
42

Layered and Object-Based Game Semantics

ARTHUR OLIVEIRA VALE, Yale University, USA
PAUL-ANDRÉ MELLIÈS, CNRS and Université de Paris, France

ZHONG SHAO, Yale University, USA
JÉRÉMIE KOENIG, Yale University, USA
LÉO STEFANESCO,MPI-SWS, Germany

Large-scale software verification relies critically on the use of compositional languages, semantic models,

specifications, and verification techniques. Recent work on certified abstraction layers synthesizes game se-

mantics, the refinement calculus, and algebraic effects to enable the composition of heterogeneous components

into larger certified systems. However, in existing models of certified abstraction layers, compositionality is

restricted by the lack of encapsulation of state.

In this paper, we present a novel game model for certified abstraction layers where the semantics of layer

interfaces and implementations are defined solely based on their observable behaviors. Our key idea is to

leverage Reddy’s pioneer work on modeling the semantics of imperative languages not as functions on global

states but as objects with their observable behaviors. We show that a layer interface can be modeled as an

object type (i.e., a layer signature) plus an object strategy. A layer implementation is then essentially a regular

map, in the sense of Reddy, from an object with the underlay signature to that with the overlay signature.

A layer implementation is certified when its composition with the underlay object strategy implements the

overlay object strategy. We also describe an extension that allows for non-determinism in layer interfaces.

After formulating layer implementations as regular maps between object spaces, we move to concurrency

and design a notion of concurrent object space, where sequential traces may be identified modulo permutation

of independent operations. We show how to express protected shared object concurrency, and a ticket lock

implementation, in a simple model based on regular maps between concurrent object spaces.

CCS Concepts: · Theory of computation→ Program verification; Program specifications; Abstrac-

tion; Program semantics; Logic and verification; Linear logic; · Software and its engineering→Correctness.

Additional Key Words and Phrases: object-based semantics, certified abstraction layers, game semantics,

program refinement

ACM Reference Format:

Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2022. Layered

and Object-Based Game Semantics. Proc. ACM Program. Lang. 6, POPL, Article 42 (January 2022), 32 pages.

https://doi.org/10.1145/3498703

1 INTRODUCTION

Certified software [Shao 2010] comes with a formal specification and a mechanized proof that
the software conforms to the specification. There have been a large number of recent projects
on building certified components such as compilers [Leroy 2009], program logics [Appel 2011],

Authors’ addresses: Arthur Oliveira Vale, Yale University, USA, arthur.oliveiravale@yale.edu; Paul-André Melliès, Institut

de Recherche en Informatique Fondamentale (IRIF), CNRS and Université de Paris, France, mellies@irif.fr; Zhong Shao, Yale

University, USA, zhong.shao@yale.edu; Jérémie Koenig, Yale University, USA, jeremie.koenig@yale.edu; Léo Stefanesco,

MPI-SWS, Germany, leo.stefanesco@mpi-sws.org.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART42

https://doi.org/10.1145/3498703

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0003-1091-7560
HTTPS://ORCID.ORG/0000-0001-6180-2275
HTTPS://ORCID.ORG/0000-0001-8184-7649
HTTPS://ORCID.ORG/0000-0002-3168-5925
HTTPS://ORCID.ORG/0000-0002-4719-2922
https://doi.org/10.1145/3498703
https://orcid.org/0000-0003-1091-7560
https://orcid.org/0000-0001-6180-2275
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0002-3168-5925
https://orcid.org/0000-0002-4719-2922
https://doi.org/10.1145/3498703

42:2 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

OS kernels [Gu et al. 2015, 2016], file systems [Chen et al. 2015], and processor designs [Choi
et al. 2017]. Unfortunately, even if these systems were developed using the same proof assistant,
they use different semantic models and verification techniques. To scale up verification further
(as exemplified by the DeepSpec project [dee 2021; Appel et al. 2017]), one major challenge is to
identify a general-purpose model which could embed all existing components. This model should
support composition and help bridge the gap between components that operate at different levels
of abstraction.

1.1 Certified Abstraction Layers

Certified abstraction layers [Gu et al. 2015, 2018] are a promising technology for programming,
compiling, linking, and composing certified heterogeneous components. The initial sequential
CertiKOS kernel [Gu et al. 2015] was decomposed into 37 certified layers consisting of C and
assembly modules such as physical and virtual memory managers, context-switch libraries, thread
and process managers, virtual machine managers, and page fault and trap handlers. Later versions
of CertiKOS [Chen et al. 2016; Gu et al. 2016, 2018; Liu et al. 2019] showed how to extend certified
layers to support multicore and multithreaded concurrency, fine-grained locking, device drivers,
and real-time scheduling; they have also been extended to verify not only the total functional
correctness but also information-flow security properties [Costanzo et al. 2016; Liu et al. 2019].
As described in Gu et al. [2015], a certified abstraction layer consists of a layer implementation

together with two layer interfaces: the underlay provides specifications for the primitives available
to the layer implementation; the overlay provides specifications for the primitives which the layer
implements. A layer𝑀 implementing the overlay interface 𝐿2 on top of the underlay interface 𝐿1
can be depicted on the right below. 𝐿2

𝑀
𝐿1

A layer interface 𝐿 has three components. First, a signature enu-
merates primitives together with their types, given as op : 𝐴→ 𝐵

where 𝐴 and 𝐵 are sets. Second, the set 𝑆 contains the abstract states of the layer interface. Finally,
for each primitive op : 𝐴→ 𝐵, its specification is given as a function of type 𝐴 × 𝑆 → P1 (𝐵 × 𝑆)
where P1 corresponds to the maybe monad: P1 (𝑋) is defined as {𝑥 ⊆ 𝑋 : |𝑥 | ≤ 1}, and the empty
set ∅ ∈ P1 (𝑋) denotes fault or silent divergence.
As an example (taken from Koenig and Shao [2020]), Fig. 1 presents a certified layer that

implements a bounded queue with at most 𝑁 elements using a ring buffer. In the underlay interface
𝐿1 = 𝐿rb, its abstract state contains an array 𝑓 ∈ U𝑁 with 𝑁 values of type U and two counters
which take values in the interval 0 ≤ 𝑐1, 𝑐2 < 𝑁 . The array supports the primitives get and set; the
primitives fai1 and fai2 increment the corresponding counter and return the counter’s old value.

The overlay 𝐿2 = 𝐿bq features two primitives enq and deq which respectively add a new element
to the queue and remove the oldest element. If we add an element which overflows the queue’s
capacity 𝑁 , or remove an element from an empty queue, the result is ∅ (i.e., the primitive aborts).
The layer implementation𝑀bq stores the queue’s elements into the array, between the indices

given by the counters’ values. This is expressed by the simulation relation 𝑅 ⊆ 𝑆bq × 𝑆rb in Fig. 1,
which explains how overlay states are realized by𝑀bq in terms of underlay states. The code of𝑀bq

can be interpreted using the monad 𝑆rb → P
1 (− × 𝑆rb), with calls to primitives of 𝐿1 = 𝐿rb replaced

by their specifications. We write 𝐿rb [𝑀bq] to denote the result. We declare that 𝑀bq defines a
certified layer 𝐿rb ⊢𝑅 𝑀bq : 𝐿bq when for each operation op ∈ {enq(𝑣), deq(∗) | 𝑣 ∈ U} of the
overlay 𝐿2 = 𝐿bq, the relation 𝑅 indeed establishes a simulation of 𝐿bq .op by 𝐿rb [𝑀bq] .op.
Certified abstraction layers bring the following benefits:

• Compositional Specification: A layer interface 𝐿 provides not only the type signatures of its
primitives but also their full functional łdeepž specification [Gu et al. 2015]. The client code

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:3

𝐿bq 𝑆bq := U∗

enq : U→ 1 𝐿bq .enq(𝑣)@®𝑞 := {∗@®𝑞𝑣 | | ®𝑞 | < 𝑁 }

deq : 1→ U 𝐿bq .deq(∗)@®𝑞 := {𝑣@®𝑝 | ®𝑞 = 𝑣 ®𝑝}

𝑀bq 𝑅 ⊆ 𝑆bq × 𝑆rb

𝑀bq .enq(𝑣) := 𝑖 ← fai2; set(𝑖, 𝑣) ®𝑞 𝑅 (𝑓 , 𝑐1, 𝑐2) ⇔ (𝑐1 ≤ 𝑐2 < 𝑁 ∧ ®𝑞 = 𝑓𝑐1 · · · 𝑓𝑐2−1) ∨

𝑀bq .deq(∗) := 𝑖 ← fai1; get(𝑖) (𝑐2 ≤ 𝑐1 < 𝑁 ∧ ®𝑞 = 𝑓𝑐1 · · · 𝑓𝑁−1 𝑓0 · · · 𝑓𝑐2−1)

𝐿rb 𝑆rb := U𝑁 × N × N

set : N × U→ 1 𝐿rb .set(𝑖, 𝑣)@(𝑓 , 𝑐1, 𝑐2) := {∗@(𝑓
′, 𝑐1, 𝑐2) | 𝑖 < 𝑁 ∧ 𝑓 ′ = 𝑓 [𝑖 := 𝑣]}

get : N→ U 𝐿rb .get(𝑖)@(𝑓 , 𝑐1, 𝑐2) := {𝑓𝑖@(𝑓 , 𝑐1, 𝑐2) | 𝑖 < 𝑁 }

fai1 : 1→ N 𝐿rb .fai1@(𝑓 , 𝑐1, 𝑐2) := {𝑐1@(𝑓 , 𝑐
′
1, 𝑐2) | 𝑐

′
1 = (𝑐1 + 1)mod𝑁 }

fai2 : 1→ N 𝐿rb .fai2@(𝑓 , 𝑐1, 𝑐2) := {𝑐2@(𝑓 , 𝑐1, 𝑐
′
2) | 𝑐

′
2 = (𝑐2 + 1)mod𝑁 }

Fig. 1. A certified layer 𝐿rb ⊢𝑅 𝑀bq : 𝐿bq implementing a bounded queue of size 𝑁 using a ring buffer. The left
side of the figure shows the signatures of the overlay and underlay interfaces, and the code associated with
the layer. The right side shows primitive specifications and the simulation relation used by the correctness
proof. We use ∗ as a unit value of type 1, and 𝑣@𝑘 ∈ 𝐴 × 𝑆 as a pair of value 𝑣 ∈ 𝐴 and state 𝑘 ∈ 𝑆 .

for 𝐿bq can operate without seeing how 𝐿bq is actually implemented. In this sense, 𝐿bq fully
encapsulates the implementation details of all the layers below.
• Compositional Verification: A certified system can be decomposed into many certified layers.
Each layer implementation (e.g.,𝑀bq) serves as a building block connecting one layer interface
(e.g., 𝐿bq) with another (e.g., 𝐿rb). A layer implementation can be verified using its overlay
and underlay interfaces alone.
• Effect Encapsulation and Composition: A layer interface behaves like an object in that its
signature hides not only the implementation but also the abstract state. A layer signature
is like an algebraic effect signature [Plotkin and Power 2001]. Its layer primitives are like
methods or effect handlers [Plotkin and Pretnar 2009].

1.2 A Layered and Object-Based Game Model

Koenig and Shao [2020] recently presented a game-semantic model for certified abstraction layers
by synthesizing ideas from game semantics [Abramsky et al. 2000; Abramsky and McCusker 1999;
Blass 1992; Hyland and Ong 2000], the refinement calculus [Back and Wright 1998], and algebraic
effects [Plotkin and Power 2001; Plotkin and Pretnar 2009]. They interpret each layer interface
signature as a game and the interaction between the layer interface and its client as a strategy.
They then model a layer implementation (e.g., 𝑀bq) as an łinteraction substitutionž morphism
from overlay strategies to underlay strategies. The resulting game semantics features specification
refinement with both angelic and demonic nondeterminism.
However, in their main development, Koenig and Shao use an explicit state-passing approach

where abstract states (e.g., elements of 𝑆bq and 𝑆rb) are communicated as part of the interaction
(i.e., in game-semantic moves such as deq(∗)@®𝑞). This is not desirable since a layer interface is
supposed to encapsulate its abstract state. A client of 𝐿bq should not observe the internal state ®𝑞 in
its interaction with 𝐿bq.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:4 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Fig. 2. The picture on the left describes how every regular map𝑀 : †𝐴→ †𝐵 can be factored into the map
𝜅 : †𝐴 → ††𝐴 which decomposes any sequence of elements of 𝐴 such as ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6⟩ ∈ †𝐴 into a
"sequence of sequences" such as ⟨⟨𝑎1, 𝑎2⟩, ⟨𝑎3⟩, ⟨𝑎4, 𝑎5, 𝑎6⟩⟩ ∈ ††𝐴, followed by the map †𝑀 : ††𝐴 → †𝐵
which łreplaysž𝑀 : †𝐴 ⊸ 𝐵 as many times as there are elements in the output sequence of elements of 𝐵:
three times in this case, in order to obtain the sequence ⟨𝑏1, 𝑏2, 𝑏3⟩ ∈ †𝐵. The picture on the right explains
how the construction adapts smoothly to a regular map 𝑀 : †𝑅𝐴 → †𝐵 from a concurrent object space
†𝑅𝐴 equipped with an equivalence relation 𝑅 on sequences of elements of 𝐴, using the decomposition map
𝜅𝑅 : †𝑅𝐴→ ††𝑅𝐴.

In this paper, we leverage ideas from Reddy’s pioneer work [Reddy 1996] on object-based semantics

and develop a new model for certified abstraction layers that does not carry abstract states in
the game-semantic moves and strategies. Semantics for imperative languages have mostly been
described as functions on global states. Reddy’s approach, on the other hand, defines such semantics
as objects with their observable behaviors. His key idea is precisely to restrict states as part of
the internal structure of objects and make them not externally visible. He constructed a semantic

model for objects based on coherence spaces [Girard 1987], and showed that an object function𝑀

building objects of type 𝐵 on top of other objects of type 𝐴 can be viewed as a regular map (a linear
map with extra structure):

𝑀 : †𝐴 †𝐵

between coherence spaces †𝐴 and †𝐵 whose elements (or tokens) describe sequences of elements
of the coherence spaces 𝐴 and 𝐵. Informally, the semantics of an object of type 𝐴 (or 𝐵) is a set of
its observable event traces, denoted as of type †𝐴 (or †𝐵), as shown in Fig.2. Each event (e.g., 𝑎1,
𝑏1) is just an atomic method invocation plus its return value. The fundamental property of regular
maps is that they are entirely determined by their restriction𝑀 : †𝐴 ⊸ 𝐵 to the coherence space 𝐵

describing a single element (instead of many) inside †𝐵. The regular map 𝑀 is recovered from𝑀

by the equation:

†𝐴 †𝐵
𝑀

= †𝐴 ††𝐴 †𝐵
𝜅 †𝑀

(1)

where 𝜅 is a canonical "decomposition" map and †𝑀 replays𝑀 sequentially, as explained in Fig. 2.
The coherence space †𝐴 is called łdagger 𝐴ž or more evocatively łreplay 𝐴ž for that reason.

Regular maps reveal the łdeclarativež nature of the object-based semantics. An łimperative-
lookingž layer implementation𝑀bq is actually quite łfunctional:ž it transforms a stream of events for
the underlay 𝐿rb into one for the overlay 𝐿bq. While the bounded queue interface 𝐿bq encapsulates
a stateful object, its effectful operations actually come from the underlay 𝐿rb, orchestrated by the
łstatelessž object implementation𝑀bq following a regular pattern.

