Under consideration for publication in J. Functional Programming 1

Inlining as Staged Computation

STEFAN MONNIER and ZHONG SHAO

Dept. of Computer Science, Yale University, New Haven, CT 06520-8285, U.S.A.
(e-mail: monnier@cs.yale.edu, shao@cs.yale.edu)

Abstract

Inlining and specialization appear in various forms throughout the implementation of modern pro-
gramming languages. From mere compiler optimizations to sophisticated techniques in partial eval-
uation, they are omnipresent, yet each application is treated differently. This paper is an attempt at
uncovering the relations between inlining (as done in production compilers) and staged computation
(as done in partial evaluators) in the hope of bringing together the research advances in both fields.
Using a two-level lambda calculus as the intermediate language, we show how to model inlining as
a staged computation while avoiding unnecessary code duplication. The new framework allows us to
define inlining annotations formally and to reason about their interactions with module code. In fact,
we present a cross-module inlining algorithm that inlines all functions marked inlinable, even in the
presence of ML-style parameterized modules.

1 Introduction

Clear and maintainable code requires modularity and abstraction to enforce well-designed
interfaces between software components. The module language of Standard ML (Milner
et al, 1997) provides powerful tools for such high-level code structuring. But these con-
structs often incur a considerable performance penalty which forces the programmer to
break abstraction boundaries or to think twice before using advanced features like param-
eterized modules (e.g., ML functors).

Efficient implementation of these high-level language constructs often rely crucially on
function inlining. Inlining algorithms have been used for many years, but their “best-effort”
behavior prevents us from knowing or making sure that a function will always be inlined
(at least, wherever possible given the compilation model). For example, SML/NJ (Appel
& MacQueen, 1991) has several ad-hoc tricks sprinkled in the code to expand primitive
operations. These tricks tend to muddy up the abstraction boundaries so it would be nice if
they could be replaced by a general-purpose inlining algorithm.

But would the inliner perform as good a job inlining those primitive operations as with
the ad-hoc approaches? For simple cases, it is straightforward to ensure that primitive op-
erations are always inlined, but when higher-order functions or even higher-order modules
(such as SML/NJ functors or Java generics) come into play, coupled with separate compi-
lation, the question becomes more challenging. In the course of implementing an extension
of Blume and Appel’s cross-module inlining algorithm (1997), we tried to understand the
relationship between inlining opportunities and separate compilation. We felt a need to
formalize our solution to better understand its behavior.

2 Stefan Monnier and Zhong Shao

This paper is the result of our efforts to formalize our inlining algorithm. More specif-
ically, we borrow from the partial-evaluation community (Jomgsal., 1993) to model
inlining as a staged computation. By using a two-lekalalculus (Moggi, 1997) as our
intermediate language, we can assign each function (in our program) with a binding-time
annotation ofstatic or dynamic a static function call is executed at compile time thus is
always inlined, while a dynamic call is executed at run time thus is not inlined. The inlin-
ing optimization is then equivalent to the standard off-line partial evaluation: first use the
binding-time analysis to locate all the inlining candidates, then run the specialization phase
to do the actual inlining. The binding-time attributes can also be exported to the source level
(or the compiler front-end) to serve as inlining annotations and to allow programmers (or
the compiler writer) to control various inlining decisions manually.

Apparently, all partial evaluators support some formpeafeductions as part of the spe-
cialization, however, these techniques do not immediately apply to the inlining optimiza-
tion. Because of the different application domains, partial evaluators are generally much
more aggressive than compiler optimizers. Even the binding time annotations can pose
problems at the source level because they can clutter the module interface and interact
badly with ML functors; for example, we would have to add abstraction over binding-time
(commonly called “binding-time polymorphism?”) in the type if we want to apply a functor
to modules with different binding time (but with same signature otherwise).

The main objective of this paper is to hammer out these details and to see what it would
take to launch various partial-evaluation techniques into real compilers. Our paper builds
upon previous work on cross-module inlining (Blume & Appel, 1997; Shao, 1998; Leroy,
1995) and two-leveh-calculus (Moggi, 1997; Nielson & Nielson, 1992; Davies & Pfen-
ning, 1996; Taha & Sheard, 1997) but makes the following new contributions:

e As far as we know, our work is the first comprehensive study on how to model in-
lining as staged computation. The formalism from the staging calculus allows us
to explicitly reason about and manipulate the set of inlinable functions. Doing such
reasoning is much harder with a traditional inlining algorithm, especially in the pres-
ence of ML-style parameterized modules.

e By careful engineering of binding-time coercions, and combined with proper stag-
ing and splitting, we show how to model inlining as staged computation without
introducing unwanted code duplication (see Sec. 5).

e Adding inlining annotations to a surface language allows a programmer to mark a
function as inlinable explicitly. Inlining annotations, however, could pollute the mod-
ule interface with additional binding-time specifications. This makes the underlying
module language more complex. We show how to support inlining annotations while
still avoiding such pollution. In fact, our scheme is fully compatible with ML-style
modules and requires no change to its module language.

e Using a two-level\-calculus, we show how inlining annotations are compiled into
the internal binding-time annotations and how they interact with the module code.
This allows us to propagate inlining information across arbitrarily functorized code,
even in the presence of separate compilation.

e We extend binding-time coercions to work with parametric polymorphism.

The rest of this paper is organized as follows: Section 2 gives an overview of a compiler that

Inlining as Staged Computation 3

Source Language

l

Typed SRC (Sec. 3)

(Sec. 5) Staging+Split l ¢ Import Summaries (Sec. 6)
TLC (Sec. 4)
BTR+Opts I l Partial Evaluation (Sec. 4)

TLC
(no static redexes)

(Sec. 5.3) A-Split l — Export Summary (Sec. 6)

Residual Code

l

Machine Code

Fig. 1. Structure of the compiler

supports cross-module inlining and shows how inlining annotations (at the source level)
and two-level\-calculus (as intermediate language) fit into the picture; Section 3 formally
defines our source language SRC which supports inlining annotations and (indirectly) ML-
style modules; Section 4 formally defines our target language TLC which is a two-level
A-calculus supporting staged computation; Section 5 presents our detailed algorithm for
compiling SRC programs into TLC; the algorithm involves staging, splitting, and careful
insertion of binding-time coercions; Section 6 shows how to handle top-level issues for
inlining across multiple compilation units; Section 7 then presents several extensions over
the basic algorithm; finally, Section 8 and 9 describe related work and then conclude.

2 The Big Picture

To model inlining as staged computation, we first give an overview of a compiler that
supports cross-module inlining. We use our FLINT compiler (Shao, 1997b; &halg

1998) as an example. Figure 1 shows various stages of compilation used in the compiler.
The source code is first turned into a strongly typed intermediate language based on a
predicative System-F calculus (we name it SRC and present its details in Sec. 3). The SRC
calculus contains a module language and a core language. Each core-language function
is annotated with inlining hints to indicate whether the function should be inlined or not.
Those hints could be provided by the user or by the earlier phases of a compiler (using
some inlining heuristics).

4 Stefan Monnier and Zhong Shao

The inlining hints are then turned into staging annotations, mapping inlinable functions
to static functions (functions executed at compile-time) and the rest to dynamic code (exe-
cuted at run-time), by translating the code into a two-level intermediate language extended
with polymorphism (we name it TLC and present its details in Sec. 4).

To minimize the performance cost of the module code, we want to mark it as static so as
to expose as many inlining opportunities as possible. But this would imply that each functor
application (SML's equivalent to template instantiation) would create a duplicate copy of
the full functor body. This approach, while sometimes acceptable, can lead to excessive
code growth and compilation times for heavily functorized code, as any programmer who
has worked with C++ templates knows.

We use a variant of thg-splitting technique (Blume & Appel, 1997) to split each mod-
ule function into a static part and a dynamic part. This splitting is done carefully to ensure
that it does not obfuscate any inlining opportunity. Splitting is done together with staging
in the main translation algorithm (see Sec. 5.4). The resulting code is completed by incor-
porating a copy of theummariedrom all the import modules (see Sec. 6)sammary
contains the code that should be inlined across compilation-units, similarly to OCaml’s
approximationgLeroy, 1995).

The static part of the code is then reduced by a straightforward partial evaluation re-
turning the same code but with no remaining static redexes. This code then goes through
a binding-time refinement (BTR) or other optimization phases which could introduce new
static code requiring a new pass through the partial evaluator.

Once these optimization steps are finished, we reuse-#itting algorithm to split
the compilation-unit itself into aummarycontaining all the remaining static code (i.e.
inlinable code for future cross-compilation-unit inlining) and a fully dynamic residual code
(encompassing the bulk of the program) which is then passed to the code generator.

Inlining across compilation units increases the coupling between those units. If a unit is
modified, all units that import it will now need to be recompiled, even if the modification
was only internal and did not change the interface. This is automatically handled in our
case by a compilation manager (Blume, 1995).

