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Certified software consists of a machine executable program plus a machine checkable

proof showing that the software is free of bugs with respect to a particular specification.

Constructing certified system software is an important step toward building a reliable

and secure computing platform for future critical applications. In addition to the benefits

from provably safe components, architectures of certified systems may also be simplified

to achieve better efficiency. However, because system software consists of program mod-

ules that use many different computation features and span different abstraction levels,

it is difficult to design a single type system or program logic to certify the whole sys-

tem. As a result, significant amount of kernel code of today’s operating systems has to be

implemented in unsafe languages, despite recent progress on type-safe languages.

In this thesis, I develop a new methodology to solve this problem, which applies dif-

ferent verification systems to certify different program modules, and then links the cer-

tified modules in an open framework to compose the whole certified software package.

Specifically, this thesis makes contributions in the following two aspects.

First, I develop new Hoare-style program logics to certify low-level programs with

different features, such as sequential programs with stack-based control abstractions and

multi-threaded programs with unbounded thread creations. A common scheme in the

design of these logics is modularity. They all support modular verification in the sense

that program modules, such as functions and threads, can be certified separately without

looking into implementation details of others.

Second, I propose an open verification framework that enables interoperation between

different verification systems (a.k.a. foreign systems). The framework is open in that it is
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not designed with a priori knowledge of foreign systems. It is general enough to incor-

porate both existing verification systems and new program logics presented in this thesis.

It also supports modularity and proof reuse. Modules can be certified separately without

knowing about implementation details of other modules and about the verification sys-

tems in which other modules are certified. Soundness of the framework guarantees that

specifications of modules are respected after linking.



An Open Framework for Certified System Software

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Xinyu Feng

Dissertation Director: Zhong Shao

May 2008



An Open Framework for Certified System Software

Copyright c© 2008 by Xinyu Feng

All rights reserved.



Contents

Acknowledgments viii

1 Introduction 1

1.1 Certified Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Challenges for Certifying System Software . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions and Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic Settings 10

2.1 The Mechanized Meta-Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Model of the Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Program Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 An Open Framework — OCAP 17

3.1 Overview of Certified Assembly Programming . . . . . . . . . . . . . . . . . 21

3.1.1 The CAP system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Specifications of embedded code pointers . . . . . . . . . . . . . . . . 24

3.2 OCAP Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 OCAP Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Soundness of OCAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Embedding TAL into OCAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 TAL types and typing rules. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Interpretation and Embedding . . . . . . . . . . . . . . . . . . . . . . 37

i



3.5.3 Soundness of the embedding . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Discussions and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Stack-Based Reasoning of Sequential Code 46

4.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Reasoning about Control Abstractions . . . . . . . . . . . . . . . . . . 49

4.1.2 The SCAP Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Stack-Based Reasoning for Function Call . . . . . . . . . . . . . . . . . . . . . 52

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 The Stack Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Generalizations of SCAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 SCAP-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.2 SCAP-II for Weak Continuations . . . . . . . . . . . . . . . . . . . . . 64

4.5.3 Example: setjmp/longjmp . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Embedding of SCAP into OCAP . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Discussions and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Concurrent Code with Dynamic Thread Creation 81

5.1 Background and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Rely-Guarantee-Based Reasoning . . . . . . . . . . . . . . . . . . . . 84

5.1.2 R-G in Non-Preemptive Thread Model . . . . . . . . . . . . . . . . . 84

5.1.3 Challenges for Dynamic Thread Creation . . . . . . . . . . . . . . . . 85

5.2 The CMAP Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Typing The Dynamic Thread Queue . . . . . . . . . . . . . . . . . . . 90

5.2.2 Parameterized Assumption/Guarantee . . . . . . . . . . . . . . . . . 93

5.2.3 Support of Modular Verification . . . . . . . . . . . . . . . . . . . . . 94

5.3 The CMAP Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ii



5.3.1 The Abstract Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Program Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.4 Soundness of CMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Unbounded Dynamic Thread Creation . . . . . . . . . . . . . . . . . 109

5.4.2 The Readers-Writers Problem . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.3 Partial Correctness of A Lock-Free Program . . . . . . . . . . . . . . . 116

5.5 Discussions and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Applications of OCAP 122

6.1 Linking TAL with Certified Runtime . . . . . . . . . . . . . . . . . . . . . . . 122

6.1.1 Certifying newpair in SCAP. . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.2 Certifying the caller in TAL. . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.3 Linking the caller and callee . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Certified Threads and Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.2 Certifying The Scheduler Code in SCAP . . . . . . . . . . . . . . . . . 132

6.2.3 CMAP– for User Thread Code . . . . . . . . . . . . . . . . . . . . . . 133

6.2.4 Linking the scheduler with threads. . . . . . . . . . . . . . . . . . . . 135

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 R-G Reasoning and Concurrent Separation Logic 138

7.1 The Abstract Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 AGL: an R-G Based Program Logic . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 SAGL: Separated Rely-Guarantee Logic . . . . . . . . . . . . . . . . . . . . . 148

7.4 Concurrent Separation Logic (CSL) . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4.1 CSL Specifications and Rules . . . . . . . . . . . . . . . . . . . . . . . 158

7.4.2 Interpretation of CSL in SAGL . . . . . . . . . . . . . . . . . . . . . . 162

iii



7.5 SAGL Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Discussions and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8 Conclusions and Future Work 169

Bibliography 173

iv



List of Figures

2.1 The Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Register Aliases and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Example of Machine Code: Function Call/Return . . . . . . . . . . . . . . . 15

3.1 Building Certified Systems by Linking Certified Modules . . . . . . . . . . . 18

3.2 Selected CAP Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Specification Constructs of OCAP . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 OCAP Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Type Definitions of TAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Selected TAL typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 TAL typing rules – II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 TAL typing rules for well-formed states . . . . . . . . . . . . . . . . . . . . . 39

4.1 The Model for Code Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 SCAP Specification Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 The Model for Function Call/Return in SCAP . . . . . . . . . . . . . . . . . . 53

4.4 SCAP Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Factorial Functions in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 SCAP Factorial Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 SCAP Implementation of Tail Recursion . . . . . . . . . . . . . . . . . . . . . 58

4.8 Macros for SCAP Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



4.9 The Logical Control Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 C-- Code with Multi-Return Address . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Assembly Code with Multi-Return Function Call . . . . . . . . . . . . . . . . 65

4.12 C-- Code with Weak-Continuations . . . . . . . . . . . . . . . . . . . . . . . . 67

4.13 Specifications of Code in Figure 4.14 . . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Example for Weak Continuation . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.15 Implementation for setjmp/longjmp . . . . . . . . . . . . . . . . . . . . . . . 70

4.16 C Program Using setjmp/longjmp . . . . . . . . . . . . . . . . . . . . . . . . 71

4.17 TM Code Using setjmp/longjmp . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.18 Specifications for Code in Figure 4.17 . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Rely-guarantee-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 R-G in a non-preemptive setting . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Loop: high-level program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Interleaving of threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Code sharing between different threads . . . . . . . . . . . . . . . . . . . . . 94

5.6 The abstract machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Operational Semantics for the CMAP Machine . . . . . . . . . . . . . . . . . 97

5.8 Specification Constructs of CMAP . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Loop: the CMAP program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 Readers & writers : the high-level program . . . . . . . . . . . . . . . . . . . 112

5.11 Lock & semaphore primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.12 Readers & writers : the CMAP program . . . . . . . . . . . . . . . . . . . . . 113

5.13 Program specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.14 GCD: high-level program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.15 GCD: the main thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.16 GCD: the chld thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.17 GCD: Assertion Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



6.1 Interoperation with TAL and SCAP . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Concurrent Code at Different Abstraction Levels . . . . . . . . . . . . . . . . 129

6.3 Current thread and the thread queue . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Specification Constructs for CMAP– . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Selected CMAP– Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1 The Abstract Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Operational Semantics of the Machine . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Specification Constructs for AGL . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 AGL Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 AGL Inference Rules (cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.6 Extension of AGL Specification Constructs in SAGL . . . . . . . . . . . . . . 149

7.7 SAGL Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.8 SAGL Inference Rules (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.9 Specification Constructs for CSL . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.10 Definitions of Notations in CSL . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.11 CSL Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.12 CSL Inference Rules (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.13 Admissible Rules for CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.14 Example 1: Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.15 Example 2: Parallel GCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.16 Parallel GCD–Assembly Code for The First Thread . . . . . . . . . . . . . . . 165

7.17 SAGL Example: Synchronizations Based on P-V Operations . . . . . . . . . 166

vii



Acknowledgments

First and foremost, I would like to thank my advisor, Zhong Shao, for his encouragement,

support and guidance during my graduate study. He led me over the initial hurdles af-

fronting an apprentice, exposed me to the beauty of programming language theories, and

taught me by example the skill of a first-class researcher. I am particularly grateful for his

energy and contagious enthusiasm, which always made research a pleasure. This work

would not have been possible without the tremendous effort that he put into guiding me.

I would like to thank my thesis readers, Paul Hudak, Hongwei Xi and Bratin Saha, for

all the time spent reading my thesis. Their keen comments and suggestions helped a lot

to improve the quality of the thesis.

I am very lucky to have worked with many talented colleagues in the FLINT group

and the University of Science and Technology of China (USTC). Zhaozhong Ni, Alexan-

der Vaynberg, Sen Xiang and Yu Guo have collaborated on the work on SCAP and OCAP,

and helped with Coq implementations. Rodrigo Ferreira contributed ideas on the devel-

opment of the SAGL logic, and helped with the Coq implementation and proofs for the

CMAP logic and the SAGL logic. I also benefitted a lot from discussions with Andrew

McCreight about the use of Coq tactics. Valery Trifonov and Hai Fang helped answer

many questions on type theories.

Finally, I want to thank my parents for their constant love and support. My deepest

thanks goes to my wife, Xiaokun, for her patience, understanding and encouragement,

without which the thesis would be impossible.

0This research is based on work supported in part by gifts from Intel and Microsoft, and NSF grants CCR-
0208618 and CCR-0524545. Any opinions, findings and conclusions contained in this document are those of
the author and do not reflect the views of these agencies.

viii



Chapter 1

Introduction

Type-safe languages, such as Java, C] and ML, have been great success to improve the

reliability of software. Type systems in these high level languages guarantee that some

classes of runtime errors never occur. However, the guarantee usually assumes the un-

derlying computing platform, including operating system kernels, system libraries and

runtime systems, is safe. For instance, ML programs need to call garbage collectors at run

time. If there are bugs in the garbage collector, ML programs may crash even if they are

well-typed with respect to the ML type system.

Traditionally, system software is implemented using “unsafe” languages, such as C,

C++ and assembly languages. Although there have been efforts to re-implement systems

using type safe languages [55, 44], significant amount of code still has to be implemented

using these “unsafe” languages because of the low abstraction level and architecture-

dependencies 1. This thesis studies methodologies and logics to build formally certified

system software, with rigorous guarantees of safety and correctness properties. In partic-

ular, I concentrate on challenges to modularly specifying and certifying low-level system

code.
1For instance, in the kernel of Singularity, 17% of files contain unsafe C] code and 5% of files contain x86

or C++ code [56].
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1.1 Certified Software

Foundational certified software package [6, 46] contains machine code and mechanized

mathematical proof showing that the code satisfies its specifications, which may specify

safety, security or other interesting properties of the code. Given such a software package,

we can use a proof checker to automatically check the validity of the proof with respect to

the specifications and the machine code. If the proof is valid, we can predict the behavior

of the code based on the specifications.

There are several key elements required to build certified software:

• A formal model of the hardware. To prove the execution of software satisfies the

specifications, we need to first formalize how it is executed, which requires formal-

ization of the hardware. This thesis concentrates on software reliability. We trust the

correctness of hardware implementation and only formalize the hardware/software

interface. Specifically, we need to model the set of valid machine instructions, ma-

chine states at the instruction set architecture (ISA) level, and how machine states

are updated by executing each instruction (i.e., the operational semantics of instruc-

tions). Given such a formalization, software is just a list of binary encoding of ma-

chine instructions and constants. The behavior of the software is rigorously defined.

• A mechanized meta-logic. We need the logic to specify interesting properties of the

machine code, and to develop proofs showing that the code satisfies the specifica-

tion. The logic needs to be expressive so that we can express everything a program-

mer wants to say about his or her programs. It must be consistent in the sense that

a proposition and its negation cannot be proved in the logic at the same time. Also,

it needs to be mechanized so that we can get machine-checkable proofs.

• Specifications. The specifications describe properties of the machine code, which

may be memory safety, partial correctness, termination properties, resources usages

or real-time properties. In this thesis, we will concentrate on the techniques to certify

2



safety properties, and we call the specifications of safety properties safety policies.

The safety policies are formally defined in our mechanized meta-logic.

• Certified package. The certified package contains the machine code and the proof. It

is the ultimate product we want from the framework. The proof needs to show the

code satisfies the safety policy. It is developed in our mechanized meta-logic and is

machine-checkable.

• Proof checker. The proof checker is a program that takes the certified package and

the specifications as inputs, and generates an output of “yes” or “no”, i.e., whether

the proof is valid or not in the logic.

In the framework for foundational certified software, we do not need to trust the

soundness of specific techniques that we use to certify the code, e.g., type systems or

Hoare logics, as long as the technique can finally give us a proof showing that the pro-

gram satisfy the specification. However, there are several things we have to trust, which

form our trusted computing base (TCB):

• We need to trust the correctness of our formalization of the hardware, and the formal

specifications of the properties we want to certify. These are the starting points

where we bridge the informal real world with the formal world in computer, and

we can never formally prove the correctness of the formalization because one side

is informal. To validate our formalization, we can either let experts to review our

formalization, or test the validity in practice.

• We need to trust the consistency of our meta-logic to bootstrap. This means we

should use a logic whose consistency has been proved and widely accepted.

• We need to trust the soundness of our proof checker with respect to the logic: if

the proof checker says “yes”, the proof must be valid in the logic. Based on the

Curry-Howard isomorphism [54] applied in most logical frameworks, the problem

3



of proof checking is reduced to type checking, which is a fairly standard and simple

process and the implementation can be reviewed and tested by human being.

In this thesis, I would base my work on a MIPS-style machine, but the framework and

logics presented here are independent with any specific hardware architectures. I use the

Calculus of Inductive Constructions (CiC) [83, 24] as the meta-logic, which is mechanized

in the Coq proof assistant [24]. CiC corresponds to the higher order logic via Curry-

Howard isomorphism and serves as a very expressive logic to formalize our machine

models and safety policies. Coq, the tactics-based proof assistant, also generates explicit

proof terms in a semi-automatic way. The type checker of CiC implemented in Coq is

used as a proof checker.

1.2 Challenges for Certifying System Software

Constructing certified system software is an important step toward building a reliable

and secure computing platform for future critical applications. In addition to the benefits

from provably safe components, architectures of certified systems may also be simplified

to achieve better performance [4]. However, there are substantial challenges for build-

ing fully certified system software, because of the complexity and low abstraction levels.

System software consists of program modules that use many language features and span

different abstraction levels, including the lowest architecture-dependent level. To certify

the whole software system, we need to address the following problems:

• Building formal models of language features. Specifications of safety and correct-

ness properties of software involve formalization of language features. For instance,

we may need to say in our specifications that “the code will never dereference a dan-

gling pointer”, “the target address of the jump instruction actually points to some

code” or “there is no interference between threads”. To allow such specifications, we

need to give a formal model of “memory pointers”, “code pointers” and “threads”,

etc.
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• Modular development of proofs. To make the technique to scale, we need to develop

composable program logics to support modular development of proofs. We want

to be able to certify program modules separately without knowing details about the

context where they are used other than an abstract specification of the interface. Up-

dating one program module would not affect the proof for other modules as long as

the specification for the updated module remains unchanged. This also supports the

reuse of certified program modules and helps achieve the goal of “certify once, use

everywhere”, which is especially important for system level software, a common

platform shared by user applications.

• Certifying and linking code at different abstraction levels. A complete software sys-

tem, e.g., an OS kernel, consists of modules at different abstraction levels. We need

to certify all these system modules and to link them together to get a fully certified

system. On the other hand, the system level code would be used by user applica-

tions, which are at higher abstraction levels. Therefore, we also need to make sure

our certified system software can be linked with user applications.

The following two examples illustrate the difficulty to certify and link program

modules at different abstraction levels. When we write multi-threaded programs,

we usually do not need to consider the behavior of thread schedulers: threads are

viewed as built-in language constructs for concurrency and the implementation of

the scheduler is abstracted away. Most program logics for concurrency verification

are based on this abstract model. However, in a real system, the scheduler might

be implemented as sequential code manipulating data structures (thread control

blocks) that stores execution contexts of threads. Existing program logics cannot

be applied to certify both multi-threaded concurrent code and the scheduler code

to get a fully certified system. The other example involves the type-safe mutator

code and the underlying implementation of garbage collectors, as we mentioned at

the beginning of this Chapter. It is extremely difficult to design a type system that
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can certify the low-level garbage collectors, but still preserves the abstractions for

mutator code.

• Efficient production of proofs. Depending on the safety policy, certifying software

usually requires explicit annotations and specifications of code blocks, and theorem

proving to discharge verification conditions. The burden of writing specifications

and proofs might be overwhelming if the safety policy is complex. However, it

might be reduced by applying techniques for program analysis and automated the-

orem proving.

This thesis is focused on addressing the first three challenges. That is, I will concen-

trate on developing methodologies, frameworks and theories to certify low-level program

modules. I leave the fourth problem as future work.

1.3 Contributions and Thesis Outline

Just like we never use one programming language to implement the whole software stack,

from bootloaders and OS kernels to user applications, we should not try to find a single

type system or program logic to certify the whole system, which would be extremely dif-

ficult. In this thesis, I propose a new methodology to build certified system software. I

use different program logics to certify program modules with different language features

and at different abstraction levels, and then link certified modules in an open framework

to get a fully certified software package. Specifically, I try to address two important prob-

lems. First, I develop program logics allowing language features used in assembly level

code to be specified and certified with higher level of abstractions. Second, I propose an

open verification framework to enable interoperation between different verification sys-

tems. It supports the composition of a certified system from program modules specified

and certified using different techniques. The framework is general enough to incorporate

both existing verification systems and the new program logics proposed by me.
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Before presenting my dissertation research, I first show the formal settings for this

thesis in Chapter 2, including the meta-logic, the formal model of the machine, and a

formalization of certified software package in the meta-logic. There is nothing particularly

new in this chapter. Instead, it serves as a formal basis for the technical development in

the following chapters.

In Chapter 3, I propose the open framework, OCAP. It is the first framework that sys-

tematically supports interoperability of different verification systems, e.g., type systems

or program logics. It lays a set of Hoare-style inference rules above the raw machine se-

mantics, so that proofs can be constructed following these rules instead of directly using

the mechanized meta-logic. Soundness of these rules are proved in the meta-logic with

machine-checkable proof, therefore these rules are not trusted and do not increase the

size of our TCB. OCAP supports modular verification. It is also extensible in the sense

that, instead of being designed for interoperation of specific verification systems, OCAP

is independent of specification languages and verification systems. New type systems or

logics can be designed and integrated into the framework. To show the expressiveness of

the framework, I also show in this Chapter the embedding of typed assembly language

(TAL) [69] into OCAP.