We show that there is a great synergy between object-based semantics and certified abstraction
layers, and we establish a nice and useful synthesis between these two lines of work. The object-
based approach can be nicely extended to support concurrency by equipping each †𝐴 with an
equivalence relation 𝑅, yielding a set of equivalent event traces, denoted as †𝑅𝐴 in Fig. 2.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:5

1.3 Summary and Main Contributions

Our paper makes the following contributions:

• We present a new layered game model of interaction suitable for building certified systems
(see ğ3). We derive an object-based game from each layer signature. Layer interfaces are
modeled as general strategies for this game, and layer implementations are modeled as regular
strategies from the underlay signature to the overlay signature. A layer implementation is
then called certified when its composition with the underlay interface strategy refines the
overlay interface strategy.
• We show that our new layered game model as well as its object-based interpretation can
be easily extended to support a generalized form of layer interface specification that allows
non-determinism (see ğ4).
• We connect our game semantics to Reddy’s object-based model (see ğ2) by interpreting layer
signatures as coherence spaces and layer implementations as regular maps; we then extend
this interpretation to certified layer implementations (see ğ5).
• We design a notion of concurrent object space, where sequential traces may be identified
modulo permutation of independent operations (see ğ6). We show how to express protected
shared object concurrency, and a ticket lock implementation, in a simple model based on
regular maps between such concurrent object spaces (see ğ7).

Our extended technical report [Oliveira Vale et al. 2021] contains a set of appendices which give a
formal presentation of ğ3 and the detailed proofs for various results discussed in this paper.

1.4 Connecting Semantics to Code: A Broader Perspective

More broadly, this paper continues the work by Koenig and Shao [2020] and aims to develop a

compositional model for certified abstraction layers so that the model can be used to build certified

heterogeneous systems such as CertiKOS. The abstract reformulation of certified abstraction layers
enables us to benefit from a wealth of semantics research toward our goal. While our model allows
us to have a bird’s-eye view of a system’s behavior, when dealing with a concrete system we must
establish a connection between this large-scale view and the fine-grained operational semantics of
the code implementing it. To do so we plan to leverage and enhance the following technologies
developed recently by the Yale FLINT group:
CompCertO [Koenig and Shao 2021]. The CompCertO compiler provides an open semantics based

on Koenig and Shao [2020] to the CompCert certified C compiler. The semantics is inspired by the
game-semantics approaches and compatible with the model of certified abstraction layers in this
paper. This tier of abstraction, unfortunately, suffers from the problem of lack of encapsulation of
memory state, which we resolve here in the case of certified layers.
DeepSEA [Sjöberg et al. 2019]. The process of manually connecting the C and assembly semantics

from CompCert with the Certified Abstraction Layers framework in the original development of
CertiKOS led to the development of the DeepSEA programming language. The DeepSEA code is
compiled into C (and then compiled to assembly using CompCertO) plus a deep specification of its
behavior in Coq and an automatically generated proof of refinement between them. The DeepSEA
platform has been revamped so that it now follows the semantics presented in this paper, and the
C code generated now comes with a proof of refinement with a specification in our new semantic
model. DeepSEA bridges the gap between the more abstract model (presented in our current paper)
and CompCertO’s model, crucially enforcing the encapsulation of C memory state by different
layers.

To verify a concrete system, we can first use DeepSEA and CompCertO to move from the small-step
operational semantics of CompCert to our model; we can then verify the system using the more

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:6 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

abstract model as described in this paper. Ultimately we believe this connection between systems
verification and the semantic models of linear logic and state brings to the forefront of systems
verification well-established semantic techniques for characterizing programming language and
systems behavior, with a focus on expressiveness and compositionality.

2 OBJECT-BASED SEMANTICS

Reddy [1996] introduces a semantic domain for imperative languages based on the model of state
introduced in Reddy [1993], itself based on the coherence spaces semantics for linear logic [Girard
1987] with the before operator [Retoré 1997]. He calls this semantic domain object-based semantics.
This section gives a quick introduction to coherence spaces and object-based semantics.

2.1 The Basic Principles

Reddy [1996] advocates the idea that a program with an internal state can be entirely characterized
in terms of its interactive behavior, as what he calls an object. This object-based semantics is based
on four basic principles:

(1) An object can in general be used only sequentially,
(2) The behavior of an object is in general affected by its past history of operations,
(3) Object functions must be linear maps,
(4) Object functions are regular maps.

Principle 1 means that objects can be described by the linear trace they produce, and Principle 2 that
the prefix of a trace influences what comes next. Principles 3 and 4 are then elegantly formalized
using the notion of coherence spaces originally introduced by Girard [1987].

2.2 Coherence Spaces and Linear Maps

Definition 2.1. A coherence space 𝐴 = (|𝐴|,¨𝐴) is a set of tokens |𝐴| together with a reflexive
and symmetric coherence relation ¨𝐴⊂ |𝐴| × |𝐴|.

Example 2.2. The coherence space Var encodes the operations over a variable (or memory cell)
storing an integer value 𝑛 ∈ N. The web |Var| of Var is defined as:

|Var| := {get.𝑛 | 𝑛 ∈ N} ⊎ {set(𝑛).ok | 𝑛 ∈ N}

Each token of Var encodes both a call and return event: the token set(𝑛).ok encodes a call to
set with argument 𝑛 returning ok; the token get.𝑛 encodes a call to get with no arguments and
returning 𝑛. The coherence relation of Var is defined as:

op.𝑣 ¨Var op
′.𝑣 ′ ⇐⇒

(
op = op′⇒ 𝑣 = 𝑣 ′

)

The definition of ¨Var conveys the intuition that the operations in Var are deterministic, in the
sense that two tokens op.𝑣 and op.𝑣 ′ with the same underlying operation op are coherent precisely
when the operation returns the same value 𝑣 = 𝑣 ′.

We proceed in the same way to define the coherence spaceCounterwhich encodes the operations
of a counter:

|Counter| := {get.𝑛 | 𝑛 ∈ N} ∪ {inc.ok} op.𝑣 ¨Counter op
′.𝑣 ′ ⇐⇒

(
op = op′⇒ 𝑣 = 𝑣 ′

)

Morphisms between coherence spaces are defined as linear maps, in the following way, where we
use the notation 𝑎 ↦→ 𝑏 to denote a pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵 :

Definition 2.3. A relation 𝑓 ⊆ |𝐴| × |𝐵 | is a linear map 𝑓 : 𝐴 ⊸ 𝐵 when for all 𝑎1 ↦→ 𝑏1, 𝑎2 ↦→
𝑏2 ∈ 𝑓 the following holds:

(1) 𝑎1 ¨𝐴 𝑎2 ⇒ 𝑏1 ¨𝐵 𝑏2 (2) 𝑎1 ¨𝐴 𝑎2 ∧ 𝑏1 = 𝑏2 ⇒ 𝑎1 = 𝑎2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:7

A clique in a coherence space 𝐴 is defined as a subset 𝑓 ⊆ |𝐴| of tokens of 𝐴 which are pairwise
coherent. Note that a clique 𝑓 of a coherence space 𝐴 is the same thing as a linear map 𝑓 : 1 ⊸ 𝐴

where 1 is defined as the coherence space with web |1| := {∗} containing a single token such that
∗ ¨1 ∗.

2.3 The Replay Modality

The main thesis of Reddy [1996] is that the informal notion of object is appropriately captured
by the notion of clique of a coherence space of the form †𝐴, whose tokens are finite sequences of
tokens of 𝐴.

Definition 2.4. Given a coherence space 𝐴, the (free) object space associated to 𝐴 is the coherence
space †𝐴 with tokens in |†𝐴| := |𝐴|∗ and the coherence relation¨†𝐴 which relates ⟨𝑎1, . . . , 𝑎𝑛⟩ ¨†𝐴
⟨𝑏1, . . . , 𝑏𝑚⟩ if and only if:

∀𝑖 ≤ min(𝑛,𝑚).⟨𝑎1, . . . , 𝑎𝑖−1⟩ = ⟨𝑏1, . . . , 𝑏𝑖−1⟩ ⇒ 𝑎𝑖 ¨𝐴 𝑏𝑖 .

An object is a clique of †𝐴.

The coherence relation over †𝐴 ensures that at the first point where the two sequences differ,
they differ coherently. Note that if 𝑠 ∈ |†𝐴| is a prefix of 𝑡 ∈ |†𝐴| then 𝑠 ¨†𝐴 𝑡 .

Example 2.5. The object space associated to Var is the space of all sequences of call and return
events that can be performed on a variable. Note that †𝐴 does not enforce a particular semantics
for the returns across this sequence. For instance,

⟨get.3, set(7).ok, get.5⟩ ∈ |†Var| ⟨get.0, set(1).ok, get.1⟩ ∈ |†Var|

On the other hand, an object in †Var specifies a particular semantics by restricting those sequences.
For instance, the following set of sequences forms a clique in †Var:

𝑉Var := {𝑠 ∈ |†Var| | (𝑠 = get.𝑖 · 𝑠 ′⇒ 𝑖 = 0) ∧ (𝑠 = 𝑝 · get.𝑖 · get.𝑖 ′ · 𝑡 ⇒ 𝑖 = 𝑖 ′)

∧ (𝑠 = 𝑝 · set(𝑖).ok · get.𝑖 ′ · 𝑡 ⇒ 𝑖 = 𝑖 ′)}

The properties over the sequences in 𝑉Var enforce that: (1) The variable initially responds to a
get with a 0; (2) Consecutive calls to get return the same value; (3) A call to get following a set(𝑖)
must return 𝑖 . This defines a prefix-closed clique encoding all possible behaviors starting from a
certain state. Similarly, we can define:

𝑉Counter := {𝑠 ∈ |†Counter| | (𝑠 = 𝑝 · get.𝑖 · 𝑡 ⇒ 𝑖 = #inc(𝑝))}

where #inc(𝑝) counts occurrences of inc.ok in the sequence 𝑝 .

2.4 Regular Maps between Object Spaces

Maps between object spaces are required to satisfy a regularity requirement. In Reddy [1996],
regular functions are first defined using a structural property of the map, then an equivalence is
proven with the co-Kleisli category of † on coherence spaces.

Definition 2.6. For object spaces †𝐴 and †𝐵, a regular map 𝑓 : †𝐴 →Reg †𝐵 is a linear map
satisfying:

(1) (𝑠1 ↦→ 𝑡1), . . . , (𝑠𝑛 ↦→ 𝑡𝑛) ∈ 𝑓 ⇒ (𝑠1 · · · 𝑠𝑛 ↦→ 𝑡1 · · · 𝑡𝑛) ∈ 𝑓
(2) If (𝑠 ↦→ 𝑡1 · · · 𝑡𝑛) ∈ 𝑓 , then there exists 𝑠1, . . . , 𝑠𝑛 ∈ |†𝐴| such that 𝑠 = 𝑠1 · . . . · 𝑠𝑛 and

𝑠1 ↦→ 𝑡1 ∈ 𝑓 , . . ., 𝑠𝑛 ↦→ 𝑡𝑛 ∈ 𝑓

The equivalence is then given by the following theorem.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:8 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Theorem 2.7 (Reddy). There is an isomorphism

†𝐴 ⊸ 𝐵 � †𝐴→Reg †𝐵

between the linear maps from †𝐴 to 𝐵 and the regular maps from †𝐴 to †𝐵.

The isomorphism is based on the observation by Reddy that every linear function 𝑓 : †𝐴 ⊸ 𝐵

extends uniquely to a regular map 𝑓 : †𝐴→ †𝐵 defined in the following way:

𝑓 := {𝑠1 · · · 𝑠𝑛 ↦→ ⟨𝑏1, . . . , 𝑏𝑛⟩ | 𝑛 ≥ 0 ∧ ∀𝑖 . 𝑠𝑖 ↦→ 𝑏𝑖 ∈ 𝑓 } : †𝐴→Reg †𝐵

As explained in the introduction, the regular map 𝑓 can be equivalently defined as the composite (1)
where the canonical "decomposition" map 𝜅 : †𝐴→ ††𝐴 is defined as:

𝜅 := {𝑠1 · . . . · 𝑠𝑛 ↦→ ⟨𝑠1, . . . , 𝑠𝑛⟩ | 𝑠1, . . . , 𝑠𝑛 ∈ |†𝐴|}

Example 2.8. We can define a regular map𝑀 : †Var ⊸ Counter by first defining two maps𝑀get

and𝑀 inc which define the sequences that map to the get.𝑖 token and the inc.ok token in Counter,
respectively,

𝑀 inc
= {⟨get.𝑖, set.(𝑖 + 1)⟩ ↦→ inc.ok | 𝑖 ∈ N} 𝑀get

= {⟨get.𝑖⟩ ↦→ get.𝑖 | 𝑖 ∈ N}

This intuitively corresponds to the following pieces of code one might write to implement a counter
using a variable:

inc() { get() {

i ← get(); i ← get();

set(i+1); return i;

return ok; }

}

And then, the map 𝑀 defined as 𝑀 := 𝑀get ⊎𝑀 inc is indeed a linear map 𝑀 : †Var ⊸ Counter
which can be extended to a regular map 𝑀 : †Var →Reg †Counter, which can be regarded as
a function from objects in †Var to objects in †Counter. One important equation which we will
formalize in ğ3 is that

𝑀 ◦𝑉Var = 𝑉Counter. (2)

The equation expresses that the object𝑉Counter is correctly implemented by the object𝑉Var by using
the implementation specified by the regular map𝑀 . This can be seen as follows. Since𝑀get and

𝑀 inc both start with get, it must be that whenever 𝑠 ↦→ 𝑡 ∈ 𝑀 ◦𝑉Var we have that 𝑠 starts with get.0.
But, as we will see in ğ3, traces in 𝑉Var are deterministic so that there is only one possible return
for a get. This way, there is a single sequence in 𝑉Var that is mapped to any particular sequence in

𝑉Counter by𝑀 .

Composition of linear functions is defined by usual relational composition:

Definition 2.9. Given linear maps 𝑓 : 𝐴 ⊸ 𝐵 and 𝑔 : 𝐵 ⊸ 𝐶 we define the composition
𝑔 ◦ 𝑓 : 𝐴 ⊸ 𝐶 as

𝑔 ◦ 𝑓 := {𝑎 ↦→ 𝑐 | ∃𝑏 ∈ |𝐵 |. 𝑎 ↦→ 𝑏 ∈ 𝑓 ∧ 𝑏 ↦→ 𝑐 ∈ 𝑔}

The identity id𝐴 : 𝐴 ⊸ 𝐴 is defined as id𝐴 := {𝑎 ↦→ 𝑎 | 𝑎 ∈ |𝐴|}.

We define the composition of linear maps generating regular functions 𝑓 : †𝐴 ⊸ 𝐵 and 𝑔 : †𝐵 ⊸ 𝐶

as 𝑔 ◦ 𝑓 .
In summary, object spaces are modeled as coherence spaces †𝐴 and morphisms between these

object spaces are regular maps †𝐴→Reg †𝐵. Regular maps can be instead described by linear maps
†𝐴 ⊸ 𝐵, and such linear maps can be composed in accordance to regular map composition. A
single object of type 𝐴 is a clique in the graph of the relation ¨†𝐴.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:9

3 AN INTERACTIVE MODEL OF CERTIFIED LAYERS

In this section, we describe a layered model of interaction based on game semantics, suitable for
defining certified systems. We choose to present it informally here for the sake of simplicity, see
Oliveira Vale et al. [2021] for a formal presentation. A layer interface (𝐸,𝑉𝐸) consists of an effect
signature 𝐸 and of a deterministic specification𝑉𝐸 , which we call an object strategy, of the interactive
behavior of the interface. A certified implementation 𝑀 : (𝐸,𝑉𝐸) → (𝐹,𝑉𝐹) between two such layer
interfaces is essentially a collection of strategies𝑀 : 𝐸 → 𝐹 which implement the overlay interface
(𝐹,𝑉𝐹) using the effects and capabilities provided by the underlay interface (𝐸,𝑉𝐸).

3.1 Effect Signatures as Layer Signatures

An important observation of Koenig and Shao [2020] is that effect signatures can be used to specify
layer interface signatures. We recall their notion of effect signature here.

Definition 3.1. An effect signature is a set 𝐸 of operations together with a mapping ar(−), which
assigns to each 𝑒 ∈ 𝐸 a set ar(𝑒) called the arity of 𝑒 . We will use the notation

𝐸 = {𝑒1 : ar(𝑒1), 𝑒2 : ar(𝑒2), . . .}

to describe effect signatures.