3 The Source Calculus SRC

This section formally defines our source language SRC which is a variant of the polymor-
phic lambda calculus System-F (Girard, 1972; Reynolds, 1974). SRC differs from System-
F in that it has inlining annotations on the core functions and it has a stratified structure
with a polymorphic module language layered on top of a monomorphic core language.
Also the module language uses A-normal form (Flanagfaal., 1993) which means that

all intermediate values need to be namedl#igbinding, thus making all sharing between
expressions explicit.

The syntax of SRC is given in Fig. 2. Here, an SRC program is just a moduleteym (
Each module term can be either a variablg & structure4, (c)) consisting of a single core
term (¢), a compound module consisting of a collection of other modyles (. ., z,,}), an
i-th component from another module,;{), a parameterized module (over other modules:
Az :o.m or over typesAt.m), a module application (over other modul&st,z» or over
types:z[r]), or a let declaration.

Inlining as Staged Computation 5

(ctypes) 7T z=int|t|m1 — 7

(mtypes) o ==V(1)]|{01,...,0n) |01 — 02| Vt.O

(inline) a == |i

(cterms) ¢ ==n|z|max|Nz:iT.clcic

(mterms) m = | w(c) | (X1, Zn) | T2 | Az:om | Quize | Atom | z[7]

| let z = mq in ma2

Fig. 2. Syntax for the source calculus SRC

Because the module language can already express polymorphic functions, we intention-
ally restrict the core language to be a simply typed lambda calculus. A core term can be
either an integer constant), a variable £), a value field of a moduler(x), a function
definition (X z: 7.¢) with inlining annotation ¢), or a function applicationd c,).

A module type can either be a singleton-value typér(which refers to a module
consisting of a core term of type), a compound module typéd;,.. ., o,) with n sub-
modules, each with type; for i = 1, ..., n), or a parameterized module (over other mod-
ules:o; — o9 Or over types¥t.o). A core type can be either the integer type), a type
variable, or a function typer(— 72). The singleton-value typ¥€(7) is used to distinguish
between cases liké(int — int) andV(int) — V(int).

The SRC language was chosen to be expressive enough to exhibit the main difficul-
ties that an optimizer based on staged computation might encounter. The language is split
between the module and the core languages because the inliner needs to use two differ-
ent compilation strategies. Of course, we could merge the two languages and annotate the
terms to indicate whether or not to treat them like module code. Recent work (Shao, 1998;
Shao, 1999; Harpeet al, 1990) has shown that Standard ML can be compiled into an
SRC-like typed intermediate language.

Figure 3 gives the static semantics for SRC. The environmdstthe list of bound type
variables; the type environmehitmaps both core and module variables to their respective
types. Both the type- and the term-formation rules are rather straight-forward. The lan-
guage is predicative in that the module language supports polymorphism but type variables
can only be instantiated to core types. SRC uses a call-by-value semantics (omitted since it
is straightforward); it is easy to show that the typing system for SRC is sound with respect
to the corresponding dynamic semantics.

The most interesting feature of SRC is the inlining annotatiorhe annotation means
that the underlying lambda expression should be inlined while the empty annotation means
it should not. Notice that we do not track inlining annotations in the types; a core function
Xz:7.cis still assigned with the same type whether the annotatisn or empty.

This design choice is deliberate. We believe inlining annotations should be made as non-
intrusive as possible. Tracking them in the types would significantly complicate the module
language; for example, we would have to add binding-time polymorphism in the type if we
want to apply a functor to modules with different inlining annotations (but with the same
signature otherwise).

When compiling SML to an SRC-like language, the SML module language maps to
the SRC module language as expected, but polymorphic core SML functions also map

6 Stefan Monnier and Zhong Shao

kind environment A
type environment T°

A
| Tyz:it | Tyzio

[A%r and Ao andA%FJ

teA AFT Abm Ak T Abo; (1<i<n)
A Fint ARt AFT — 7 A V(T) At {o1,...,0n)
AFor AFos Ajtko AFT AFT AFT Alo
Ao — o2 A Vt.o Al - AFT,z:7 AFT,z:0

[A;F}—m i o aI’IdA;FI—c:TJ

AFT AFT ATz V(r)
A;TEno:int AT Rz T(2) AT Emax o T
AT z2mmbce: A;THer :me—711 AT Ees 1
AT ENzimie: 11— T AT Feiea t 1
AT ATke: T ATz oo (1<i<n)
ATz D(x) AT F () - V(7) AT (1, Tn) 2 {01,y 0n)
ATz (01, .0n0) 1<i<n AT, z:01Fm : o2
AT Emzx s oo; A;TFEAz:ior.m @ 01 — 02
A;Thxy 0001 A;TEas oo At;TEm : o
A;THQryae @ o1 A;T'H Atom @ Vto
ATz Vio A;TEmy o1 AT z:0o1 Fmg o2
AT zfr] : {r/t}o A;T etz =myinme @ o2

Fig. 3. Static semantics for SRC

to module-level type abstractions (together with a core-level function) in SRC. This does
not introduce any problem, however; since polymorphic recursion is not available, type
instantiations can be done statically, or hoisted to the top-level (Saha & Shao, 1998).

4 The Target Calculus TLC

This section formally defines our target language TLC. As a typed intermediate language,
TLC is is essentially a hybrid of System-F in A-normal form (Flanaggal., 1993) and
the two-level lambda calculugsd by Moggi (1997).

The syntax of TLC is given in Fig. 4. A TLC terne) can be either a valuey), a record
selection, a function application, a type application, or a let expression. A TLC wglise (
either an integer constant, a variableyatuple, a function, or a type function. A TLC type
is either the integer type, a type variable, a record type, a function type, or a polymorphic

Inlining as Staged Computation 7

(kind) b,k ==s|d

(type) o u=int|t]{o1,...,00)" |01 2 oy | Vot k.o
(term) e ==v|7wlv| @ vs | v[o]® |letz =e1ines
(value) v sz=n|z|{(vi,...,v0)° | Xz:0.e| Nt ke

Fig. 4. Syntax for the target calculus TLC

type. Many of these are annotated with a binding-time annotation (called “kind”) that can
either bes for static code (evaluated at compile-time)dofor dynamic code (evaluated at
run-time).

Compared to SRC, TLC replaces inlining hints on core functions with staging anno-
tations on tuples, functions and type-abstractions and merges the module and the core
languages since the distinction between the two is only needed to direct the translation
from SRC. Notice also how types have two binding-time annotations, one for the type
abstraction itself and another that constrains the possible types it can be instantiated to.

To simplify the presentation, we force the ground types (in€) to be considered as dy-
namic. This is justified by the fact that we are only interested in function-level reductions.
We may lift this restriction if we want to model constant propagation.

In the rest of this paper, we will also use the following syntactic sugar:

b b

me = letx =einmjx
elo]® = letz = ein z[o]®
@beqy ey = letzq = eq inlet 29 = e in @2y 229
(€1, en)? = letay =ejin ...letxz, = e, in (x1,...,2,)°
N(zy,.. .,$n>b’ co.e = Nz:oletx, = 71'11’/:17 in...letx, = wz/x ine

Essentially, we will put ar term where only is allowed, leaving théet transformation
implicit and we will use a pattern-matching variantlef, we will also assume that alpha-
renaming is used so variables are never shadowed.

Figure 5 gives the typing rules for TLC. In addition to the usual type safety, these rules
also ensure binding-time correctness. Here the kind environchantips type variables
to their binding time; the type environmehtmaps variables to their types. To enforce
the usual restriction that no dynamic entity can contain or manipulate a static value, types
are classified as being either of dynamic kind or static kind, with a subkind relationship
between the two: a type of dynamic kind can also be considered to have static kind but
not vice versa.

Figures 6 to 9 give the dynamic semantics for TLC as a set of primitive reductions
and single-step evaluation relations that determine where those reductions can be applied.
Figure 6 defines the primitive static reductien~ ¢’. Figure 7 defines the single-step
partial evaluatiore — ¢’ together with the corresponding—! v’ used for values. Note
how partial evaluation in this language amounts to reducing all the static redexes of a term.
Figures 8 and 9 show the corresponding reductionand— of a standard call-by-value
evaluator. In contrast to the partial evaluation case, those reductions apply to both static
and dynamic redexes but only to the outermost ones.