In Chapter 4, I present a new program logic, SCAP, for modular verification of stack-

based control abstractions at the assembly level. Because of the lack of structured lan-

guage constructs, such as functions in high level languages, control flows at assembly

level are usually reasoned about following the continuation passing style (CPS) [5]. Al-

though general, the CPS-based reasoning treats all control abstractions as continuations,

which is a very low-level language constructs. It also requires a semantic model of first-

class code pointers, which is complex and difficult to use. I observe that stack based con-

trol abstractions at assembly level can be reasoned about in a more natural way without

following CPS-based reasoning. The SCAP logic allows programmers to specify assem-

bly code in terms of high level control abstractions, such as functions and exceptions. In

this Chapter, I also give a thorough study of common stack-based control abstractions
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in the literatures. For each control abstraction, I formalize its invariants and show how

to certify its implementation in SCAP. One more contribution made in this Chapter is an

embedding of SCAP into the OCAP framework.

In Chapter 5, I show how to modularly certify concurrent code with dynamic thread

creation. Yu and Shao [102] applied rely-guarantee based methodology [59] at assembly

level to certify concurrent code in a modular way. Their thread model, however, is rather

restrictive in that no threads can be created or terminated dynamically, which is an im-

portant feature widely supported and used in mainstream programming languages and

operating systems. I extend their logic to support dynamic thread creation, which causes

dynamic thread environment. In particular, I allow threads to have different assumptions

and guarantees at different stages of their life time, so they can coexist with the dynam-

ically changing thread environment. Some practical issues are also addressed, such as

sharing of code between threads, argument passing at the time of thread creation, and

the saving and restoring of thread-private data at context switches. These issues are im-

portant for realistic multi-threaded programming but as far as I know have never been

discussed in previous work.

Given SCAP and CMAP logics for sequential and concurrent code, respectively, I show

two applications of the OCAP framework in Chapter 6. In the first application, I show

how to link user code in TAL with a simple certified memory management library. TAL

only supports type-preserving memory update (a.k.a. weak memory update) and the

free memory is invisible to TAL code. The memory management library is specified in

SCAP, which supports reasoning about operations over free memory and still ensures

that the invariants of TAL code is maintained. In the second application, I show how to

construct foundational certified concurrent code without trusting the scheduler. The user

thread code is certified using the rely-guarantee method, which supports thread-modular

verification; the thread scheduler is certified as sequential code in SCAP. They are linked

in OCAP to construct the foundational certified package. This is the first time that threads

and the thread scheduler are certified together in the same framework.
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In Chapter 7, I study the relationship between rely-guarantee reasoning and concur-

rent separation logic (CSL) [78, 14], both supporting modular verification of concurrent

programs. I propose a new program logic, SAGL, to combine the merits of both sides.

SAGL is more general than both rely-guarantee reasoning and CSL. I would show that,

given a encoding of the invariants enforced in CSL as a special assumption and guaran-

tee, we can formally prove that CSL can be derived as a special case of our SAGL logic.

This result can also be viewed as an alternative proof of the soundness of CSL, which is

simpler than existing proof by Brookes [14].
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Chapter 2

Basic Settings

We first present the basic formal settings of our framework for certified software. In our

framework, the machine and the operational semantics of machine instructions are for-

mally defined in a mechanized meta-logic. Safety policies are also formalized in the meta-

logic. The certified software is then a package containing the machine code and a formal

proof showing that the code satisfies the safety policies.

2.1 The Mechanized Meta-Logic

We use the calculus of inductive constructions (CiC) [83] as our meta-logic, which is an

extension of the calculus of constructions (CC) [25] with inductive definitions. CC cor-

responds to Church’s higher-order predicate logic via the Curry-Howard isomorphism.

CiC is supported by the Coq proof assistant [24], which we use to implement the results

presented in this thesis.

(Term) A,B ::= Set | Prop | Type | X | λX :A.B | A B | A →B | ΠX :A. B

| inductive def. | . . .

The syntax of commonly used CiC terms are shown above, where Set and Prop are

the universes of objects and propositions, respectively. Type is the (stratified) universe of

all terms. The term ΠX : A. B is the type of functions mapping values X with type A to
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(Program) P ::= (C, S, pc)
(CodeHeap) C ::= {f0 ; ι0, . . . , fn ; ιn}

(State) S ::= (H,R)
(Memory) H ::= {l0 ; w0, . . . , ln ; wn}
(RegFile) R ::= {r0 ; w0, . . . , r31 ; w31}
(Register) r ::= r0 | . . . | r31

(Labels) f, l, pc ::= n (nat nums)
(Word) w ::= i (integers)
(Instr) ι ::= addu rd, rs, rt | addiu rd, rs, w | beq rs, rt, f | bgtz rs, f

| lw rd, w(rs) | subu rd, rs, rt | sw rt, w(rs) | j f | jal f | jr rs

(InstrSeq) I ::= ι | ι; I

Figure 2.1: The Machine

type B, and X may be free in B. If X is not free in B, the term is abbreviated as A → B.

Via Curry-Howard isomorphism, we can view ΠX :A. B as a proposition with universal

quantification over objects with type A (i.e., ∀X : A. B) if B has kind Prop, while A → B

represents logical implication if A and B both have kind Prop. Although we implement

the certified framework in Coq, the thesis does not assume familiarity with Coq or CiC.

In the rest of the thesis, we will not strictly follow the syntax of Coq, and use normal

representations of logical connectives instead, which can be viewed as syntactic sugars

and can be encoded in Coq.

2.2 Model of the Machine

In Figure 2.1 we show the formal modeling of a MIPS-style machine. A machine pro-

gram P contains a code heap C, an updatable program state S and a program counter pc

pointing to the next instruction to execute. C is a partial mapping from code labels (f) to

instructions (ι). The program state consists of a data heap H and a register file R. H is a

partial mapping from memory locations (l) to word values. The register file R is a total

function from registers to word values.

There are 32 registers in the machine. Following the MIPS convention, Figure 2.2

11



$zero r0 always zero
$at r1 assembler temporary
$v0− $v1 r2 − r3 return values
$a0− $a3 r4 − r7 arguments
$t0− $t9 r8 − r15, r24 − r25 temporary (caller saved)
$s0− $s7 r16 − r23 callee saved
$k0− $k1 r26 − r27 kernel
$gp r28 global pointer
$sp r29 stack pointer
$fp r30 frame pointer
$ra r31 return address

Figure 2.2: Register Aliases and Usage

shows the register aliases and usage. Assembly code shown in this thesis will follow

this convention.

To simplify the presentation, we do not model the von Neumann architecture since

reasoning about self-modifying code is beyond the scope of this thesis. We model the code

and data heaps separately and make the code heap read-only. This allows us to avoid for-

mulating the encoding/decoding of instructions and the protection of code heaps, which

is straightforward and is orthogonal to the focus of this thesis [17]. Also, we only show a

small set of commonly used instructions, but they cover most of the interesting language

features at the machine code level: direct/indirect jumps, branch instructions (also known

as conditional jumps), memory access instructions and arithmetic instructions. Adding

more instructions to the framework is straightforward.

In this thesis, we will use the “dot” notations to represent a component in a tuple.

For instance, P.pc means the program counter in the machine configuration P. We also

use dom(F ) to represent the domain of the function F , and use F{a;b} to represent the

update of the function F (total or partial) at a with new value b, which is formally defined

below:

F{a;b} (x) =





b if x = a

F (x) otherwise

To lay some structure over the flat code heap C, we use the instruction sequence I
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if ι = then NextS(pc, ι)(H,R) = when

addu rd, rs, rt (H,R{rd ;R(rs)+R(rt)})
addiu rd, rs, w (H,R{rd ;R(rs)+w})
addiu rd, rs, w (H,R{rd ;R(rs)+w})
subu rd, rs, rt (H,R{rd ;R(rs)−R(rt)})
lw rd, w(rs) (H,R{rd ;H(R(rs)+w)}) R(rs)+w ∈ dom(H)
sw rt, w(rs) (H{R(rs)+w;R(rt)},R) R(rs)+w ∈ dom(H)
jal f (H,R{r31 ;pc+1})
other ι (H,R)

if ι = then NextPC(ι, S)(pc) = when

beq rs, rt, f f S.R(rs) = S.R(rt)
beq rs, rt, f pc+1 S.R(rs) 6= S.R(rt)
bgtz rs, f f S.R(rs) > 0
bgtz rs, f pc+1 S.R(rs) ≤ 0
j f f

jal f f

jr rs S.R(rs)
other ι pc+1

ι = C(pc) S′ = NextS(pc, ι)(S) pc′ = NextPC(ι, S)(pc)

(C, S, pc) 7−→ (C, S′, pc′)

P 7−→0 P
P 7−→ P′′ P′′ 7−→k P′

P 7−→k+1 P′
P 7−→k P′
P 7−→∗ P′

Figure 2.3: Operational Semantics

to represent a basic code block. C[f] extracts from C a basic block ending with a jump

instruction.

C[f] =





C(f) if C(f) = j f′ or C(f) = jr rs

C(f); I if f ∈ dom(C) and I = C[f+1]

undefined otherwise

We define the operational semantics of machine programs in Figure 2.3. One-step

execution of a program is modeled as a transition relation P 7−→ P′. The transition relation
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is defined based on the auxiliary functions NextS(pc, ι)( ) and NextPC(ι, S)( ). Given the

current program state, the partial function NextS(pc, ι)( ) defines the new program state

after executing the the instruction ι at the current program counter pc. In most cases, the

new program state is independent of pc, except that the jal f instruction saves the next

program counter pc+1 into the register r31. For memory access instructions, the next

state will be undefined if the target memory address is not in the domain of the current

data heap. This corresponds to a “segmentation fault” when a program tries to access

memory that it is not allowed to access. The function NextPC(ι, S)( ) takes the current

program counter as argument and gives the next program counter after executing ι at the

current program state S. By definition, we can see that the step transition P 7−→ P′ is also

a “partial” relation in the sense that, given a P, there exists a P′ satisfying P 7−→ P′ only if:

• P.pc is a valid address pointing to an instruction ι in the code heap C; and

• given the program state in P, the next state after executing ι is defined by the NextS

function (i.e., there is no “segmentation fault”).

If there exists no such P′, we say the execution of the program get stuck. One basic re-

quirement of “safe” programs is that they will never get stuck. We will discuss more

about safety policies in the next section.

As defined in Figure 2.3, P 7−→k P′ means P reaches P′ in k steps. The relation 7−→∗

is the reflexive and transitive closure of the step transition relation. The following lemma

shows the determinism of the operational semantics.

Lemma 2.1 If P 7−→∗ P′ and P 7−→∗ P′′, then P′ = P′′.

Proof of the lemma is trivial because NextS(pc, ι)( ) and NextPC(ι, S)( ) are all defined as

partial functions.

As an example, we show in Figure 2.4 a machine program, which is the MIPS code

compiled from the following C program:
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0 f:
1 addiu $sp, $sp, -32 ;allocate stack frame
2 sw $fp, 32($sp) ;save old $fp
3 addiu $fp, $sp, 32 ;set new $fp
4 sw $ra, -4($fp) ;save $ra
5 jal h ;call h
6 ct: lw $ra, -4($fp) ;restore $ra
7 lw $fp, 0($fp) ;restore $fp
8 addiu $sp, $sp, 32 ;deallocate frame
9 jr $ra ;return

10 h:
11 jr $ra ;return

Figure 2.4: Example of Machine Code: Function Call/Return

void f(){ | void h(){
h(); | return;
return; | }

} |

Before calling the function h, the caller f first saves its return code pointer (in $ra) on the

stack; the instruction jal h loads the return address (the label ct) in $ra, and jumps to the

label h; when h returns, the control jumps back to the label ct. Then the function f restores

its own return code pointer and stack pointers, and jumps back to its caller’s code.

2.3 Program Safety

Safety of the program means the execution of the program P satisfies some safety policy

SP, which can be formalized as follows:

∀P′. (P 7−→∗ P′) → SP(P′).

Usually we use the invariant-based proof [63, 99, 7] to prove the program safety. We

first define a program invariant INV, which is stronger than the safety policy. Then we

prove:

1. initial condition: the initial program P0 satisfies INV, i.e., INV(P0);
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2. progress: for all P, if INV(P), there exists P′ such that P 7−→ P′; and

3. preservation: for all P and P′, if INV(P) and P 7−→ P′, P′ also satisfies the invariant,

i.e., INV(P′).

Using CiC as the meta-logic, we can support very general specifications of safety poli-

cies, which may range from simple memory safety (i.e., programs never get stuck) to cor-

rectness of programs with respect to their specifications (a.k.a. partial correctness). For

instance, we can ensure the memory safety by defining SP(P) as:

OneStep(P) , ∃P′. P 7−→ P′.

Such an SP can be trivially implied by the invariant-based proof methodology. On the

other hand, suppose we have a program specification Ψ that defines the loop-invariants

at some points of the program. We can define SP as:

SP(P) , OneStep(P) ∧ (P.pc ∈ dom(Ψ) → Ψ(P.pc) P.S),

which says that the program can make one step, and that if it reaches the point where a

loop invariant is specified in Ψ, the loop invariant will hold over the program state. In

this way, we capture the partial correctness of programs.

An FPCC package represented in the meta-logical framework is then a pair F con-

taining the program and a proof showing that the program satisfies the safety policy [46].

Through Curry-Howard isomorphism, we know that

F ∈ Σ P : Program. ∀P′. (P 7−→∗ P′) → SP(P′) ,

where Σx :A.P (x) represents the type of a dependent pair.
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Chapter 3

An Open Framework — OCAP

As our formalization in Chapter 2 shows, we need to construct proofs for machine code

to get the certified package. Although many type systems and program logics have been

proposed in the last decades to certify properties of low-level code, they work at different

abstraction levels, use different specification languages and axioms, and have different

emphasis on computation features and properties. For instance, the typed assembly lan-

guage (TAL) [69] uses types to specify assembly code and proves type safety. TAL code

is at a higher abstraction level than machine code because it uses the abstract malloc in-

struction for memory allocation, while the actual implementation of malloc cannot be

certified using TAL itself. In addition, TAL also assumes a trusted garbage collector in the

run-time system. Yu and Shao’s work on certifying concurrent assembly code [102] ap-

plies the rely-guarantee method to prove concurrency properties. They also use abstract

machines with abstract instructions such as yield.

It is extremely difficult (if possible) to design a verification system supporting all the

computation features. It may not be necessary to do so either because, fortunately, pro-

grammers do not use all these features at the same time. Instead, in each program module,

only certain combination of limited features are used at certain abstraction level. If each

module can be certified using existing systems (which is usually the case), it will be de-

sirable to link each certified modules (code + proof) constructed in different verification
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Figure 3.1: Building Certified Systems by Linking Certified Modules

systems to compose a completely certified system.

Suppose we want to build certified software package that contains the machine code C

and a proof showing that C satisfies the safety policy SP, as shown in Fig. 3.1. The system

C consists of code modules C1, C2 . . . Ck. Some of them are system libraries or code of the

run-time system, others are compiled from user modules. Each Ci is certified using certain

verification system, with specifications about imported and exported interfaces. We want

to reuse proofs for the modules and link them to generate the proof about the safety of

the whole system. It is a challenging job because modules are certified separately using

different specification languages and verification systems. When some of the modules

(e.g., system libraries) are specified and verified, the programmer may have no idea about

the context where the code gets used and the verification system with which they will

interoperate.

To compose the certified modules, we need an open framework which satisfies the

following requirements:

• modularity: modules can be specified and certified separately; when they are linked

the proof for each module can be reused;

• extensibility: instead of being designed specifically for certain combination of veri-
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fication systems, the framework should be (mostly) independent with specification

languages and verification systems (foreign systems hereafter); new systems can be

designed and integrated into this framework;

• expressiveness: invariants enforced in foreign systems should be maintained in the

framework, so that we can infer interesting properties about the composed program

other than an overly-conservative safety policy.

Existing work on Foundational Proof-Carrying Code (FPCC) [7, 46, 28] only shows

how to construct foundational proof for each specific verification system and does not

support interoperation between systems, with the only exception of [45] which shows

the interoperation between two specific systems (TAL and CAP). It is not trivial to make

existing FPCC frameworks open either. The syntactic approach to FPCC [46, 28] simply

formalizes the global syntactic soundness proof of verification systems in a mechanized

meta-logic framework. It is unclear how different foreign verification systems can inter-

operate. The Princeton FPCC [7, 8, 94] uses a semantic approach. They construct FPCC

for TAL by building semantic models for types. The semantic approach may potentially

have nice support of interoperability as long as consistent models are built for foreign sys-

tems. However, sometimes it is hard to build and use semantic models. Most importantly,

the step-indexed model [8] is defined specifically for type safety (i.e., program never gets

stuck). It is difficult to use the indexed model for embedded code pointers to support

Hoare-style program logics, which usually certifies the partial correctness of programs

with respect to program specifications.

People may argue that, since we use a mechanized meta-logic anyway, why bother

to design an open framework? Users can bridge specific verification systems in an ad-

hoc approach; and the proof checker of the meta-logic framework will ensure that the

composed proof for the whole system is a valid proof about the safety property. There

are several reasons that we prefer an open framework to the ad-hoc interoperation in the

mechanized meta-logic. First, we need a uniform model of control flows. The control flow
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weaves program modules into a whole system. Without such a model, it is hard to for-

mulate the composition of program modules. Second, enforcing principled interoperation

between verification systems will help us infer properties of the whole program. Finally,

a framework can certainly provide general guidance and reduce the workload of users.

In this Chapter, we propose an open framework, OCAP, for modular development of

certified software. OCAP is the first framework for foundational certified software pack-

ages that systematically supports interoperation of different verification systems. It lays

a set of Hoare-style inference rules above the raw machine semantics, so that proofs can

be constructed following these rules instead of directly using the mechanized meta-logic.

Soundness of these rules are proved in the meta-logic framework with machine-checkable

proof, therefore these rules are not trusted. OCAP is modular, extensible and expressive,

therefore it satisfies all the requirements mentioned above for an open framework. Specif-

ically, the design of OCAP has the following important features:

• OCAP supports modular verification. When user code and runtime code are speci-

fied and certified, no knowledge about the other side is required. Modules certified

in one verification system can be easily adapted to interoperate with other modules

in a different system without redoing the proof.

• OCAP uses an extensible and heterogeneous program specification. Taking advan-

tage of Coq’s support of dependent types, specifications in foreign systems for mod-

ules can be easily incorporated as part of OCAP specifications. The heterogeneous

program specification also allows OCAP to specify embedded code pointers, which

enables OCAP’s support for modularity.