Example 3.2. We can define signatures Var, for a layer describing a variable interface, and
Counter, describing a counter, as follows:

Var := {get : N, set : N→ 1} Counter := {get : N, inc : 1}

Note that a primitive of type 𝐴 → 𝐵 is described in the signature as an 𝐴-indexed family of
operations of arity 𝐵. For example, set : N→ 1 corresponds to one operation set(𝑖) : 1 for each
possible index 𝑖 ∈ N.

Example 3.3. The operations of the layer interfaces presented in Fig. 1 can be described by the
following effect signatures:

𝐸bq := {enq(𝑣) : 1, deq : U | 𝑣 ∈ U} 𝐸rb := {set(𝑖, 𝑣) : 1, get(𝑖) : U, fai1 : N, fai2 : N | 𝑖 ∈ N, 𝑣 ∈ U}

An effect signature already defines a certain structure of interaction in the sense that a caller
issues an effect 𝑒 ∈ 𝐸 and potentially receives a response 𝑣 ∈ ar(𝑒) from its environment. In this
way, an effect signature 𝐸 defines a very small game where the possible moves are effects of 𝐸 or
responses ∪𝑒∈𝐸ar(𝑒) to effects of 𝐸. The only valid plays in this game are:

𝜖 𝑒 𝑒 · 𝑣

which are simply the empty play, a call to 𝑒 ∈ 𝐸, and a call to 𝑒 ∈ 𝐸 followed by a return value
𝑣 ∈ ar(𝑒) to 𝑒 .

3.2 Layer Implementations

Our primary goal in this section is to express how an overlay with effect signature 𝐹 is imple-
mented using an underlay with effect signature 𝐸. To that purpose, we introduce the notion of
implementation 𝑀 : 𝐸 → 𝐹 of the signature 𝐹 in terms of the signature 𝐸. This notion of imple-
mentation is formulated as a family𝑀 = (𝑀 𝑓)𝑓 ∈𝐹 of game-semantics strategies𝑀 𝑓 , which we call
implementation strategies, over the signature 𝐸 associated to each effect 𝑓 ∈ 𝐹 .
When implementing an overlay with signature 𝐹 using an underlay with signature 𝐸 a single

operation 𝑓 of the overlay 𝐹 may require several operations over 𝐸 to respond with a value
𝑣 ∈ ar(𝑓). This suggests a different pattern of interaction than what we discussed in ğ3.1, as the
game associated with 𝐸 may be replayed several times in sequence. This leads to considering a

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:10 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

game, call it Replay 𝐸, which allows for the same moves as 𝐸 but lets the game defined by 𝐸 be
replayed as many times as necessary, so that the set of valid plays is given by sequences of shape:

𝜖 𝑒1 𝑒1 · 𝑣1 𝑒1 · 𝑣1 · 𝑒2 . . . 𝑒1 · 𝑣1 · . . . · 𝑒𝑛 · 𝑣𝑛

that is, a sequence of completed plays of 𝐸 followed by a potentially partial play of 𝐸.
Then, we consider a play of 𝐸 → 𝐹 , a complete interaction leading to the implementation of an

effect 𝑓 , as a play of Replay 𝐸 bracketed by a play of 𝐹 , like so:

𝑓 · 𝑒1 · 𝑣1 · . . . · 𝑒𝑛 · 𝑣𝑛 · 𝑣

where 𝑓 ∈ 𝐹 , 𝑣 ∈ ar(𝑓) and for all 𝑖 , 𝑒𝑖 ∈ 𝐸 and 𝑣𝑖 ∈ ar(𝑒𝑖). Any partial interactions matching this
shape are also possible plays, for instance

𝜖 𝑓 𝑓 · 𝑒1 · 𝑣1 · . . . · 𝑒𝑘 𝑓 · 𝑒1 · 𝑣1 · . . . · 𝑒𝑘 · 𝑣𝑘

These remarks allow us to define a notion of implementation as follows:

Definition 3.4. Let 𝐸 and 𝐹 be effect signatures. An implementation𝑀 : 𝐸 → 𝐹 is a non-empty
set of plays of 𝐸 → 𝐹 such that

(1) 𝑀 is closed under the prefix order ⊑: If 𝑠 ∈ 𝑀 and 𝑝 ⊑ 𝑠 then 𝑝 ∈ 𝑀 .
(2) 𝑀 is receptive: 𝑓 ∈ 𝑀 for every 𝑓 ∈ 𝐹 , and for every 𝑒 ∈ 𝐸 if 𝑠 · 𝑒 ∈ 𝑀 and 𝑣 ∈ ar(𝑒) then

𝑠 · 𝑒 · 𝑣 ∈ 𝑀 .
(3) 𝑀 is deterministic: If 𝑠 ·𝑚 · 𝑛, 𝑠 ·𝑚 · 𝑛′ ∈ 𝑀 are even-length plays then 𝑛 = 𝑛′.

Receptivity means that𝑀 accepts any operation 𝑓 ∈ 𝐹 played by its client, as well as any return
value 𝑣 ∈ ar(𝑒) played by its underlay in response to a call made by𝑀 to the operation 𝑒 . Note also
that determinism means that

𝑠 · 𝑒, 𝑠 · 𝑒 ′ ∈ 𝑀 ⇒ 𝑒 = 𝑒 ′

so that the implementation calls the same effect of the underlay next if their past histories are the
same. It also implies that

𝑠 · 𝑣, 𝑠 · 𝑣 ′ ∈ 𝑀 ⇒ 𝑣 = 𝑣 ′

so that if the same code in the underlay was executed with the same returns, then the same return
is given to the overlay effect being implemented. Furthermore, because of determinism, in no
condition may the plays 𝑓 · 𝑠 · 𝑣 and 𝑓 · 𝑠 · 𝑒 , where 𝑣 ∈ ar(𝑓) and 𝑒 ∈ 𝐸, belong to the same
implementation𝑀 .
An implementation𝑀 : 𝐸 → 𝐹 may be decomposed into sets

𝑀 𝑓 := {𝑠 ∈ 𝑀 | 𝑓 ⊑ 𝑠}

that is,𝑀 𝑓 is the set of plays that implement the effect 𝑓 . This is verified by the equation

𝑀 = {𝜖} ⊎
⊎

𝑓 ∈𝐹

𝑀 𝑓

In fact, given a collection (𝑀 𝑓)𝑓 ∈𝐹 such that for each 𝑓 the set of plays𝑀 𝑓 is an implementation

𝑀 𝑓 : 𝐸 → 𝐹 that only has plays starting with 𝑓 , the set𝑀 defined as

𝑀 = {𝜖} ⊎
⋃

𝑓 ∈𝐹

𝑀 𝑓

is an implementation𝑀 : 𝐸 → 𝐹 . This way, implementations are in one-to-one correspondence to
collections (𝑀 𝑓)𝑓 ∈𝐹 of implementations of each effect 𝑓 ∈ 𝐹 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:11

Example 3.5. The code presented in Example 2.8 can easily be encoded as the sets of plays

𝑀 inc := ↓{inc · getVar · 𝑛 · set(𝑛 + 1) · ok · ok | 𝑛 ∈ N} 𝑀get := ↓{getCounter · getVar · 𝑛 · 𝑛 | 𝑛 ∈ N}

where ↓𝑆 = {𝑠 | ∃𝑡 ∈ 𝑆.𝑠 ⊑ 𝑡} is the prefix ordering down-closure of 𝑆 . The correspondence between
the code and the sets of plays should be apparent. The full implementation𝑀 : Var→ Counter is
then simply𝑀 inc ∪𝑀get.

Example 3.6. The strategy associated with the implementation𝑀bq : 𝐸rb → 𝐸bq outlined in Fig. 1
can be described as:

𝑀
enq(𝑣)
bq := ↓{enq(𝑣) · fai2 · 𝑛 · set(𝑛, 𝑣) · ok · ok | 𝑛 ∈ N}

𝑀
deq
bq := ↓{deq · fai1 · 𝑛 · get(𝑛) · 𝑣 · 𝑣 | 𝑛 ∈ N ∧ 𝑣 ∈ U}

In order to model the vertical composition operation of Gu et al. [2015, 2018] it will be necessary
to compose implementations. So consider an implementation𝑀 : 𝐸 → 𝐹 and an implementation
𝑁 : 𝐹 → 𝐺 . We would like to produce an implementation 𝑁 ◦𝑀 : 𝐸 → 𝐺 . In order to do so the
implementation𝑀 will need to be used several times, as 𝑁 might make several calls to effects in
𝐹 in order to implement a single call/return event from 𝐺 . To this end, given an implementation

𝑀 : 𝐸 → 𝐹 we define the set𝑀 of plays, called its regular extension, as the set

𝑀 := {𝑠1 · . . . · 𝑠𝑛 | 𝑠1, . . . , 𝑠𝑛 ∈ 𝑀 and 𝑠1 · . . . · 𝑠𝑛 is a Replay 𝐸 ⊸ Replay 𝐹 play}

so that𝑀 describes the plays resulting from using𝑀 several times to implement a play of Replay 𝐹 .

Example 3.7. Consider the 𝑀 : Var → Counter defined in Example 3.5. Its regular extension
includes plays such as

getCounter · getVar · 𝑎 · 𝑎︸ ︷︷ ︸
𝑀

· inc · getVar · 𝑏 · set(𝑏 + 1) · ok · ok︸ ︷︷ ︸
𝑀

· getCounter · getVar · 𝑐 · 𝑐︸ ︷︷ ︸
𝑀

In the following definition, if 𝑠 is a sequence involving events in signatures 𝐸, 𝐹,𝐺 we use the
notation 𝑠↾𝐸,𝐹 to denote the subsequence of 𝑠 including all but only the events in 𝐸 or 𝐹 . Later
we use the unary variation 𝑠↾𝐸 for the subsequence including all but only the events in 𝐸. Then,
implementation composition is defined as

Definition 3.8. Let 𝑀 : 𝐸 → 𝐹 and 𝑁 : 𝐹 → 𝐺 be implementations. Then, the implementation
𝑁 ◦𝑀 : 𝐸 → 𝐺 is defined as

𝑁 ◦𝑀 := {𝑠↾𝐸,𝐺 | 𝑠↾𝐸,𝐹 ∈ 𝑀 and 𝑠↾𝐹,𝐺 ∈ 𝑁 }

Example 3.9. Suppose we want to use a counter, with signature Counter as in example 3.2, to
implement an interface with signature

EqCounter := {get : N→ B, inc : 1}

where B = {True, False}. The difference between Counter and EqCounter is that in EqCounter the
get operation takes an integer as argument, compares it against the current value of the counter,
and returns whether or not the value of the counter is equal to the argument to get. This can be
implemented by 𝑁 : Counter→ EqCounter defined as

𝑁 inc := ↓{incEqCounter · incCounter · ok · ok} 𝑁 get(𝑖) := ↓{get(𝑖) · get · 𝑗 · (𝑖 == 𝑗)}

where we use − == − to denote the boolean function checking for equality of two integers. Now,
given the implementation𝑀 : Var→ Counter from Example 3.5 we can construct 𝑁 ◦𝑀 : Var→
EqCounter using Definition 3.8. Then, the general shape for a play in (𝑁 ◦𝑀)get(𝑖) is depicted by
the following graphical descriptions:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:12 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

𝑀 𝑁 get(𝑖) (𝑁 ◦𝑀)get(𝑖)

Var → Counter Counter → EqCounter Var EqCounter
get(𝑖) get(𝑖)

get get
get get
𝑗 𝑗

𝑗 𝑗

(𝑖 == 𝑗) (𝑖 == 𝑗)

For the particular play we depicted the interaction 𝑠 in the definition of composition is

𝑠 = get(𝑖) · getCounter · getVar · 𝑗 · 𝑗 · (𝑖 == 𝑗)

so that we verify that

𝑠↾Var,Counter = getCounter · getVar · 𝑗 · 𝑗 ∈ 𝑀 𝑠↾Counter,EqCounter = get(𝑖) · getCounter · 𝑗 · (𝑖 == 𝑗) ∈ 𝑁

and therefore
𝑠↾Var,EqCounter = get(𝑖) · getVar · 𝑗 · (𝑖 == 𝑗) ∈ 𝑁 ◦𝑀

Definition 3.10. At this point we are ready to define a category Layer whose objects are effect
signatures 𝐸, 𝐹 and whose morphisms from 𝐸 to 𝐹 are the implementations𝑀 : 𝐸 → 𝐹 . Composition
is as in Definition 3.8 and the identity implementation for an effect signature 𝐸 is given by

𝐼𝐸 := ↓{𝑒 · 𝑒 · 𝑣 · 𝑣 | 𝑒 ∈ 𝐸 ∧ 𝑣 ∈ ar(𝐸)}

3.3 Layer Interfaces

We introduce in this section the notion of layer interface defined as a pair (𝐸,𝑉𝐸) consisting of an
effect signature 𝐸 specifying the interface for the objects, together with an object strategy𝑉𝐸 which
specifies the interactive behavior of the layer interface. We first define the notion of object strategy
and then give an illustration with our running example of ring buffers and bounded queues.

Definition 3.11. A (deterministic) object strategy over an effect signature 𝐸 is a non-empty set of
plays 𝑉𝐸 of Replay 𝐸 which satisfies

(1) the strategy 𝑉𝐸 is prefix-closed.
(2) the strategy 𝑉𝐸 is receptive:

If 𝑠 ∈ 𝑉𝐸 is an even-length play and 𝑒 ∈ 𝐸 then 𝑠 · 𝑒 ∈ 𝑉𝐸 .

(3) the strategy 𝑉𝐸 is deterministic:

If 𝑠 · 𝑒 · 𝑣, 𝑠 · 𝑒 · 𝑣 ′ ∈ 𝑉𝐸 are even-length plays then 𝑣 = 𝑣 ′.

We denote by S𝐸 the set of object strategies over 𝐸.

Definition 3.12. A layer interface is a pair 𝐿 = (𝐸,𝑉𝐸) of an effect signature 𝐸 and of an object
strategy 𝑉𝐸 over 𝐸.

Example 3.13. In general, given a state-based description of a layer interface 𝐿 of the kind used
in Fig. 1, we can obtain the set of plays 𝐿♯𝑞 induced by a state 𝑞 with the recursive condition:

𝜖 ∈ 𝐿♯𝑞 ; 𝑚 · 𝑛 · 𝑠 ∈ 𝐿♯𝑞 ⇔ ∃𝑞′ . (𝑛, 𝑞′) ∈ 𝐿.𝑚@𝑞 ∧ 𝑠 ∈ 𝐿♯𝑞′

The empty queue 𝜖 is a natural initial state, so we define (where 𝐿𝑆bq is the state-based specification

in Fig. 1):

𝐿bq := (𝐸bq,𝑉bq) 𝑉bq := 𝐿𝑆bq♯𝜖

For example, for all 𝑢, 𝑣 ∈ U, 𝐿bq allows the following play, as witnessed by the sequence of states
𝜖,𝑢,𝑢𝑣, 𝑣, 𝜖 .

enq(𝑢) · ok · enq(𝑣) · ok · deq · 𝑢 · deq · 𝑣 ∈ 𝑉bq ,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:13

For ring buffers, we prefer not to make any assumptions on initial contents, so that the get
operation on a location which has not yet been set is undefined. The corresponding layer interface
is (again, we denote by 𝐿𝑆rb the state-based specification in Fig. 1):

𝐿rb := (𝐸rb,𝑉rb) 𝑉rb :=
⋂

𝑓 ∈U𝑁

𝐿𝑆rb♯(𝑓 , 0, 0)

In this case, set(𝑖, 𝑣) · ok · get(𝑖) · 𝑣 is a play in 𝑉rb for all 𝑖 < 𝑁 , 𝑣 ∈ U, but get(𝑖) · 𝑣 on its own is
never accepted when |U| > 1.

3.4 Certified Layer Implementations

We have just seen in ğ3.2 how to define a notion of implementation 𝑀 : 𝐸 → 𝐹 of an effect
signature 𝐹 in terms of an effect signature 𝐸. We now adapt and refine this definition to obtain a
notion of certified implementation

𝑀 : (𝐸,𝑉𝐸) → (𝐹,𝑉𝐹)

between layer interfaces, as defined in Definition 3.12.

