCert. Because the exact same call/return events are
needed throughout the compilation, they cannot support inlining and tailcall optimizations which
are essential to the performance of the generated code.

Stack-Aware CompCert [Wang et al. 2019] is the first extension to CompCert that explicitly
models a finite stack and that supports all the optimization passes in CompCert. Its further extension
(known as CompCertMC) also supports merging of stack frames into a finite and contiguous stack
and elimination of pseudo instructions for stack manipulation. The target code CompCertMC
generates is very close to machine code. CASCompCert [Jiang et al. 2019] reasons about what they
call the footprints of programs, and in particular reasons about memory ownership. In its memory
model, an infinite set of memory locations is used for allocating stack frames. It seems challenging
to use their framework to merge stack blocks into a finite and contiguous stack.

To support Stack-Awareness, all the above work requires intrusive and sometimes ad hoc changes
to CompCert’s memory model. On the other hand, Nominal CompCert provides a well-defined and
flexible interface for supporting Stack-Awareness through instantiations of block ids and supports.
As we have shown before, a complete call stack can be seamlessly integrated into Nominal CompCert
with Structured Memory Space, and compilation to multiple and contiguous machine stacks can be
supported without intrusive changes through the development of Stack-Aware Nominal CompCert
and Multi-Stack CompCert.

Compositional Verification of Compilation. We have shown that, with the nominal memory model
and its instances, contextual memory can be separated from internal memory and be reasoned
about via a well-defined interface, leading to simpler and more elegant correctness proofs for
compiling certain kinds of open programs. We believe that these techniques together with others
we have built on top of the nominal memory model could be particularly beneficial in the general
context of compositional compiler correctness; we elaborate on this point below.

In CompCert, the complexity of memory injections is largely confined to the correctness proofs
of individual passes: injections are existentially quantified as part of the simulation relation and do
not appear in the correctness statement itself. This is possible because memory states are not part
of the externally observable behavior of programs.

This assumption must be relaxed in compositional extensions of CompCert which model interac-
tions between compilation units. In work such as Compositional CompCert [Stewart et al. 2015],
CompCertX [Gu et al. 2015; Wang et al. 2019], CompCertM [Song et al. 2020], CASCompCert [Jiang
et al. 2019] and CompCertO [Koenig and Shao 2021], memory states appear as part of the interac-
tions between components. As a consequence, the memory relations used by compilation passes
become part of their correctness statements. This makes correctness theorems and the vertical
composition of passes much more complex: in CompCertX, memory injections appear in the overall
compiler correctness theorem and the passes are composed in an ad-hoc manner; in Compositional
CompCert, memory injections must be extended with ownership information and become even
more intricate; CompCertO and CompCertM go one step further and introduce Kripke logical
relations to deal with the variations in the memory relations used by different compilation passes
and facilitate the composition of correctness results.

Our techniques based on the nominal memory model have the potential to significantly simplify
the above proofs from the following perspectives. First, the evolving Kripke worlds used in compo-
sitional compiler correctness are used to store both memory injections (which can be determined
ahead of time using our structural injection functions) and additional permission information

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

Verified Compilation of C Programs with a Nominal Memory Model 25:29

(which could be stored in our model as part of the information associated with block identifiers).
As a result, by incorporating our approach, it may be possible to eliminate Kripke worlds entirely,
which would significantly simplify the semantic frameworks used in these projects. Moreover, our
techniques could help isolate private memory as internal states, for example through the use of
a partial commutative monoid structure on memory states which would facilitate splitting and
merging private memory regions used by individual components. Finally, they could provide a
seamless way to incorporate stack awareness to compositional compilers of this kind.

8 CONCLUSION

In this paper, we have developed a nominal memory model, an elegant generalization of CompCert’s
block-based memory model that employs the nominal notions of atomic names, supports, and
freshness. The nominal memory model comes with an abstraction of block ids and supports. Thus,
block ids can be generalized from positive numbers to any desired type for keeping track of names;
the notion of valid blocks in a memory m corresponds to the support of m, and allocation must
return a name that is simply fresh with respect to the support.