TLC is a variant of Moggi’'s computational lambda calcuhis(1988) restricted to A-

8 Stefan Monnier and Zhong Shao

kind environment A == | At:k
type environment T° = | T,z:0
ble2]
d<d d<s s<s
(Ato:kandAFT)|
AFo:b b <bs AbFo; b (1<i<n)
AFint:d AFt: A(®t) AFo: by AF{o1,.,00)° 1 b
AlFop :b AFop: b At:kFo b k<b AFT Ablo :s
AbFor oy b AFYtiko b AF- AFT,z:0
[A;F}—e:aandA;Fl—v:J]
AT AET A;FFvlzazial AT oyt oo
A;T'Eno:int ATz T(x) AT HF@% 05 @ 0y

AT oo (1<i<n) AR <O‘1,...,(J’n>b) AT o (017...,(7”)17 1<i<n

AT (o1, 0)b 2 {01,y 00)° AT H7b0 1 oy
b
Al zioilbe:os Abo1—02:b AT ke o1 AT zio1Fes : oo
A;Fl—)\bmzol.e T o1 —b>0'2 A;T'Hletx =ejines : o2
At:ksThHe:o AFYt:ko:b AThv: YVtikoo Abor:k
AT Ntike s YVtiko AT Eofon]’ - {o1/t}o2

Fig. 5. Static semantics for TLC

normal form; in fact, the primitive reduction relations in Fig. 6 and 8 are same as that for
¢ (except that we added type applications and remaveztuctions). We can easily show
that the type system for TLC is sound and the static reduetigiis strongly normalizing

and confluent. We can thus define a partial evaluation fun@®ign) that returns the static
normal form ofe. Similarly it is easy to show that is confluent, so we can also define a
partial functionR.(e) which does the standard evaluatioreof

Pe(e) = e’such thak —* ¢’ and there is n@” for whiche’ —, ¢”
Re(e) = e’such that —* ¢’ and there is ne” for whiche’ — e”

where—* and+—? are the reflexive transitive closuresf and—,. TLC satisfies the
following important residualization property:

Theorem 4.1Residualizatioh
If A;THe:candAF o : dandvVzefv(e). A T(z) : d, thenPe(e) is free of any
static subterms.

Inlining as Staged Computation 9

By) @ (Xz:o.e) (v) ~s {v/z}e
Ba) (Kt:k.e)o]? ~s {o/t}e
) T3 (U1, . o, Un)° ~s s if 1<i<n
let) letz=vine -~ {v/z}e
asc) letxo = (letzy =erinez)ines
~s letxy =ejinletzs = esines

Fig. 6. Primitive static reduction for TLC

e~g e = € g 6/
er—sse = letx =eines —¢letz =€ inesy
er—se = letz =esinersletx =esine
er—se = Nz:o.e—! Xz:o.€
er—se = Nt ke—Y Nt ke
v o,/ b \% / b
viee v = (U1, 0, o) ol (U, 0 o)
’ b b,/
’Ul—)\sl’U = @UUQHS@’UUQ
visr v = @%vy v s @O v’
v o,/ b / b
vimg v = v[o]” s v'[0]
vy v = v s v’

Fig. 7. Single-step partial evaluation for TLC

(~s) e ~ e if e~ €
(By) Q@ (Nz:T.e)(v) ~ {v/z}e
(Ba) (Nt:ke)[r]? ~ {7/t}e
(m) wvr,..v)d ~ if 1<i<n

Fig. 8. Primitive reduction relation for TLC

e~e = ereé
e—e = letx=ciney — letz=¢€"ines

Fig. 9. Single-step call-by-value standard evaluation for TLC

In other words, given an expressiewith dynamic typer, partially evaluating will inline
all of its inlinable functions and result in an expression free of static subterms.

Next we show why inlining does not affect the semantics of the program. We first intro-
duce a notion of semantic equivalence on well-typed TLC values:

Definition 4.2(Equivalencg
If -Fv:ocand;-Fv' : o, wesaythab ~ v’ if one of the following holds:

(int) v =",
(X) v=(v1,...,0,)0 @andv’ = (v},...,v,)* andVi € [1..n].v; ~ v!.

(=) o = o1 2 oy and for any valuev of type o, thenR.(Qbv w) ~ R (@' w).
(V) o = V°t:k.o; and for any well-formed types, : k thenR.(v[o2]?) =~ Re(v'[02]?).

The correctness theorem can then be proved by induction over the reduction Seefrs) of

10 Stefan Monnier and Zhong Shao

Theorem 4.3Correctnesp
If -Fe:ocand ko : dthenRe(Pe(e)) = Re(e).

5 Translation from SRC to TLC

The translation from SRC to TLC involves both staging and splitting, executed in an inter-
leaved manner. Staging translates inlining annotations in the core language into binding-
time annotations. It also calls the splitting algorithm to divide each module term into a
static part and a dynamic part. The static part is used to propagate inlining information and
implement cross-module inlining. In the rest of this section, we first give a quick overview
of our approach; we then show how to stage core terms and split module terms; finally, we
give the main translation algorithm that links all the parts together.

5.1 A quick overview

The translation from SRC to TLC mostly consists of adding staging annotations. This is
usually known as binding-time analysis and has been extensively studied in the partial
evaluation community.

One desirable goal is to make sure that binding-time annotations do not hide opportuni-
ties for static evaluation. For example, let’s take the inlinable compose functiefined
as follows:

o=Xfim—>mnNgmn— T3.Ax:71.9(f2)

When translating it, we probably do not want to assign it the following type:

(i.e. a static function that composes two dynamic functions) since it would force us to make
sure that all the functions passed to it are not inlinable, which mostly defeats the purpose
of inlining it in the first place. Now clearly, if we mark it as:

0: (21> (rn>7) > (n 9, T3)
that will make it impossible to call it with a non-inlinable function. We could work around
this problem by using polymorphism at the binding-time level (Henglein & Mossin, 1994,
Glynnetal, 2001), but we decided to keep our calculus simple. With monomorphic staging
annotations, we have two options: code duplication to provide a poor man'’s polymorphic
binding-time, or coercions in the form of binding-time improvements (Datsl., 1996;
Danvy, 1996).

A compiler needs to be very careful about duplicating code so we decided to use coer-
cions instead, especially since they provide us with a lot of flexibility. More specifically,
we can completely avoid the need for a full-blown binding-time analysis and use a sim-
ple one-pass translation instead, by optimistically marlsimgny place that might need to
accommodate a static value and inserting coercions when needed, just like the unboxing
coercions (Leroy, 1992; Shao, 1997a). It also allows us to simplify our types: all types are
either (completely) dynamic or completely static.

Inlining as Staged Computation 11

5.2 Staging the core

Staging could be done via any kind of binding-time analysis (Consel, 1993; Birkedal &
Welinder, 1995), but this would be too costly for our application, so instead of performing
global code analysis to add the annotations, we add them in a single traversal of the code
using only local information. In order to maximize the amount of static computation, we
make extensive use of binding-time improvements (Datwal., 1996).

Binding-time improvements are usually some fornnefedexes that coerce an object
between its static and dynamic representations. They improve the binding-time annotations
by allowing values to be used statically at one place and dynamically at another and even
to make this choice “dynamically” during specialization.

Staging is then simple: based on the inlining annotations, SRC terms can either be trans-
lated to completely static or dynamic entities (exceptifer which is always dynamic).
Because inlining annotations are not typechecked in SRC, the resulting TLC terms may
use dynamic subterms in a static context or vice versa. We insert coercions whenever there
is such a mismatch.

We define two type-translation functiop and|-|¢ that turn any SRC type into either its
fully static or its fully dynamic TLC equivalent, and two coercion functiofis|7[* = ||
and17: |7]¢ = |7]°. Those coercions (and corresponding type translations) could simply
be:

lint[L‘ = |int|d =int
| = M| |9 | (@5 (1720)) r = malf =¢S5 |
trte =z lint]s = int

Tn—»-rzm —)\5331?‘7'1|5- T7'2<@dx (lTl-Tl)) ‘71 N 7_2|s — |Tl|s N |7_2|s

But this would run the risk of introducing unexpected code duplication.

Spurious copiesA naive coercion of a static function to its dynamic equivalent tends to
introduce static redexes which cause the function to be inlined unnecessarily at the place
where it escapes. Consider the following piece of SRC code:
letid =N z:int.z
big=Af:int — int. ...big body...
in (id, Qbig id)
A simple-minded staging scheme would turn it into:
letid = Xz:int.x
big=Xf:int % int. ...big body...
in < lint"i”tjd’ @d blg (lint*}intlld»d
where the coercions get expanded to:

let id = Xx:int.x
big= Xf:int 3 int. ...big body...
in (Mx:int.@%idx, @¥big (M :int.Q%d r))

12 Stefan Monnier and Zhong Shao

[int]? = int lint]* = int

n = nl = nl* = o) Im = mlt = (I > [nff 0 =l

1 rF Sl I ol S g

'"tx — |ntx =z

lTl*’TQx = 7’[’;"1] TTI_*TZI = <)\S$12‘T1|S. TTZ(@dl’(lTIZL‘l)),IL‘>S
AT S| = AT
wherel” = {z:|['(2)|* | © € dom(I)} U {z:|7|° | 7 = ['(z) andb = %(2)}

and(binding-time environmepht = - | X, z:b

Fig. 10. Core type translations | and coerciong and?.

Note that the two escaping usesidfhave been turned now intpredexes whered
is called directly. Thus specialization will happily inline two copiesidfeven though
no optimization will be enabled since both uses are really escaping. We do not want to
introduce such wasteful code duplication.

In other words, we want to ensure that there can be only one non-inlined copy of any
function, shared among all its escaping uses. To this end, we must arrarigenfarto in-
troduce spurious redexes. We could simply introduce a spesiate primitive operation
with an ad-hoc treatment in the partial-evaluator, but depending on the semantics chosen
(e.g. binding-time erasure) it can end up leaking static code to run-time, introducing un-
wanted run-time penalties and it does not easily solve the problem of ensuring a unique
dynamic copy of a function, even in the presence of cross-module inlining.