For an implementation𝑀 : 𝐸 → 𝐹 we will use the notation 𝑠
𝑀
↩−→ 𝑡 to mean that𝑀 can implement

the play 𝑡 of Replay 𝐹 using the underlay play 𝑠 of Replay 𝐸. Formally:

𝑠
𝑀
↩−→ 𝑡 ⇐⇒ ∃𝑝 ∈ 𝑀.𝑝↾𝐸 = 𝑠 and 𝑝↾𝐹 = 𝑡

Definition 3.14. Let 𝐿𝐸 = (𝐸,𝑉𝐸) and 𝐿𝐹 = (𝐹,𝑉𝐹). A certified implementation 𝑀 : 𝐿𝐸 → 𝐿𝐹 is an
implementation𝑀 : 𝐸 → 𝐹 such that

∀𝑡 ∈ 𝑉𝐹 .∃𝑠 ∈ 𝑉𝐸 .𝑠
𝑀
↩−→ 𝑡

We also find convenient to use the notation:

𝑉𝐸
𝑀
↩−→ 𝑉𝐹 ≡ ∀𝑡 ∈ 𝑉𝐹 .∃𝑠 ∈ 𝑉𝐸 .𝑠

𝑀
↩−→ 𝑡 .

Example 3.15. Building on Example 3.13, the correctness of 𝑀bq can be established using the
simulation relation 𝑅 given in Fig. 1. We can show by induction on plays that:

®𝑞 𝑅 (𝑓 , 𝑐1, 𝑐2) ⇒ 𝐿rb♯(𝑓 , 𝑐1, 𝑐2)
𝑀bq
↩−−→ 𝐿bq♯®𝑞

For 𝜖 ∈ 𝐿bq♯®𝑞 we have 𝜖
𝑀bq
↩−−→ 𝜖 and 𝜖 ∈ 𝐿rb♯(𝑓 , 𝑐1, 𝑐2). For (𝑛, ®𝑞

′) ∈ 𝐿bq.𝑚 and 𝑠 ∈ 𝐿bq♯®𝑞
′, we only

need to witness a related state ®𝑞 ′ 𝑅 (𝑓 ′, 𝑐 ′1, 𝑐
′
2) of 𝐿rb reached by the corresponding sequence of

operations in𝑀bq. Since the initial states 𝜖 𝑅 (𝑓 , 0, 0) are related for all 𝑓 ∈ U𝑁 , we can conclude

𝑉rb
𝑀bq
↩−−→ 𝑉bq.

Definition 3.16. The category CertiLayer has layer interfaces as objects and certified implemen-
tations 𝑀 : (𝐸,𝑉𝐸) → (𝐹,𝑉𝐹) as morphisms, with composition and identities defined as in the
category Layer.

Layer interfaces support a simple notion of refinement defined by

(𝐸,𝑉𝐸) ⊑ (𝐸,𝑉
′
𝐸) ⇐⇒ 𝑉𝐸 ⊆ 𝑉

′
𝐸

The refinement order ⊑ defines a refinement system satisfying the usual refinement law.

Proposition 3.17. (𝐸,𝑉𝐸) ⊑ (𝐸,𝑉
′
𝐸) if and only if the identity implementation on 𝐸 is a certified

implementation from (𝐸,𝑉𝐸) to (𝐸,𝑉
′
𝐸).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:14 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Which immediately implies that:

Corollary 3.18. Suppose that 𝐿1 ⊑ 𝐿′1 and 𝐿
′
2 ⊑ 𝐿2. Then, if𝑀 : 𝐿1 → 𝐿2 then𝑀 : 𝐿′1 → 𝐿′2.

Remark 1. Another way to formulate Definition 3.8 would be to proceed along the lines of game

semantics, and to see the implementation𝑀 : 𝐸 → 𝐹 as a strategy from Replay 𝐸 to 𝐹 , and similarly

for 𝑁 . In that prospect, the set 𝑀 of plays defines a strategy from Replay 𝐸 to Replay 𝐹 which may

be then composed with the strategy 𝑁 from Replay 𝐹 to 𝐺 in order to obtain the strategy 𝑁 ◦ 𝑀
from Replay 𝐸 to 𝐺 . Definition 3.14 of certified implementation may be reformulated in this spirit by

observing that the property𝑉𝐸
𝑀
↩−→ 𝑉𝐹 is equivalent to the fact that𝑉𝐹 seen as a strategy of Replay 𝐹 is

refined by the composite of 𝑉𝐸 seen as a strategy of Replay 𝐸 with the strategy𝑀 from Replay 𝐸 to

Replay 𝐹 , see Oliveira Vale et al. [2021] for details.

4 NON-DETERMINISTIC LAYER INTERFACES

In this section, we generalize the notions of layer interface formulated in ğ3 in order to accommodate
specific forms of nondeterminism in the specification of layers. We start by introducing the notion
of nondeterministic layer interface.

Definition 4.1. A non-deterministic layer interface L = (𝐸,V𝐸) is a pair consisting of an effect
signature 𝐸 and setV𝐸 ⊆ S𝐸 of object strategies. We further requireV𝐸 to be upward closed under
the refinement order:

∀𝑉𝐸 ∈ V𝐸 . ∀𝑉
′
𝐸 ∈ S𝐸 . 𝑉𝐸 ⊑ 𝑉

′
𝐸 ⇒ 𝑉 ′𝐸 ∈ V𝐸

Given an arbitrary set V𝐸 of object strategies, we will write its upward closure ↑V = {𝑉 ′ ∈
S𝐸 | ∃𝑉 ∈ V .𝑉 ⊑ 𝑉 ′} This means in particular that a layer interface (𝐸,𝑉) can be promoted to its
nondeterministic counterpart as (𝐸, ↑{𝑉 }).

Definition 4.2. A certified implementation 𝑀 : L𝐸 → L𝐹 between nondeterministic layer inter-
faces is an implementation𝑀 : 𝐸 → 𝐹 such that

∀𝑉𝐸 ∈ V𝐸 . ∃𝑉𝐹 ∈ V𝐹 . (𝐸,𝑉𝐸)
𝑀
↩−→ (𝐹,𝑉𝐹).

The intuition behind these definitions is that the behavior of a nondeterministic layer interface
(𝐸,V𝐸) is described by the setV𝐸 of deterministic object strategies potentially chosen to implement
the layer interface. An implementation𝑀 : 𝐸 → 𝐹 defines a certified implementation𝑀 : L𝐸 → L𝐹

when for all object strategies𝑉𝐸 of the underlay, there is an object strategy𝑉𝐹 of the overlay included
in the composite of𝑀 and 𝑉𝐸 .

The category CertiLayerND has non-deterministic layer interfaces L𝐸,L𝐹 as objects and certi-
fied implementations𝑀 : L𝐸 → L𝐹 as morphisms. Composition and identities are as in Layer.

Example 4.3. Recall that in Example 3.13, we defined

𝐿rb := (𝐸rb,𝑉rb) 𝑉rb :=
⋂

𝑓 ∈U𝑁

𝐿𝑆rb♯(𝑓 , 0, 0)

allowing arbitrary initial contents in 𝐿rb. In fact, the correctness of𝑀bq is also insensitive to the
counters’ initial value, since 𝜖 𝑅 (𝑓 , 𝑐, 𝑐) for all 𝑐 < 𝑁 . However, we cannot define 𝑉rb as

𝑉
wrong

rb :=
⋂

𝑓 ∈U𝑁

⋂

𝑐<𝑁

𝐿𝑆rb♯(𝑓 , 𝑐, 𝑐)

which would make the behavior of fai1 and fai2 completely undefined, similarly to the initial
behavior of get.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:15

By contrast, the model introduced by Definition 4.1 gives a more fine-grained way to weaken
constraints on 𝐿rb:

Lrb := (𝐸rb,Vrb) Vrb := ↑{𝐿
𝑆
rb♯(𝑓 , 𝑐, 𝑐) | 𝑓 ∈ U

𝑁 , 𝑐 < 𝑁 }

Lbq := (𝐸bq,Vbq) Vbq := ↑{𝑉bq}

Then𝑀bq : Lrb → Lbq remains a certified implementation in the sense of Definition 4.2.

We can easily adapt the notion of refinement ⊑ between deterministic layer interfaces, in the
following way:

(𝐸,V ′) ⊑ (𝐸,V) ⇐⇒ V ′ ⊇ V

Just as in ğ3.4, we have that (𝐸,V ′) ⊑ (𝐸,V) if and only if the identity implementation I𝐸 : 𝐸 → 𝐸

on the effect signature 𝐸 is a certified implementation. From this follows an immediate adaptation
of Proposition 3.18:

Proposition 4.4. Given L1 ⊑ L
′
1 and L

′
2 ⊑ L2, if𝑀 : L1 → L2, then𝑀 : L ′1 → L

′
2.

5 CORRESPONDENCEWITH OBJECT-BASED SEMANTICS IN COHERENCE SPACES

In ğ2 we reviewed Reddy’s object-based semantics in coherence spaces, and in ğ3 we introduced an
interactive game model of certified layers with many similarities to Reddy’s object-based semantics.
In this section we discuss a way of connecting the two semantics.

5.1 The Category Reg of Regular Maps

We start by observing that in ğ2 we have delineated all of the structure for the category of coherence
spaces, defined simply as

Definition 5.1. The category Coh has coherence spaces𝐴, 𝐵 as objects and linear maps 𝑓 : 𝐴 ⊸ 𝐵

as morphisms. Composition and identity are relational composition −◦−, and the diagonal relation
id− respectively.

We also take the opportunity to define the category Reg of object spaces:

Definition 5.2. The category Reg has coherence spaces𝐴, 𝐵 as objects and regular maps 𝑓 : †𝐴 ⊸
𝐵 as morphisms. The composite of two regular maps 𝑓 : †𝐴 ⊸ 𝐵 and 𝑔 : †𝐵 ⊸ 𝐶 is defined as the

regular map 𝑔 ◦ 𝑓 : †𝐴 ⊸ 𝐶 as explained in ğ2. The identity morphism of 𝐴 in Reg is the regular
map 𝜖𝐴 : †𝐴 ⊸ 𝐴 defined as 𝜖𝐴 := {⟨𝑎⟩ ↦→ 𝑎 | 𝑎 ∈ |𝐴|}. Note that the category Reg is the co-Kleisli
category associated to the comonad † : Coh→ Coh on the category Coh of coherence spaces.

We then introduce the category CertiReg which refines the category Reg of regular maps in the
same way as the category CertiLayer refines Layer in ğ3.

Definition 5.3. The objects of CertiReg are the pairs (𝐴,𝑊𝐴) consisting of a coherence space 𝐴
and of a clique𝑊𝐴 of the coherence space †𝐴. A morphism𝑀 : (𝐴,𝑊𝐴) → (𝐵,𝑊𝐵) of the category

CertiReg is defined as a regular map 𝑀 : †𝐴 ⊸ 𝐵 such that 𝑀 ◦ 𝑊𝐴 ⊇ 𝑊𝐵 where ⊆ is the
(set-theoretic) inclusion of linear maps.

5.2 Effect Signatures to Coherence Spaces

We can associate to every effect signature 𝐸 a coherence space ⟦𝐸⟧ defined as

|⟦𝐸⟧| = {𝑒.𝑣 | 𝑒 ∈ 𝐸 and 𝑣 ∈ ar(𝑒)} 𝑒.𝑣 ¨⟦𝐸⟧ 𝑒
′.𝑣 ′ ⇐⇒ (𝑒 = 𝑒 ′⇒ 𝑣 = 𝑣 ′)

Every token 𝑒.𝑣 ∈ ⟦𝐸⟧ is a pair consisting of an effect and a return value (or arity) associated to
this effect. Coherence encodes a form of determinism, which ensures that there exists at most one

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:16 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

possible return value 𝑣 ∈ ar(𝑒) for a given effect 𝑒 ∈ 𝐸 in a clique of ⟦𝐸⟧. This means in particular
that given an effect 𝑒 and two possible return values 𝑣, 𝑣 ′ ∈ ar(𝑚), two tokens of the coherence
space †⟦𝐸⟧ of the form 𝑠 · (𝑒.𝑣) and 𝑠 · (𝑒.𝑣 ′) are coherent precisely when 𝑣 = 𝑣 ′.

The translation from effect signatures 𝐸 to the underlying coherence space ⟦𝐸⟧ suggests that we
can see plays 𝑒 · 𝑣 in 𝐸 as tokens 𝑒.𝑣 ∈ ⟦𝐸⟧. We can then interpret any even-length play of Replay 𝐸
as sequence in †⟦𝐸⟧ as follows:

⟦𝑒1 · 𝑣1 · . . . 𝑒𝑛 · 𝑣𝑛⟧ = ⟨𝑒1 .𝑣1, . . . , 𝑒𝑛 .𝑣𝑛⟩

which in fact defines an order-preserving bijection (with respect to prefix ordering on sequences)
between the plays encoded by Replay 𝐸 and tokens of †⟦𝐸⟧. From now on we allow ourselves to
apply this bijection tacitly whenever we need it.

5.3 From Implementations to Certified Regular Maps

We start by noting that every implementation 𝑀 : 𝐸 → 𝐹 between effect structures 𝐸, 𝐹 can be
translated to a regular map ⟦𝑀⟧ : †⟦𝐸⟧ ⊸ ⟦𝐹⟧ between coherence spaces in the following way:

⟦𝑀⟧ := {𝑠 ↦→ 𝑓 .𝑣 | 𝑓 · 𝑠 · 𝑣 ∈ 𝑀}

We can establish that the translation is functorial in the sense that

Proposition 5.4. The translation ⟦−⟧ defines a full (but not faithful) functor ⟦−⟧ : Layer→ Reg

The functor ⟦−⟧ is full because every regular map 𝑁 : †⟦𝐸⟧ ⊸ ⟦𝐹⟧ can be turned into an object
strategy𝑀 : 𝐸 → 𝐹 such that 𝑁 = ⟦𝑀⟧ defined as the receptive closure of

𝑀 = ↓{𝑓 · 𝑠 · 𝑣 | 𝑠 ↦→ 𝑓 .𝑣 ∈ 𝑁 }

On the other hand the functor ⟦−⟧ is not faithful because two object strategies𝑀,𝑀 ′ : 𝐸 → 𝐹

which differ only on partial behaviors are translated to the same regular map ⟦𝑀⟧ = ⟦𝑀 ′⟧. The
reason is that the functor ⟦−⟧ captures exactly the complete behaviors of object strategies.

We then extend the functor ⟦−⟧ : Layer→ Reg defined in ğ5.3 to a functor

⟦−⟧ : CertiLayer→ CertiReg (3)

To that purpose we observe that for every effect signature 𝐸,

Proposition 5.5. If 𝑉𝐸 is an object strategy over the effect signature 𝐸 then its set of even-length

plays is a non-empty, prefix-closed clique of the associated coherence space †⟦𝐸⟧.

Thanks to this observation we can associate to every layer interface (𝐸,𝑉𝐸) in CertiLayer the
corresponding pair in CertiReg,

(𝐸,𝑉𝐸) ↦→ (⟦𝐸⟧, ⟦𝑉𝐸⟧)

where ⟦𝑉𝐸⟧ is simply the clique in †⟦𝐸⟧ corresponding to the even-length plays of the object
strategy 𝑉𝐸 . This then allows us to extend the functor ⟦−⟧ : CertiLayer → CertiReg defined in
ğ5.3 to a functor

⟦−⟧ : CertiLayerND→ CertiRegND

by applying to setsV𝐸 of object strategies the action of the original functor ⟦−⟧ in (3) to object
strategies 𝑉𝐸 ∈ V𝐸 , in the following wayL

⟦V𝐸⟧ := {⟦𝑉𝐸⟧ | 𝑉𝐸 ∈ V𝐸} ⟦(𝐸,V𝐸)⟧ := (⟦𝐸⟧, ⟦V𝐸⟧)

The image of a non-deterministic layer interface (𝐸,V𝐸) is defined as seen above, while implemen-
tations 𝑀 : (𝐸,V𝐸) → (𝐹,V𝐹) are mapped to the same regular map ⟦𝑀⟧ as in ğ5. We obtain in
this way a commutative diagram:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:17

CertiLayer CertiReg CertiRegConc

CertiLayerND CertiRegND CertiRegConcND

Layer Reg RegConc

⟦−⟧

inclusion inclusion

inclusion

inclusion

⟦−⟧

forget forget

inclusion

forget

⟦−⟧ inclusion

which may be seen as a map of functorial refinement systems [Melliès and Zeilberger 2015]. This
expresses very concisely in what sense the categoriesCertiReg andCertiRegND refine the category
Reg in the same way as the categories CertiLayer and CertiLayerND refine the category Layer.
The grayed-out categories will be discussed in ğ6, except for CertiRegConcND which is the result
of applying the abstract construction from ğ4 to CertiRegConc.