Nominal logics build on the notion of swaps (exchanging two names) and make sure that all
definable objects are invariant by swaps. This aspect of normality is partly captured using memory
injection in CompCert, but is not fully explored in our paper because clashing of names does not
happen in the setting of whole program compilation or compilation with fixed contexts where the
assignment of block ids for a given program is fixed. We believe that equivalence of semantics
under name swapping is essential for reasoning about general compositional compilation of open
modules and concurrent programs, which we plan to investigate in the future.

We have extended CompCert to build Nominal CompCert, with which the original CompCert
becomes a specialization obtained by instantiating block ids with positive numbers. We then devel-
oped an extension of Nominal CompCert by instantiating block ids and supports with structured
types that allow us to distinguish different memory regions. This led to more elegant and modular
reasoning about various compiler transformations. We built Stack-Aware Nominal CompCert which
uses the nominal idea to improve Stack-Aware CompCert and Multi-Stack CompCert which is the
first effort to support compilation of multi-threaded programs all the way to multi-stack machines.

We have left the proofs for inlining and tailcall recognition passes as they are. Because inlining
changes the structure of call trees, fixed paths are probably not enough for defining its structural
injection function which needs to capture the non-local transformation on stack block ids. We
need more information about how inlining of earlier function calls will affect the locations of stack
blocks allocated later in the call tree. This can be done by representing stack block ids as "snapshots"
of stack trees at allocation time which contain all the historical information for calculating the
effects of inlining on stack block ids. Similar observations can be made for tailcall recognition. A
complete solution is left for future work.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their helpful feedback which improved this
paper significantly. This research is based on work supported in part by the National Natural Science
Foundation of China (NSFC) under Grant No. 62002217, and by the Natural Science Foundation
of the United States (NSF) under Grant No. 1521523, 1763399, 2019285, and 2118851. The third
author is a co-founder of and has an equity interest in CertiK Global Ltd. CertiK has licensed Yale
University’s intellectual property, which is related to the NSF grants 1521523 and 1763399. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding agencies.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

25:30 Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig

REFERENCES

Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong, and Ian David Bede Stark. 2004. Nominal Games
and Full Abstraction for the Nu-Calculus. In Proc. 19th IEEE Symposium on Logic in Computer Science (LICS’04). IEEE
Computer Society, 150-159. https://doi.org/10.1109/LICS.2004.1319609

Roberto M. Amadio, Nicolas Ayache, Francois Bobot, Jaap P. Boender, Brian Campbell, Ilias Garnier, Antoine Madet, James
McKinna, Dominic P. Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas, Claudio Sacerdoti Coen, Ian Stark,
and Paolo Tranquilli. 2014. Certified Complexity (CerCo). In Foundational and Practical Aspects of Resource Analysis, Ugo
Dal Lago and Ricardo Pefia (Eds.). LNCS, Vol. 8552. Springer, Cham, 1-18. https://doi.org/10.1007/978-3-319-12466-7_1

Andrew Appel. 2011. Verified Software Toolchain. In Proc. 20th European Symposium on Programming (ESOP’11), Gilles
Barthe (Ed.). LNCS, Vol. 6602. Springer, Saarbrucken, Germany, 1-17. https://doi.org/10.1007/978-3-642-19718-5_1

Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2017. CompCertS: A Memory-Aware Verified C Compiler Using Pointer
as Integer Semantics. In Interactive Theorem Proving (ITP’17), Mauricio Ayala-Rincén and César A. Mufioz (Eds.). LNCS,
Vol. 10499. Springer, Cham, 81-97. https://doi.org/10.1007/978-3-319-66107-0_6

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. 2014. End-to-End Verification of Stack-Space
Bounds for C Programs. In Proc. 2014 ACM Conference on Programming Language Design and Implementation (PLDI’14).
ACM, New York, 270-281. https://doi.org/10.1145/2594291.2594301

Murdoch Gabbay and Andrew M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal Aspects
Comput. 13, 3-5 (2002), 341-363. https://doi.org/10.1007/s001650200016