• The assertions used in OCAP inference rules are expressive enough to specify in-

variants enforced in most type systems and program logics, such as memory safety,

well-formedness of stacks, non-interference between concurrent threads, etc.. The

soundness of OCAP ensures that these invariants are maintained when foreign sys-

tems are embedded in the framework.
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The material presented in this chapter is based on the research I have done jointly

with Zhaozhong Ni, Zhong Shao and Yu Guo [33]. In the rest part of this chapter, we first

give an overview of previous work on certified assembly programming, and explain the

challenges to design an open framework. Then we present the OCAP framework. At the

end, we also show an embedding of TAL into OCAP. More applications of OCAP will be

given in Chapters 4 and 6.

3.1 Overview of Certified Assembly Programming

Yu et al. first adapted Hoare logic to assembly level for Certified Assembly Programming

(CAP) [101]. Here we give an brief overview of CAP and its extensions. Our OCAP

framework is a generalization of previous work on CAP systems.

3.1.1 The CAP system

CAP is a Hoare-style program logic for proving partial correctness of assembly code. In

addition to the basic safety, i.e., “non-stuckness” of programs, it also guarantees that cer-

tified programs work correctly with respect to the user’s specifications.

CAP expects a program specification Ψ which collects the loop invariants asserted for

each basic code block. Each assertion p is a predicate over the program state, as shown

below.

(CHSpec) Ψ ∈ Labels ⇀ StatePred

(StatePred) p ∈ State → Prop

Here the program specification Ψ is a partial mapping from labels to assertions. The

assertion p is defined directly in the meta-logic CiC as a function that takes a state as an

argument and returns a proposition (recall that Prop is the universe of propositions in

CiC, as shown in Section 2.1). Therefore p is a predicate over states. By using directly

the meta-logic for specifications, we do not need to define the syntax and proof theory of

the assertion language. This technique is also known as shallow embedding [62] of the

21



Ψ ` P (Well-formed program)

Ψ ` C :Ψ (p S) Ψ `{p} pc : C[pc]
Ψ ` (C, S, pc)

(PROG)

Ψ ` C :Ψ′ (Well-formed code heap)

for all f ∈ dom(Ψ′): Ψ `{Ψ′(f)} f : C[f]

Ψ ` C :Ψ′ (CDHP)

Ψ `{p} f : I (Well-formed instruction sequence)

ι∈{addu, addiu, lw, subu, sw}
Ψ `{p′} f+1 : I p⇒ p′ ◦ NextS(f, ι)

Ψ `{p} f : ι; I
(SEQ)

∀S. p S→ ∃p′. codeptr(S.R(rs), p′) Ψ ∧ p′ S
Ψ `{p} f : jr rs

(JR)

Figure 3.2: Selected CAP Rules

assertion languages in the meta-logical framework.

CAP inference rules. Figure 3.2 shows some selected inference rules of CAP. Using the

invariant-based proof, CAP enforces the program invariant Ψ ` P. As shown in the PROG

rule, the invariant requires that:

• Ψ characterize the code heap C and guarantee the safe execution of C, i.e., Ψ ` C :Ψ.

• There exist a precondition p for the current instruction sequenceC[pc] (recall our def-

inition ofC[f] in Section 2.2). Given the knowledge Ψ about the complete code heap,

the precondition p will guarantee the safe execution of C[pc], i.e., Ψ `{p} pc : C[pc].

• The current program state S satisfy p.

To certify a program, we only need to prove that the initial program (C,S0, pc0) sat-

isfies the invariant, i.e., Ψ ` (C, S0, pc0). As part of the soundness of the program logic,

we can prove that our formulation of the invariant (based on Ψ) guarantees progress and

preservation properties shown in Section 2.3.
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The CDHP rule defines well-formedness of code heap, i.e., Ψ ` C :Ψ′. The rule says that

it is safe to execute code in C if the loop invariant asserted at each label f in Ψ′ guarantees

the safe execution of the corresponding basic block C[f], i.e., Ψ `{Ψ′(f)} f : C[f]. The Ψ

on the left hand side specifies the preconditions of code which may be reached from C[f].

In other words, Ψ specifies imported interfaces for each basic block in C. Based on this

definition, we can prove the following lemma.

Lemma 3.1 If Ψ ` C :Ψ, then dom(Ψ) ⊆ dom(C).

Rules for well-formed instruction sequences ensure that it is safe to execute the in-

struction sequence under certain precondition. For sequential instructions, the SEQ rule

requires that the user find a precondition p′ and prove that the remaining instruction

sequence I is well-formed with respect to p′. Also the user needs to prove that the precon-

dition p′ holds over the resulting state of ι. Here p′ ◦ NextS(pc, ι) is the shorthand for

λS. ∃S′. (S′ = NextS(pc, ι)(S)) ∧ p′ S′ , (3.1)

and p⇒ p′ means logical implication between predicates:

∀S. p S→ p′ S . (3.2)

The premise p ⇒ p′ ◦ NextS(pc, ι) implies that p must ensure the safe execution of ι, since

NextS(pc, ι)( ) is a partial function. Usually p′ can be the automatically derived strongest

postcondition λS. ∃S0.p S0 ∧ (S = NextS(pc, ι)(S0)) .

The JR rule essentially requires that the precondition for the target address hold at the

time of jump. The proposition codeptr(f, p) Ψ is defined as:

codeptr(f, p) Ψ , f ∈ dom(Ψ) ∧Ψ(f) = p .
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Above definition also ensures that the target address is in the domain of the global code

heap C, following Lemma 3.1.

Soundness. The soundness of CAP ensures that well-formed programs never get stuck.

It also guarantees that, after jump or branch instructions, the assertions specified at target

addresses in Ψ hold over the corresponding program states. This shows the partial cor-

rectness of the program with respect to its specification Ψ. Yu et al. [101] exploited CAP’s

support of partial correctness to certify an implementation of malloc and free libraries.

The soundness of CAP is formalized in Theorem 3.2. Proof of the theorem follows the

syntactic approach to proving type soundness [99], which requires the proof of progress

and preservation properties. We will not show the proof in this thesis, which is similar to

the soundness proof for OCAP given in Section 3.4.

Theorem 3.2 (CAP-Soundness)

If Ψ ` P, where P = (C, S, pc), then for all n there exist S′ and pc′ such that

P 7−→n (C,S′, pc′), and

1. if C(pc) = j f, then Ψ(f) S′;

2. if C(pc) = jal f, then Ψ(f) NextS(pc′, jal f)(S′);

3. if C(pc) = jr rs, then Ψ(S.R(rs)) S′;

4. if C(pc) = beq rs, rt, f and S′.R(rs) = S′.R(rt), then Ψ(f) S′;

5. if C(pc) = bgtz rs, f and S′.R(rs) > 0, then Ψ(f) S′.

3.1.2 Specifications of embedded code pointers

CAP is a general framework for assembly code verification, but it does not support mod-

ularity very well, as pointed out by Ni and Shao [75]. The JR rule in CAP requires that

the target address be a valid code pointer, which must be guaranteed by the precondition

before the jump. The only way we can specify this is to list all the potential targets of
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the jump. For instance, the precondition of function h in Figure 2.4 needs to say that “$ra

contains the code label ct”. This approach is not modular because, to specify a function,

we need to know all the callers in advance. If there is another function that would also

call h, we have to change the precondition of h, although it is safe to call h from any func-

tions. The reason for this problem is because CAP’s specification language (predicates

over states) is not expressive enough to directly express codeptr(f, p) Ψ, which requires

the reference to Ψ. To specify a code pointer in CAP, we have to know the global Ψ in

advance, which breaks modularity.

A quick attack to this problem is to extend the specification language as follows:

(CHSpec) Ψ ∈ Labels ⇀ Assert

(Assert) a ∈ CHSpec → State → Prop

and a code pointer f with specification a is defined as:

codeptr(f, a) , λΨ, S. f ∈ dom(Ψ) ∧Ψ(f) = a .

Unfortunately, this simple solution does not work because the definitions of CHSpec

and Assert mutually refer to each other and are not well-founded. To break the circularity,

Ni and Shao [75] defined a syntactic specification language. In their XCAP, the program

specification is in the following form.

(CHSpec) Ψ ∈ Labels ⇀ Assert

(PropX) P ::= . . .

(Assert) a ∈ State → PropX

(Interp) [[ ]] ∈ PropX → (CHSpec → Prop)

The meaning of extended proposition P is given by the interpretation [[ P ]]Ψ. A code
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pointer specification codeptr(f, a) is just a built-in syntactic construct in PropX, whose

interpretation is:

[[ codeptr(f, a) ]]Ψ , f ∈ dom(Ψ) ∧Ψ(f) = a .

“State → PropX” does not have to be the only form of specification language used

for certified assembly programming. For instance, the register file type used in TAL can

be treated as a specification language. We can generalize the XCAP approach to support

different specification languages [35]. Then we get the following generic framework:

(CHSpec) Ψ ∈ Labels ⇀ CdSpec

(CdSpec) θ ∈ . . .

(Interp) [[ ]] ∈ CdSpec → (CHSpec → State → Prop)

where the code specification θ can be of different forms, as long as appropriate interpre-

tations are defined. A code pointer f with specification θ is now formulated as:

codeptr(f, θ) , λΨ, S. f ∈ dom(Ψ) ∧Ψ(f) = θ .

Although generic, this framework is not “open” because it only allows homogeneous

program specification Ψ with a specific type of θ. If program modules are specified in

different specification languages, the code pointer f1 specified in the specification lan-

guage L1 is formulated as codeptr(f1, θL1), while code pointer f2 in L2 is specified as

codeptr(f2, θL2). To make both codeptr definable, we need a heterogeneous program spec-

ification Ψ in OCAP.

3.2 OCAP Specifications

The first attempt to define the program specifications for OCAP is to take advantage of

the support of dependent types in CiC and pack each code specification θ with its corre-
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sponding interpretation.

(LangTy) L ::= (CiC terms) ∈ Type

(CdSpec) θ ::= (CiC terms) ∈ L

(Assert) a ∈ CHSpec → State → Prop

(Interp) [[ ]]L ∈ L → Assert

(OCdSpec) π ::= 〈L, [[ ]]L, θ〉 ∈ ΣX.(X → Assert) ∗X

(CHSpec) Ψ ∈ Labels ⇀ OCdSpec

As shown above, specifications in each specification language will be encoded in CiC as

θ, whose type L is also defined in CiC. The interpretation [[ ]]L for the language L maps

θ to the OCAP assertion a. The language-specific specification θ is lifted to an “open”

specification π, which is a dependent package containing the language type L, its inter-

pretation function [[ ]]L and the specification θ. The heterogeneous program specification

Ψ is simply defined as a partial mapping from code labels to the lifted specification π.

Unfortunately, this obvious solution introduces circularity again, because definitions

of CHSpec and OCdSpec refer to each other. To break the circularity, we remove the inter-

pretation from π and collect all the interpretations into an extra “language dictionary”.

The OCAP Solution. The final definition of OCAP program specification constructs is

shown in Figure 3.3. To embed a system into OCAP, we first assign a unique ID ρ to its

specification language. Specifications in that language and their type are still represented

as θ and L. Both are CiC terms. The lifted specification π now contains the language ID

ρ, the corresponding language type L and the specification θ. The program specification

Ψ is a binary relation of code labels and lifted code specifications. We do not define Ψ

as a partial mapping because the interface of modules may be specified in more than one

specification language.

As explained above, the interpretation for language L maps specifications in L to as-
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(LangID) ρ ::= n (nat nums)

(LangTy) L ::= (CiC terms) ∈ Type

(CdSpec) θ ::= (CiC terms) ∈ L

(OCdSpec) π ::= 〈ρ, L, θ〉 ∈ LangID ∗ (ΣX.X)

(CHSpec) Ψ ∈ 2Labels∗OCdSpec

(Assert) a ∈ CHSpec → State → Prop

(Interp) [[ ]]L ∈ L → Assert

(LangDict) D ∈ LangID ⇀ ΣX.(X → Assert)

Figure 3.3: Specification Constructs of OCAP

sertions a. To avoid circularity, we do not put the interpretation [[ ]]L in π. Instead, we

collect the interpretations and put them in a language dictionary D, which maps language

IDs to dependent pairs containing the language type and the corresponding interpreta-

tion.

Given a lifted specification π, the following operation maps it to an assertion a:

[[[ 〈ρ,L, θ〉 ]]]D , λΨ,S. ∃[[ ]]L. (D(ρ)=〈L, [[ ]]L〉) ∧ ([[ θ ]]L Ψ S). (3.3)

It takes the language ID ρ and looks up the interpretation from D. Then the interpretation

is applied to the specification θ. If there is no interpretation found, the result is simply

false.

We allow a specification language L to have more than one interpretation, each as-

signed a different language ID. That is why we use ρ instead of L to look up the interpre-

tation from D.

3.3 OCAP Inference Rules

Figure 3.4 shows OCAP inference rules. The PROG rule is similar to the one for CAP shown

in Figure 3.2, but with several differences:
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D; Ψ ` P (Well-formed program)

D; Ψ ` C :Ψ (a Ψ S) D `{a} pc : C[pc]
D; Ψ ` (C, S, pc)

(PROG)

D; Ψ ` C :Ψ′ (Well-formed code heap)

for all (f, π) ∈ Ψ′: a = 〈[[[π ]]]D〉Ψ D `{a} f : C[f]

D; Ψ ` C :Ψ′ (CDHP)

D1; Ψ1 ` C1 :Ψ′
1 D2; Ψ2 ` C2 :Ψ′

2

ITP(D1, Ψ′
1) ITP(D2, Ψ′

2) D1]D2 C1]C2

D1 ∪D2; Ψ1 ∪Ψ2 ` C1 ∪ C2 :Ψ′
1 ∪Ψ′

2

(LINK*)

D `{a} f : I (Well-formed instruction sequence)

a⇒ λΨ′,S. ∃π′.(codeptr(f′, π′) ∧ [[[π′ ]]]D) Ψ′ S
D `{a} f : j f′

(J)

a⇒ λΨ′,S. ∃π′.(codeptr(S.R(rs), π′) ∧ [[[π′ ]]]D) Ψ′ S
D `{a} f : jr rs

(JR)

a⇒ λΨ′, S. ∃π′. (codeptr(f′, π′) ∧ [[[π′ ]]]D) Ψ′ Ŝ
where Ŝ = (S.H, S.R{r31 ;f+1})

D `{a} f : jal f′; I
(JAL)

ι∈{addu, addiu, lw, subu, sw}
D `{a′} f+1 : I a⇒ λΨ′. (a′ Ψ′) ◦ NextS(f, ι)

D `{a} f : ι; I
(SEQ)

D `{a′′} I
a⇒ λΨ′, S. (S.R(rs)≤0 → a′′ Ψ′ S)

∧ (S.R(rs)>0 →
∃π′. (codeptr(f′, π′) ∧ [[[π′ ]]]D) Ψ′ S)

D `{a} f : bgtz rs, f′; I
(BGTZ)

D `{a′′} I
a⇒ λΨ′, S. (S.R(rs) 6=S.R(rt) → a′′ Ψ′ S)

∧ (S.R(rs)=S.R(rt) →
∃π′. (codeptr(f′, π′) ∧ [[[π′ ]]]D) Ψ′ S)

D `{a} f : beq rs, rt, f′; I
(BEQ)

a⇒ a′ D′ ⊆ D D′ `{a′} f : I
D `{a} f : I

(WEAKEN*)

Figure 3.4: OCAP Inference Rules
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• In addition to the program specification Ψ, OCAP requires a language dictionary D

to interpret code specifications.

• The well-formedness of C is checked with respect to D and Ψ.

• The assertion a is now a predicate over code heap specifications and states. It holds

over Ψ and the current state S.

• We check the well-formedness of the current instruction sequences C[pc] with re-

spect to D and a.

As in CAP, to certify programs using OCAP, we only need to prove that the invariant

holds at the initial program (C, S0, pc0). The precondition a specifies the initial state S0. It

takes Ψ as argument to specify embedded code pointers in S0, as explained before. The

soundness of OCAP will guarantee that the invariant holds at each step of execution and

that the invariant ensures program progress.

Well-formed code heaps. The CDHP rule checks that the specification asserted at each f

in Ψ′ ensures safe execution of the corresponding instruction sequence C[f]. As in CAP,

the Ψ on the left hand side specifies the code to which each C[f] may jump. Instead

of using the specification Ψ′(f) directly, we first map it to an assertion ([[[ Ψ′(f) ]]]D) by

applying the corresponding interpretation defined in D. Then we do another lifting 〈 〉Ψ,

which is defined as:

〈a〉Ψ ,


 ∧

(f,π)∈Ψ

codeptr(f, π)


 ∧ a . (3.4)

Here codeptr(f, π) is defined as the following assertion:

codeptr(f, π) , λΨ, S. (f, π) ∈ Ψ . (3.5)

In Equation 3.4, we also overload the conjunction connector “∧”for assertions:

a ∧ a′ , λΨ, S. a Ψ S ∧ a′ Ψ S . (3.6)
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Therefore, the lifted assertion (〈[[[ Ψ′(f) ]]]D〉Ψ) carries the knowledge of the code pointers

in Ψ, which may be reached from C[f]. When we check C[f], we do not need to carry Ψ,

but we need to carry D to interpret the specification π for each codeptr(f, π).

Linking of modules. TheC checked in the CDHP rule does not have to be the global code

heap used in the PROG rule. Subsets Ci of the complete code heap can be certified with

local interfaces Di, Ψi and Ψ′
i. Then they are linked using the admissible LINK rule. An

admissible rule is a rule that can be proved as a lemma based on other rules. We use a star

(*) in the name to distinguish admissible rules from normal rules. Below we will prove the

admissibility of the LINK rule in Lemma 3.3. Here the compatibility of partial mappings f

and g is defined as

f]g , ∀x. x ∈ dom(f) ∧ x ∈ dom(g) → f(x) = g(x) . (3.7)

We use ITP(D, Ψ) to represent that D contains all interpretations needed to interprete Ψ,

i.e.,

ITP(D, Ψ) , ∀f, π. (f, π) ∈ Ψ → (π.ρ ∈ dom(D)). (3.8)

The LINK rule shows the openness of OCAP: C1 and C2 may be specified and certified

in different verification systems with interpretations defined in D1 and D2 respectively.

Proofs constructed in foreign systems are converted to proofs of OCAP judgments Di; Ψi `
Ci :Ψ′

i at the time of linkage. We will demonstrate this in the following sections.

Well-formed instruction sequences. Rules for jump instructions (J, JR and JAL) are sim-

ple. They require that the target address be a valid code pointer with specification π′, and

that there be an interpretation for π′ in D. The interpretation of π′ should hold at the re-

sulting state of the jump. Here, we use a⇒ a′ to represent the logical implication between

OCAP assertions:

a⇒ a′ , ∀Ψ,S. a Ψ S→ a′ Ψ S. (3.9)
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The SEQ rule for sequential instructions is similar to the CAP SEQ rule. It requires no

further explanation. The BGTZ rule and BEQ rule are like a simple combination of the J rule

and the SEQ rule, which are straightforward to understand too.