6 CONCURRENT OBJECT SPACES

So far we have only discussed models of sequential systems. The models we defined are expressive
enough to capture stateful sequential computation with an elegant decomposition of statefulness
into a state-less implementation and a stateful sequential specification. Challenges arise when
attempting to faithfully model concurrent computation. In order to discuss this situation, we take
full advantage of the correspondence shown in ğ5.

So let us consider a very simple concurrent system, where two variable objects are used concur-
rently to implement two independent counters. This can be modeled by an underlay signature

Var + Var = {111:get : N,111:set : N→ 1} ∪ {222:get : N,222:set : N→ 1}

In coherence spaces this signature nicely corresponds to the product

⟦Var + Var⟧ = ⟦Var⟧ & ⟦Var⟧

where the with of coherence spaces 𝐴 and 𝐵, 𝐴 & 𝐵, is defined by

|𝐴 & 𝐵 | := |𝐴| + |𝐵 | 𝑋𝑋𝑋 :𝑥 ¨𝐴&𝐵 𝑌𝑌𝑌 :𝑦 ⇐⇒ 𝑋 = 𝑌 ⇒ 𝑥 ¨𝑋 𝑦

The unit for & is the empty coherence space ⊤. For conciseness we will omit applications of the
functor ⟦−⟧ to effect signatures to no harm, so we may write Var & Var, for example.

Now, an implementation in our models corresponds to a regular map †(Var&Var) ⊸ (Counter&
Counter). If we assume each agent can only call the operations labelled with their own name, such
a map corresponds to two maps †Var ⊸ Counter each representing the local implementation that
each agent is running. We will use the usual implementation of Counter in terms of Var, as in
Example 2.8. Then, the implementation for all the agents is given by

𝑀 &𝑀 : †(Var & Var) ⊸ (Counter & Counter)

where 𝑀 &𝑀 is a labelled disjoint union of the implementation 𝑀 with itself regarded as a set
(including labeling the events within each copy of𝑀). But note that this map only expresses a very

limited form of concurrency. Namely, the implementation of a trace 𝑡 = ⟨111:inc.ok,222:inc.ok⟩ by𝑀 is
always given by a sequence of shape

𝑠1 = ⟨111:get.𝑖,111:set(𝑖 + 1).ok,222:get. 𝑗,222:set(𝑗 + 1).ok⟩ ∈ †(Var & Var)

which is completely atomic. The issue lies much deeper. Consider another interleaving on the
underlay corresponding to calls to inc on the overlay. For instance,

𝑠2 = ⟨111:get.𝑖,222:get. 𝑗,111:set(𝑖 + 1).ok,222:set(𝑗 + 1).ok⟩ ∈ †(Var & Var)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:18 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

A purposed linear map 𝑓 : †(Var & Var) ⊸ †(Counter & Counter) that models the usual counter
implementation on each counter should map both 𝑠1, 𝑠2 to the same sequence 𝑡 : 𝑠1 ↦→ 𝑡 ∈ 𝑓 and
𝑠2 ↦→ 𝑡 ∈ 𝑓 . But note that according to the definition of a linear map (Def. 2.3) this implies that
𝑠1 = 𝑠2, as 𝑠1 ¨†(Var&Var) 𝑠2. Therefore, there is no such linear map. Despite that, coherence spaces
do support a notion of parallelism in the tensor product ⊗:

|𝐴 ⊗ 𝐵 | := |𝐴| × |𝐵 | (𝑎, 𝑏) ¨𝐴⊗𝐵 (𝑎
′, 𝑏 ′) ⇐⇒ 𝑎 ¨𝐴 𝑎′ ∧ 𝑏 ¨𝐵 𝑏 ′

So that a map 𝑓 : †Var⊗ †Var ⊸ †Counter⊗ †Counter is possible. On the other hand, the category
Reg does not have tensor products, a fact noted by Reddy [1996].
In this section we explore the issue by dissecting the category Reg as the category of free †-

coalgebras, that is, coalgebras of the form †𝐴. We then consider a larger category of all †-coalgebras
where we pinpoint a particularly elegant class of †-coalgebras, equipped with a tensor product,
and with the expressive power to model a variety of concurrent systems.

6.1 The Replay Modality’s Co-monadic Structure

We start by noting that †− is a comonad in Coh, with the structural maps

𝛿𝐴 : †𝐴 ⊸ ††𝐴 𝜖𝐴 : †𝐴 ⊸ 𝐴

𝛿𝐴 := {𝑠1 · . . . · 𝑠𝑛 ↦→ ⟨𝑠1, . . . , 𝑠𝑛⟩ | 𝑠1, . . . , 𝑠𝑛 ∈ |†𝐴|} 𝜖𝐴 := {⟨𝑎⟩ ↦→ 𝑎 | 𝑎 ∈ |𝐴|}

which justifies the construction of Reg as the co-Kleisli category of †−. As a functor, the action of
†− on a linear map 𝑓 : 𝐴 ⊸ 𝐵 is

†𝑓 := {⟨𝑎1, . . . , 𝑎𝑛⟩ ↦→ ⟨𝑏1, . . . , 𝑏𝑛⟩ | ∀𝑖 ≤ 𝑛.𝑎𝑖 ↦→ 𝑏𝑖 ∈ 𝑓 }

which applies 𝑓 element-wise through the input sequences. Note that in Reg the map 𝜖𝐴 plays the
role of the identity morphism. In particular, the identity implementation 𝐼𝐸 is mapped by ⟦−⟧ to
𝜖𝐸 , in other words: ⟦𝐼𝐸⟧ = 𝜖𝐸 .

As explained in the introduction, see Fig. 2, the "decomposition" map 𝜅 = 𝛿𝐴 plays an essential

role in lifting a map 𝑓 : †𝐴 ⊸ 𝐵 to the regular map 𝑓 : †𝐴→ †𝐵 defined as the composite

†𝐴 †𝐵
𝑓

= †𝐴 ††𝐴 †𝐵
𝛿𝐴 †𝑓

Example 6.1. With the usual counter implementation 𝑀 : †Var → Counter we observe the
composition

⟨get.𝑎, get.𝑏, set(𝑏 + 1).ok, get.𝑐⟩
𝛿Var
↦−−−→ ⟨⟨get.𝑎⟩, ⟨get.𝑏, set(𝑏 + 1) .ok⟩, ⟨get.𝑐⟩⟩

†𝑀
↦−−−→ ⟨get.𝑎, inc.ok, get.𝑐⟩

where 𝛿Var plays the role of decomposing the input trace before𝑀 can be replicated to map the
input trace of †Var to a trace of †Counter. Note also that there are many decompositions of the

input trace that do not get mapped though †𝑀 and therefore do not appear in𝑀 .

Although the role of 𝜅 = 𝛿𝐴 in this setting is rather simple, it is fundamental for the structure
of regular maps. We will see that this decomposition step plays a much subtler role for general
†-coalgebras, which is fundamental to the simplicity of our model.

6.2 Identifying Interleavings

In ğ6 we noted that it is rather challenging to model the independent composition of objects because
different interleavings of the underlay are all coherent, and we can’t represent a ⊗ in Reg. On the
other hand, as the objects are independent, we could identify all those interleavings as representing

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:19

the same computation. We define a relation 𝑅 ⊆ |†(Var & Var) | × |†(Var & Var) | as the smallest
equivalence relation relating, for any 𝑠, 𝑡 ∈ |†(Var & Var) |, 𝑒.𝑣, 𝑒 ′.𝑣 ′ ∈ Var:

𝑖 ≠ 𝑗 ⇒ 𝑠 · ⟨𝑖𝑖𝑖:𝑒.𝑣⟩ · ⟨𝑗𝑗𝑗 :𝑒 ′.𝑣 ′⟩ · 𝑡 𝑅 𝑠 · ⟨𝑗𝑗𝑗 :𝑒 ′.𝑣 ′⟩ · ⟨𝑖𝑖𝑖:𝑒.𝑣⟩ · 𝑡

Then, we can define a coherence space †𝑅 (Var & Var) by

|†𝑅 (Var & Var) | := |†(Var & Var) |/𝑅 𝑥 ¨†𝑅 (Var&Var) 𝑦 ⇐⇒ ∀𝑠 ∈ 𝑥 .∀𝑡 ∈ 𝑦.𝑠 ¨†(Var&Var) 𝑡

where |†(Var & Var) |/𝑅 is the set of equivalence classes of 𝑅 over |†(Var & Var) |. Similarly, we can
define an analogous relation 𝑆 ⊆ |†(Counter & Counter) | × |†(Counter & Counter) | and a space
†𝑆 (Counter & Counter).
The usual Counter implementation in this setting can be formulated instead by defining two

maps𝑀 [𝑖] : 𝜄𝑖 (Var) ⊸ 𝜄𝑖 (Counter), one for each 𝑖 ∈ {1, 2}:

𝑀 [𝑖] := {⟨𝑖𝑖𝑖:get.𝑛⟩ ↦→ 𝑖𝑖𝑖:get.𝑛 | 𝑛 ∈ N} ∪ {⟨𝑖𝑖𝑖:get.𝑛, 𝑖𝑖𝑖:set(𝑛 + 1).ok⟩ ↦→ 𝑖𝑖𝑖:inc.ok | 𝑛 ∈ N}

Then, we can define a map �𝑀 [1] ⊗�𝑀 [2] : †𝑅 (Var & Var) ⊸ †𝑆 (Counter & Counter) as

�𝑀 [1] ⊗�𝑀 [2] := {[𝑠1 · . . . · 𝑠𝑛]𝑅 ↦→ [𝑡1 · . . . · 𝑡𝑛]𝑆 | ∀𝑖 ≤ 𝑛.𝑠𝑖 ↦→ 𝑡𝑖 ∈ �𝑀 [1] ∨ 𝑠𝑖 ↦→ 𝑡𝑖 ∈ �𝑀 [2]}
where [𝑠]𝑅 denotes the equivalence class of 𝑅 in which 𝑠 belongs, and similarly for [−]𝑆 (we will
often omit the subscript when it causes no confusion). Then, in our usual graphical presentation
we observe that

[𝑠2] = [⟨111:get.𝑖,222:get. 𝑗,111:set(𝑖 + 1).ok,222:set(𝑗 + 1) .ok⟩]

=

�𝑀 [1] ⊗�𝑀 [2]
↦−−−−−−−−−−→ [⟨111:inc.ok,222:inc.ok⟩] = 𝑡

[𝑠1] = [⟨111:get.𝑖,111:set(𝑖 + 1) .ok,222:get. 𝑗,222:set(𝑗 + 1) .ok⟩]

6.3 Concurrent Object Spaces

We say that an equivalence relation 𝑅 ⊆ |†𝐴| × |†𝐴| is coherent when

∀𝑠, 𝑡 ∈ |†𝐴|. 𝑠 𝑅 𝑡 ⇒ 𝑠 ¨†𝐴 𝑡

which we write more concisely 𝑅 ⊆ ¨†𝐴. Furthermore, we say that 𝑅 is a congruence when

∀𝑝, 𝑠, 𝑠 ′, 𝑡 ∈ †𝐴. 𝑠 𝑅 𝑠 ′⇒ 𝑝 · 𝑠 · 𝑡 𝑅 𝑝 · 𝑠 ′ · 𝑡

Definition 6.2. The coherence space †𝑅𝐴 associated to a coherent congruence 𝑅 is defined as

†𝑅𝐴 := |†𝐴|/𝑅 𝑥 ¨†𝑅𝐴 𝑦 ⇐⇒ ∀𝑠 ∈ 𝑥 .∀𝑡 ∈ 𝑦.𝑠 ¨†𝐴 𝑡

A coherence space †𝑅𝐴 is called a concurrent object space.

The fact that 𝑅 is a coherent congruence ensures that there is a linear map 𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴
playing a similar role for †𝑅𝐴 as the "decomposition" map 𝜅 = 𝛿𝐴 : †𝐴 ⊸ ††𝐴 plays for the free
†-coalgebra †𝐴. The map 𝜅𝑅 is defined as

𝜅𝑅 := [𝑠1 · . . . · 𝑠𝑛] ↦→ ⟨[𝑠1], . . . , [𝑠𝑛]⟩ : †𝑅𝐴 ⊸ ††𝑅𝐴.

An important observation of the paper is that this map equips the concurrent object space †𝑅𝐴 with
the structure of a †-coalgebra. Recall that a †-coalgebra is a pair (𝐶,𝜅 : 𝐶 ⊸ †𝐶) of a coherence
space 𝐶 and linear map 𝜅 : 𝐶 ⊸ †𝐶 making the diagrams below commute:

𝐶 †𝐶

†𝐶 ††𝐶

𝜅

𝜅 †𝜅

𝛿𝐶

𝐶 †𝐶

𝐶

𝜅

id𝐶
𝜖𝐶 (4)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:20 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

The †-coalgebras define a category †-Coalg, known as the Eilenberg-Moore category associated
to the comonad †. Its objects are the †-coalgebras just described, and its morphisms 𝑓 : (𝐶,𝜅) →
(𝐶 ′, 𝜅 ′) are the maps 𝑓 : 𝐶 → 𝐶 ′ of Coh making the diagram below commute:

𝐶 𝐶 ′

†𝐶 †𝐶 ′

𝑓

𝜅 𝜅′

†𝑓

(5)

We can summarize the observations made so far into the following proposition:

Proposition 6.3. For every coherence space 𝐴 and coherent congruence 𝑅 ⊆ |†𝐴| × |†𝐴|, the pair

(†𝑅𝐴 , 𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴)

defines a †-coalgebra.

A detailed proof of proposition 6.3 can be found in Oliveira Vale et al. [2021].

Example 6.4. Note that the equivalence relations 𝑅 and 𝑆 introduced in ğ6.2 are both coherent
congruences, so that †𝑅 (Var & Var) and †𝑆 (Counter & Counter) assemble into concurrent object
spaces which are †-coalgebras by Proposition 6.3.