So we decided to choose a fancier representation for the static translation of a function,
where each static function is now represented as a pair of the real static function and the
already-coerced dynamic function. Naw* ~“2 becomesrs and the only real coercion
happens once, making it clear that only one instance of the dynamic version will exist. The
definition of our type translatioris|* and|- |4 and coerciong™ and{” for the core calculus
is shown in Fig. 10. The previous example is now staged as follows:

let id = (¥z:int.x, Xz:int.z)®
big= X[:int % int. ...big body...
in < iint—>int1‘d’ @d blg (lint—>int1'd)>d

Since the coerciof™ " is nowrs$, it just selects the dynamic versionidf with no code
duplication.

Partial evaluators have long used such paired representation in their specializer for simi-
lar reasons (Asai, 1999), although our case is slightly different in that the pairs are explicit
in the program being specialized rather than used internally by the specializer.

This pairing approach can also be seen as a poor man’s polymorphic binding-time
where we only allow the two extreme cases (all dynamic or all static). Minamide and
Garrigue (1998) used the same pairing approach when trying to avoiding the problem of

Inlining as Staged Computation 13

[A;I‘;Z}—[[c:T]]:b>eruchthaﬂA;F;E|l—e ST

ALT AFT S(z)=b AT Fa : V(r)
AT;SF[n:int] 2 n AT;SH[z:T(1)] 2 2 AT [z 7] S o

AT,z 8, zisF o] = e

AT;SF[Nzime:n —] S A;I‘,z:n;E,z:d}—[[c:TQ]]ée
let zs = Xz: |11 [°.e d \d d
AT 2 F[Azimc: XNz: .
:I:d:)\dZ:|T1|d-lT2(@SxS(Tle))) [Neimic:m — w] = XNzi|mle
in (xs, zq)°
A;F;El—[[cl:nﬂm]]:%m A;F;E}—[[CQ:Tl]]:d>62 A;F;EI—[[C:T]]:d>e
AT 2 F [eres 72 2 @le; ey AT S F e 7] 217
AT S Fen:m—m]S>e ALEF[e2:n] = e ATiSke:7] S e
AT S F [erce @ To] = @5(wier) en ATy Y e 7] :d>lT€

Fig. 11. Core code translation.

accumulative coercion wrappers that appears when unboxing coercions are used to recon-
cile polymorphism and specialized data representation.

The staging algorithm is shown in Fig. 11. The judgmént’; > + [c : 7] 2 e says
that a core SRC termof typer (under contexta\ andI') is translated into a TLC term
The environmenE maps core variables to the binding-time of the corresponding variable
in e. Theb on the arrow indicates whether a static or a dynamic tersrexpected.

Most rules come in two forms, depending on whether the context expects a dynamic or
static term. The dynamic case is trivial (it corresponds to the no-inlining case so we do not
need to do anything) while the static case needs to build the static/dynamic pair fin the
case) or to extract the static half of the pair before applying it (indease).

5.3 Splitting

Module-level functions are typically used differently from core-level functions. They also
do not have any inlining annotations thus deserve special treatment during the translation.
As noted earlier, it is desirable to mark all the module code as static to “compile it away”
or at least, to allow inlining information to flow freely through module boundaries. But that
would imply that every single module-level function application gets its own copy of the
body, which leads to unnecessary code duplication.

To overcome this difficulty, we use a form of partial inlining inspired from Blume and
Appel's A-splitting (1997) that splits each function into a static and a dynamic part. It
rewrites a TLC expressioninto a list oflet bindings and copies every inlinable (i.e. static)
binding frome into ¢;, and puts the rest into the expressiQn(the e subscript stands
for “expansive”) in such a way that the two can be combined to get back an expression
equivalent tee with e ~ let (fv) = e in ¢; wherefv is the list of free variables af;.. Since

14 Stefan Monnier and Zhong Shao

[A;F Pl Te] == Ee; e;jwhereA;P Fe:lof

A; T polit [let z1 = ey inlet z2 = ez in e3] =5 E.; e

, - i (sp-asc)
A; T poPlit [let zo =letzy =e1inezines] = E.; €
xgfvie)VAFo : d
AiTher o1 AT, z:i00 FP [es] == E.; e
. ~ (sp-share)
AT P [let 2 = ey inex] == (letz = ey in Ee); ¢
ATher :or AT zion P [ex] == Ee; e
= - (sp-dlup)
A;T P [let 2 = eq ineg] =
(letz =e1in Ee) ; (letx =e1inei)
Ee = (let xf\,- —e inU< 192, zr)®) (sp-var) AT FPT [let x =e |::c]] = E.; e (sp-exp)
AT HP [z] == Ee; @ AT HP [e] == Ee; e

Fig. 12. The\-split algorithm.

e; is small, it can be copied wherewewas originally used, while the main part of the code
is kept separate ie,.

Basically,e; is just like e but where all the non-inlinable code has been taken out (and
the variables that refer to it are thus free), whereais a complete copy of except that
it returns all those values that have been taken out, &0 it can be used to close over the
free variables o#;. Take for example the following expressiemvherelookup is inlinable
but balance is not (note that the algorithm assumes that the return valuésodompletely
static):

e = let balance = X (t, z)9: (tree?, elem®)9. . . .
lookup = X(t, p)*: (tree®, elem® = bool)®.
let z = @*(@*find p)t in @¥balance (|t | clemy)d
in lookup

This expressior will be split into a dynamice. and a statie; wherebalance has been
taken out since it is not inlinable; will look like:

e; = let lookup = X (t, p)*: (tree®, elem® = bool)®.
let z = @*(@*find p)t in @¥balance (|t | clemy)d
in lookup

The free variables of; are provided by, which carries all the old code and returns all
the missing bindings fo#; to use. In this exampléalance is the only free variable, so the
result looks like:

ee = let balance= X (t,)4 : (tree?, elem?)d. . ..
lookup = X(t, p)*: (tree®, elem® = bool)®.
let z = @*(@*find p)t in @¥balance (|, | clemy;)d

in (balance)

Inlining as Staged Computation 15

And we can combine, ande; back together witle ~ let (fv)4 = e, in ¢; wherefv is the
list of free variables o&;. We could of course removeokup from e, but we might need
it for something else (as will be shown in the next section) and it is easier to take care of it
in a separate dead code elimination pass.

Becausee, has to return all the free variables @f which are not known untié; is
complete, we cannot conveniently buidd directly as we builde;. Instead we build an
expression with a hol&, such that, = E.[(fv)4]:

E. = let balance = ... lookup = ... in (e)¢
Here a TLC term with a hol&’ is formally defined as follows:
E = letz=eine | letz=¢cinE

Ele] then fills the hole inE by textually substituting for e withoutavoiding name capture:

(let z = @ in¢e)[eq]
(let z = ein E)[eq]

(letx =erine)
(let z = ein Eleq])

The splitting rules are shown in Fig. 12. The judgmant’ 't [e] == E.; ¢; states
that E. ande; are a valid split of in contextsA andT" assuming that : |o|°. The rules
only guarantee correctness of the split, but do not specify a deterministic algorithm. In
practice, whenever several rules can apply, the splitting algorithm chooses the first rule
shown that appliesp-asds preferred ovesp-sharewvhich is preferred ovesp-dup while
sp-expis only applied when there is no other choice (i.e. whég neither adet binding
nor a mere variable). This ensures that we return the smajlest

The way the rules work is as followsp-asctogether withsp-expturn e into a list of
let bindings that ends by returning a varialde:sharecopies dynamic bindings t&. but
omits them frome; while sp-dupcopies static bindings to both. ande;; finally sp-var
replaces the terminating variable with a holeHip.

5.3.1 Splitting functions

When splitting a functionf, we could apply the above algorithm to the body, and then
combine the two results into two functiorisand f;:

fo=XMag:|o|d.let x =124 in e,
fi = Xx:|ofslet (V)4 = @df, (|72) in ¢

From then onf; can be used in place g¢f (assuming thaf. is in scope), so that; will be
inlined without having to ever duplicatg.

As we have seen before when staging inlinable core functions, the static representation
of a function is a pair of the dynamic and the static version of that fungtien(/4, fs)°. A
similar representation needs to be used for module-level functions. One would be tempted
to just usef; for fs and f. for fy, but a bit more work is required. First, we cannot yse
directly because it only returns the free variableg;ofstead of the expected return value
of fq, but we can simply coercg (which hasf. as a free variable) to a dynamic value:

fe=14 fa=Xaq:|or [172(@%; (17 2a)

f=Xz:|o)fe =

16 Stefan Monnier and Zhong Shao

The problem with this approach is that there might be some code duplication between
e; andee, SO fg might contain unnecessary copies of code already existirfg. ifio work
around this, we slightly change the way splitting is done, so dhaéturns not only the
free variables oé; but also the original output ef (see thesp-varrule):

E, = let balance = ... lookup = ... in (|“lookup,)

Of course, we need to adjustso as to select the second component.&f result to bind
to its free variables. On the other harfdis unchanged:

fo=XNag:|o|dlet x =124 in e,

f=Xuilofe = eriloflet (¢ = 13(Q9f. (172)) in e

Since f. now returns the original result in its first field, we can use it directly almost as is
to build f4 and we can of course still uskas fs:

fS:fi fd:7T1Ofe:)\dzd:‘o—l‘d-ﬂ?(@dfezd)

5.3.2 Properties

To define and show correctness of the splitting algorithm, we need an extended notion of
equivalence that applies to expressions rather than just values:

e ~ ¢’ if and only if
for any E such that; - - Ele] : o then:;- F Ele’] : o0 andR.(Fle]) ~ Re(E[€])

Splitting turns an expressioninto a dynamic partF, and a static par¢;. The follow-
ing theorems state that combiniig ande; yields a well-typed term that is semantically
equivalent tce.