The WEAKEN rule. The WEAKEN rule is also admissible in OCAP, whose admissibility

is proved in Lemma 3.3. It is a normal rule in Hoare-style program logics, but plays an

important role in OCAP to interface foreign verification systems. The instruction sequence

I may have specifications θ and θ′ in different foreign systems. Their interpretations are

a and a′, respectively. If the proof of D′ `{a′} f : I is converted from proof constructed in

the system where I is certified with specification θ′, it can be called from the other system

as long as a is stronger than a′. The use of this rule will be shown in Section 6.1.

Lemma 3.3 (Admissibility of WEAKEN and LINK)

1. If D′ ⊆ D, a⇒ a′, and D′ `{a′} f : I, then D `{a} f : I. That is, the WEAKEN rule is

admissible.

2. If D1; Ψ1 ` C1 :Ψ′
1, D2; Ψ2 ` C2 :Ψ′

2, ITP(D1,Ψ′
1), ITP(D2, Ψ′

2), D1]D2 and C1]C2,

then D1 ∪D2; Ψ1 ∪Ψ2 ` C1 ∪ C2 :Ψ′
1 ∪Ψ′

2. That is, the LINK rule is admissible.

Proof. The proof of 1 contains two steps. In the first step, we first prove D′ `{a} f : I.

This can be done by induction over the structure of I. Then we prove D `{a} f : I, given

D′ ⊆ D and D′ `{a} f : I. This, again, can be done by induction over the structure of I.

We also need to use Lemma 3.5.

The proof of 2 is trivial, given 1, Lemma 3.4 and the CDHP rule. 2

Lemma 3.4 For all a, if Ψ ⊆ Ψ′, then 〈a〉Ψ′ ⇒ 〈a〉Ψ.

Proof. Trivial, by the definition shown in Equation 3.4. 2

Lemma 3.5 For all π, if D ⊆ D′, then [[[ π ]]]D ⇒ [[[π ]]]D′ .

Proof. The proof is trivial by the definition shown in Equation 3.3. 2
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3.4 Soundness of OCAP

The soundness of OCAP inference rules is proved following the syntactic approach [99]

to proving type soundness. We need to first prove the progress and preservation lemmas.

Lemma 3.6 (Progress)

If D; Ψ ` P, there exists P′ such that P 7−→ P′.

Proof. Suppose P = (C, S, pc). By inversion of the PROG rule, we have D; Ψ ` C : Ψ,

a Ψ S and D `{a} pc : C[pc] for some a. By inversion of all the well-formed instruction

sequence rules and the definition of the operational semantics in Figure 2.3, we will see

that the program P can execute one step, given a Ψ S. The only tricky part is to prove

that, if C(pc) is a jumps (j, jr or jal) or a branches (beq or bgtz), the target address is in the

domain of C. This can be derived from the following Lemmas 3.8 and 3.9, and inversion

of corresponding instruction rules. 2

The following Preservation lemma is an extension of the one normally used in syntac-

tic approach to soundness of type systems. It is important to help us prove the support of

partial correctness in our soundness theorem. Before showing the lemma, we first intro-

duce the following definition:

[[[ Ψ(f) ]]]D , λΨ′, S. ∃π. ((f, π) ∈ Ψ) ∧ [[[πi ]]]D Ψ′ S (3.10)

Lemma 3.7 (Preservation)

If D; Ψ ` (C, S, pc) and (C,S, pc) 7−→ (C, S′, pc′), then D; Ψ ` (C, S′, pc′), and

1. if C(pc) is a jump instruction, i.e., j f, jal f or jr rs, then [[[ Ψ(pc′) ]]]D Ψ S′;

2. if C(pc) = bgtz rs, f and S.R(rs) > 0, then [[[ Ψ(pc′) ]]]D Ψ S′;

3. if C(pc) = beq rs, rt, f and S.R(rs) = S.R(rt), then [[[ Ψ(pc′) ]]]D Ψ S′.

Proof. Given D; Ψ ` (C, S, pc), we know by an inversion of the PROG rule there exists an

“a” such that D, Ψ ` C : Ψ, a Ψ S and D `{a} pc : C[pc]. To prove D; Ψ ` (C,S′, pc′),
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we need to find an assertion ”a′” and prove the following three sub-goals: D,Ψ ` C : Ψ,

a′ Ψ S′ and D `{a′} pc′ : C[pc′]. We have got the first sub-goal. To prove the last two

sub-goals, we analyze all possible cases of C[pc]:

• if C[pc] starts with a normal sequential instruction, the second and the third sub-

goals can be proved by D `{a} pc : C[pc] and a simple inversion of the SEQ rule;

• if C[pc] starts with a conditional branch instruction and the condition is false, we

can prove the second and the third sub-goals by an inversion of the BEQ and BGTZ

rule;

• if C[pc] starts with a jump instruction, or it starts with a conditional branch instruc-

tion and the condition is true, we know by inversion of the corresponding rules that

there exists π such that (codeptr(pc′, π) ∧ [[[ π ]]]D) Ψ S. We let 〈[[[π ]]]D〉Ψ be the as-

sertion a′. So we can prove the second sub-goal by Lemma 3.10. The third sub-goal

follows Lemma 3.11.

Now that we have proved D; Ψ ` (C,S′, pc′), it is trivial to prove 1–5 given the fact

that we use in the third bullet above 〈[[[π ]]]D〉Ψ as the assertion a′ and proved a′ Ψ S′. 2

Lemma 3.8 If D; Ψ ` C :Ψ′, then, for all (f, π) ∈ Ψ′, we have f ∈ dom(C).

Proof. Trivial, follows the CDHP rule. 2

Lemma 3.9 If codeptr(f, π) Ψ S and D; Ψ ` C :Ψ, then f ∈ dom(C).

Proof. By the definition of codeptr in Equation 3.5 and Lemma 3.8. 2

Lemma 3.10 For all assertion a, we have ∀Ψ, S. a Ψ S↔ 〈a〉Ψ Ψ S.

Proof. Trivially follows the definition shown in Equation 3.4. 2

Lemma 3.11 If D; Ψ ` C :Ψ′ and codeptr(f, π) Ψ′ S, then D `{a} f : C[f], where

a = 〈[[[ π ]]]D〉Ψ′ .
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Proof. By codeptr(f, π) Ψ′ S and the definition of codeptr in Equation 3.5, we know

(f, π) ∈ Ψ′. Then the proof is trivial follows the CDHP rule, given D; Ψ ` C :Ψ′. 2

The soundness of OCAP is formalized below. It not only shows that programs certified

in OCAP will never get stuck, but also guarantees that assertions specified in Ψ for target

addresses of jump and branch instructions actually hold when we reach corresponding

program points. This essentially captures the partial correctness of certified programs.

Theorem 3.12 (OCAP-Soundness)

If D; Ψ ` (C, S, pc), for all natural number n there exist S′ and pc′ such that

(C, S, pc) 7−→n (C, S′, pc′), and

1. if C(pc′) = j f, then [[[ Ψ(f) ]]]D Ψ S′;

2. if C(pc′) = jal f, then [[[ Ψ(f) ]]]D Ψ (S′.H,S′.R{r31 ;pc′+1});

3. if C(pc′) = jr rs, then [[[ Ψ(S′.R(rs)) ]]]D Ψ S′;

4. if C(pc′) = bgtz rs, f and S′.R(rs) > 0, then [[[ Ψ(f) ]]]D Ψ S′.

Proof. The proof is trivial by induction over n, and applying the Progress and Preserva-

tion lemmas at each step. 2

Therefore, if the interpretation for a specification language captures the invariant en-

forced in the corresponding verification system, the soundness of OCAP ensures that the

invariant holds when the modules certified in that system get executed.

OCAP’s ability to support partial correctness of programs benefits from the way we

specify codeptr, as proposed by Ni and Shao [75]. This makes OCAP a more expressive

framework than the Princeton FPCC framework [6, 8, 94], where the step-indexed se-

mantic model of codeptr makes it very difficult, if possible, to prove similar properties of

programs.

35



(InitFlag) ϕ ::= 0 | 1
(WordTy) τ ::= α | int | ∀[∆].Γ | 〈τϕ1

1 , . . . , τϕn
n 〉 | ∃α :τ. | µα. τ

(TyVarEnv) ∆ ::= · | α,∆
(RfileTy) Γ ::= {r;τ}∗

(CHType) ψ ::= {(f, [∆].Γ)}∗
(DHType) Φ ::= {l ; τϕ}∗

Figure 3.5: Type Definitions of TAL

3.5 Embedding TAL into OCAP

Given a specific verification system (henceforth called a foreign system) with the defini-

tion of L and a language ID ρ, it takes three steps to embed the system into OCAP: iden-

tifying the invariant enforced in the system; defining an interpretation for specifications

θ (usually an encoding of the invariant into an assertion a); and proving the soundness

of the embedding by showing that inference rules in the foreign system can be proved as

lemmas in OCAP based on the interpretation.

As an example to illustrate the expressiveness of OCAP, we show how to embed Typed

Assembly Languages (TALs) [69, 27] into OCAP. Unlike traditional TALs based on ab-

stract machines with primitive operations for memory allocation, we present a variation

of TAL for our machine defined in Section 2.2.

3.5.1 TAL types and typing rules.

Figure 3.5 shows the definition of TAL types, including polymorphic code types, mutable

references, existential types, and recursive types. Definitions for types are similar to the

original TAL. Γ is the type for the register file. ∀[∆].Γ is the polymorphic type for code

pointers, which means the code pointer expects a register file of type Γ with type variables

declared in ∆. The flag ϕ is used to mark whether memory cell has been initialized or not.

〈τϕ1
1 , . . . , τϕn

n 〉 is the type for a mutable reference pointing to a tuple in the heap. The

fresh memory cells returned by memory allocation libraries will have types with flag 0.
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The reader should keep in mind that this TAL is designed for TM, so there is no “heap

values” as in the original TAL. Also, since we separate code heap and data heap in our

TM, specifications for them are separated too. We use ψ for code heap type and Φ for data

heap type.

We present TALtyping rules in Figures 3.6 and 3.7. The major judgements are shown

below.

Judgement Meaning

ψ ` C :ψ′ Well-formed code heap

ψ `{[∆].Γ} I Well-formed instruction sequence

` [∆]. Γ ≤ [∆′]. Γ′ Sub-typing of register file types

The typing rules are similar to the original TAL [69] and are not explained in details here.

But we do not need a PROG rule to type check whole programs P because this TAL will be

embedded in OCAP and only be used to type check code heaps, which may be a subset

of the whole program code. Readers who are not familiar with TAL can view [∆].Γ as

assertions about states and the subtyping relation as logic implication. Then the rules in

Figure 3.6 look very similar to CAP rules shown in Figure 3.2. Actually this is exactly how

we embed TAL in OCAP below.

3.5.2 Interpretation and Embedding

As we can see, specifications θ of preconditions for code blocks in TAL are register file

types [∆].Γ. We use LTAL to represent the meta-type of its CiC encoding. Then we de-

fine the mapping between the TAL code heap specification ψ and the OCAP code heap

specification Ψ:

xψyρ , {(f, 〈ρ, LTAL, [∆].Γ〉) | (f, [∆].Γ) ∈ ψ} (3.11)

pΨqρ , {(f, θ) | (f, 〈ρ, , θ〉) ∈ Ψ} (3.12)
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ψ ` C :ψ′ (Well-formed Code Heap)

ψ `{[∆]. Γ} f : C[f] for all (f, [∆]. Γ) ∈ ψ′

ψ ` C :ψ′
(CDHP)

ψ `{[∆]. Γ} f : I (Well-formed Instruction Sequence)

(f′, [∆′]. Γ′) ∈ ψ ` [∆]. Γ ≤ [∆′]. Γ′

ψ `{[∆]. Γ} f : j f′
(J)

(f′, [∆′].Γ′) ∈ ψ (f+1, [∆′′].Γ′′) ∈ ψ
` [∆]. Γ{r31 ; ∀[∆′′]. Γ′′} ≤ [∆′].Γ′

ψ `{[∆]. Γ} f : jal f′; I
(JAL)

Γ(rs)=∀[∆′].Γ′ ` [∆]. Γ ≤ [∆′].Γ′

ψ `{[∆]. Γ} f : jr rs
(JR)

Γ(rs)= int ψ `{[∆]. Γ{rd ; int}} f+1 : I
ψ `{[∆]. Γ} f : addiu rd, rs, w; I

(ADDI)

Figure 3.6: Selected TAL typing rules

∆ ` τ ` [∆]. Γ ≤ [∆′].Γ′

ftv(τ) ⊆ ∆
∆ ` τ

(TYPE)

Γ(r)=Γ′(r) ∀ r∈dom(Γ′)
` [].Γ ≤ [].Γ′

(SUBT)
Γ(r)=∀[α, ∆′]. Γ′ ∆ ` τ ′

` [∆]. Γ ≤ [∆].Γ{r :∀[∆′]. [τ ′/α]Γ′} (TAPP)

Γ(r)=[τ ′/α]τ ∆ ` τ ′

` [∆]. Γ ≤ [∆].Γ{r :∃α :τ. } (PACK)
Γ(r)=∃α :τ.

` [∆]. Γ ≤ [α, ∆].Γ{r :τ} (UNPACK)

Γ(r)=[µα. τ/α]τ
` [∆]. Γ ≤ [∆].Γ{r :µα. τ} (FOLD)

Γ(r)=µα. τ

` [∆].Γ ≤ [∆].Γ{r : [µα. τ/α]τ} (UNFOLD)

Figure 3.7: TAL typing rules – II
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ψ ` S : [∆]. Γ ψ ` H :Φ ψ; Φ ` R :Γ

· ` τi ψ ` H :Φ ψ; Φ ` R : [τ1, . . . , τn/α1, . . . , αn]Γ
ψ ` S : [α1, . . . , αn].Γ

(STATE)

ψ; Φ ` H(l) :Φ(l) ∀ l∈dom(Φ)
ψ ` H :Φ

(HEAP)
ψ; Φ ` R(r) :Γ(r) ∀ r∈dom(Γ)

ψ; Φ ` R :Γ
(RFILE)

ψ; Φ ` w :τ ψ; Φ ` w :τϕ ` τϕ ≤ τϕ′

ψ; Φ ` w : int
(INT)

(f, [∆].Γ)∈ψ

ψ; Φ ` f :∀[∆]. Γ
(CODE)

· ` τ ′ ψ; Φ ` f :∀[α,∆].Γ
ψ; Φ ` f :∀[∆]. [τ ′/α]Γ

(POLY)
` Φ(l+i−1) ≤ τϕi

i

ψ; Φ ` l :〈τϕ1
1 , . . . , τϕn

n 〉 (TUP)

· ` τ ′ ψ; Φ ` w : [τ ′/α]τ
ψ; Φ ` w :∃α :τ.

(EXT)
ψ; Φ ` w : [µα. τ/α]τ

ψ; Φ ` w :µα. τ
(REC)

ψ; Φ ` w :τ
ψ; Φ ` w :τϕ (INIT) ψ; Φ ` w :τ0

(UNINIT)

` τϕ ≤ τϕ (REFL) ` τ1 ≤ τ0
(0-1)

Figure 3.8: TAL typing rules for well-formed states

The lifting function xψyρ assigns a language id ρ to TAL, and packs each code specifi-

cation in ψ with ρ into an OCAP specification π. The sink function pΨqρ collects from

OCAP’s Ψ the specifications of code certified in language ρ, and constructs a language-

specific code heap specification.

As mentioned before, to embed TAL into OCAP, we need to discover the invariant

enforced in TAL. TAL type systems essentially guarantees that, at any step of execution,

the program state is well-typed with respect to the code heap type ψ and some register

file type [∆].Γ. Judgment for well-typed state is represented as ψ ` S : [∆]. Γ . TAL’s typ-

ing rules for well-formed states and auxiliary judgments are shown in Figure 3.8. Our
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interpretation of TAL specifications encodes this invariant.

[[ [∆]. Γ ]](ρ,r)
LTAL

, λΨ,S. ∃H1,H2. S.H=H1]H2 ∧

(pΨqρ ` (H1, S.R) : [∆].Γ ) ∧ r Ψ H2 . (3.13)

Here we use ] to represent the union of two partial maps, which is defined only if these

two partial maps have disjoint domains. We introduce the following formal definitions

over heaps, which will also be used in the rest part of the thesis.

H⊥H′ , dom(H) ∩ dom(H′) = ∅ (3.14)

H ]H′ ,




H ∪H′ if H⊥H′

undefined otherwise
(3.15)

The interpretation for TAL’s specification [∆]. Γ takes a special open parameter r, in ad-

dition to the language ID and the meta-type LTAL of [∆].Γ in Coq. The assertion r is a

predicate over data heaps and also takes Ψ as an extra argument. We use this extra r to

specify the invariant of data heap used by TAL’s runtime systems, such as memory man-

agement routines and garbage collectors. The heap used by runtime is separated from

the heap used by TAL, and is invisible to TAL code. Note r does not specify register files.

Although this may limit its expressiveness, it should be sufficient for runtime code be-

cause usually runtime does not reserve registers. The interpretation essentially says that

the data heap in S can be split into two disjoint parts; one part is used by TAL and is well-

formed with respect to TAL’s typing rules; the other part is used by runtime code and

satisfies the invariant r. Careful readers may feel strange that we use the TAL judgment

(pΨqρ ` (H1, S.R) : [∆].Γ) as a proposition in our definition. This is well-defined because

the interpretation is defined in our meta-logic, in which TAL’s judgments are defined as

propositions.
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3.5.3 Soundness of the embedding

Theorem 3.13 states the soundness of TAL rules and the interpretation for TAL specific-

tions. It shows that, given the interpretation, TAL rules are derivable as lemmas in OCAP.

The soundness is independent with the open parameter r.

Theorem 3.13 (TAL Soundness)

For all ρ and r, let D = {ρ ; 〈LTAL, [[ ]](ρ,r)
LTAL

〉}.

1. if we have ψ `{[∆].Γ} I in TAL, then the OCAP judgment D `{〈a〉Ψ} I holds,

where a = [[ [∆]. Γ ]](ρ,r)
LTAL

and Ψ = xψyρ;

2. if we have ψ ` C :ψ′ in TAL, then the OCAP judgment D; xψyρ ` C :xψ′yρ holds.

This theorem shows the soundness of our embedding of TAL into OCAP. Given a

module C certified in TAL, we can apply this theorem to convert it into a certified mod-

ule in OCAP. On the other hand, it can also be viewed as a different way to prove the

soundness of TAL inference rules by reducing TAL rules to OCAP rules.

Lemma 3.14 is essential to prove the soundness theorem. It shows the TAL subtyping

relation is sound with respect to the interpretation. The whole proof of Theorem 3.13 has

been formalized in the Coq proof assistant [31].

Lemma 3.14 (Subtyping Soundness)

For any ρ, r, [∆]. Γ and [∆′]. Γ′, let a = [[ [∆].Γ ]](ρ,r)
LTAL

and a′ = [[ [∆′].Γ′ ]](ρ,r)
LTAL

. If

` [∆]. Γ ≤ [∆′].Γ′ in TAL, we have a⇒ a′.