It should be noted that coalgebra morphisms of †-coalgebras described in (4) generalize in a
very natural and pleasant way the notion of regular map †𝐴→ †𝐵 defined in ğ2.4 between object
spaces. Indeed, an important (and well-known) fact is that the map 𝛿𝐴 : †𝐴 ⊸ ††𝐴 defines the free
†-coalgebra generated by 𝐴:

(†𝐴, 𝛿𝐴 : †𝐴 ⊸ ††𝐴)

It then turns out that a regular map †𝐴→ †𝐵 in the sense of Def. 2.6 in Section ğ2.4 is same as a
coalgebra morphism †𝐴→ †𝐵 between free †-coalgebras in the sense of (5). In particular, every

regular map 𝑓 : †𝐴 → †𝐵 associated to the linear map 𝑓 : †𝐴 ⊸ 𝐵 makes the diagram below
commute:

†𝐴 †𝐵

††𝐴 ††𝐵

𝑓

𝛿𝐴 𝛿𝐵

†𝑓

(6)

Looking backwards, this means that we have been working all along in the previous sections
with †-coalgebras, even if only the free ones, of the form †𝐴. The challenges which arise with
concurrency lead us to consider more general †-coalgebras such as concurrent object spaces, of
the more general form †𝑅𝐴 for 𝑅 ⊆ |†𝐴| × |†𝐴| for a coherent congruence. It should come as no
surprise that we can define a full subcategory RegConc of the category of †-coalgebras given by
restricting the objects of †-Coalg to such concurrent †-spaces. At the same time, we can recover †𝐴
as the concurrent object space †=𝐴 associated to the specific identity relation 𝑅 defined by equality
=. The situation is nicely summarized by the chain of inclusion functors

Reg ↩→ RegConc ↩→ †-Coalg

Note that one main difference is that RegConc and †-Coalg are equipped with a parallel tensor
product (discussed in ğ6.4), while this is not the case for the original category Reg of regular maps.
We have just seen in (6) how coalgebra morphisms are similar (and in fact extend) the usual

notion of regular map †𝐴→ †𝐵 in the category Reg. A special case is of particular relevance to us:
imagine that one is given a linear map 𝑓 : †𝑅𝐴 ⊸ 𝐵 which, by analogy with regular maps, one

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:21

would like to lift to a map †𝑅𝐴 ⊸ †𝑆𝐵. While this is in general not possible, in the case where 𝑆
is the identity relation we may exploit the †-coalgebra structure of †𝑅𝐴 to construct a morphism

𝑓 : †𝑅𝐴 ⊸ †𝐵 in the following way:

†𝑅𝐴 †𝐵
𝑓

= †𝑅𝐴 ††𝑅𝐴 †𝐵
𝜅𝑅 †𝑓

The structural morphism 𝜅𝑅 plays here a very similar role as the "decomposition" map 𝜅 = 𝛿𝐴
discussed in the introduction for the sequential setting. One fundamental difference however is
that 𝜅𝑅 may take advantage of the equational theory encoded in 𝑅 prior to decomposing a trace.

6.4 A Parallel Tensor Product on Concurrent Object Spaces

Every pair of †-coalgebras (𝐶1, 𝜅1) and (𝐶2, 𝜅2) defines a †-coalgebra 𝐶1 ⊗ 𝐶2 with structural map
𝜅12 defined as the composition

𝐶1 ⊗ 𝐶2 †(𝐶1 ⊗ 𝐶2)
𝜅12

= 𝐶1 ⊗ 𝐶2 †𝐶1 ⊗ †𝐶2 †(𝐶1 ⊗ 𝐶2)
𝜅1⊗𝜅2

where the second map is an instance of the structural map

†𝐴 ⊗ †𝐵 ⊸ †(𝐴 ⊗ 𝐵) (⟨𝑎1, . . . , 𝑎𝑛⟩, ⟨𝑏1, . . . , 𝑏𝑛⟩) ↦→ ⟨(𝑎1, 𝑏1), . . . , (𝑎𝑛, 𝑏𝑛)⟩ (7)

This construction turns †-Coalg into a symmetric monoidal category. The coherence space 1 (the
usual unit for ⊗) is equipped with a †-coalgebra structure provided by the structural map

1 ⊸ †1 ∗ ↦→ ⟨∗, . . . , ∗︸ ︷︷ ︸
𝑛 times

⟩ (8)

The monoidal structure of †-Coalg comes from the fact that (7) and (8) equip the comonad † with
the structure of a symmetric monoidal comonad over Coh [Kock 1972][Melliès 2009].

We saw in ğ6.3 that every concurrent object space †𝑅𝐴 defines a †-coalgebra. We establish now
that our class of concurrent object spaces is closed under tensor product in the sense that

Proposition 6.5. Given two concurrent object spaces †𝑅𝐴 and †𝑆𝐵 the tensor product of †𝑅𝐴 and

†𝑆𝐵 is a concurrent object space †𝑅⊗𝑆 (𝐴 & 𝐵).

Indeed, given relations 𝑅 ⊆ |†𝐴| × |†𝐴| and 𝑆 ⊆ |†𝐵 | × |†𝐵 | we define the relation

𝑅 ⊗ 𝑆 ⊆ |†(𝐴 & 𝐵) | × |†(𝐴 & 𝐵) | 𝑠 (𝑅 ⊗ 𝑆) 𝑡 ⇐⇒ 𝑠↾𝐴 𝑅 𝑡↾𝐴 ∧ 𝑠↾𝐵 𝑆 𝑡↾𝐵

which in addition to any equations from 𝑅 and 𝑆 also adds equations allowing for tokens of𝐴 and 𝐵
to be swapped. This congruence has the remarkable property that it induces an isomorphism of
†-coalgebras

†𝑅 𝐴 ⊗ †𝑆𝐵 � †𝑅⊗𝑆 (𝐴 & 𝐵) (9)

which elegantly captures an equivalence between a true concurrency and an interleaving con-
currency presentation of the same concurrent object, and should be seen as an analogue of the
Seely isomorphism satisfied by the exponential modality 𝐴 ↦→ !𝐴 of linear logic (see Melliès [2009]
for details). Thanks to this isomorphism (9) proved in Oliveira Vale et al. [2021], we establish the
important property that our category RegConc of concurrent object spaces is equipped with a
notion of parallel tensor product:

Proposition 6.6. RegConc is a symmetric monoidal category.

Example 6.7. As an illustration, coming back to the motivating equivalence relations 𝑅 and 𝑆
formulated in ğ6.2, we observe that they satisfy the isomorphisms

†Var ⊗ †Var � †𝑅 (Var & Var) † Counter ⊗ †Counter � †𝑆 (Counter & Counter)

mentioned in (9) because the equivalence relations 𝑅 and 𝑆 in ğ6.2 are equal to = ⊗ =.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:22 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

6.5 Certified Concurrent Object Spaces

We are now ready to define our category of certified concurrent systems CertiRegConc, which
refines RegConc in the same way CertiReg refines Reg. Its objects are triples (𝐴, 𝑅,𝑉𝐴) of a coher-
ence space 𝐴, a coherent congruence 𝑅 ⊆ |†𝐴| × |†𝐴| and 𝑉𝐴 : 1 ⊸ †𝐴 a clique of †𝐴. Morphisms
𝑀 : (𝐴, 𝑅,𝑉𝐴) → (𝐵, 𝑆,𝑉𝐵) are coalgebra morphisms 𝑀 : †𝑅𝐴 ⊸ †𝑆𝐵 satisfying the additional
requirement that

∀𝑡 ∈ 𝑉𝐵 .∃𝑠 ∈ 𝑉𝐴 . [𝑠]𝑅 ↦→ [𝑡]𝑆 ∈ 𝑀

Identity and composition are as in †-Coalg.
We have seen in ğ6.4 that RegConc comes equipped with a tensor product. We now extend the

parallel tensor to CertiRegConc. Given (𝐴, 𝑅,𝑉𝐴) and (𝐵, 𝑆,𝑉𝐵) we would like that the underlying
coherence space of their product

(𝐴, 𝑅,𝑉𝐴) ⊗ (𝐵, 𝑆,𝑉𝐵)

be given by 𝐴 & 𝐵 so to match the relation 𝑅 ⊗ 𝑆 . But taking the tensor product of the cliques 𝑉𝐴
and 𝑉𝐵 we obtain

𝑉𝐴 ⊗ 𝑉𝐵 : 1 ⊸ †𝐴 ⊗ †𝐵

which is not a clique of †(𝐴 & 𝐵). In order to obtain such a clique, we make use of the interleaving
morphism

inter𝐴,𝐵 : †𝐴 ⊗ †𝐵 ⊸ †(𝐴 & 𝐵) inter𝐴,𝐵 := {(𝑠𝐴, 𝑠𝐵) ↦→ 𝑠 | 𝑠↾𝐴 = 𝑠𝐴 ∧ 𝑠↾𝐵 = 𝑠𝐵}

which produces all the possible interleavings of the pair of input traces. Then, we define the product
𝑉𝐴 •𝑉𝐵 of the cliques 𝑉𝐴 and 𝑉𝐵 as the composition

1 †(𝐴 & 𝐵)
𝑉𝐴•𝑉𝐵

= 1 1 ⊗ 1 †𝐴 ⊗ †𝐵 †(𝐴 & 𝐵)
𝑖𝑠𝑜 𝑉𝐴⊗𝑉𝐵 inter

which is simply the set of all possible interleavings of traces in 𝑉𝐴 with traces in 𝑉𝐵 . This endows
the category CertiRegConc with a monoidal structure encoding independent parallel composition:

(𝐴, 𝑅,𝑉𝐴) ⊗ (𝐵, 𝑆,𝑉𝐵) := (𝐴 & 𝐵, 𝑅 ⊗ 𝑆,𝑉𝐴 •𝑉𝐵)

7 CONCURRENT OBJECT SPACES: TWO CASE STUDIES

In ğ6 we defined a notion of concurrent object spaces supporting independent parallel composition.
In this section we present two case studies showcasing that concurrent object spaces can express
more complex forms of concurrency. In ğ7.1 we discuss a simple model of protected shared object
concurrency which uses a lock primitive to synchronize several computational agents. We show
atomic concurrent overlays can be certified by proving a local sequential refinement condition. Then,
ğ7.2 discusses how the lock interface, which ğ7.1 uses as underlay, can be encoded in concurrent
object spaces in a simple fashion by means of a carefully constructed equational theory.

7.1 Protected Shared Object Concurrency

A common form of concurrency in systems is protected access to a shared object. By this we mean
that different agents (say threads, or processors) have their accesses to a shared object protected
by a synchronization primitive such as a lock. This allows an object that in principle is shared
concurrently to implement atomic interfaces.
To ground this discussion we will assume a set of computational agents Υ. Given an effect

signature 𝐸 we can construct an effect signature 𝐸 [Υ] which labels the operations described by 𝐸

with the name of who is executing the operation, formally defined as the labelled disjoint union

𝐸 [Υ] :=
∑

𝜏 ∈Υ

𝐸 corresponding to the coherence space
¯

𝜏 ∈Υ

⟦𝐸⟧

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:23

We define a signature Lock for a lock interface as

Lock := {acq : 1, rel : 1}

which is shared by a set of agents Υ in the signature Lock[Υ]. We give a simple sequential specifi-
cation to the Lock interface with the (prefix-closed) clique 𝑉Lock defined as

𝑉Lock := {𝑠 ∈ |†Lock| | ∀𝑝, 𝑡 ∈ |†Lock|.∀𝜏, 𝜏
′ ∈ Υ.∀𝑚 ∈ Lock.(𝑠 = 𝜏𝜏𝜏 :𝑚 · 𝑡 ⇒𝑚 = acq.ok)

∧ (𝑠 = 𝑝 · 𝜏𝜏𝜏 :acq.ok · 𝜏 ′𝜏 ′𝜏 ′:𝑚 · 𝑡 ⇒𝑚 = rel.ok ∧ 𝜏 ′ = 𝜏)

∧ (𝑠 = 𝑝 · 𝜏𝜏𝜏 :rel.ok · 𝜏 ′𝜏 ′𝜏 ′:𝑚 · 𝑡 ⇒𝑚 = acq.ok)},

where each of the conditions say, respectively, that: (1) Every trace starts with an acq move; (2) If
acq is called by agent 𝜏 then the next event is a call to rel by agent 𝜏 ; (3) Any rel call may only be
followed by an acq call.
Now, given an object encoded by the signature 𝐸 and a clique 𝑉𝐸 : 1 ⊸ †𝐸 we construct the

interface for its sharing among the agents in Υ as the signature 𝐸 [Υ] and the clique

𝑉𝐸 [Υ] := {⟨𝜏1𝜏1𝜏1:𝑒1.𝑣1, . . . ,𝜏𝑛𝜏𝑛𝜏𝑛 :𝑒𝑛 .𝑣𝑛⟩ ∈ †𝐸 [Υ] | ⟨𝑒1.𝑣1, . . . , 𝑒𝑛 .𝑣𝑛⟩ ∈ 𝑉𝐸}

that is, all sequences such that if we łforgetž which agent is calling each operation the trace obeys
the specification 𝑉𝐸 .
Given an object specification (𝐸,𝑉𝐸) we can always construct the object specification

(†=⊗= (Lock & 𝐸) [Υ],𝑉Lock •𝑉𝐸 [Υ])

where we make use of the isomorphism

Lock[Υ] & 𝐸 [Υ] � (Lock & 𝐸) [Υ] .

The equivalence classes of = ⊗ =, the tensor of the equality relation over †Lock[Υ] with the equality
relation over †𝐸 [Υ] as defined in ğ6.5, allow for Lock and 𝐸 events to be commuted liberally.

Then, given an implementation𝑀 : †𝐸 ⊸ 𝐹 we denote by𝑀 [𝜏] : †𝐸 [𝜏] ⊸ 𝐹 [𝜏] the implemen-
tation obtained by labelling every event that appears in𝑀 with agent 𝜏 . We construct the protected
implementation ⟨𝑀⟩[𝜏] : †=⊗= (Lock & 𝐸) [Υ] ⊸ 𝐹 [Υ] :

⟨𝑀⟩[𝜏] := {[⟨𝜏𝜏𝜏 :acq.ok⟩ · 𝑠 · ⟨𝜏𝜏𝜏 :rel.ok⟩] ↦→ 𝜏𝜏𝜏 :𝑓 .𝑣 | 𝑠 ↦→ 𝜏𝜏𝜏 :𝑓 .𝑣 ∈ 𝑀 [𝜏]}

which surrounds the body of the implementation by acquiring a lock and then releasing it when
done. The implementation on behalf of all the agents is given by

⟨𝑀⟩[Υ] :=
⊎

𝜏 ∈Υ

⟨𝑀⟩[𝜏] .

It is easy to check that if𝑀 ◦𝑉𝐸 ⊇ 𝑉𝐹 that is, the refinement condition holds locally, then

�⟨𝑀⟩[Υ] : ((Lock & 𝐸) [Υ],= ⊗ =,𝑉Lock •𝑉𝐸 [Υ]) → (𝐹,=,𝑉𝐹 [Υ]),

that is, �⟨𝑀⟩[Υ] is a certified implementation of CertiRegConc.

Example 7.1. We take our usual example of implementing a counter using a variable. Now,
we consider implementing an atomic concurrent counter interface making use of a lock and a
concurrent shared variable. From our discussion, the underlay can be modeled by the signature
and specification

(Lock & Var) [Υ] 𝑉Lock •𝑉Var [Υ]

where 𝑉Var is the usual variable specification, as seen in Example 2.5. The usual implementation
𝑀 : †Var ⊸ Counter is lifted to

⟨𝑀⟩[Υ] : †=⊗= (Lock & Var) [Υ] ⊸ †Counter[Υ] .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:24 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Note that the underlay’s equational theory relates the traces 𝑠1 and 𝑠2 below:

𝑠1 = ⟨111:acq.ok,111:get.0,111:set(1).ok,111:rel.ok,222:acq.ok,222:get.1,222:set(2).ok,222:rel.ok⟩

𝑠2 = ⟨111:acq.ok,111:rel.ok,222:acq.ok,222:rel.ok,111:get.0,111:set(1).ok,222:get.1,222:set(2).ok⟩

and therefore both map under �⟨𝑀⟩[Υ] to 𝑡 = ⟨111:inc.ok,222:inc.ok⟩ despite the fact that 𝑠2 does not
match the shape of the implementation𝑀 . The presence of the synchronization primitives with
semantics given by the clique 𝑉Lock •𝑉Var [Υ] together with the equational theory = ⊗ = means
that 𝑠2 carries the information that the two increments were indeed performed atomically. Here,
the structural map 𝜅=⊗= plays a very important role as it makes use of the equational theory to
decompose 𝑠2 in the following way:

[𝑠2]
𝜅=⊗=
↦−−−→ ⟨[111:acq.ok,111:get.0,111:set(1).ok,111:rel.ok], [222:acq.ok,222:get.1,222:set(2).ok,222:rel.ok]⟩

which †⟨𝑀⟩[Υ] is then able to map to 𝑡 . There is no other choice: the synchronization primitives
do not commute with each other and neither do the variable primitives. We note that a more
specialized map that does not protect calls to get could have been used instead.

This example showcases that the coalgebra structural map 𝜅 plays a much more subtle role than
𝛿 did in the completely sequential models. It does not only split a trace, but it also may transform
the trace according to the equational theory it has access to. We will see that it is a key feature of
our handling of even more complex concurrent objects.