Theorem 5.1Type preservation
if A;TFe: |of®andA;T Pt [e] == E.; e; andfv = fv(e;) — dom(T') then
A;T F let (W) = 7(E[(f\V)9]) ine : |ofs.

Theorem 5.ZCorrectnesys
if A;T'Fe: |of®andA;T Pt [e] == E.; e; andfv = fv(e;) — dom(T') then
e ~ let (V)9 = 7d(E[(fV)9]) in e;.

Both theorems can be proved via induction on the splitting derivation with the help of an
invariant. For correctness, the invariant is:

For any terme’ and set of variabless
such thaf(fv(e’) — fv(Ee[e']) C xs C fv(e’)
thenE.[e'] ~ let (xs)d = 7§(E[(xs)9]) in ¢’

The invariant for type preservation is similar.

The splitting algorithm also satisfies the following property:

Theorem 5.3Static closurg
if A;sT e : |ofsandA;T FPit [e] == E.; e then all free variables in; are either
bound inI" or they have dynamic type (in the contextigf).

Inlining as Staged Computation 17

teo = <td i’ t57ts i’ td>s

. . lint|* = int
fintf* = int] = g
|t‘5:ts |7-_>7-|d—|7-|di>|7-|d
10— 2 = (|In[* > |2, I — 7|) VSR :
V —
- d __ d d\d
(o1, om)|® = (o] . s |on])

o1, on) [P = ({1l s lonl?)®, o1, . o) [9)°
lo1 — o2f° = (jon " > |02, |01 — o2|)®

IVt.o° = (Vots:5.V°tg : d.teo — |0, [VE.0|%)°

o1 — 02! = |01 [* 5 oo
IVt.o|4 = Vit:d.|o|

|A TS| = AT
whereA'={ts:s, tq:d | t € dom(A)}
andl’={z:|T(z)]* | € dom(T")} U {x¢:tc | t € dom(A)}
U{z:|7|® | 7 =T'(z) andb = X(2)}

Fig. 13. Type and environment translation.

We prove this property by inspection of the rules: if a variable is freg iout not inT"
it can only be because thep-sharerule was used, but that rule only applies to dynamic
variables or variables which are not freeein

Static closure implies that contains all the inlinable sub-terms énso splitting does
not hide any inlining opportunities. In other words, when doing partial evaluation of a term
containinge, we can substitute, for e without preventing any reduction (except reductions
internal to the terms omitted iey, obviously). This in turn implies that compilation-unit
boundaries have no influence on whether or not a core function gets inlined at a particular
call site. We call it thecompletenesgroperty.

5.4 The main algorithm

The main algorithm is the translation of the module language, which works similarly to
(and uses) the core translation presented earlier, but is interleaved with the splitting algo-
rithm. It also relies on the use of pairs that keep both a dynamic and a static version of
every module-level value to avoid unnecessary code duplication.

Figures 13 and 14 extend the type translatipni§ and| - |¢ and the coercions and 1
to the module calculus. The main change is the case for the type abstraction which we will
explain later.

The full staging algorithm is shown in Fig. 15. The judgmeéntl’ + [m : o] = e
means that under the environmedtsandTI’, the SRC modulen of type o is translated
into the TLC terme. Most rules are straightforward. The translation of expressigs$ is
delegated to the core translation.

The case for module-level function and type abstraction are most interesting. The trans-
lation of a module-level functionx : o.m begins by recursively translating the body
and then splitting it. This is done with the judgme®il’ - [m : 0] = e.; E;. We then
build a pairf = (f4, fs)° as described in the previous section. The translation of a type
abstractiom\ ¢t.m follows the same pattern, except for a subtle complication introduced by
typing problems discussed below.

18 Stefan Monnier and Zhong Shao

% ol* S lelY and 1% |o|¢ S |0t
!

int‘r S intm =
Itz = @%(m3xe) T T2 =@*(mixe) T
1"~ =n3z 1772 = Xz S 172(@% (|), 2)®
MO =1 Mg =17
L<"1 rTn) g — THT T<"1 2On) g = ((T”l(ﬁ‘fm),. e T""(ﬂ'iaz))s7 x)®
191772 =mix 191792 = (XNzy o], 192(Q@% (|7121)), x)°
1"ton =7z Vtog = (Nts:5.Ntg:d. Xzt 1 teo- T“(x[td]d),az)s

Fig. 14. Binding-time coercions.

[A;F}— [m: o] £">e]suchtha11A;F;~| Fe:|of®

AT AT Fle:1] e
ATH[z:D@)] 2z AT H[u(e): V()] 2 e

AT Rz ro (1<i<n) o= {01, ..,0n)

let s = (x1,. .., 2n)°
ATF[{xn, . mzn) i o] & za=("2, [7"2,)¢

in (xs, zq)°
ATz (o1, .00) 1<i<n ATk xy i 00 w01 A;TFao o2
AT F [mz : 03] = w5(nsx) AT F [Qzy 29 2 02] & @ (i) o2
AT z:or - [m:o2] = ee; Ei AT E[m: o] = ee; Ei
AT E[Aziorm: o1 — 02] = AT F [Atm : Vo] =
let e = Nag:|o1|% let z =1'zqinee let ze=AM:d. {t/ta,t/ts, (id5, id5) /as Yee
z = Xz:|o1*. Ei[r3(@%ze (171x))] o = Nts:5.Ktq:d. Xzt 1 teo. Fi[m3(2e[ta]?)]
in (wi,)\dxd : |01|d.7r‘11(@dxe zq))° in (mi,Adt:d.7r§'(ace[ﬂd)>s
A;THax 2 Vio

AT [afr] < {r/t}o] = @ (i) [P (17 17)

A;TF [ma:o1] e AT, z:io0F [m2 : o2] = ey

AT F [let z = ma inmg:ag]]gletx:el in e

[A;F}— [m: o] = ee; Ei]
suchthat A;T;-| F Ei[rSee] : |of°

ATH[m:o] 2 e | AT | FP [e] =2 Ee; e
fv=fv(e;) — dom(T") Ei = (let (fv)? = ein &)

AT [m: o] = E[(W)Y]; Ei

Fig. 15. Module code translationi? is a shorthand foX’z : ¢.x.

Inlining as Staged Computation 19

Since all module-level code is considered static, it is tempting to think that we do not
need pairing at all and can simply represent module entities with the static counterpart. But
thee. component obtained fromk-split is dynamic and we thus need coercions to interact
with it: both thesp-varrule of A-split (see Fig. 12) and the constructionfpbut of ¢; (see
Sec. 5.3.1) introduce coercions. And since modules tend to be larger than core functions,
it is even more important to avoid spurious copies.

Type abstractionsAs mentioned above, type abstractions introduce some complications.
The problem appears when we try to define coercion functions. The naive approach would
look like:
1Vtor=Nt:d. |7(z[t]®)
TVtor=Nt:s. 19(x[t]9)
but this is not type correct, singein the second rule can be static and hence cannot be
passed to the dynamie Obviously, we need here the same kind of (contra-variant) argu-
ment coercion as we use on functions, but our language does not provide us with any way
to create & operator to apply to types.
Furthermore, the two inner coercio)d and 1° are not very well defined since can
have a free variable This begs the question: what shoglfddo ?
There are several ways to solve these two problems:

e Give up on static type arguments and force any type-variable to be dynamic. This
restriction is fairly minor in practice. It only manifests itself when a function is ma-
nipulated as data by polymorphic code, such as when a function is passed to the
identity functionid: the function returned b@id f cannot be inlined even if is.

e Extend our language with a more powerful type-system that allows intensional type-
analysis (Harper & Morrisett, 1995). This seems possible, but would complicate the
type-system considerably and potentially the staging and the coercions as well.

e Use a dictionary-passing approach (Wadler & Blott, 1989): instead of trying to co-
erce our stati¢ into a dynamict, we can simply always provide both versions
andty along with both|* and 7* so that the coercions are constructed at the type
application site, whereis statically known.

The first solution is simple and effective, but we opted for the third alternative because it has
fewer limitations. The static version aft.m (before pairing with its dynamic counterpart)
looks like:

Ntg:s.Nty:d. Xzy:teo.e
This means that for everyin the SRCA environment, we now have two corresponding
type variableg, andty plus one value variable; which holds the two coercion functions
|t and1t As can be seen in Fig. 13 (which refines Fig. 10) whegds also defined. This
notation is used for convenience in all the figures.