3.6 Discussions and Summary

The work on the OCAP framework is closely related to work on FPCC. We have briefly

discussed about existing work on FPCC at the beginning of this chapter. In this section,

we give a detailed comparison of the OCAP framework and related work.
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3.6.1 Related Work

Semantic approaches to FPCC. The semantic approach to FPCC [7, 8, 94] builds seman-

tic models for types. Based on type definitions, typing rules in TAL are proved as lemmas.

Our work is similar to this approach in the sense that a uniform assertion is used in the

OCAP framework. Interpretations are used to map foreign specifications to OCAP asser-

tions. Based on the interpretation, inference rules of foreign systems are proved as OCAP

lemmas.

However, our interpretation does not have to be a semantic model of foreign specifica-

tions. For instance, when we embed TAL into OCAP, we simply use TAL’s syntactic state

typing as the interpretation for register file types. This makes our interpretation easier to

define than semantic models, such as indexed models for mutable references [3, 9], which

are heavyweight to use.

OCAP also uses a different specification for embedded code pointers than the step-

indexed semantic model [8, 94] used in the Princeton FPCC. Following our previous work

on CAP systems, specification of embedded code pointers is interpreted as a code label

specified in the code heap specification Ψ. This approach allows our framework to sup-

port partial correctness of programs with respect to its specifications, as shown in Theo-

rem 3.12.

The step-indexed model is designed specifically for type safety. A code pointer f with

precondition a will be defined as:

codeptr(f, a) , λk,C, S. ∀S′.∀j < k. a j C S′ → Safe(j, (C, S′, f)) .

where a is an indexed predicate over the code heap and state, and Safe(n,P) means P can

execute at least n steps. It is unclear how Theorem 3.12 could be proved if this model is

used: when we do an indirect jump to a code pointer codeptr(R(r), a), we do not know

the relationship between “a” and the loop invariant assigned to R(r) in program specifi-

cation Ψ (unless we sacrifice the support of separate verification of modules), because the
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definition of codeptr is independent with Ψ.

Syntactic approaches to FPCC. The OCAP framework is quite different from the orig-

inal syntactic approach [46, 28] to FPCC. In the syntactic approach, TALs are designed

for a higher-level abstract machine with its own mechanized syntactic soundness proof.

FPCC is constructed by proving bisimulation between type safe TAL programs and real

machine code. In our framework, we allow users to certify machine code directly, but still

at a higher abstraction level in TAL. The soundness of TAL is shown by proving TAL in-

struction rules as lemmas in OCAP. Runtime code for TAL is certified in a different system

and is linked with TAL code in OCAP.

Hamid and Shao [45] shows how to interface XTAL with CAP. XTAL supports stubs

which encapsulate interfaces of runtime library. Actual implementation of library is cer-

tified in CAP. Our work on linking TAL with runtime is similar to theirs, but with several

differences. XTAL is also defined for a higher-level abstract machine. With stubs, the

machine does not have a self-contained operational semantics. They present XTAL as a

stand alone system with syntactic soundness proof. Our TAL is just a set of rules which is

proved as OCAP lemmas under appropriate interpretations. It does not even have a top

PROG rule for complete programs. In Hamid and Shao’s framework, CAP serves two roles

from our point of view: the underlying framework (like OCAP) and the system to certify

runtime (like our use of SCAP). Both OCAP and SCAP have better support of modularity

than CAP. By splitting the underlying framework and the system to certify runtime, our

work is more general and conceptually clearer.

Previous work on CAP systems. CAP is first used in [101] to certify malloc/free li-

braries. The system used there does not have modular support of embedded code point-

ers. Ni and Shao [75] solved this problem in XCAP by defining a specification language

with a built-in construct for code pointers. XCAP specifications are interpreted into a

predicate taking Ψ as argument. This approach is extended in [35] to support single or
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fixed combinations of specification languages, which is not open and extensible. OCAP is

built upon previous work, but it is the first framework we use to support interoperability

of different systems in an extensible and systematic way. All our previous CAP systems

can be trivially embedded in OCAP, as discussed in section 3.1.

The open verifier framework. Chang et al. proposed an open verifier for verifying un-

trusted code [19]. Their framework can be customized by embedding extension modules,

which are executable verifiers implementing verification strategies in pre-existing sys-

tems. However, the paper does not show how multiple extension modules can coexist

and collaborate in the framework. Especially, since their support of indirect jumps needs

to know all the possible target addresses, it is unclear how they support separate ver-

ification of program modules using different extensions. Open Verifier emphasizes on

implementation issues for practical proof construction, while our work explores the gen-

erality of FPCC frameworks. OCAP provides a formal basis with clear meta properties

for interoperation between verification systems.

XCAP and TAL. Ni and Shao [76] showed a translation from TAL to XCAP+, an exten-

sion of XCAP [75] with recursive types and mutable reference types. There translation

has a semantic flavor in the sense that primitive TAL types is translated into a predicate

in XCAP+’s assertion language. Our embedding of TAL into OCAP is more like the syn-

tactic approach taken by Hamid and Shao [45], which does not have an interpretation of

primitive types and uses the type judgment as propositions instead.

3.6.2 Summary

In this chapter, we propose OCAP as an open framework for constructing foundational

certified software packages. OCAP is the first framework which systematically supports

interoperation of different verification systems. It lays a set of Hoare-style inference rules

above the raw machine semantics, so that proofs can be constructed following these rules
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instead of directly using the mechanized meta-logic. As the foundational layer, the asser-

tion language for OCAP is expressive enough to specify the invariants enforced in foreign

verification systems. Soundness of these rules are proved in the Coq proof assistant with

machine-checkable proofs [31], therefore these rules are not trusted. OCAP is modular,

extensible and expressive, therefore it satisfies all the requirements mentioned above for

an open framework. We have shown the embedding of a typed assembly language into

OCAP. More applications will be shown in the next several chapters.
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Chapter 4

Stack-Based Reasoning of Sequential

Code

As in CAP, control flows at the assembly level are usually reasoned about following the

continuation passing style (CPS) [5], because of the lack of abstractions. CPS treats all

control flows, such as return addresses of functions, as first-class code pointers. Although

general, it is too low-level and cannot be used to easily describe stack invariants preserved

in the implementations of normal control abstractions.

Runtime stacks are critical components of any modern software—they are used to

implement powerful control structures such as procedure call/return, tail call [92, 21],

C-style setjmp/longjmp [61], stack cutting and unwinding (for handling exceptions) [20,

30, 85], coroutines [23], and thread context switch [47]. Correct implementation of these

constructs is of utmost importance to the safety and reliability of many software systems.

Stack-based controls, however, can be unsafe and error-prone. For example, both stack

cutting and longjmp allow cutting across a chain of stack frames and returning immedi-

ately from a deeply nested function call. If not done carefully, it can invoke an obsolete

longjmp or a dead weak continuation [85]). Neither C nor C-- [85] provides any formal

specifications for certifying setjmp/longjmp, stack cutting and unwinding, or weak con-

tinuations. In Java virtual machine and Microsoft’s .NET IL, operations on native C stacks
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are not managed so they must be trusted.

Stack operations are very difficult to reason about because they involve subtle low-

level invariants: both return code pointers and exception handlers should have restricted

scopes, yet they are often stored in memory or passed in registers—making it difficult to

track their lifetime. For instance, Figure 2.4 shows MIPS style assembly code compiled

from the C code shown in Section 2.2. Before calling function h, the caller f first saves its

return code pointer (in $ra) on the stack; the instruction jal h loads the return address (the

label ct) in $ra, and jumps to the label h; when h returns, the control jumps back to the

label ct, where f restores its return code pointer and stack pointers and jumps back to

its caller’s code. The challenge is to formalize and capture the invariant that ct does not

outlive f even though it can escape into other functions.

Under CPS, the code following ct (lines 6–9) in Figure 2.4 is treated not as part of the

function f, but as a separate new function; when h is called, the continuation function ct is

passed as an extra argument in $ra, which is then called at the end of function h. CPS gives

a uniform model of all controls, but it is still hard to describe the above invariant about f

and ct. Indeed, none of the existing PCC systems [73, 74, 22, 6, 46, 75] have successfully

certified setjmp/longjmp, weak continuations, and general stack cutting and unwinding.

In this chapter, we propose SCAP (Stack-based CAP), a program logic that can expose

and validate the invariants of stack-based control abstractions. We will show that return

pointers (or exception handlers) are much more disciplined than general first-class code

pointers. A return pointer is always associated with some logical control stack whose

validity can be established statically. A function can cut to any return pointer if it can

establish the validity of its associated logical control stack. We also embed SCAP into the

OCAP framework by proving SCAP inference rules as lemmas that can be derived from

OCAP. This research is based on joint work I have done with Zhong Shao, Alexander

Vaynberg, Sen Xiang, Zhaozhong Ni and Yu Guo [35, 33].
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4.1 Background and Related Work

Before giving an overview of our approach, we first survey common stack-based control

abstractions in the literatures:

• Function call/return follow a strict “last-in, first-out” pattern: the callee always re-

turns to the point where it was most recently called. Similar concepts include the

JVM subroutines [65], which are used to compile the “try-finally” block in Java.

• The tail call optimization is commonly used in compiler implementation: if a function

call occurs at the end of the current function, the callee will reuse the current stack

frame and return directly to the caller of the current function.

• Exceptions, stack unwinding, and stack cutting. When an exception is raised, the control

flow is transferred to the point at which the exception is handled. There are mainly

two strategies for implementing exceptions (on stacks) [85]. Stack unwinding walks

the stack one frame at a time until the handler is reached; intermediate frames con-

tain a default handler that restores values of callee-save registers and re-raises the

exception; a function always returns to the activation of its immediate caller. Stack

cutting sets the stack pointer and the program counter directly to the handler which

may be contained in a frame deep on the stack; intermediate frames are skipped

over.

• Weak continuations and setjmp/longjmp. C-- uses weak continuations [85] to support

different implementation strategies for exceptions. A weak continuation is similar to

the first-class continuation except that it can only be defined inside a procedure and

cannot outlive the activation of the enclosing procedure. C uses setjmp/longjmp

library functions [61] to enable an immediate return from a deeply nested function

call, the semantics of which is similar to weak-continuations (while the implemen-

tation may be more heavyweight). Especially, the function containing the setjmp
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must not have terminated when a longjmp is launched. Both C-- and C make no

effort to prohibit invocation of a dead weak continuation or an obsolete longjmp.

• Multi-return function call. Shivers and Fisher [89] proposed MRLC to allow functions

to have multiple return points, whose expressiveness sits between general CPS and

first-order functions. The mechanism is similar to weak continuations, but proposed

at a higher abstract level. Multi-return function call supports pure stack-based im-

plementations.

• Coroutines and threads involve multiple execution contexts that exist concurrently.

Control can be transferred from one execution context to another. Implementation

of context switch does not follow the regular function calling convention: it fetches

the return code pointer from the stack of the target coroutine (thread) and returns to

the target instead of its caller. We will study non-preemptive threads, which may be

viewed as a generalization of coroutines, in the next chapter.

4.1.1 Reasoning about Control Abstractions

Traditional Hoare-logic [50] uses the pre- and postcondition as specifications for pro-

grams. Most work on Hoare-logic [10] reasons about control structures in higher-level

languages and does not directly reason about return code pointers in their semantics. To

apply traditional Hoare-logic to generate mechanized proofs for low-level code, we need

to first formalize auxiliary variables and the Invariance rule, which is a non-trivial issue

and complicates the formalization, as shown in pervious work [97, 11]; next, we need to

relate the entry point with the exit point of a function and show the validity of return code

pointers—this is hard at the assembly level due to the lack of abstractions.

Stata and Abadi [91] also observed two similar challenges for type-checking Java byte

code subroutines. They propose a Hoare-style type system to reason about subroutine

calls (“jsr L”) and returns (“ret x”). To ensure the return address used by a subroutine

is the one that is most recently pushed onto the stack, they have to disallow recursive
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function calls, and require labeling of code to relate the entry point with the return point

of subroutines.

Necula used Hoare triples to specify functions in SAL [73]. He needs a history H of

states, which contains copies of the register file and the whole memory at the moment

of function invocations. At the return point, the last state is popped up from H and the

relation between that state and the current state is checked. Not a model of physical

stacks, H is used purely for reasoning about function calls; it complicates the operational

semantics of SAL significantly. Also, SAL uses a very restrictive physical stack model

where only contiguous stack is supported and general pointer arguments (which may

point into the stack) are not allowed.

To overcome the lack of structures in low-level code, many PCC systems have also

used CPS to reason about regular control abstractions, which treats return code pointers

(and exception handlers) as first-class code pointers. CPS is a general semantic model to

support all the control abstractions above, but it is hard to use CPS to characterize the in-

variants of control stacks for specific control abstractions (e.g., setjmp/longjmp and weak

continuation). CPS-based reasoning also requires specification of continuation pointers

using “impredicative types” [68, 75]), which makes the program specification complex

and hard to understand. Another issue with CPS-based reasoning is the difficulty to spec-

ify first-class code pointers modularly in logic: because of the circular references between

code pointers and data heap (which may in turn contains code pointers), it is not clear how

to apply existing approaches [71, 6, 75] to model sophisticated stack-based invariants.

4.1.2 The SCAP Approach

In this paper we will show that we can support modular reasoning of stack-based con-

trol abstractions without treating them as first-class code pointers. In our model, when a

control transfer occurs, the pointer for the continuation code is deposited into an abstract

“address pool” (which may be physically stored in memory or the register file). The code
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Figure 4.1: The Model for Code Pointers

that saves the continuation is called a “producer”, and the code that uses the continua-

tion later is called a “consumer”. In case of function calls, as shown in Figure 4.1, the

caller is the “producer” and the callee is the “consumer”, while the return address is the

continuation pointer.

The producer is responsible for ensuring that each code pointer it deposits is a valid

one and depositing the code pointer does not break the invariant of the address pool.

The consumer ensures that the invariant established at its entry point still holds when it

fetches the code pointer from the pool and makes an indirect jump. The validity of the

code pointer is guaranteed by the invariant. To overcome the lack of abstraction at the

assembly level, we use a guarantee g—a relation over a pair of states—to bridge the gap

between the entry and exit points of the consumer. This approach avoids maintaining any

state history or labeling of code.

The address pool itself is structureless, with each control abstraction molding the pool

into the needed shape. For functions, exceptions, weak continuations, etc., the pool takes

the form of a stack; for coroutines and threads it takes the form of a queue or a queue of

stacks (each stack corresponding to a coroutine/thread). The invariant specified by a con-

trol abstraction also restricts how the pool is used. Function call, for example, restricts the

(stack-shaped) pool to a strict “last-in, first-out” pattern, and makes sure that all addresses

remain constant until they are fetched.

In the rest of this chapter, we will describe the invariant for each control abstraction.
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(LocalSpec) ψ ::= {(f1, (p1, g1)), . . . , (fn, (pn, gn))}
(StatePred) p ∈ State → Prop

(Guarantee) g ∈ State → State → Prop

Figure 4.2: SCAP Specification Constructs

We also present a set of inference rules (as OCAP lemmas) to allow programmers to verify

structureless assembly code with higher-level abstractions.

4.2 Stack-Based Reasoning for Function Call

SCAP is proposed to certify machine programs defined in Section 2.2, where the basic

block of code is a sequence of instructions ending with a jump instruction. However,

SCAP also uses the concept of “functions”, which corresponds to functions in higher-level

languages (e.g., C functions). A function in our machine is a set of instruction sequences

compiled down from a higher-level function. For instance, in Figure 2.4 (Section 2.2) the

instruction sequences labeled by f and ct make up the machine code for the C func-

tion f. Note that “functions” in in our machine is purely a logical concept for reasoning.

SCAP does not require any change of our machine program structures, such as labeling

of instruction sequences with the corresponding function names. Also, one instruction

sequence may logically belong to multiple functions.

The specification constructs of SCAP are shown in Figure 4.2. The SCAP specifica-

tion ψ of the code heap is a collection of assertions associated with code blocks. Since

we will embed SCAP into OCAP, we call ψ a “local specification” to distinguish it from

the OCAP code heap specification Ψ. Similar to Ψ, ψ is a binary relation between code

labels and specifications (in the form of (p, g) pairs) of code blocks. The assertion p is

a predicate over a program state S. As preconditions in normal Hoare logic, it specifies

the requirement over the program state at the specified program point, which needs to

ensure safe execution of the remaining code. The assertion g is a predicate over a pair of
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Figure 4.3: The Model for Function Call/Return in SCAP

states. It specifies a transition from one state (the first argument) to the other (the second

argument). In SCAP, g is called a guarantee, which specifies the expected state transition

made by the remaining part of the current function, i.e., the behavior of the computation

from the specified program point to the return point of the current function. Figure 4.3(a)

shows the meaning of the specification (p, g) for the function f defined in Figure 2.4. Note

that g may cover multiple instruction sequences. If a function has multiple return points,

g governs all the traces from the current program point to any return point.

Figure 4.3(b) illustrates a function call of h from f at point A, with the return address

ct. The specification of h is (p1, g1). Specifications at A and D are (p0, g0) and (p2, g2)

respectively, where g0 governs the code segment A-E and g2 governs D-E.

To ensure that the program behaves correctly, we need to enforce the following condi-

tions:

• the precondition of function h can be satisfied, i.e.,

∀H,R. p0 (H,R) → p1 (H,R{$ra;ct});

• after h returns, f can resume its execution from point D, i.e.,
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∀H,R, S′. p0 (H,R) → g1 (H,R{$ra;ct}) S′ → p2 S′;

• if the function h and the code segment D-E satisfy their specifications, the specifica-

tion for A-E is satisfied, i.e.,

∀H,R,S′,S′′. p0 (H,R) → g1 (H,R{$ra;ct}) S′ → g2 S′ S′′ → g0 (H,R) S′′;

• the function h must reinstate the return code pointer when it returns, i.e.,

∀S, S′. g1 S S′ → S.R($ra) = S′.R($ra).

Above conditions are enforced by the CALL rule shown in Figure 4.4.

To check the well-formedness of an instruction sequence beginning with ι, the pro-

grammer needs to find an intermediate specification (p′, g′), which serves both as the

postcondition for ι and as the precondition for the remaining instruction sequence. As

shown in the SCAP-SEQ rule, we check that:

• the remaining instruction sequence is well-formed with regard to the intermediate

specification;

• p′ is satisfied by the resulting state of ι; and

• if the remaining instruction sequence satisfies its guarantee g′, the original instruc-

tion sequence satisfies g.