7.2 Ticket Lock

We have just discussed in ğ7.1 a simple framework for handling protected shared object concurrency.
In that setting we assume a sequentially specified lock interface (Lock[Υ],𝑉Lock) is available as
underlay. For instance, a particular system architecture may implement an array of ticket locks
to be used throughout the system. Often such a lock interface is implemented using some other
synchronization primitives. In the context of a certified system, the ticket lock implementation
itself might be certified to be correctly implemented using its underlay.

We will take as example a ticket lock algorithm. The ticket lock is implemented using a fetch-and-
increment primitive and a shared counter. We model this underlay with the signature FAI&Counter
where Counter is the usual Counter interface and FAI is given by the signature and specification

FAI := {fai : N} 𝑉FAI := {𝑠 ∈ |†FAI| | 𝑠 = 𝑝 · fai.𝑛 · 𝑡 ⇒ 𝑛 = #fai(𝑝)}

where #fai(𝑝) is the number of fai operations in the sequence 𝑝 . We construct the interfaces
(FAI[Υ],𝑉FAI [Υ]) and (Counter[Υ],𝑉Counter [Υ]) as in ğ7.1. We will define the underlay specification
𝑉FAI&Counter to be all possible interleavings of traces in 𝑉FAI [Υ] and 𝑉Counter [Υ]. That is,

𝑉FAI&Counter := {𝑠 ∈ |†(FAI & Counter) [Υ] | | 𝑠↾FAI[Υ] ∈ 𝑉FAI [Υ] ∧ 𝑠↾Counter[Υ] ∈ 𝑉Counter [Υ]}

In order to justify the equational theory we will be using, it is vital to understand exactly how
the ticket lock is implemented. We wish to encode the code:

acq() {

my_t := fai();

while (get() != my_t) {};

return ok

}

rel() {

inc();

return ok

}

The intuition for the code is that each contestant for the lock acquires a ticket number from the
FAI object. Then, each contestant keeps checking for the currently serving ticket number obtained
from the shared counter. As soon as a contestant checks for the currently serving ticket number

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:25

111:acq.ok 111:rel.ok

222:acq.ok 222:rel.ok

111:fai.1 222:fai.2 111:get.1 222:get.1 111:inc.ok 222:get.2 222:inc.ok

111:fai.1 111:get.1 222:fai.2 222:get.1 111:inc.ok 222:get.2 222:inc.ok

111:fai.1 111:get.1 222:fai.2 111:inc.ok 222:get.1 222:get.2 222:inc.ok

111:acq.ok 111:rel.ok 222:acq.ok 222:rel.ok

111:fai.1 111:get.1 111:inc.ok 222:fai.2 222:get.1 222:get.2 222:inc.ok

Fig. 3. We depict several 𝐿 related traces. Vertically adjacent traces require a single swap to be related. Above
the traces are the intervals in which call/return events of the Lock overlay are active. The swaps, from top to
bottom, preserve the happens before ordering of the lock overlay. The bottom-most trace introduces a new
happens before relation, which is allowed by linearizability. Although the bottom-most trace does not satisfy
the sequential specification of Counter, it preserves local program order and behavior. Therefore, from the
perspective of each agent there is no difference between the traces displayed.

and verifies that it is the same as the ticket number it holds it acquires the lock. In order to release
the lock the current lock holder simply increments the currently serving ticket number.
Note that while the underlay interface is atomic, at least with respect to each of the inde-

pendent objects available, the implementation of the overlay events themselves may interleave
non-atomically creating friction with the completely atomic overlay lock specification. A common
correctness criterion for atomicity of concurrent objects is linearizability. In defining our equational
theory for the ticket lock we take inspiration from the fact that the ticket lock implementation
yields a linearizable lock interface. Our equational theory is carefully constructed so to preserve
łhappens beforež order as defined in Herlihy and Wing [1990].

We are now ready to define the relation

𝐿 ⊆ |†(FAI & Counter) [Υ] | × |†(FAI & Counter) [Υ] |

encoding the equational theory for the Lock implementation.We define 𝐿 as the smallest congruence
satisfying the rules:

(1) 𝜏 ≠ 𝜏 ′ ∧ (𝑒 and 𝑒 ′ are events of different shared objects) ⇒ ⟨𝜏𝜏𝜏 :𝑒.𝑣,𝜏 ′𝜏 ′𝜏 ′:𝑒 ′.𝑣 ′⟩ 𝐿 ⟨𝜏 ′𝜏 ′𝜏 ′:𝑒 ′.𝑣 ′,𝜏𝜏𝜏 :𝑒.𝑣⟩
(2) 𝜏 ≠ 𝜏 ′⇒ ⟨𝜏𝜏𝜏 :get.𝑖,𝜏 ′𝜏 ′𝜏 ′:inc.ok⟩ 𝐿 ⟨𝜏 ′𝜏 ′𝜏 ′:inc.ok,𝜏𝜏𝜏 :get.𝑖⟩
(3) 𝜏 ≠ 𝜏 ′⇒ ⟨𝜏𝜏𝜏 :get.𝑖,𝜏 ′𝜏 ′𝜏 ′:get. 𝑗⟩ 𝐿 ⟨𝜏 ′𝜏 ′𝜏 ′:get. 𝑗,𝜏𝜏𝜏 :get.𝑖⟩

Rule (1) says that if two events come from different agents and different shared objects they may
be swapped. Rule (2) might seem counter-intuitive, as it allows an inc event to swap with a get
event. Despite that, it still preserves the program order of each agent involved, as the swap can
only be performed between events of different threads. Therefore, from the local perspective of
each agent they still see the same history. Furthermore, the swap does not change the real-time
ordering of operations from the perspective of the overlay events, it at most refines it. Rule (3)
enforces the passivity of get. In Figure 3 we consider a few traces related by 𝐿.

Now that we have carefully described the intuition for the 𝐿 equational theory, we are ready to
discuss the encoding of the implementation of the ticket lock. Locally the implementation is simply

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:26 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

given by the map

𝑀 [𝜏] : †𝐿 (FAI & Counter) [𝜏] ⊸ Lock[𝜏]

defined as

𝑀 [𝜏]acq := {[⟨𝜏𝜏𝜏 :fai.𝑖,𝜏𝜏𝜏 :get.𝑖1, . . . ,𝜏𝜏𝜏 :get.𝑖𝑛,𝜏𝜏𝜏 :get.𝑖⟩] ↦→ 𝜏𝜏𝜏 :acq.ok | ∀𝑗 ≤ 𝑛.𝑖 𝑗 ≠ 𝑖}

𝑀 [𝜏]rel := {[⟨𝜏𝜏𝜏 :inc.ok⟩] ↦→ 𝜏𝜏𝜏 :rel.ok}

note that all the equivalence classes involved in 𝑀 [𝜏] are singleton equivalence classes. It is
notorious that the definition of𝑀 is essentially just the code for the implementation.
𝑀 can be lifted to the map

�𝑀 [Υ] : †𝐿 (FAI & Counter) [Υ] ⊸ †Lock[Υ]

and shown to be correct by verifying the refinement condition:

∀𝑡 ∈ 𝑉Lock.∃𝑠 ∈ 𝑉FAI&Counter.[𝑠]𝐿 ↦→ 𝑡 ∈ �𝑀 [Υ]
For this, the structural map 𝜅𝐿 plays a fundamental role. Consider for instance the following

graphical depiction of an input/output pair in �𝑀 [Υ]:

[⟨111:fai.0,222:fai.1,111:get.0,222:get.0,111:inc.ok,222:get.1⟩]
𝜅𝐿
−−→ ⟨[⟨111:fai.0,111:get.0⟩], [⟨111:inc.ok⟩], [⟨222:fai.1,222:get.0,222:get.1⟩]⟩

�𝑀 [Υ]
−−−−−→ ⟨111:acq.ok,111:rel.ok,222:acq.ok⟩

The𝑉FAI&Counter trace is transformed using the equational theory encoded in 𝐿. This transformation
is performed by the structural map 𝜅𝐿 which then decomposes the trace into the components which
𝑀 [Υ] is able to map. This is a much more subtle operation than the sequential decomposition per-
formed by 𝛿 . This nice coalgebraic structure greatly simplifies reasoning and makes for particularly
simple implementation definitions. After the decomposition the map𝑀 , which simply encodes the
body of the code implementing each method, is applied directly.

8 RELATED WORK

Object-Based Semantics. While we have already discussed the relationship between our work and
Reddy’s work on object-based semantics [Reddy 1996], we have not mentioned Reddy’s work with
†-coalgebras in the Appendix of Reddy [1996]. Reddy faces similar problems with the tensor product
as we do and presents two solutions. One of them [Reddy 1996] defines a class of †-coalgebras
characterized by partial monoids, which he calls finitary object spaces. Our work in ğ6 may be
seen as a subcategory of Reddy’s finitary object spaces characterized instead as presentations of
partial monoids. This equational formulation is more convenient for our purposes, as it is leads
to a smooth treatment of concurrency. While Reddy’s finitary object spaces are monoidal closed,
concurrent objects are not. Despite that, concurrent object spaces are still rich enough to encode
Reddy’s model of interference-controlled Algol.
The second approach pioneered by Reddy, called dependence spaces [Reddy 1994], was one of

many inspirations for our work. They differ substantially in that our work remains in the category
of coherence spaces, while dependence spaces endow coherence spaces with extra structure. We
believe there is an instructive embedding of dependence spaces into a generalization of our category
of concurrent object spaces using partial equivalence relations instead of equivalence relations and
mediated by a reformulation of dependence spaces as Mazurkiewicz traces [Mazurkiewicz 1995]
which we leave for future work.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:27

Reddy [1993] has also investigated in detail the categorical structures surrounding object-based
semantics, what he calls a LLMS for Linear Logic Model of State. The appendix in our extended
technical report [Oliveira Vale et al. 2021] places our model from ğ3 in a standard game-semantics
model by defining a †modality. Although we don’t discuss it there, the † is constructed so to endow
the category of games defined with a LLMS. A careful discussion from this point-of-view would be
lengthy, so we curb our remarks on the matter. Reddy’s subsequent work [O’Hearn and Reddy 1999;
Reddy 2002, 2013; Reddy and Dunphy 2012] focused on combining the event-based and state-based
approaches to define the full semantics of Algol-like languages.

Game Semantics. Game semantics has been around for more than 30 years. It has been extremely
successful in describing the fine-grained semantics of a large class of programming languages
including PCF [Abramsky et al. 2000; Hyland and Ong 2000], imperative languages [Abramsky and
McCusker 1997, 1999; Ghica and Murawski 2008], and object-oriented languages [Murawski and
Tzevelekos 2014]. Despite its importance and promising support to compositional reasoning, it has
not been used in large formal verification projects based on proof assistants. Instead, the formal
verification community has preferred to use simple small-step or mixed-step operational semantics
to verify programs because game semantics is often seen as too complex to be smoothly mechanized
in any proof assistant. Our work as well as Koenig and Shao [2020] can be seen as significant steps
toward applying game semantics to the mechanized verification of large systems. We have had a
pleasant experience in mechanizing coherence spaces due to their simplicity. Furthermore, while
we give a traditional game semantics presentation to our model in ğ3, we believe Koenig [2021]
provides an equivalent model amenable to convenient mechanization.
The game semantics literature focused on giving the semantics for a specific programming

language and then using it to prove the soundness and full abstraction properties. They are complex
because they use game semantics to model command- or expression-level interaction in the core
programs. These languages and their game semantics are not primarily designed for program
verification; and there are no equivalent notions of layer interfaces or certified layers. By focusing
on certified layers, we take the best idea from game semantics to support certified composition. To
make things simple, our key idea is that these certified layers must fully encapsulate their states,
otherwise, their interfaces would be too complex and then make composition difficult.
This is why Reddy’s approach to handling global state is particularly attractive. Starting from

the seminal work by Abramsky and McCusker on Idealized Algol [Abramsky and McCusker 1997],
the game semantics community took inspiration from Reddy’s idea to give fully abstract models to
imperative languagesÐfor programming in the small. Here, we show that the very idea could have
a big impact for certified layer programming in the large. This happens to match the best practice
on how abstraction layers are used by the real-world engineers. Also, despite its early influence on
game semantics, the † modality has been largely forgotten in the game semantics community in
the benefit of linear logic’s ! modality. Our work seeks to bring back into focus the relevance of
the † modality by showcasing its simplicity and expressiveness.

Calderon andMcCusker [2010] presented a full, faithful strong monoidal embedding of a category
of games into a category of coherence posets and hinted about a possible deep connection between
games semantics and Reddy’s object-based semantics. The correspondence which we established
in ğ5 can be viewed as a first attempt toward addressing this problem in the context of certified
abstraction layers. Our functor differs from that of Calderon and McCusker [2010] in that it maps
less plays. This way, while their functor is lax with respect to † our functor distributes strictly over †.
This is fundamental for our development as we need a precise connection with † in coherence
spaces, and is what prevents us from using the functor in Calderon and McCusker [2010].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:28 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Finally, there are similarities but also intrinsic differences between our model of certified layers
based on concurrent objects and the model of Idealized Concurrent Algol (ICA) developed by Ghica
and Murawski [2008]. A first key difference is that their model is based on arena games, which
means that they have to take care of the intricacies associated to the justification of pointers. Our
model based on coherence spaces and regular functions is for that reason simpler to manipulate and
to certify in a proof assistant, and this is a main point of our work. In particular, regular functions
describe alternating strategies where each token of the coherence space describes a pair consisting
of an Opponent move followed by a Player move. In contrast, the model based on arena games
enables interactions where Opponent moves and Player moves do not necessarily alternate Ð which
complicates the construction of the model, even on first-order functions. The information provided
by the coherence relation as well as the dagger structure are moreover missing from the game
model of ICA. For these foundational and practical reasons, our model does not coincide with the
game model of ICA restricted to first-order functions.

Certified Abstraction Layers. Koenig and Shao [2020] model certified abstraction layers using
categories whose objects are effect signatures and whose morphisms are strategy specifications,
enriched with a complete refinement lattice structure. Layer interfaces and implementations are
both modeled as strategy specifications. Layer correctness can be stated as 𝐿𝐹 ⊑ 𝑀 ◦ 𝐿𝐸 , where
𝐿𝐸 : 1→ 𝐸 is the underlay interface,𝑀 : 𝐸 → 𝐹 is the layer implementation, and 𝐿𝐹 : 1→ 𝐹 is the
overlay interface. However, this elegant picture is complicated by their treatment of state. The set of
states used by a layer interface must be encoded as part of its signature, and interactions must follow
a łstate-passingž discipline. Likewise, the simulation relation used to establish a layer’s correctness
must be internalized as a morphism, then composed with the implementation to translate between
underlay and overlay states. While Koenig and Shao also explore a model featuring stateful and
reentrant strategies, which could in principle realize the encapsulation of state, this comes at
the cost of the simplicity and elegance of their main development, and they do not extend their
treatment of certified layers to this setting. They also do not consider layers with concurrency.
By contrast, our approach avoids complex combinations of features by maintaining a strong

distinction between layer interfaces and implementations. Layer implementations are two-sided
(they both use underlay operations and provide overlay operations) but they can remain stateless
and deterministic. Layer interfaces are stateful, but because they are one-sided the structure of
their plays can remain simple. In turn, the statefulness of layer interfaces and our direct approach
to formalizing layer correctness mean we do not need an explicit internalization of simulation
relations. This allows us to limit our treatment of nondeterminism to demonic nondeterminism,
which is sufficient to express implementation freedom.

Concurrency. Gu et al. [2018] developed Certified Concurrent Abstraction Layers (CCAL) and
applied them to build a certified concurrent OS kernel [Gu et al. 2019, 2016]. They used game-
semantic strategies to model the interaction behavior of each thread (or CPU core) against its
environment context, and developed a program logic for reasoning about both the safety and
progress of concurrent objects. The marriage of Reddy’s work [Reddy 1994, 1996] with our new
layered game semantics offers a promising direction for developing compositional models for
CCAL-style shared-memory concurrency. An appealing challenge for future work in that direction
will be to articulate the results of this paper with the asynchronous and interactive accounts based
on action and footstep trace semantics [Brookes 2006, 2007] and template game semantics [Melliès
and Stefanesco 2018, 2020] of Concurrent Separation Logic [O’Hearn 2004].