Such an encoding might look convoluted and cumbersome, but type abstractions only
represent a small fraction of the total code size and the run-time code size is unaffected, so
it is a small price to pay in exchange for the ability to inline code that had to pass through
a function likeid.

20 Stefan Monnier and Zhong Shao

Theorem 5.4Type preservation
If A;THm : oandA;TF [m: o] = ee; Eithen| A;T;- | F Ei[rdee] : |ols.

Together with the residualization theorem 4.1, this means that after specialization all the
inlinable code has been inlined away.

6 Handling the Top Level

The above presentation only explains how to translate each SRC compilation unit into its
TLC counterpart. This section describes in detail how to handle top-level issues to link
multiple compilation units together.

Handling of compilation units is not difficult, but is worth looking at not only to get
a better idea of how the code flows through the compiler, but also because the treatment
of side-effects depends on the specifics of the evaluation of each compilation unit (see
Sec. 7.1).

As can be seenin Fig. 1, we applysplit twice. This derives from the need to handle the
top-level of the compilation unit in a special way where splitting internal module functions
should be done early, while splitting the top-level should be done late. Here is a slightly
more detailed diagram:

sumy ., sum

N %
PRG;, -2 PRG, L= PRG5 =™, PRG,

PRGS stage+split

Instead of spreading the split into two parts, we could of course do it once and for all
at the very beginning, but then we would lose the opportunity to move into the export
summary copies of wrapper functions (used e.g. for uncurrying, unboxing or flattening)
introduced by the intermediate optimization phases.

Doing the split in two steps also forces us to apply the split to TLC terms (it would be
silly to have two splitting algorithms). This also motivates our choice to interleave the stag-
ing and splitting since the splitting algorithm needs to know which functions are modules
and which are not because splitting core functions is often detrimental to performance.

The top-level also gets a special treatment because of separate compilation. A compila-
tion-unit can contain free variables, which are essentially the imports of the unit. Instead
of considering such an open term, we close it by turning it into a function from its imports
to its exports. More specifically, a compilation-unit in SRC will look like:

PRGs = A(imp, .. .,imp,) : (01,...,05).m

The translation to TLC assumes that the function is static as well as the imports (these will
be import summaries, which are by essence inlinable, after all) and simply translates the
body using:

sA{imp;:logf[1<i<n}F[m:o] e
This recursively splits each and every internal module-level function (the recursion is done

by the staging part of the translation which callsplit when needed, see the rules for
andA in Fig. 15), but leaves the top-level function alone. These internal splits are necessary

Inlining as Staged Computation 21

to allow inlining across module boundaries but still within a compilation unit. The program
now looks like:

PRG; = X(imp,,...,imp,)°: (|o1[°,.. ., |on|*)%.e

The next step is to bring in copies of the import summaries. Euapy has a corre-
sponding summaryum; generated when that import was compiled. Summaries are the
half of a split and thus contain free dynamic variables. So we replaceie@clargument
with a copy ofsum;, and add the corresponding new free varialxigs ; as new arguments:

PRG, = X(impy,,...,imp, ;)% : (011,. . ., onk)?.
let imp; = sum

imp,, = sum,,
ine
After that comes the actual partial-evaluation and optimization which ends with a term
PRG; very much likePRG, but with an optimized body, exempt of any static redex:

PRG3 = P.(PRG,) = X(imp,,,...,imp,) : (011, .., 0n1)%. €0

We then pass it to the secoiebplit, along with the SRG output type that we remembered
from the staging phase:

AT FP [e] =2 E.; e

This split gives us a residual program and an export summarythat will be used as a
sum; next time around:

sum = X (fv)4: (oq)%.¢; wherefv = fv(e;)
PRG, = X (imp, ,,...,imp, ;)¢ : (011, . ., Oni)4 Ee[(fV)9]

The export summaryum will be stashed somewhere to be used when a compilation unit
wants to import it. As forPRGy, it continues through the remaining compilation stages
down to machine code.

When the program is run, all the compilation units need to be instantiated in the proper
order. Once all the importtznpij of our unit have been builPRG; is run as follows:

(exp, (fv>d>CI = Re(@dPRG4 (impyq,. - - impnk>d)

Hereexp is the original exports of this compilation unit. They will be ignored for all but
the main compilation unit (unless one of the dependent units was compiled without cross-
module inlining, in which casexp will be used by that unit){fv)¢ is the set of exports
generated by th&-split and needed for all the compilation units that depend on the current
unit and hence importeshm. When running those dependent units, the curt@nt will

then appear as the argumentsp,, ... imp,,.

Note thatPRG, will only be run once and for all whereasm will be evaluated as many
times as it is imported by dependent compilation units. ARBRG, is not completely
dynamic since the coercioff = of the sp-varrule (in Fig. 12) introduces static redexes;
we have to perform another round of partial evaluationP®G, before feeding it to the
backend code generator.

22 Stefan Monnier and Zhong Shao

(type) o u=..| Pt:ko
(term) e :=.. | open®vas (t,z)ine
(value) v :=... | pack’(t = o:k,e)

o1 — 02l = Pted.(jouF 5t 5 Joal oa]* S (loal?, %)

17172 = Xy :]01|%open® z as (¢, z) in 73 (@ (mz) 1)
19172 = pack®(t = ():d,
let x5 = Xx1: |01 Xza:t. 192(Q% x)
za=Nz3:|o1|?.(@% 3, ()9)¢

in (xs,24)°)

A;T'Hxy i oo — 01 AT Hxe @ o2 AT o1 b [m: oo = ee; E
AT [Qzy 2o - 02] &
open® x1 as (i,)
in let z. = @¢ (m5x) (17 a2)
in @ (Q*(nz) z2) (T3Te)

AT [Az:oim : o1 — 03] =
pack®(t = ow:d,
let e = Naxq:|o1]. let £ =17 24 in e
zi =Xz :|o1[* Xy:t. Ei[y]
in (2, e)*)
Fig. 16. New rules using existential types.

The type, kind, and evaluation semantics should be extended correspondingly. Furthermore, the last
rule needs the typey of the free variables of; which can easily be propagated during splitting.

7 Extensions

In order to model real world inliners faithfully, our translation still needs various additions
which we have not explored in depth yet. We present some here along with other potential
extensions.

7.1 Side effects

Introducing side-effects is mostly straightforward, with just one exceptionspiduprule
in Fig. 12 cannot be applied to non-pure terms since it would duplicate their effects. But
reverting to thesp-shareaule (also in Fig. 12) for those side-effecting terms is not an option
either because we would then lose the completeness property that we are looking for. An
alternative is to use the followingp-moverule that moves the binding te instead of
merely copying it:
AT kel : oy AT, x:0p FP [eo] =% Ee; @
A;T Pt [let 7 = e in o] ==
let z1 = Ma:01.Ee[(fV)] ine ;
let 2 = e in let (fv)d = @92, (|7'2) in ¢

As presented, this rule is not quite correct because the coet€iorassumesr; is an
SRC type but is really a TLC type. This can be easily resolved by passing all the SRC
types during the translation. Alternatively, we could repre$ienff as(int, int)®, then the
coercion] simply becomess for all types.

A potential issue is that, as can be seen in Sec. 6, the top4eved evaluated once

Inlining as Staged Computation 23

and for all in a global environment, whilg will be evaluated each time it is imported

into a client unit. This means that the top-levelmust be free of side-effects. Luckily,

we can show that this problem does not appear: the compilation unit does not contain any
static free variables or static redexes; so the only static code to spli¢;ilrccomposed
exclusively of values, which have no side effects.

This sp-moveule could also be used for other purposes, such as specializing a binding
in the context of the client, as was suggested briefly in Blume and Appel’s paper (they did
not have such a rule).

Another approach altogether to the handling of side-effects is to notice thatesimas
to be pure, we can turf®z; z, into @4 (@sxz; x5) (7§(@%z, (122))) and then split out the
remaining static application which is known to be pure. We do not even need to change the
splitting algorithm itself, but just two rules in Fig. 15.

The key is that we can do this rewrite even if we do not knawWe simply need to
represent:; as a pairx;, xe)°. But of course, this is already the case for other reasons, so
the changes are very minor.

Of course, there is a catch: the type of the free variablessafddenly leak into the type
of |01 — o2|* which becomes an existential type.

Figure 16 shows what the rules would look like. Some of the work is now shifted from
the function definition to the function application, but overall, the complexity of terms
is not seriously impacted. Apart from the introduction of existential types, this transla-
tion variant also requires an impredicative calculus. TLC was already impredicative, so no
changes were required there.

7.2 Recursion

The TLC calculus lacks fixpoint. Adding recursive functions does not pose any conceptual
problem, except for the risk of compilation not terminating. There are several reasonable
solutions to this problem either from the inlining community or from the partial evaluation
community. The most trivial solution is to allow fixpoint on dynamic terms only, which
amounts to disallowing inlining of recursive functions, but since it can be important to
allow inlining even in the presence of recursion, one can also do a little bit of analysis to
find a conservative estimate of whether or not a risk of infinite recursion is present (Peyton
Jones & Marlow, 1999).