Suppose the state transition sequence made by the function is (S0, . . . , Sn). To show

that the function satisfies its guarantee g (i.e., g S0 Sn), we enforce the following chain of

implication relations:

gn Sn−1 Sn → gn−1 Sn−2 Sn → . . . → g S0 Sn,

where each gi is the intermediate specification used at each verification step. Each arrow

on the chain is enforced by rules such as SCAP-SEQ. The head of the chain (i.e., gn Sn−1 Sn)
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ψ `{(p, g)} f : I (Well-formed instruction sequence)

(f′, (p′, g′)) ∈ ψ (f+1, (p′′, g′′)) ∈ ψ

∀H,R. p (H,R) → p′ (H,R{$ra;f+1})
∀H,R,S′. p (H,R) → g′ (H,R{$ra;f+1}) S′ →

(p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g (H,R) S′′))
∀S, S′. g′ S S′ → S.R($ra) = S′.R($ra)

ψ `{(p, g)} f : jal f′
(CALL)

ι∈{addu, addiu, lw, subu, sw}
ψ `{(p′, g′)} f+1 : I ∀S. p S→ p′ NextS(f, ι)(S)
∀S, S′. p S→ g′ NextS(f, ι)(S) S′ → g S S′

ψ `{(p, g)} f : ι; I
(SCAP-SEQ)

∀S. p S→ g S S
ψ `{(p, g)} f : jr $ra

(RET)

(f′, (p′, g′)) ∈ ψ
∀S. p S→ p′ S ∀S, S′. p S→ g′ S S′ → g S S′

ψ `{(p, g)} f : j f′
(T-CALL)

(f′, (p′′, g′′)) ∈ ψ ψ `{(p′, g′)} f+1 : I
∀S. p S→ S.R(rs) 6= S.R(rt) → (p′ S ∧ (∀S′. g′ S S′ → g S S′))
∀S. p S→ S.R(rs) = S.R(rt) → (p′′ S ∧ (∀S′. g′′ S S′ → g S S′))

ψ `{(p, g)} f : beq rs, rt, f
′; I

(SCAP-BEQ)

(f′, (p′′, g′′)) ∈ ψ ψ `{(p′, g′)} f+1 : I
∀S. p S→ S.R(rs) ≤ 0 → (p′ S ∧ (∀S′. g S S′ → g S S′))
∀S. p S→ S.R(rs) > 0 → (p′′ S ∧ (∀S′. g′′ S S′ → g S S′))

ψ `{(p, g)} f : bgtz rs, f
′; I

(SCAP-BGTZ)

ψ ` C :ψ′ (Well-formed code heap)

for all (f, (p, g)) ∈ ψ′: ψ `{(p, g)} f : C[f]

ψ ` C :ψ′
(SCAP-CDHP)

Figure 4.4: SCAP Inference Rules
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unsigned fact(unsigned n){
return n ? n * fact(n - 1) : 1;

}

(a) regular recursive function

void fact(unsigned *r, unsigned n){
if (n == 0) return;
*r = *r * n;
fact(r, n - 1);

}

(b) tail recursion with pointer arguments

Figure 4.5: Factorial Functions in C

is enforced by the RET rule (where Sn−1 is the same with Sn since the jump instruction

does not change the state), therefore we can finally reach the conclusion g S0 Sn.

SCAP also supports tail function calls, where the callee reuses the caller’s stack frame

and the return address. To make a tail function call, the caller just directly jumps to the

callee’s code. As shown in the T-CALL rule, we need to check that the guarantee of the

callee matches the guarantee that remains to be fulfilled by the caller function.

Rules for branch instructions are straightforward. The SCAP-BGTZ rule is like a combi-

nation of the SCAP-SEQ rule and the T-CALL rule, since the execution may either fall through

or jump to the target code label, depending on whether the condition holds.

The SCAP-CDHP rule checks the well-formedness of SCAP program modules. The code

heapC is well-formed if and only if each instruction sequence is well-formed under SCAP.

4.3 Examples

In this section we show how SCAP can be used to support callee-save registers, optimiza-

tions for tail-recursions, and general pointer arguments in C.

Figure 4.5 shows two versions of the factorial function implemented in C. The first one

is a regular recursive function, while the second one saves the intermediate result in the

address passed as argument and makes a tail-recursive call.
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g0 , ∃n. ($a0=n) ∧ ($v0′=n!) ∧ Rid({$gp, $sp, $fp, $ra, $s0, . . . , $s7})
∧Hnid({($sp− 3×n− 2), . . . , $sp})

g1 , ∃n. ($a0=n) ∧ ($v0′=n!) ∧ Rid({$gp, $s1, . . . , $s7}) ∧ gfrm
∧Hnid({($sp− 3×n + 1), . . . , $sp})

g3 , ($v0′ = $v0× $s0) ∧ Rid({$gp, $s1, . . . , $s7}) ∧ gfrm ∧ Hnid(∅)
g4 , Rid({$gp, $v0, $s1, . . . , $s7}) ∧ gfrm ∧ Hnid(∅)

prolog: -{(TRUE, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save return addr
sw $s0, -2($fp) ;callee-save reg
j fact

fact: -{(TRUE, g1)}
bgtz $a0, nonzero ;n == 0
addiu $v0, $zero, 1 ;return 1
j epilog

nonzero: -{(p1 ∧ ($a1>0), g1)}
addiu $s0, $a0, 0 ;save n
addiu $a0, $a0, -1 ;n--
jal prolog, cont ;fact(n)

cont: -{($v0 = ($s0− 1)!, g3)}
multu $v0, $s0, $v0 ;return n*(n-1)!
j epilog

epilog: -{($v0 = ($s0− 1)!, g3)}
lw $s0, -2($fp) ;restore $s0
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE, NoG)}
j halt

entry: -{(TRUE, NoG)}
addiu $a0, $zero, 6 ;$a0 = 6
jal prolog, halt

Figure 4.6: SCAP Factorial Example
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p0 , ([$a0] = 1) ∧ ($a0 6∈ {($sp− 2), . . . , $sp})
g0 , ([$a0]′ = $a1!) ∧ Rid({$gp, $sp, $fp, $ra, $a0, $s0, . . . , $s7})

∧Hnid({$sp− 2, . . . , $sp, $a0})
p1 , $a0 6∈ {($sp + 1), . . . , ($sp + 3)}
g1 , ([$a0]′ = [$a0]× $a1!) ∧ Rid({$gp, $a0, $s1, . . . , $s7})

∧gfrm ∧ Hnid({$a0})
g3 , Rid({$gp, $a0, $s1, . . . , $s7}) ∧ gfrm ∧ Hnid(∅)

prolog: -{(p0, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save return addr
sw $s0, -2($fp) ;callee-save reg
j fact

fact: -{(p1, g1)}
bgtz $a1, nonzero ;if n == 0 continue
j epilog

nonzero: -{(p1 ∧ $a1 > 0, g1)}
lw $s0, 0($a0) ;intermediate result
multu $s0, $s0, $a1 ;*r * n
sw $s0, 0($a0) ;*r = *r * n
addiu $a1, $a1, -1 ;n--
j fact ;tail call

epilog: -{(TRUE, g3)}
lw $s0, -2($fp) ;restore $s0
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE, NoG)}
j halt

entry -{(TRUE, NoG)}
addiu $sp, $sp, -1 ;allocate a slot
addiu $a0, $sp, 1 ;
addiu $s0, $zero, 1 ;$s0 = 1
sw $s0, 0($a0) ;initialize
addiu $a1, $zero, 6 ;$a1 = 6
jal prolog, halt

Figure 4.7: SCAP Implementation of Tail Recursion
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TRUE , λS. True NoG , λS.λS′. False

Hnid(ls) , ∀l 6∈ ls. [l] = [l]′ Rid(rs) , ∀r ∈ rs. r = r′

Frm[i] , [$fp− i] Frm′[i] , [$fp− i]′

gfrm , ($sp′ = $sp+3) ∧ ($fp′ = Frm[0])
∧($ra′ = Frm[1]) ∧ ($s0′ = Frm[2])

Figure 4.8: Macros for SCAP Examples

The compiled assembly code of these two functions is shown in Figure 4.6 and 4.7. In

both programs, the label entry points to the initial code segment where the function fact

is called. SCAP specifications for the code heap are embedded in the code, enclosed by

-{}. Figure 4.8 shows definitions of macros used in the code specifications. To simplify

the presentation, we use the register name r and [l] to represent values contained in r

and the memory location l, respectively. We also use primed representations r′ and [l]′

to represent values in the resulting state (the second argument) of a guarantee g. Rid(rs)

means all the registers in rs are preserved by the function. Hnid(ls) means all memory

cells except those with addresses in ls are preserved. Frm[i] represents the ith word on the

stack frame.

The specification at the entrance point (labeled by prolog) of the first function is given

as (TRUE, g0) in Figure 4.6. The precondition defines no constraint on the value of $ra.

The guarantee g0 specifies the behavior of the function:

• the return value $v0 is the factorial of the argument $a0;

• callee-save registers are not updated; and

• the memory, other than the stack frames, is not updated.

If we use pre-/post-conditions in traditional Hoare-Logic to specify the function, we have

to use auxiliary variables to specify the first point, and apply the Invariance Rule for the

last two points. Using the guarantee g0 they can be easily expressed.

In the second implementation (in Figure 4.7), the caller passes the address of a stack

variable to the function fact. The tail recursion is optimized by reusing the stack frame
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Figure 4.9: The Logical Control Stack

and making a direct jump. The precondition p0 requires that stack variable be initialized

to 1 and not be allocated on the unused stack space. The guarantee g0 is similar to the one

for the first version.

Malicious functions cannot be called. It is also interesting to see how malicious func-

tions are rejected in SCAP. The following code shows a malicious function which dis-

guises a function call of the virus code as a return (the more deceptive x86 version is

“push virus; ret”).

ld_vir: -{(p, g)}
addiu $ra, $zero, virus ;fake the ret addr
jr $ra ;disguised func. call

The function ld vir can be verified in SCAP with a proper specification of (p, g) (e.g.,

(TRUE, λS,S′.True)), because the SCAP RET rule does not check the return address in $ra.

However, SCAP will reject any code trying to call ld vir, because the g cannot satisfy the

premises of the CALL rule.
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4.4 The Stack Invariant

Figure 4.9 shows a snapshot of the stack of return continuations: the specification of the

current function is (p0, g0), which will return to its caller at the end; and the caller will

return to the caller’s caller. . . The return continuations in the dashed box compose a

logical control stack.

To establish the soundness of the SCAP inference rules, we need to ensure that when

the current function returns at A, $ra contains a valid code pointer with the specification

(p1, g1), and p1 is satisfied. Similarly we need to ensure that, at return points B and C, $ra

contains valid code pointers with specifications (p2, g2) and (p3, g3) respectively, and that

p2 and p3 are satisfied by then. Suppose the current state is S0 which satisfies p0, above

safety requirement can be formalized as follows:

g0 S0 S1 →
((S1.R($ra), (p1, g1)) ∈ ψ) ∧ p1 S1;

g0 S0 S1 → g1 S1 S2 →
((S2.R($ra), (p2, g2)) ∈ ψ) ∧ p2 S2;

g0 S0 S1 → g1 S1 S2 → g2 S2 S3 →
((S3.R($ra), (p3, g3)) ∈ ψ) ∧ p3 S3;

. . .

where ψ is the program specification, and each Si (i > 0) is implicitly quantified by uni-

versal quantification.

Generalizing above safety requirement, we inductively define the “well-formed con-
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trol stack with depth n” as follows:

wfst(0, g,S, ψ) , ¬∃S′. g S S′

wfst(n+1, g,S, ψ) ,

∀S′. g S S′ → ∃(p′, g′). (S′.R($ra), (p′, g′)) ∈ ψ ∧ p′ S′ ∧ wfst(n, g′, S′, ψ)

When the stack has depth 0, we are in the outermost function which has no return code

pointer (the program either “halts” or enters an infinite loop). In this case, we simply

require that there exist no S′ at which the function can return, i.e., ¬∃S′. g S S′.
Then the stack invariant we need to enforce is that, at each program point with specifica-

tion (p, g), the program state S must satisfy p and there exists a well-formed control stack in S.

The invariant is formally defined as:

p S ∧ ∃n.wfst(n, g,S, ψ) .

Note here we do not need to know the exact depth n of the control stack.

To prove the soundness of SCAP, we need to prove that the invariant holds at every

step of program execution. The stack invariant also explains why we can have such a

simple RET rule, which “type-checks” the “jr $ra” instruction without requiring that $ra

contain a valid code pointer.

4.5 Generalizations of SCAP

The methodology for SCAP scales well to multi-return function calls and weak contin-

uations. In this section, we will generalize the SCAP system in two steps. By a simple

relaxation of the CALL rule, we get system SCAP-I to support function calls with mul-

tiple return addresses (with the restriction that a function must return to its immediate

caller). We can use SCAP-I to certify the stack-unwinding-based implementation for ex-

ceptions. We then combine the relaxed call rule with the support for tail function call
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and get a more general system, namely SCAP-II. SCAP-II can certify weak continuations,

setjmp/longjmp and the full-blown MRLC [89].

4.5.1 SCAP-I

In SCAP, a function call is made by executing the jal instruction. The callee can only

return to the “correct” return address, i.e., the program counter of the next instruction

following the corresponding jal instruction in the caller. This is enforced by the constraint

∀S, S′. g′ S S′ → S.R($ra) = S′.R($ra) in the CALL rule. To allow the callee to return to

multiple locations, we simply remove this constraint. We can also decouple the saving of

the return address and the jump to the callee. The function call can be made by the normal

jump instruction j f, as long as the return address is already saved before the function call.

Now we have a more relaxed rule for function call:

∀S. p S→ p′ S (f′, (p′, g′)) ∈ ψ

∀S, S′. p S→ g′ S S′ →
∃p′′, g′′. ((S′.R($ra), (p′′, g′′))∈ψ) ∧ p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g S S′′)

ψ `{(p, g)} f : j f′
(CALL-I)

This rules does not specify how the return address is going to be passed into the function.

Instead, we only require that $ra contain a code pointer specified in ψ at the return state

S′, which is provable based on the knowledge of p and g′. This allows SCAP-I to certify

any convention for multi-return function call.

Examples of Multi-Return Function Call

SCAP-I can certify the compiled C-- code with stack unwinding. C-- uses the primitive

“return <n/m>” to allow a function to return to the nth of m return continuations defined

in the caller. A normal return is written as “return <m/m>”, while n being less than m

means an “abnormal” return. Correspondingly, at the call cite, the caller put the annota-

tion such as “also returns to k0, k1”, where continuations k0 and k1 are defined in
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rev(bits32 x){ cmp(bits32 x){
cmp(x) also returns to k; if (x = 0)
return 0; return <0/1>;

else
continuation k: return <1/1>;

return 1; }
}

Figure 4.10: C-- Code with Multi-Return Address

the same function as the call site.

In Figure 4.10 we show a simple C-- program which returns 1 if the argument is 0

and returns 0 otherwise. We illustrate in Figure 4.11 how to use SCAP-I to certify the

compiled code. The precondition of the rev function is simply set to TRUE, while g0

specifies the relationship between the argument $a0 and the return value $v0, and the

preservation of callee save registers and memory except for the space for the stack frame.

The precondition for the cmp function is TRUE, and the guarantee g5 says that the function

returns to different addresses under different conditions.

At the point where cmp is called, we need to specify in the precondition p1 that both

return addresses are valid code labels (i.e., ct1 and k). The guarantee g1 specifies the be-

havior of the remaining code under two different conditions, while (p2, g2) and (p3, g3)

specify the two different return continuations. Interested readers can check that the spec-

ifications satisfy the constraint enforced by the CALL-I rule. Specifications for other code

blocks are straightforward and are omitted here.

4.5.2 SCAP-II for Weak Continuations

The weak continuation construct in C-- allows a function to return to any activation on

the control stack. Since we use the guarantee g to represent the behavior of a function,

we need to understand what happens to the intermediate activations on the stack that are

“skipped”: are their g’s discarded or fulfilled?

In SCAP-II, we enforce that the callee must fulfill the remaining behavior of its caller
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gfrm , $sp′ = $sp + 2 ∧ $fp′ = Frm[0] ∧ $ra′ = Frm[1]
g0 , ($a0 = 0 → $v0′ = 1) ∧ ($a0 6= 0 → $v0′ = 0)

∧Rid({$gp, $sp, $fp, $ra, $s0, . . . , $s7})
∧Hnid({$sp− 1, $sp})

p1 , $ra = ct1 ∧ $a1 = k
g1 , ($a0 = 0 → $v0′ = 1) ∧ ($a0 6= 0 → $v0′ = 0)

∧Rid({$gp, $s0, . . . , $s7}) ∧ gfrm ∧ Hnid(∅)
g2 , $v0′ = 0 ∧ Rid({$gp, $s0, . . . , $s7}) ∧ gfrm ∧ Hnid(∅)
g3 , $v0′ = 1 ∧ Rid({$gp, $s0, . . . , $s7}) ∧ gfrm ∧ Hnid(∅)
g5 , ($a0 = 0 → $ra′ = $a1) ∧ ($a0 6= 0 → $ra′ = $ra)

∧Rid({$gp, $sp, $fp, $s0, . . . , $s7}) ∧ Hnid(∅)

rev: -{(TRUE, g0)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save old $ra
addiu $ra, $zero, ct1 ;ret cont 1
addiu $a1, $zero, k ;ret cont 0
-{(p1, g1)}
j cmp ;call cmp with k

ct1: -{(TRUE, g2)}
addiu $v0, $zero, 0 ;$v0 = 0
j epilog

k: -{(TRUE, g3)}
addiu $v0, $zero, 1 ;$v0 = 1
j epilog

epilog: -{(p4, g4)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 2 ;restore $sp
jr $ra ;return

cmp: -{(TRUE, g5)}
beq $a0, $zero, eqz
jr $ra ;return <1/1>

eqz: -{(p6, g6)}
addu $ra, $zero, $a1 ;return <0/1>
jr $ra

Figure 4.11: Assembly Code with Multi-Return Function Call
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before it can “skip” its caller and return to an activation deeper on the control stack. From

the caller’s point of view, it made a tail call to the callee.

∀S. p S→ p′ S (f′, (p′, g′)) ∈ ψ

∀S, S′. p S→ g′ S S′ →
(g S S′ ∨
∃p′′, g′′. (S′.R($ra), (p′′, g′′)) ∈ ψ ∧ p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g S S′′))

ψ `{(p, g)} f : j f′
(CALL-II)

In the CALL-II rule above, we further relax the second premise of the CALL-I rule and pro-

vide an option of either returning to the return point of the caller or satisfying the caller’s

remaining g and therefore being able to return to the caller’s caller. This requirement au-

tomatically forms arbitrary length chains that allow the return to go arbitrarily far in the

stack. Also notice that the CALL-II rule is simply a combination of the CALL-I rule and the

T-CALL in SCAP for tail call.