Similarly, there is a significant body of work on correctness conditions for concurrent programs
[Cerone et al. 2014; Filipović et al. 2009; Herlihy and Wing 1990; Murawski and Tzevelekos 2019].
Most notably Cerone et al. [2014] and Murawski and Tzevelekos [2019] provide generalizations

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:29

of linearizability to layers encompassing both an underlay and an overlay, including potentially
higher-order computation. As far as we are aware this is the only work in this line that discusses a
notion of layer with underlay and overlay, and we believe that there is an opportunity to connect the
ideas from there with our model. Indeed, while we present a framework for certifying concurrent
programs, we provide no correctness criterion for our coherent congruences. It is a key part
of the proof of some of the claims in ğ6 and ğ7 that any congruence which is a subrelation of
the equivalence up-to sequential consistency relation is a coherent congruence. This includes
preservation of happens-before order as in Herlihy and Wing [1990]. As the Lock example in
ğ7 shows, we often need even more precise coherent congruences. There is a complex interplay
between the coherent congruence and the implementation𝑀 . Despite that, as ğ7.1 shows, once a
synchronization primitive such as Lock has been verified, general compositional rules for shared
state concurrency become available. This is a promising avenue for future work and will likely
involve a connection with concurrent models such as Ghica and Murawski [2008], Cerone et al.
[2014], and Murawski and Tzevelekos [2019].

9 CONCLUSION

The idea of certified abstraction layers [Gu et al. 2015] was inspired by the systems community’s
best practice in using abstraction layers to build large-scale software and hardware systems [Saltzer
and Kaashoek 2009]. Certified abstraction layers rely on using a pair of underlay and overlay
interfaces to encapsulate the implementation effects and eliminate undesirable dependencies from
other components. Gu et al. [2016] has shown the effectiveness of using certified abstraction layers
to build large-scale certified concurrent OS kernels. However, the main semantic ingredients that
make certified abstraction layers so effective have been unclear for many years.

In this paper, we have demonstrated that there is a close connection between certified abstraction
layers and Reddy’s object-based semantics of states based on coherent spaces. The major new
conceptual contribution of this paper is our model of certified layer implementation (e.g., Defini-
tions 3.16 and 4.2). Modeling a layer interface 𝐿 as a pair of an effect signature 𝐸 and an object
strategy 𝑉𝐸 (or a set of object strategiesV𝐸) is by no means obvious. Here, the signature 𝐸 imposes
a syntactic well-formedness of the system-environment interface, and 𝑉𝐸 (orV𝐸) imposes more
refined semantic constraints to the layer’s behaviors.
This is very different from how existing module languages model a module implementation

and its import and export interfaces, and how Koenig and Shao [2020] model certified layer
implementation which is still based on a simulation relation between the underlay and overlay
states. This reformulation comes with great benefit. Looking to the past, it helps clarify some of
what made certified abstraction layers so effective. Looking to the future, it provides an abstract
model of certified abstraction layers that can be studied and extended in its own right, as the
preliminary advances into the territory of concurrent systems in ğ6 and ğ7 showcase.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their helpful feedback. This material is based
upon work supported in part by NSF grants 2019285, 1763399, 1521523, and 2118851, and by the
Defense Advanced Research Projects Agency (DARPA) and Naval Information Warfare Center
Pacific (NIWC Pacific) under Contract No. N66001-21-C-4018. The third author is a co-founder of
and has an equity interest in CertiK Global Ltd. CertiK has licensed Yale University’s intellectual
property, which is related to the NSF grants 1521523 and 1763399. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:30 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

REFERENCES

2015-2021. DeepSpec: The Science of Deep Specifications. https://deepspec.org/.

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Abstraction for PCF. Inf. Comput. 163, 2 (2000),

409ś470. https://doi.org/10.1006/inco.2000.2930

Samson Abramsky and Guy McCusker. 1997. Linearity, Sharing and State: A Fully Abstract Game Semantics for Idealized

Algol with Active Expressions. Birkhäuser Boston, Boston, MA, 297ś329. https://doi.org/10.1007/978-1-4757-3851-3_10

Samson Abramsky and Guy McCusker. 1999. Game Semantics. In Computational Logic, Ulrich Berger and Helmut Schwicht-

enberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1ś55.

Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of the 20th European Symposium on Programming (ESOP

2011). Springer, Berlin, Heidelberg, 1ś17. https://doi.org/10.1007/978-3-642-19718-5_1

Andrew W Appel, Lennart Beringer, Adam Chlipala, Benjamin C Pierce, Zhong Shao, Stephanie Weirich, and Steve

Zdancewic. 2017. Position Paper: The Science of Deep Specification. Phil. Trans. R. Soc. A 375, 2104 (2017), 20160331.

https://doi.org/10.1098/rsta.2016.0331

Ralph-Johan Back and Joakim von Wright. 1998. Refinement Calculus: A Systematic Introduction. Springer, New York.

https://doi.org/10.1007/978-1-4612-1674-2

Andreas Blass. 1992. A Game Semantics for Linear Logic. Ann. Pure Appl. Log. 56, 1ś3 (1992), 183ś220. https://doi.org/10.

1016/0168-0072(92)90073-9

Stephen Brookes. 2006. A Grainless Semantics for Parallel Programs with Shared Mutable Data. Electronic Notes in Theoretical

Computer Science 155 (2006), 277 ś 307. https://doi.org/10.1016/j.entcs.2005.11.060 Proceedings of the 21st Annual

Conference on Mathematical Foundations of Programming Semantics (MFPS XXI).

Stephen Brookes. 2007. A Semantics for Concurrent Separation Logic. Theoretical Computer Science 375, 1 (2007), 227 ś 270.

https://doi.org/10.1016/j.tcs.2006.12.034 Festschrift for John C. Reynolds’s 70th birthday.

Ana C. Calderon and Guy McCusker. 2010. Understanding Game Semantics Through Coherence Spaces. Electron. Notes

Theor. Comput. Sci. 265 (Sept. 2010), 231ś244. https://doi.org/10.1016/j.entcs.2010.08.014

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2014. Parameterised Linearisability. In Automata, Languages, and

Programming, Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 98ś109.

Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. 2016. Toward Compositional

Verification of Interruptible OS Kernels and Device Drivers. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing

Machinery, New York, NY, USA, 431ś447. https://doi.org/10.1145/2908080.2908101

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using

Crash Hoare Logic for Certifying the FSCQ File System. In Proceedings of the 25th Symposium on Operating Systems

Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 18ś37. https:

//doi.org/10.1145/2815400.2815402

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind. 2017. Kami: A Platform for

High-Level Parametric Hardware Specification and Its Modular Verification. Proc. ACM Program. Lang. 1, ICFP, Article

24 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110268

David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-End Verification of Information-Flow Security for C and

Assembly Programs. SIGPLAN Not. 51, 6 (June 2016), 648ś664. https://doi.org/10.1145/2980983.2908100

Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. 2009. Abstraction for Concurrent Objects. In Program-

ming Languages and Systems, Giuseppe Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 252ś266.

Dan R. Ghica and Andrzej S. Murawski. 2008. Angelic Semantics of Fine-Grained Concurrency. Annals of Pure and Applied

Logic 151, 2 (2008), 89 ś 114. https://doi.org/10.1016/j.apal.2007.10.005

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1ś101. https://doi.org/10.1016/0304-

3975(87)90045-4

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for

Computing Machinery, New York, NY, USA, 595ś608. https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan (Newman) Wu, Vilhelm Sjöberg, and David

Costanzo. 2019. Building Certified Concurrent OS Kernels. Commun. ACM 62, 10 (Sept. 2019), 89ś99. https://doi.org/10.

1145/3356903

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference on

Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 653ś669.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

https://deepspec.org/
https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1007/978-1-4757-3851-3_10
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1016/j.entcs.2005.11.060
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.entcs.2010.08.014
https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/3110268
https://doi.org/10.1145/2980983.2908100
https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3356903
https://doi.org/10.1145/3356903

Layered and Object-Based Game Semantics 42:31

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman)Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo,

and Tahina Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for

Computing Machinery, New York, NY, USA, 646ś661. https://doi.org/10.1145/3192366.3192381

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM

Trans. Program. Lang. Syst. 12, 3 (July 1990), 463ś492. https://doi.org/10.1145/78969.78972

J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163, 2 (2000), 285ś408.

https://doi.org/10.1006/inco.2000.2917

A. Kock. 1972. Strong functors and monoidal monads. Archiv der Mathematik 23 (1972), 113ś120.

Jérémie Koenig. 2021. Grounding Game Semantics in Categorical Algebra. In Proceedings of the Fourth International

Conference on Applied Category Theory (ACT 2021), Kohei Kishida (Ed.). To appear.

Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In Proceedings

of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20). Association

for Computing Machinery, New York, NY, USA, 633ś647. https://doi.org/10.1145/3373718.3394799

Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling Certified Open C Components. In Proceedings of the 42nd

ACM SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI

2021). Association for Computing Machinery, New York, NY, USA, 1095ś1109. https://doi.org/10.1145/3453483.3454097

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107ś115. https:

//doi.org/10.1145/1538788.1538814

Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu, David Costanzo, Jung-Eun Kim, and Man-Ki Yoon. 2019. Virtual Timeline:

A Formal Abstraction for Verifying Preemptive Schedulers with Temporal Isolation. Proc. ACM Program. Lang. 4, POPL,

Article 20 (Dec. 2019), 31 pages. https://doi.org/10.1145/3371088

Antoni W. Mazurkiewicz. 1995. Introduction to Trace Theory. In The Book of Traces, Volker Diekert and Grzegorz Rozenberg

(Eds.). World Scientific, 3ś41. https://doi.org/10.1142/9789814261456_0001

Paul-André Melliès and Léo Stefanesco. 2018. An Asynchronous Soundness Theorem for Concurrent Separation Logic. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18).

Association for Computing Machinery, New York, NY, USA, 699ś708. https://doi.org/10.1145/3209108.3209116

Paul-André Melliès and Léo Stefanesco. 2020. Concurrent Separation Logic Meets Template Games. In Proceedings of the

35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20). Association for

Computing Machinery, New York, NY, USA, 742ś755. https://doi.org/10.1145/3373718.3394762

Paul-André Melliès and Noam Zeilberger. 2015. Functors Are Type Refinement Systems. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for

Computing Machinery, New York, NY, USA, 3ś16. https://doi.org/10.1145/2676726.2676970

Paul-André Melliès. 2009. Categorical Semantics of Linear Logic. In Interactive Models of Computation and Program Behaviour,

Panoramas et Synthèses 27. Société Mathématique de France, Paris, France, 1ś196.

Andrzej S. Murawski and Nikos Tzevelekos. 2014. Game Semantics for Interface Middleweight Java. In Proceedings of the

41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14).

Association for Computing Machinery, New York, NY, USA, 517ś528. https://doi.org/10.1145/2535838.2535880

Andrzej S. Murawski and Nikos Tzevelekos. 2019. Higher-order Linearisability. Journal of Logical and Algebraic Methods in

Programming 104 (2019), 86ś116. https://doi.org/10.1016/j.jlamp.2019.01.002

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, Philippa

Gardner and Nobuko Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 49ś67.

Peter W. O’Hearn and Uday S. Reddy. 1999. Objects, interference, and the Yoneda embedding. Theoretical Computer Science

228, 1 (1999), 253ś282. https://doi.org/10.1016/S0304-3975(98)00360-0

Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2021. Layered and Object-Based

Game Semantics. Technical Report YALEU/DCS/TR-1559. Yale Univ. https://flint.cs.yale.edu/publications/layered.html

Gordon Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In Proceedings of the 4th International Conference

on Foundations of Software Science and Computation Structures (FoSSaCS 2001). Springer, Berlin, Heidelberg, 1ś24.

https://doi.org/10.1007/3-540-45315-6_1

Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Proceedings of the 18th European Symposium on

Programming (ESOP 2009). Springer, Berlin, Heidelberg, 80ś94. https://doi.org/10.1007/978-3-642-00590-9_7

U.S. Reddy. 1994. Passivity and independence. In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

342ś352. https://doi.org/10.1109/LICS.1994.316055

Uday S. Reddy. 1993. A Linear Logic Model of State. Technical Report. Dept. of Computer Science, UIUC, Urbana, IL.

Uday S. Reddy. 1996. Global State Considered Unnecessary: An Introduction to Object-Based Semantics. LISP Symb. Comput.

9, 1 (1996), 7ś76.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/78969.78972
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3371088
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1145/3209108.3209116
https://doi.org/10.1145/3373718.3394762
https://doi.org/10.1145/2676726.2676970
https://doi.org/10.1145/2535838.2535880
https://doi.org/10.1016/j.jlamp.2019.01.002
https://doi.org/10.1016/S0304-3975(98)00360-0
https://flint.cs.yale.edu/publications/layered.html
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1109/LICS.1994.316055

42:32 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Uday S. Reddy. 2002. Objects and Classes in Algol-like Languages. Inf. Comput. 172, 1 (Feb. 2002), 63ś97. https://doi.org/10.

1006/inco.2001.2927

Uday S. Reddy. 2013. Automata-Theoretic Semantics of Idealized Algol with Passive Expressions. Electronic Notes in

Theoretical Computer Science 298 (2013), 325ś348. https://doi.org/10.1016/j.entcs.2013.09.020 Proceedings of the Twenty-

ninth Conference on the Mathematical Foundations of Programming Semantics, MFPS XXIX.

Uday S. Reddy and Brian P. Dunphy. 2012. An Automata-Theoretic Model of Idealized Algol. In Automata, Languages, and

Programming, Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 337ś350.

Christian Retoré. 1997. Pomset logic: A non-commutative extension of classical linear logic. In Typed Lambda Calculi and

Applications, Philippe de Groote and J. Roger Hindley (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 300ś318.

Jerome H. Saltzer and M. Frans Kaashoek. 2009. Principles of Computer System Design. Morgan Kaufmann.

Zhong Shao. 2010. Certified Software. Commun. ACM 53, 12 (December 2010), 56ś66.

Vilhelm Sjöberg, Yuyang Sang, Shu-chunWeng, and Zhong Shao. 2019. DeepSEA: A Language for Certified System Software.

Proc. ACM Program. Lang. 3, OOPSLA, Article 136 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360562

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

https://doi.org/10.1006/inco.2001.2927
https://doi.org/10.1006/inco.2001.2927
https://doi.org/10.1016/j.entcs.2013.09.020
https://doi.org/10.1145/3360562

	Abstract
	1 Introduction
	1.1 Certified Abstraction Layers
	1.2 A Layered and Object-Based Game Model
	1.3 Summary and Main Contributions
	1.4 Connecting Semantics to Code: A Broader Perspective

	2 Object-Based Semantics
	2.1 The Basic Principles
	2.2 Coherence Spaces and Linear Maps
	2.3 The Replay Modality
	2.4 Regular Maps between Object Spaces

	3 An Interactive Model of Certified Layers
	3.1 Effect Signatures as Layer Signatures
	3.2 Layer Implementations
	3.3 Layer Interfaces
	3.4 Certified Layer Implementations

	4 Non-Deterministic Layer Interfaces
	5 Correspondence with Object-Based Semantics in Coherence Spaces
	5.1 The Category Reg of Regular Maps
	5.2 Effect Signatures to Coherence Spaces
	5.3 From Implementations to Certified Regular Maps

	6 Concurrent Object Spaces
	6.1 The Replay Modality's Co-monadic Structure
	6.2 Identifying Interleavings
	6.3 Concurrent Object Spaces
	6.4 A Parallel Tensor Product on Concurrent Object Spaces
	6.5 Certified Concurrent Object Spaces

	7 Concurrent Object Spaces: Two Case Studies
	7.1 Protected Shared Object Concurrency
	7.2 Ticket Lock

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