Recursion on types is more challenging since recursive data-structures cannot (or should
not) be coerced. In our case, however, this restriction only applies to coerciond foosn
so we can always work around the problematic cases by forcing recursive data-structures
to be dynamic.

7.3 Optimizations as staged computation

With a full A-calculus available at compile-time, we can now provide facilities similar to
macros, or rather to Lisp’s compiler macros. For example, a compiler macro for multipli-
cation could test its arguments at compile time and replace the multiplication with some
other operations depending on whether or not one of the value is statically known and what

24 Stefan Monnier and Zhong Shao

value it takes. Using such a facility we could move some of the optimizations built into the
compiler into a simple library, making them easily extensible.

A more realistic use in the short term is to encode the predicate for conditional inlining
directly into the language. The current inliner allows inlining hints more subtle than the
ones present in SRC. They can express a set of conditions that should hold at the call site
in order for the call to be inlined. For exampleap will only be inlined if it is applied to
a known function.

We could now strip out those ad-hoc annotations and simply write as a compile-
time function that intensionally analyzes its arguments and either returns a copy of its body
if the function argument is a-expression or returns just a call to the common version if
the argument is a variable (i.e. an escaping function).

7.4 Staging refinement

Partial evaluation as well as other optimizations will sufficiently change the shape of the
code to justify or even require refining the binding-time annotations. This can happen be-
cause a function has been optimized down to just a handful of statements, or because it has
been split into a wrapper and a main body or any other reason.

Turning a dynamic function into a static one is not very difficult to implement, but more
work needs to be done to express it cleanly within our framework.

It seems to require among other things the ability to optimize away pairs of coercions
that cancel each other out such as not gjfly?x (which is trivially done by the partial
evaluator) but als¢? | “x which appears to involve evaluation of dynamic code at compile-
time.

7.5 Link-time optimizations

Another extension is to add multiple levels so that we can express compile-time execution,
link-time execution, run-time code generation and more.

This will require extending a calculus such X9 (Davies, 1996) with at least some
form of polymorphism, but should not pose any real problem, except that the kind of tricks
we used to work around the lack of simple coercion for type abstraction might need to
be generalized ta-levels. If n is unbounded, it might not be possible and even if it is
bounded, it might be impractical.

Also, the use of pairs of fully-static and fully-dynamic representations of the same origi-
nal expressions would not generalizesttevels easily, but could still be kept for the benefit
of the compile stage.

7.6 Implementation

As mentioned in the introduction, this paper was motivated by the need to better understand
the behavior of our inliner in SML/NJ. Since our implementation handles the complete
SML language in a production compiler, it has to deal with all the issues mentioned above.
Here are the most important differences between the model presented in this paper and the
actual code:

Inlining as Staged Computation 25

e For historical reasons, our intermediate language is predicative, which prevents us
from using existential packages to solve the problem of side effects. Instead we sim-
ply revert to using thep-sharerule and lose the completeness property.

e Our language allows recursion both for dynamic and for static functions. Termina-
tion of P.(e) is ensured by a simple conservative loop detection.

e The dynamic and static pairs we use to avoid spurious code duplication are repre-
sented in an ad-hoc way that eliminates the redundancy. This ad-hoc representation
looked like a good idea at the time, but made it unnecessarily painful to add the
refinement described in Sec. 5.3.1.

8 Related Work

Functional-language compilers such as O’'Caml (Leroy, 1995), SML/NJ (Appel, 1991),
GHC (Peyton Jones & Marlow, 1999), and TIL (Tarditi, 1996), all spend great efforts
to provide better support to inlining. Although none of them models inlining as staged
computation, the heuristics for detecting what functions should be inlined are still useful
in our framework. In fact, our FLINT optimizer (Monniet al., 1999) inherits most of the
heuristics used in the original SML/NJ compiler.

Control-flow analysis (CFA) (Shivers, 1991; Ashley, 1997) is an alternatixedplitting
to propagate inlining information across functions and functors. It tries to find, for example
via abstract interpretation, the set of functions possibly invoked at each call site in the
program. It offers the advantage of requiring less code duplication and may expose more
opportunities for inlining inside a compilation unit. For example, in a code such as:

let fey=.yx.andgz=..in{(f1lg,f2g)

CFA can inline the functiom into f without inlining f whereas our inliner will only reach
the same result if it can first inline the two calls foOn the other hand, in a code such as
f g x wheref is a functor that ends up returning its argument unchanged, our inliner will
be able to replace the code wighz, no matter hows is defined, whereas in the case of
CFA, if the definition off is sufficiently complex, a costly polyvariant analysis is needed
to discover that the code can be replaced with

Partial evaluation is a very active research area. Jones et al (1993) gives a good summary
about some of the earlier results. Danvy’s paper (1996) on type-directed partial evaluation
inspired us to look into sophisticated forms of binding-time coercions.

Tempo (Consel & Nél, 1996; Marleket al,, 1999) is a C compiler that makes extensive
use of partial-evaluation technologies. Its main emphasis is however on efficient runtime
code generation. Sperber and Thiemann (1996; 1997) worked on combining compilation
with partial evaluation, however they were not concerned with modeling the inlining opti-
mization as done in a production compiler.

Nielson and Nielson (1992) gave an introduction to a two-levealculus. Davies and
Pfenning (1996) proposed to use modal logic to express staged computation. Moggi (1997)
pointed out that both of these calculi are subtly different from the two-level calculus used in
partial evaluation (Jonet al,, 1993). Taha et al (Taha, 1999; Taha & Sheard, 1997; Moggi
et al, 1999) showed how to combine these different calculi into a single framework.

Our TLC calculus (see Sec. 4) is an extension of Moggi's two-les&ld calculus

26 Stefan Monnier and Zhong Shao

(Moggi, 1997) with the System-F-style polymorphism (Girard, 1972; Reynolds, 1974).
Davies (1996) used the temporal logic to modelratevel calculus which naturally ex-
tendsA2sd.

Foster et al. (1999) proposed to use qualified types to model source-level program di-
rectives. Their framework can be applied to binding time annotations but these annotations
would have to become parts of the type specifications. Our inlining annotations on the
other hand do not change the source-level type specifications.

Blume and Appel (1997) suggestaesplitting to support cross module inlining. Their
algorithm is based on a weakly-typaecalculus and provides a convenient cross-module
inlining algorithm. Our work extends theirs by porting their algorithm to a much more
powerful language and formalizing it. By using the two-lexetalculus we can express
some of the inliner’s behavior in the types.

O’Caml (Leroy, 1995) collects the small inlinable functions of a module intaptsrox-
imationand then reads in this extra info (if available) when compiling a client module. It
works very well across modules and can even inline functions from within a functor to the
client of the functor, but is unable to inline the argument of a functor. For example, passing
a module through a trivial “adaptor” functor (which massages a module to adapt it to some
other signature, e.g.) will lose tlaproximation preventing inlining.

By encoding the equivalent afpproximationglirectly into types, Shao (1998) presents
an alternative approach which allows the full inlining information to be completely propa-
gated across functor applications by propagating it along with the types. But this comes at
the cost of a further complication of the module elaboration. Another problem is that some
of the functions we might want to inline (such as uncurry wrappers) do not yet exist at the
time of module elaboration.

Recently, Ganz et al (2001) presented an expressive, typed language that supports gener-
ative macros. The language, MacroML, is defined by an interpretation into MetaML (Taha
& Sheard, 1997). This is similar to our approach because macros can also be viewed as
inlinable functions; the translation from MacroML to MetaML resembles our translation
from the source calculus SRC to the target calculus TLC. There are, however, several ma-
jor differences. First, in MacroML, macros and functions are different language constructs;
macros never escape so they can be unconditionally marked as “static” and no coercions
or polymorphic binding-time annotations are ever needed; in our SRC calculus, however,
functions that are marked as inlinable are still treated as regular functions so they can es-
cape in any way they like. Second, it is unclear how MacroML can be extended to support
ML-style modules; MacroML assigns different types to macros and functions so export-
ing macros would require adding new forms of specifications into ML signatures; in our
SRC language, however, a function is always assigned the same type whether it is marked
as inlinable or not, so we can just reuse the existing ML module language. Third, unlike
MacroML, we presented various techniques to control code duplication—this is cruicial
for cross-module inlining since naively expanding every functor in ML would certainly
cause code explosion.

Inlining as Staged Computation 27

9 Conclusions and Future Work

Expressing inlining in terms of a staged computation allows us to better formalize the
behavior of the inliner and provide strong guarantees of what gets inlined where.

We have shown how this can be done in the context of a realistic two-level polymorphic
language and how it interacts with cross-module inlining. The formalism led us to a clean
design in which we can easily show that code is only and always duplicated when useful.

The present design eliminates run-time penalties usually imposed by the powerful ab-
straction mechanism offered by parameterized modules, enabling a more natural program-
ming style. More importantly, our algorithm provides such flexibility while still maintain-
ing separate compilation.