We also relax SCAP’s definition of “well-formed stack” and allow dismissal of multi-

ple stack frames at the return point.

wfst′(0, g, S, ψ) , ¬∃S′. g S S′

wfst′(n+1, g, S, ψ) ,

∀S′.g S S′ →
∃p′, g′. ((S′.R($ra), (p′, g′))∈ψ) ∧ p′ S′ ∧ ∃m ≤ n. wfst′(m, g′, S′, ψ)

The rest of SCAP-II inference rules are the same with those in SCAP. When a function

makes an indirect jump to a weak continuation instead of a normal return continuation in

SCAP, we use the same RET rule in SCAP, as shown below. Here we give it a new name,

JWC (jump to weak continuations), to show that $ra contains a weak continuation pointer

66



rev(bits32 x){ cmp0(bits32 x, bits32 k){
cmp0(x, k) also cuts to k; cmp1(x, k);
return 0; }

continuation k: cmp1(bits32 x, bits32 k){
return 1; if (x == 0) cut to k;

} return;
}

Figure 4.12: C-- Code with Weak-Continuations

p0 , TRUE

g0 , ($a0 = 0 → $v0′ = 1) ∧ ($a0 6= 0 → $v0′ = 0)∧
∧Rid({$gp, $sp, $fp, $ra, $s0, . . . , $s7})
∧Hnid({$sp− 3, . . . , $sp})

p1 , ($ra = ct) ∧ ($a1 = k) ∧ ($a2 = $fp) ∧ ($a3 = $sp)
g1 , ($a0 = 0 → $v0′ = 1) ∧ ($a0 6= 0 → $v0′ = 0)∧

∧Rid({$gp, $s0, . . . , $s7}) ∧ Hnid({$sp− 1, $sp}) ∧ gfrm
gc , ($a0 = 0 → ($ra′ = $a1) ∧ ($fp′ = $a2) ∧ ($sp′ = $a3)

∧Rid({$gp, $s0, . . . , $s7}))
∧($a0 6= 0 → Rid({$gp, $sp, $fp, $ra, $s0, . . . , $s7})

p4 , TRUE

g4 , gc ∧ Hnid({$sp− 1, $sp})
p5 , TRUE

g5 , gc ∧ Hnid(∅)
Figure 4.13: Specifications of Code in Figure 4.14

instead of the normal return address of the caller.

∀S. p S→ g S S
ψ `{(p, g)} f : jr $ra

(JWC)

Shivers and Fisher [89] use the “super tail recursive” function call to implement their

MRLC, which is essentially multi-return function call with stack cutting. The implemen-

tation of MRLC can be certified using SCAP-II.

In Figure 4.12, we show a C-- program using weak continuations. The behavior of the

function rev is similar to the one shown in Figure 4.10. If the argument is 0, the function

cmp1 may skip over its caller cmp0 and cut to the stack of rev.

Figure 4.14 shows the compiled code and specifications. Specifications of the code
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is shown in Figure 4.13. To simplify the presentation, we pass the weak continuation

k (which contains the return code pointer, the frame pointer and the stack pointer) via

registers $a1-$a3. The specification (p0, g0) for rev is very similar to the one shown in

Figure 4.11. The specification at the call site of cmp0 is (p1, g1). Specifications for functions

cmp0 and cmp1 are given as (p4, g4) and (p5, g5), respectively. Notice that two different

conditions are considered in g4 and g5, i.e., the condition under which that the functions

return normally and the condition under which the functions cut the stack. Specifications

for other code blocks are omitted.

4.5.3 Example: setjmp/longjmp

setjmp and longjmp are two functions in the C library that are used to perform non-local

jumps. They are used as follows: setjmp is called to save the current state of the program

into a data structure (i.e., jmp buf). That state contains the current stack pointer, all callee-

save registers, the code pointer to the next instruction, and everything else prescribed by

the architecture. Then when called with such a structure, longjmp restores every part of

the saved state, and then jumps to the stored code pointer.

These functions in C are not considered safe. setjmp does not save closures, and thus

the behavior of longjmp is undefined if the function calling the corresponding setjmp has

returned. The control flow abstraction provided by setjmp/longjmp is very similar to

weak continuations and can be reasoned using SCAP-II.

The code in Figure 4.15 shows a simple implementation of setjmp/longjmp functions

and their specifications. Here we borrow the separation logic [87] notation, where {l 7→ n}
means the memory cell at address l contains value n, while P ∗ Q specifies two parts of

memory which have disjoint domains and satisfy P and Q respectively. As shown in [101],

separation logic primitives can be encoded in Coq and embedded in general predicates.

The precondition p0 of setjmp simply requires that the argument $a0 point to a jmp buf.

It guarantees (g0) that the return value is 0; values of callee save registers, return code
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rev: -{(p0, g0)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $a1, $zero, k ;set cut cont
addiu $a2, $fp, 0 ;save $fp
addiu $a3, $sp, 0 ;save $sp
addiu $ra, $zero, ct ;set ret cont
-{(p1, g1)}
j cmp0 ;call cmp0

ct: -{(p2, g2)}
addiu $v0, $zero, 0 ;return 0
j epilog

k: -{(p3, g3)}
addiu $v0, $zero, 1 ;return 1
j epilog

cmp0: -{(p4, g4)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $ra, $zero, epilog
j cmp1 ;call cmp1

cmp1: -{(p5, g5)}
beq $a0, $zero, cutto ;if ($a0==0) cut
jr $ra ;else return

cutto: -{(p6, g6)}
addiu $ra, $a1, 0 ;set $ra to k
addiu $fp, $a2, 0 ;restore k’s $fp
addiu $sp, $a3, 0 ;restore k’s $sp
jr $ra ;goto k

epilog: -{(p7, g7)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 2 ;restore $sp
jr $ra ;return

Figure 4.14: Example for Weak Continuation
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pbuf(x) , {x 7→ , . . . , x+11 7→ }
gbuf(x) , ([x]′ = $s0) ∧ . . . ∧ ([x + 7]′ = $s7) ∧ ([x + 8]′ = $fp)∧

([x + 9]′ = $sp) ∧ ([x + 10]′ = $gp) ∧ ([x + 11]′ = $ra)
g′buf(x) , ($s0′ = [x]) ∧ . . . ∧ ($s7′ = [x + 7]) ∧ ($fp′ = [x + 8])∧

($sp′ = [x + 9]) ∧ ($gp′ = [x + 10]) ∧ ($ra′ = [x + 11])
p0 , pbuf($a0) ∗ TRUE

g0 , ($v0′ = 0) ∧ Rid({$ra, $sp, $fp, $gp, $a0, $s0, . . . , $s7})
∧gbuf($a0) ∧ Hnid({$a0, . . . , $a0 + 11})

p1 , (pbuf($a0) ∗ TRUE) ∧ $a1 6= 0
g1 , ($v0′ = $a1) ∧ g′buf($a0) ∧ Hnid(∅)

setjmp: -{(p0, g0)}
sw $s0, 0($a0) ;save callee-saves
...
sw $s7, 7($a0)
sw $fp, 8($a0) ;frame pointer
sw $sp, 9($a0) ;stack pointer
sw $gp, 10($a0) ;global pointer
sw $ra, 11($a0) ;old $ra
addiu $v0, $zero, 0 ;return value
jr $ra

longjmp: -{(p1, g1)}
lw $s0, 0($a0) ;restore callee-saves
...
lw $s7, 7($a0)
lw $fp, 8($a0) ;restore $fp
lw $sp, 9($a0) ;restore $sp
lw $gp, 10($a0) ;restore $gp
lw $ra, 11($a0) ;restore $ra
addu $v0, $zero, $a1 ;return value
jr $ra ;jump to restored $ra

Figure 4.15: Implementation for setjmp/longjmp
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jmp_buf env; /* env is a global variable */

int rev(int x){ void cmp0(int x){
if (setjmp(env) == 0){ cmp1(x);

cmp0(x); }
return 0;

}else{ void cmp1(int x){
return 1; if (x == 0)

} longjmp(env, 1);
} }

Figure 4.16: C Program Using setjmp/longjmp

pointers and some other registers are not changed and they are saved in the jmp buf; and

data heap except the jmp buf is not changed.

Precondition p1 for longjmp is similar to p0, with extra requirement that the second

argument $a1, which will be the return value, cannot be 0. The guarantee g1 says the

function returns $a1, recovers register values saved in jmp buf (including return code

pointers and stack pointers), and does not change any part of the memory.

In Figure 4.16 we use a simple C program to illustrate the use of setjmp/longjmp.

The function rev calls setjmp before it calls function cmp0, which in turn calls cmp1. If

the argument is 0, the function cmp1 skips its caller and jumps to the “else” branch of

rev directly, otherwise it returns to its caller. So the behavior of rev is to return 1 if the

argument is 0, and to return 0 otherwise. It has the same behavior with the function shown

in Figure 4.12, except that here we make a non-local jump by using the setjmp/longjmp

instead of a weak continuation.

Based on our specification of setjmp/longjmp, the compiled code of the C program

can be certified using SCAP-II. The assembly code and specifications are presented in

Figures 4.17 and 4.18. Here we reuse some macros defined previously in Figures 4.15 and

4.8.

The precondition p0 for function rev requires that env point to a block of memory for

the jmp buf, and that there be disjoint memory space for stack frames. The guarantee

g0 is similar to the one shown in Figure 4.14. It specifies the relationship between the
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rev: -{(p0, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
sw $a0, -2($fp) ;save argument
addiu $a0, $zero, env ;argument for setjmp
addiu $ra, $zero, ct1 ;set ret addr
j setjmp ;setjmp(env)

ct1: -{(p1, g1)}
beq $v0, $zero, ct2 ;if $v0 = 0 goto ct2
addiu $v0, $zero, 1
j epilog ;return 1

ct2: -{(p2, g2)}
lw $a0, -2($fp) ;$a0 = x
addiu $ra, $zero, ct3 ;set ret addr
j cmp0 ;cmp0(x)

ct3: -{(p3, g3)}
addiu $v0, $zero, 0
j epilog ;return 0

cmp0: -{(p4, g4)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $ra, $zero, epilog ;set ret addr
j cmp1 ;cmp1(x)

cmp1: -{(p5, g5)}
beq $a0, $zero, cutto ;if ($a0==0) longjmp
jr $ra ;else return

cutto: -{(p6, g6)}
addiu $a0, $zero, env ;$a0 = env
addiu $a1, $zero, 1 ;$a1 = 1
j longjmp ;longjmp(env, 1)

epilog: -{(p7, g7)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

Figure 4.17: TM Code Using setjmp/longjmp
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blk(x, y) , {x 7→ , x+1 7→ , . . . , y 7→ }
p′buf(x) , {x 7→ $s0, . . . , x+11 7→ ct1}
gfrm , ($sp′ = $sp+3) ∧ ($fp′ = Frm[0]) ∧ ($ra′ = Frm[1])
gepi , Rid({$gp, $s0, . . . , $s7}) ∧ gfrm ∧ Hnid(∅)
p0 , pbuf(env) ∗ blk($sp−5, $sp) ∗ TRUE

g0 , ($a0 = 0 → $v0′ = 1) ∧ ($a0 6= 0 → $v0′ = 0)∧
∧Rid({$gp, $sp, $fp, $ra, $s0, . . . , $s7})
∧Hnid({$sp−5, . . . , $sp, env, . . . , env+11})

p1 , p′buf(env) ∗ blk($sp−2, $sp) ∗ TRUE

g1 , ($v0 = 0 → g2) ∧ ($v0 6= 0 → ($v0′ = 1) ∧ gepi)
p2 , p1

g2 , (Frm[2] = 0 → $v0′ = 1) ∧ (Frm[2] 6= 0 → $v0′ = 0)
∧g′buf(env) ∧ gfrm ∧ Hnid({$sp−2, . . . , $sp})

p3 , TRUE

g3 , ($v0′ = 0) ∧ gepi

p4 , pbuf(env) ∗ blk($sp−2, $sp) ∗ TRUE

g4 , ($a0 = 0 → g′buf(env) ∧ $v0′ 6= 0)
∧($a0 6= 0 → Rid({$gp, $sp, $fp, $ra, $s0, . . . , $s7}))
∧Hnid({$sp−2, . . . , $sp})

p5 , pbuf(env) ∗ TRUE

g5 , ($a0 = 0 → g′buf(env) ∧ $v0′ = 1)
∧($a0 6= 0 → Rid({$gp, $sp, $fp, $ra, $s0, . . . , $s7})) ∧ Hnid(∅)

p6 , pbuf(env) ∗ TRUE

g6 , g′buf(env) ∧ $v0′ = 1 ∧ Hnid(∅)
p7 , TRUE

g7 , ($v0′ = $v0) ∧ gepi

Figure 4.18: Specifications for Code in Figure 4.17
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argument $a0 and the return value $v0′, and the preservation of callee-save registers and

memory (except for the space for stack frames). Specifications for function cmp0 and cmp1

are (p4, g4) and (p5, g5), respectively. They are similar to the ones given in Figure 4.14 too.

However, it is a little tricky to specify the code labeled by ct1, which may be executed

twice: the first time after the return from setjmp and the second time after the return from

longjmp. We need to consider both cases in the specification (p1, g1).

4.6 Embedding of SCAP into OCAP

In this section, we show how to embed SCAP into OCAP. Given the soundness of OCAP,

this embedding also shows the soundness of our SCAP inference rules.

(SCAPTy) LSCAP , StatePred ∗ Guarantee

(CdSpec) θ ::= (p, g) ∈ LSCAP

As shown above, the code specification θ in OCAP is instantiated into the pair of p and

g, i.e., SCAP specification of code blocks. The meta-type of SCAP specification in CiC is

then LSCAP.

We also assign a language ID ρ to SCAP. Then we use the lifting function xψyρ to

convert the ψ in SCAP to OCAP’s specification Ψ.

xψyρ , {(f, 〈ρ, LSCAP, (p, g)〉) | (f, (p, g)) ∈ ψ}

The following interpretation function takes the SCAP specification (p, g) and trans-

forms it into the assertion in OCAP.

[[ (p, g) ]](ρ,D)
LSCAP

, λΨ, S. p S ∧ ∃n.WFST(n, g, S, D, Ψ)

Here D is an open parameter which describes the verification systems used to verify the

external world around SCAP code. The interpretation simply specifies the SCAP program
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invariants we have just shown, except that we reformulate the previous definition of wfst

to adapt to OCAP specification Ψ.

WFST(0, g, S, D,Ψ) ,

∀S′. g S S′ → ∃π. (codeptr(S′.R($ra), π) ∧ [[[ π ]]]D) Ψ S′

WFST(n+1, g, S, D,Ψ) ,

∀S′. g S S′ → ∃p′, g′. (S′.R($ra), 〈ρ, LSCAP, (p′, g′)〉)∈Ψ

∧ p′ S′ ∧ ∃m ≤ n. WFST(m, g′, S′, D,Ψ).

The definition of WFST is similar to wfst, but we look up code specifications from OCAP’s

Ψ. Since we are now in an open world, we allow SCAP code to return to the external

world even if the depth of the SCAP stack is 0, as long as $ra is a valid code pointer and

the interpretation of its specification π is satisfied at the return point. The open parameter

D is used here to interpret the specification π.

It is also important to note that we do not need ρ and D to use SCAP, although they

are open parameters in the interpretation. When we certify code using SCAP, we only use

SCAP rules to derive the well-formedness of instruction sequences (i.e., ψ `{(p, g)} f : I)

and code heaps (i.e., ψ ` C : ψ′) with respect to SCAP specification ψ. The interpretation

is not used until we want to link the certified SCAP code with code certified in other

logics. We instantiate ρ and D in each specific application scenario. Theorem 4.1 shows

the soundness of SCAP rules and their embedding in OCAP, which is independent with

these open parameters.

Theorem 4.1 (Soundness of the Embedding of SCAP)

Suppose ρ is the language ID assigned to SCAP. For all D describing foreign code and

ρ 6∈ dom(D), let D′ = D{ρ;〈LSCAP, [[ ]](ρ,D)
LSCAP

〉}.

(1) If ψ `{(p, g)} f : I in SCAP, we have D′ `{〈a〉Ψ} f : I in OCAP, where Ψ = xψyρ and

a = [[ (p, g) ]](ρ,D)
LSCAP

.
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(2) If ψ ` C :ψ′ in SCAP, we have D′; xψyρ ` C :xψ′yρ in OCAP.

Proof. To prove (1), we need to consider all instruction sequence rules in SCAP and show

that their premises imply the premises of the corresponding rules in OCAP. Here we show

the proof for the CALL rule and the RET rule in the lemmas below. Proofs for other rules

are trivial.

Given the proof of (1), (2) trivially follows the formulation of the SCAP-CDHP rule in

SCAP and the CDHP rule in OCAP.

The proof has also been formalized in Coq [31]. 2

Lemma 4.2 (Stack Strengthen) For all D, n, g, g′, S, S′ and Ψ, if WFST(n, g, S, D,Ψ) and

∀S′′.g′ S′ S′′ → g S S′′, we have WFST(n, g′,S′,D, Ψ).

Proof. This trivially follows the definition of WFST. 2

Lemma 4.3 (Call) For all D, ψ, ρ, f, f′, let D′ = D{ρ;〈LSCAP, [[ ]](ρ,D)
LSCAP

〉} and Ψ = xψyρ.

Suppose ρ 6∈ dom(D), (f′, (p′, g′)) ∈ ψ and (f+1, (p′′, g′′)) ∈ ψ. If

1. ∀H,R. p (H,R) → p′ (H,R{$ra;f+1})

2. ∀H,R, S′. p (H,R) → g′ (H,R{$ra;f+1}) S′ → (p′′ S′ ∧ (∀S′′. g′′ S′ S′′ →
g (H,R) S′′));

3. ∀S, S′. g′ S S′ → S.R($ra) = S′.R($ra);

we have

∀Ψ′,H,R. 〈a〉Ψ Ψ′ (H,R) → ∃π′. (codeptr(f′, π′) ∧ [[[π′ ]]]D′) Ψ′ (H,R{$ra;f+1}) ,

where a = [[ (p, g) ]](ρ,D)
LSCAP

. (In short, the CALL rule in SCAP can be derived from the JAL rule

in OCAP.)

Proof. We let π′ = (ρ,LSCAP, (p′, g′)). Assume 〈a〉Ψ Ψ′ (H,R) holds, therefore we know

Ψ ⊆ Ψ′. Since Ψ = xψyρ and Ψ ⊆ Ψ′, it is obvious that codeptr(f′, π′) Ψ′ S holds for all S.

76



Unfolding the definition of the interpretation function, we know that, given

4. Ψ ⊆ Ψ′;

5. p (H,R);

6. WFST(n, g, (H,R), D,Ψ′);

we need to prove

a. p′ (H,R{$ra;f+1}); and

b. WFST(n + 1, g′, (H,R{$ra;f+1}), D,Ψ′);

The proof of a is trivial (by 1 and 5). We are now focused on the proof of b.

Suppose g′ (H,R{$ra;f+1}) S for some S,

• by 3 we know S.R($ra) = f+1, therefore (S.R($ra) , (ρ,LSCAP, (p′′, g′′))) ∈ Ψ′;

• by 5 and 2 we know p′′S;

• by 5 and 2 we know ∀S′. g′′ S′S→ g (H,R) S. Therefore, by 6 and Lemma 4.2 we get

WFST(n, g′′,S, D, Ψ′).

Then, by the definition of WFST we get WFST(n + 1, g′, (H,R{$ra;f+1}),D, Ψ′). 2

Lemma 4.4 (Return) For all D, ψ, ρ, f, f′, let D′ = D{ρ;〈LSCAP, [[ ]](ρ,D)
LSCAP

〉} and

Ψ = xψyρ. Suppose ρ 6∈ dom(D). If ∀S.p S→ g S S, then for all Ψ, H and R, we have

∀Ψ′, S. 〈a〉Ψ Ψ′ S→→ ∃π′. (codeptr(S.R($ra), π′) ∧ [[[ π′ ]]]D′) Ψ′ S ,

where a = [[ (p, g) ]](ρ,D)
LSCAP

. That is, the RET rule in SCAP can be derived from an

instantiation of the JR rule in OCAP, where rs is instantiated to $ra.