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan(Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proc. 42nd ACM Symposium on
Principles of Programming Languages (POPL’15). ACM, New York, 595-608. https://doi.org/10.1145/2775051.2676975

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjober, Hao Chen, David Costanzo,
and Tahnia Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proc. 2018 ACM Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York, 646-661. https://doi.org/10.1145/3192366.3192381

Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards Certified Separate Compilation for
Concurrent Programs. In Proc. 40th ACM Conference on Programming Language Design and Implementation (PLDI’19).
ACM, New York, 111-125. https://doi.org/10.1145/3314221.3314595

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of
Separate Compilation. In Proc. 43rd ACM Symposium on Principles of Programming Languages (POPL’16). ACM, New
York, 178-190. https://doi.org/10.1145/2837614.2837642

Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling Certified Open C Components. In Proc. 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation (PLDI’21). ACM, New York, 1095-1109.
https://doi.org/10.1145/3453483.3454097

James Laird. 2004. A Game Semantics of Local Names and Good Variables. In Foundations of Software Science and Computation
Structures (FOSSACS’04), Held as Part of the Joint European Conferences on Theory and Practice of Software (ETAPS 04),
Igor Walukiewicz (Ed.). LNCS, Vol. 2987. Springer, 289-303. https://doi.org/10.1007/978-3-540-24727-2_21

James Laird. 2006. Game Semantics for Higher-Order Concurrency. In Foundations of Software Technology and Theoretical
Computer Science (FSTTCS06), S. Arun-Kumar and Naveen Garg (Eds.). LNCS, Vol. 4337. Springer, 417-428. https:
//doi.org/10.1007/11944836_38

Xavier Leroy. 2005-2021. The CompCert Verified Compiler. https://compcert.org/.

Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.
Research Report RR-7987. INRIA. 26 pages. https://hal.inria.fr/hal-00703441

Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-like Memory Model and Its Uses for Verifying Program
Transformation. Journal of Automated Reasoning 41, 1 (2008), 1-31. https://doi.org/10.1007/s10817-008-9099-0

Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016. Verified Peephole Optimizations for CompCert. In
Proc. 37th ACM Conference on Programming Language Design and Implementation (PLDI’'16). ACM, New York, NY, USA,
448-461. https://doi.org/10.1145/2980983.2908109

Andrzej S. Murawski and Nikos Tzevelekos. 2011. Game Semantics for Good General References. In Proc. 26th IEEE
Symposium on Logic in Computer Science (LICS’11). IEEE Computer Society, 75-84. https://doi.org/10.1109/LICS.2011.31

Andrzej S. Murawski and Nikos Tzevelekos. 2014. Game Semantics for Interface Middleweight Java. In Proc. 41st ACM
Symposium on Principles of Programming Languages (POPL’14). ACM, New York, 517-528. https://doi.org/10.1145/
2535838.2535880

Andrzej S. Murawski and Nikos Tzevelekos. 2016. Nominal Game Semantics. Found. Trends Program. Lang. 2, 4 (2016),
191-269. https://doi.org/10.1561/2500000017

Andrzej S. Murawski and Nikos Tzevelekos. 2021. Game Semantics for Interface Middleweight Java. J. ACM 68, 1 (2021),
4:1-4:51. https://doi.org/10.1145/3428676

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

https://doi.org/10.1109/LICS.2004.1319609
https://doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1007/s001650200016
https://doi.org/10.1145/2775051.2676975
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1145/2837614.2837642
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1007/978-3-540-24727-2_21
https://doi.org/10.1007/11944836_38
https://doi.org/10.1007/11944836_38
https://compcert.org/
https://hal.inria.fr/hal-00703441
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/2980983.2908109
https://doi.org/10.1109/LICS.2011.31
https://doi.org/10.1145/2535838.2535880
https://doi.org/10.1145/2535838.2535880
https://doi.org/10.1561/2500000017
https://doi.org/10.1145/3428676

Verified Compilation of C Programs with a Nominal Memory Model 25:31

Andrew M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press, Cambridge,
England.