An interesting question is whether or not using monomorphic staging annotations was
a good choice. It seems that polymorphism could allow us to do away with the coercions,
although it would at least require the use of continuation passing style in order to maintain
precision of annotations.

Acknowledgements

We would like to thank the anonymous referees as well as Dominik Madon, Chris League,
and Walid Taha for their comments and suggestions on an early version of this paper. This
research was sponsored in part by the Defense Advanced Research Projects Agency ISO
under the title “Scaling Proof-Carrying Code to Production Compilers and Security Poli-
cies,” ARPA Order No. H559, issued under Contract No. F30602-99-1-0519, and in part
by NSF Grants CCR-9633390 and CCR-9901011. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

References

Appel, Andrew W. (1991).Compiling with continuations Cambridge University Press. ISBN O-
521-41695-7.

Appel, Andrew W., & MacQueen, David B. (1991). Standard ML of New Jers&ages 1-13 of:
Wirsing, Martin (ed),Third int'l symp. on prog. lang. implementation and logic programming
New York: Springer-Verlag.

Asai, Kenichi. 1999 (Sept.). Binding-time analysis for both static and dynamic expressiagss
117-133 of: Static analysis symposium

Ashley, Michael J. (1997). The effectiveness of flow analysis for inlining (ICFP’97, 1997).

Birkedal, Lars, & Welinder, Morten. (1995). Binding-time analysis for Standard Nlkc 8(3),
191-208.

Blume, Matthias. (1995)Standard ML of New Jersey compilation managdanual accompanying
SML/NJ software.

Blume, Matthias, & Appel, Andrew W. (1997). Lambda-splitting: A higher-order approach to cross-
module optimizationsin: (ICFP’97, 1997).

Consel, Charles. (1993). Polyvariant binding-time analysis for applicative languReagges 145-154
of: Symposium on partial evaluation and semantics-based program manipulation

28 Stefan Monnier and Zhong Shao

Consel, Charles, & N&, Francois. (1996). A general approach for run-time specialization, and its
application to C.In: (POPL'96, 1996).

Danvy, Olivier. (1996). Type-directed partial evaluatidn: (POPL'96, 1996).

Danvy, Olivier, Malmkjeer, Karoline, & Palsberg, Jens. (1996). Eta-expansion does TheTreok-
actions on programming languages and syste8(®), 730-751.

Davies, Rowan. 1996 (July). A temporal-logic approach to binding-time analiPsiges 184-195
of: 11** annual symposium on logic in computer science

Davies, Rowan, & Pfenning, Frank. (1996). A modal analysis of staged computktiqgROPL'96,
1996).

Flanagan, Cormac, Sabry, Amr, Duba, Bruce F., & Felleisen, Matthias. (1993). The essence of
compiling with continuations. Pages 237-247 of. Proc. acm sigplan '93 conf. on prog. lang.
design and implementatiolNew York: ACM Press.

Foster, Jeffrey S.,&ndrich, Manuel, & Aiken, Alexander. (1999). A theory of qualified types.
(PLDI'99, 1999).

Ganz, Steve, Sabry, Amr, & Taha, Walid. (2001). Macros as multi-stage computations: Type-safe,
generative, binding macros in macrominternational conference on functional programming
ACM Press.

Girard, J. Y. (1972).Interprétation fonctionnelle eélimination des coupures dans l'arittatique
d’ordre sugerieur. Ph.D. thesis, University of Paris VII.

Glynn, Kevin, Stuckey, Peter J., Sulzmann, Martin, & Sndergaard, Harald. (2001). Boolean con-
straints for binding-time analysi®ages 39-62 of: Program as data objects

Harper, Bob, & Morrisett, Greg. 1995 (Jan.). Compiling polymorphism using intensional type anal-
ysis. Pages 130-141 of: Symposium on principles of programming languages

Harper, Robert, Mitchell, John C., & Moggi, Eugenio. (1990). Higher-order modules and the phase
distinction. Pages 341-344 of: Seventeenth annual acm symp. on principles of prog. languages
New York: ACM Press.

Henglein, Fritz, & Mossin, Christian. 1994 (Apr.). Polymorphic binding-time analyRéges 287—
301 of: European symposium on programming

ICFP’97. (1997).International conference on functional programmirgCM Press.
ICFP’98. (1998).International conference on functional programmim®CM Press.

Jones, Neil D., Gomard, Carsten K., & Sestoft, Peter. (1993rtial evaluation and automatic
program generationsPrentice Hall International.

Leroy, Xavier. 1992 (Jan.). Unboxed objects and polymorphic tygrages 177-188 of: Symposium
on principles of programming languages

Leroy, Xavier. 1995 (nov)Le syseme Caml Special Light: Modules et compilation efficace en Cami
Tech. rept. 2721. Institut National de Recherche en Informatique et Automatique.

Marlet, Renaud, Consel, Charles, & Boinot, Philippe. (1999). Efficient incremental run-time special-
ization for free.In: (PLDI'99, 1999).

Milner, Robin, Tofte, Mads, Harper, Bob, & MacQueen, David B. (199He definition of Standard
ML revised Cambridge, Massachusetts: MIT Press.

Minamide, Yasuhiko, & Garrigue, Jacques. (1998). On the runtime complexity of type-directed
unboxing.In: (ICFP’98, 1998).

Moggi, Eugenio. (1988)Computational lambda-calculus and monad®ch. rept. ECS-LFCS-88-
86. University of Edinburgh.

Moggi, Eugenio. 1997 (Mar.). A categorical account of two-level languat@é.conference on the
mathematical foundations of programming semantics

Moggi, Eugenio, Taha, Walid, Benaissa, Zine El-Abidine, & Sheard, Tim. 1999 (March). An ide-

Inlining as Staged Computation 29

alized MetaML: simpler, and more expressiveages 193—-207 of: Proceedings of the european
symposium on programming

Monnier, Stefan, Blume, Matthias, & Shao, Zhong. 1999 (Mar@pss-functor inlining in FLINT
Tech. rept. YALEU/DCS/TR-1189. Dept. of Computer Science, Yale University, New Haven, CT.

Nielson, Flemming, & Nielson, Hanne Riis. (1992Jwo-level functional languagesNew York:
Cambridge University Press.

Peyton Jones, Simon, & Marlow, Simon. 1999 (September). Secrets of the Glasgow Haskell Com-
piler inliner. Proceedings of the international workshop on implementation of declarative lan-
guages

PLDI'96. (1996). Symposium on programming languages design and implementa@m Press.

PLDI'99. (1999). Symposium on programming languages design and implementat@m Press.

POPL'96. (1996).Symposium on principles of programming languag&SM Press.

Reynolds, John C. (1974). Towards a theory of type structiages 408—425 of: Proceedings,
colloque sur la programmation, lecture notes in computer science, volum&g@nger-Verlag,
Berlin.

Saha, Bratin, & Shao, Zhong. 1998 (Mar.). Optimal type liftifrgternational workshop on types in
compilation

Shao, Zhong. (1997a). Flexible representation analysigICFP’97, 1997).

Shao, Zhong. (1997b). An overview of the FLINT/ML compil@roc. 1997 acm sigplan workshop
on types in compilationPublished as Boston College Computer Science Dept. Technical Report
BCCS-97-03.

Shao, Zhong. (1998). Typed cross-module compilatieges 141-152 of: Proc. 1998 acm sigplan
international conference on functional programmif§CM Press.

Shao, Zhong. (1999). Transparent modules with fully syntactic signatleagges 220-232 of: Proc.
1999 acm sigplan international conference on functional programming (icfp’RGM Press.

Shao, Zhong, League, Christopher, & Monnier, Stefan. (1998). Implementing typed intermediate
languages.Pages 313-323 of: Proc. 1998 acm sigplan international conference on functional
programming (icfp’98) ACM Press.

Shivers, Olin. 1991 (May)Control-flow analysis of higher-order languagegh.D. thesis, Carnegie
Mellon University. CMU-CS-91-145.

Sperber, Michael, & Thiemann, Peter. (1996). Realistic compilation by partial evaluatian.
(PLDI'96, 1996).

Sperber, Michael, & Thiemann, Peter. (1997). Two for the price of one: Composing partial eval-
uation and compilationPages 215-225 of: Symposium on programming languages design and
implementation ACM Press.

Taha, Walid. 1999 (NovemberMulti-stage programming: Its theory and applicatior2h.D. thesis,
Oregon Graduate Institute, Beaverton, Oregon.

Taha, Walid, & Sheard, Tim. 1997 (June). Multi-stage programming with explicit annotaRages
203-217 of: Symposium on partial evaluation and semantics-based program manipulation

Tarditi, David. 1996 (Dec.).Design and implementation of code optimizations for a type-directed
compiler for standard mIPh.D. thesis, Carnegie Mellon University. CMU-CS-97-108.

Wadler, Philip, & Blott, Stephen. 1989 (Jan.). How to make ad-hoc polymorphism less ad hoc.
Symposium on principles of programming languages