Andrew M. Pitts. 2016. Nominal Techniques. ACM SIGLOG News 3, 1 (2016), 57-72. https://doi.org/10.1145/2893582.2893594

Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jérémie Koenig, and Yuchen Fu. 2015. A Compositional Semantics
for Verified Separate Compilation and Linking. In Proc. 2015 Conference on Certified Programs and Proofs (CPP’15). ACM,
New York, 3-14. https://doi.org/10.1145/2676724.2693167

Jaroslav Sevcik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2011. Relaxed-Memory
Concurrency and Verified Compilation. In Proc. 38th ACM Symposium on Principles of Programming Languages (POPL’11).
ACM, New York, 43-54. https://doi.org/10.1145/1926385.1926393

Jaroslav Sevcik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A
Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22:1-22:50. https://doi.org/10.1145/2487241.
2487248

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2020. CompCertM: CompCert
with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Jan.
2020), 31 pages. https://doi.org/10.1145/3371091

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In Proc. 42nd
ACM Symposium on Principles of Programming Languages (POPL’15). ACM, New York, 275-287. https://doi.org/10.1145/
2676726.2676985

Harvey Tuch, Gerwin Klein, and Michael Norrish. 2007. Types, Bytes, and Separation Logic. In Proc. 34th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL’07), Martin Hofmann and Matthias Felleisen (Eds.). ACM,
New York, 97-108. https://doi.org/10.1145/1190216.1190234

Christian Urban and Stefan Berghofer. 2006. A Recursion Combinator for Nominal Datatypes Implemented in Isabelle/HOL.
In International Joint Conference on Automated Reasoning (IJCAR’06), Ulrich Furbach and Natarajan Shankar (Eds.). LNCS,
Vol. 4130. Springer, 498-512. https://doi.org/10.1007/11814771_41

Christian Urban and Christine Tasson. 2005. Nominal Techniques in Isabelle/HOL. In International Conference on Automated
Deduction (CADE-20), Robert Nieuwenhuis (Ed.). LNCS, Vol. 3632. Springer, 38-53. https://doi.org/10.1007/11532231_4

Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack Based Approach to Verified Compositional Compilation
to Machine Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290375

Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF: Verified Separate Compilation of C Programs
into ELF Object Files. Proc. ACM Program. Lang. 4, OOPSLA, Article 197 (2020), 28 pages. https://doi.org/10.1145/3428265

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 25. Publication date: January 2022.

https://doi.org/10.1145/2893582.2893594
https://doi.org/10.1145/2676724.2693167
https://doi.org/10.1145/1926385.1926393
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3371091
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/1190216.1190234
https://doi.org/10.1007/11814771_41
https://doi.org/10.1007/11532231_4
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3428265

	Abstract
	1 Introduction
	1.1 Deficiency of the Block-Based Memory Model
	1.2 Nominal Memory Model and Verified Compilation
	1.3 Contributions
	1.4 Structure of the Paper

	2 Background and Approach
	2.1 The Block-Based Memory Model
	2.2 Memory Injections
	2.3 Correctness of Compilation in CompCert
	2.4 Problems
	2.5 Our Approach

	3 Nominal Memory Model and Verified Compilation
	3.1 Key Ideas
	3.2 The Nominal Memory Model
	3.3 Nominal CompCert
	3.4 Instantiation of Nominal CompCert

	4 Verification of Transformations on Partial Memory
	4.1 Key Ideas
	4.2 Nominal Memory Model with Structured Memory Space
	4.3 Nominal CompCert with Structured Memory Space
	4.4 Intuitive Proofs for Partial Memory Transformations

	5 Verified Compilation of Programs with Contextual Memory
	5.1 Key Ideas
	5.2 Stack-Aware Nominal CompCert
	5.3 Multi-Stack CompCert
	5.4 Thread-Safe Contextual Compilation

	6 Evaluation
	6.1 Proof Effort for Nominal CompCert
	6.2 Proof Effort for Extending Nominal CompCert

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