Proof. Suppose 〈[[ (p, g) ]](ρ,D)
LSCAP

〉
Ψ

Ψ′ S for some S. We know that

1. p S;
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2. g S S (by our assumption ∀S.p S→ g S S); and

3. WFST(n, g,S, D,Ψ′) for some n.

If n = 0, it is trivial to prove ∃π′. (codeptr(S.R($ra), π′) ∧ [[[π′ ]]]D) Ψ′ S by 2, 3 and

the definition of WFST. We know D ⊆ D′ because ρ 6∈ dom(D). Therefore we know

∃π′. (codeptr(S.R($ra), π′) ∧ [[[π′ ]]]D′) Ψ′ S by Lemma 3.5.

If n > 0, by 2, 3 and the definition of WFST we know there exists (p′, g′) such that

4. (S.R($ra) (ρ,LSCAP, (p′, g′))) ∈ dom(Ψ);

5. p′ (H,R); and

6. WFST(m, g′, (H,R),Ψ) for some m < n.

Let π′ = (ρ,LSCAP, (p′, g′)). By the definition of the interpretation function, we know

(codeptr(S.R($ra), π′) ∧ [[[π′ ]]]D′) Ψ′ S. 2

4.7 Discussions and Summary

Continuing over the related work discussed in Section 4.1.1, STAL [68] and its varia-

tions [26, 96] support static type-checking of function call/return and stack unwinding,

but they all treat return code pointers as first-class code pointers and stacks as “closures”.

Introducing a “ret” instruction [26] does not change this fact because there the typing

rule for “ret” requires a valid code pointer on the top of the stack, which is very different

from our SCAP RET rule. Impredicative polymorphism has to be used in these systems

to abstract over unused portions of the stack (as a closure), even though only return ad-

dresses are stored on the stack. Using compound stacks, STAL can type-check exceptions,

but this approach is rather limited. If multiple exception handlers defined at different

depths of the stack are passed to the callee, the callee has to specify their order on the

stack, which breaks modularity. This problem may be overcome by using intersection
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types [26], though it has never been shown. Moreover, there is no known work certifying

setjmp/longjmp and weak continuations using these systems.

Also, unlike STAL, SCAP does not require any built-in stack structure in the target

machine (TM), so it does not need two sets of instructions for heap and stack operations.

As shown in Figure 4.7, SCAP can easily support general data pointers into the stack or

heap, which are not supported in STAL. In addition, SCAP does not enforce any specific

stack layout, therefore it can be used to support sequential stacks, linked stacks, and heap-

allocated activation records.

Concurrently with our work, Benton [11] proposed a typed program logic for a stack-

based abstract machine. His instruction sequence specification is similar to the g in SCAP.

Typing rules in his system also look similar to SCAP rules. However, to protect return

code pointers, Benton uses a higher-level abstract machine with separate data stack and

control stack; the latter cannot be touched by regular instructions except call and ret. Ben-

ton uses the indexed model [8] to prove the soundness of his system, while we prove

the soundness of SCAP by enforcing the stack invariant. Benton also uses a pair of pre-

and postcondition as the specification which requires complex formalization of auxiliary

variables.

At higher-level, Berdine et al. [12] showed that function call and return, exceptions,

goto statements and coroutines follow a discipline of linearly used continuations. The idea

is formalized by typing continuation transformers as linear functions, but no verification

logic was proposed for reasoning about programs. Following the producer/consumer

model (in Figure 4.1), our reasoning has a flavor of linearity, but it is not clear how our

work and linear continuation-passing relate to each other.

Walker et al. [2, 58] proposed logical approaches for stack typing. They used CPS to

reason about function calls. Their work focused on memory management and alias rea-

soning, while in SCAP we left the stack layout unspecified. Although the higher-order

predicate logic is general enough to specify memory properties, substructural logic pro-

vides much convenience for memory specification. Applying their work to provide lem-
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mas for different stack layouts and calling conventions will be our future work.

State Relations as Program Specifications. SCAP is not the first to use relations be-

tween two states as program specifications. The rely-guarantee method [59], TLA [63],

and VDM [60] all use state relations to specify programs. However, the guarantee g used

in SCAP is different from those used in previous systems. Generalizing the idea of local

guarantee [102], SCAP uses g to describe the obligation that the current function must

fulfill before it can return, raise an exception, or switch to other coroutines and threads.

Notice that at the beginning of a function, our g matches precisely the VDM postcondition,

but intermediate g’s used in our SCAP-SEQ rule differ from the intermediate postconditions

used in the sequential decomposition rule in VDM: the second state specified in our g’s al-

ways refers to the (same) state at the exit point. We use these intermediate g’s to bridge the

gap between the entry and exit points of functions—this is hard to achieve using VDM’s

post conditions.

Yu’s pioneer work [103] on machine code verification can also support stack-based

procedure call and return. His correctness theorem for each subroutine resembles our

guarantee g, but it requires auxiliary logical predicates counting the number of instruc-

tions executed between different program points. It is unclear whether their method can

be extended to handle complex stack-based controls as discussed in our current paper.

Summary In this chapter we propose SCAP for modular verification of assembly code

with all kinds of stack-based control abstractions, including function call/return, tail call,

weak continuation, setjmp/longjmp, stack cutting, stack unwinding, and multi-return

function call. For each control abstraction, we have formalized its invariants and showed

how to certify its implementation. SCAP is proposed as instances of the OCAP frame-

work. The complete soundness proof and a full verification of several examples have

been formalized in the Coq proof assistant [24].
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Chapter 5

Concurrent Code with Dynamic

Thread Creation

We have seen SCAP for stack-based reasoning of sequential control abstractions in Chap-

ter 4. However, most real-world systems use some form of concurrency in their core soft-

ware. To build fully certified system software, it is crucial to certify low-level concurrent

programs.

Yu and Shao [102] proposed a certified formal framework (known as CCAP) for spec-

ifying and reasoning about general properties of non-preemptive concurrent programs at

the assembly level. They applied the invariant-based proof technique for verifying gen-

eral safety properties and the rely-guarantee methodology [59] for decomposition. Their

thread model, however, is rather restrictive in that no threads can be created or terminated

dynamically and no sharing of code is allowed between threads; both of these features are

widely supported and used in mainstream programming languages such as C, Java, and

Concurrent ML [86].

It is difficult to reason about concurrent code with dynamic thread creation and ter-

mination because it implies a changing thread environment (i.e., the collection of all live

threads in the system other than the thread under concern). Such dynamic environment

cannot be tracked during static verification, yet we still must somehow reason about it.
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For example, we must ensure that a newly created thread does not interfere with existing

live threads, but at the same time we do not want to enforce non-interference for threads

that have no overlap in their lifetime. Using one copy of code to create multiple threads

also complicates program specification.

Existing work on verification of concurrent programs almost exclusively uses high-

level calculi (e.g., CSP [52], CCS [66], TLA [63] and Concurrent Separation Logic [78, 14]).

Also, existing work on the rely-guarantee methodology for shared-memory concurrency

only supports properly nested concurrent code in the form of cobegin P1‖ . . . ‖Pn coend

(which is a language construct for parallel composition where code blocks P1, . . . , Pn

execute in parallel and all terminate at the coend point). They do not support dynamic

thread creation and termination.

Modularity is also important to make verification scale. Existing work on the rely-

guarantee methodology supports thread modularity, i.e., different threads can be verified

separately without looking into other threads’ code. However, they do not support code

reuse very well. In CCAP, if a procedure is called in more than one thread, it must be

verified multiple times using different specifications, one for each calling thread. We want

a procedure to be specified and verified once so it can be reused for different threads.

In this chapter, we present a new program logic for certified multi-threaded assembly

programming (CMAP). It is derived from the research I have done jointly with Zhong

Shao [34]. Instead of using the machine formalized in Section 2.2, we present CMAP based

on an abstract machine with built-in support of threads. The machine supports dynamic

thread creation with argument passing (the “fork” operation) as well as termination (the

“exit” operation). Thread “join” can also be implemented in the machine language using

synchronizations. The “fork/join” thread model is more general than “cobegin/coend” in

that it supports unbounded dynamic thread creation, which poses new challenges for ver-

ification. CMAP is the first program logic that applies the rely-guarantee method to certify

assembly code with unbounded dynamic thread creation. In particular, it unifies the con-

cepts of a thread’s assumption/guarantee and its environment’s guarantee/assumption,
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Figure 5.1: Rely-guarantee-based reasoning

and allows a thread to change its assumption/guarantee to track the composition of its

dynamically changing environment.

Based on the rely-guarantee method, CMAP supports thread modular reasoning. More-

over, it merges code heaps of different threads into one uniform code heap, and allow code

segments to be specified independently of the threads in which they are used. Code seg-

ments can be specified and certified once but used in multiple threads. Therefore, CMAP

has good support of code (and proof) sharing between threads.

Some practical issues are also solved in CMAP, including multiple “incarnation” of

thread code, thread argument passing, saving and resuming of thread local data at the

time of context switching, etc.. These issues are important for realistic multi-threaded

programming, but have never been discussed in existing work.

5.1 Background and Challenges

In this section, we give an overview of the rely-guarantee method, and explain the chal-

lenges to support dynamic thread creations.
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5.1.1 Rely-Guarantee-Based Reasoning

The rely-guarantee (R-G) proof method [59] is one of the best-studied approaches to

the compositional verification of shared-memory concurrent programs. Under the R-G

paradigm, every thread is associated with a pair (A,G), with the meaning that if the envi-

ronment (i.e., the collection of all of the rest threads) satisfies the assumption A, the thread

will meet its guarantee G to the environment. In the shared-memory model, the assump-

tion A of a thread describes what atomic transitions may be performed by other threads,

while the guarantee G of a thread must hold on every atomic transition of the thread.

They are typically modeled as predicates on a pair of states, which are often called actions.

For instance, in Figure 5.1 we have two interleaving threads T1 and T2. T1’s assump-

tion A1 adds constraints on the transition (S0, S1) made by the environment (T2 in this

case), while G1 describes the transition (S1, S2), assuming the environment’s transition

satisfies A1. Similarly A2 describes (S1, S2) and G2 describes (S0, S1).

We need two steps to reason about a concurrent program consisting of T1 and T2. First,

we check that there is no interference between threads, i.e., that each thread’s assumption

can be satisfied by its environment. In our example, non-interference is satisfied as long as

G1 ⇒ A2 (a shorthand for ∀S, S′.G1(S, S′) ⇒ A2(S, S′)), and G2 ⇒ A1. Second, we check

that T1 and T2 do not lie, that is, they satisfy their guarantee as long as their assumption

is satisfied. As we can see, the first step only uses the specification of each thread, while

the second step can be carried out independently without looking at other threads’ code.

This is how the R-G paradigm achieves thread-modularity.

5.1.2 R-G in Non-Preemptive Thread Model

CMAP adopts a non-preemptive thread model, in which threads yield control voluntarily

with a yield instruction, as shown in Figure 5.2. The preemptive model can be regarded

as a special case of the non-preemptive one, in which an explicit yield is used at every

program point. Also, on real machines, programs might run in both preemptive and non-
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Figure 5.2: R-G in a non-preemptive setting

preemptive settings: preemption is usually implemented using interrupts; a program can

disable the interrupt to get into non-preemptive setting.

An “atomic” transition in a non-preemptive setting then corresponds to a sequence of

instructions between two yields. For instance, in Figure 5.2 the state pair (S2, S
′
2) corre-

sponds to an atomic transition of thread T1. A difficulty in modeling concurrency in such

a setting is that the effect of an “atomic” transition cannot be completely captured until

the end. For example, in Figure 5.2, the transition (S1, S
′
1) should satisfy G2. But when we

reach the intermediate state S, we have no idea of what the whole transition (i.e., (S1, S
′
1))

will be. At this point, neither (S1, S) nor (S, S′1) need satisfy G2. Instead, it may rely on

the remaining commands (the commands between comm and yield, including comm) to

complete an adequate state transition. In CCAP [102], a “local guarantee” g is introduced

for every program point to capture further state changes that must be made by the fol-

lowing commands before it is safe for the current thread to yield control. For instance, the

local guarantee g attached to comm in Figure 5.2 describes the transition (S, S′1).

5.1.3 Challenges for Dynamic Thread Creation

To prove safety properties of multi-threaded programs, the key problem is to enforce the

invariant that all executing threads must not interfere with each other. As mentioned in Sec-
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Variables:
nat[100] data;

Initially:
data[i] = ni, 0 ≤ i < 100

main1 :
data[0] := f(0);
fork(chld, 0);

...
data[99] := f(99);
fork(chld, 99);
. . .

main2 :
nat i := 0;
while(i < 100){
data[i] := f(i);
fork(chld, i);
i := i + 1;

}
. . .

void chld(int x){
data[x] := g(x, data[x]);

}

Figure 5.3: Loop: high-level program

tion 5.1.1, threads do not interfere (or they satisfy the non-interference property) only if each

thread’s assumption is implied by the guarantee of all other threads. We will formal-

ize the Non-Interference property in Section 5.3.3. For languages that do not support

dynamic thread creation, the code for each thread corresponds to exactly one executing

thread. Using the rely-guarantee method, we can assign an assumption and guarantee to

each thread code and enforce non-interference by checking all of these assumptions and

guarantees, as is done in [102] and [38]. However, the following example shows that this

simple approach cannot support dynamic thread creation and multiple “incarnation” of

the thread code.

In Figure 5.3, the high-level pseudo code (using C-like syntax) shows the code for (two

versions of) a main thread and child threads. The main thread initializes 100 pieces of data

using some function f, and distributes them to 100 child threads that will work on their

own data (by applying a function g) in parallel. The fork function creates a child thread

that will execute the function pointed to by the first argument. The second argument of

fork is passed to the function as argument. The thread main1 does this in sequential code
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Figure 5.4: Interleaving of threads

while main2 uses code with a loop. We assume that the high level code runs in preemptive

mode. In other words, there is an implicit yield at any program point.

It is easy to see that both versions are “well-behaved” as long as the function g has no

side effects, and all other threads in the rest of the system do not update the array of data.

However, the simple approach used in [102] and [38] even cannot provide a specification

for such trivial code.

1. Figure 5.4 (a) illustrates the execution of main1 (time goes downwards). When doing

data initialization (at stage A-B, meaning from point A to point B), the main thread

needs to assume that no other threads in the environment (say, T2) can change the

array of data. However, the composition of the main thread’s environment changes

after a child thread is created. The assumption used at A-B is no longer appropriate

for this new environment since the first child thread will write to data[0]. And the

environment will keep changing with the execution of the main thread. How can

we specify the main1 thread to support such a dynamic thread environment?

One possible approach is that the main thread relaxes its assumption to make ex-

ceptions for its child threads. However, it is hard to specify the parent-child rela-

tionship. Another approach is to use something like the program counter in the

assumption and guarantee to indicate the phase of computation. This means the

specification of the main thread is sensitive to the implementation. Also the pro-
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gram structure of the main thread has to be exposed to the specification of the child

threads, which compromises modularity. The worst thing is that this approach sim-

ply won’t work for the version main2.

2. Since multiple child threads are created, we must make sure that there is no inter-

ference between these children. It is easy for the above example since we can let the

assumption and guarantee of the chld code be parameterized by its argument, and

require Gi ⇒ Aj given i 6= j. However, this approach cannot be generalized for

threads that have dummy arguments and their behavior does not depend on their

arguments at all. In this case Gi ≡ Gj and Ai ≡ Aj for any i and j. Then requiring

Gi ⇒ Aj is equivalent to requiring Gi ⇒ Ai, which cannot be true in general, given

the meaning of assumptions and guarantees described in section 5.1.1. Do we need

to distinguish these two kinds of threads and treat them differently? And how do

we distinguish them?

3. Another issue introduced by dynamic thread creation, but not shown in this ex-

ample program, is that the lifetimes of some threads may not overlap. In the case

shown in Figure 5.4 (b), the lifetimes of T2 and T3 do not overlap and we should not

statically enforce non-interference between them. Again, how can we specify and

check the interleaving of threads, which can be as complex as shown in Figure 5.4

(c)?

In the next section we will show how these issues are resolved in the development of

CMAP.

5.2 The CMAP Approach

In the rest of this chapter, to distinguish the executing thread and the thread code, we

call the dynamically running thread the “dynamic thread” and the thread code the “static

thread”. In Figure 5.3 the function chld is the static child thread, from which 100 dynamic
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child threads are activated.

As explained in Section 5.1.3, the approach that requiring non-interference of static

threads is too rigid to support dynamic thread creation. Our approach, instead, enforces

the thread non-interference in a “lazy” way. We maintain a dynamic thread queue which

contains all of the active threads in the system. When a new thread is created, it is added to

the dynamic thread queue. A thread is removed from the queue when its execution termi-

nates. We also require that, when specifying the program, each static thread be assigned

an assumption/guarantee pair. However, we do not check for non-interference between

static thread specifications. Instead, each dynamic thread is also assigned an assumption

and guarantee at the time of creation, which is an instantiation of the corresponding static

thread specification with the thread argument. We require that dynamic threads do not

interfere with each other, which can be checked by inspecting their specifications.

This approach is very flexible in that each dynamic thread does not have to stick to

one specification during its lifetime. When its environment changes, its specification can

be changed accordingly. As long as the new specification does not introduce interference

with other existing dynamic threads, and the subsequent behavior of this thread satisfies

the new specification, the whole system is still interference-free. In this way, we can deal

with the changing environment resulting from dynamic thread creation and termination.

Problem 1 in Section 5.1.3 can be solved now.

If the lifetimes of two threads do not overlap, they will not show up in the system at

the same time. Therefore we do not need to check for interference at all. Also, since each

dynamic thread has its own specification, we no longer care about the specification of the

corresponding static thread. Therefore problems 2 and 3 shown in Section 5.1.3 are no

longer an issue in our approach.
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5.2.1 Typing The Dynamic Thread Queue

We define the dynamic thread queueQ as a set of thread identifiers ti, and the assignment

Θ of assumption/guarantee pairs to dynamic threads as a partial mapping from ti to

(Ai, Gi) 1. The queue Q is “well-typed” with regard to Θ if:

• Q = dom(Θ), where dom(Θ) is the domain of Θ;

• threads in Q do not interfere, i.e., ∀ti, tj .ti 6= tj → (Gi ⇒ Aj); and

• each dynamic thread ti is “well-behaved” with regard to (Ai, Gi), i.e., if Ai is satis-

fied by the environment, ti’s execution does not get stuck and satisfies Gi.

Therefore, the invariant we need to maintain is that during the execution of the program,

for the queueQ at each step there exists a Θ such thatQ is well-typed with regard to Θ. In

fact, we do not require Θ to be part of the program specification. We only need to ensure

that there exists such a Θ at each step, which may be changing.

The content of the thread queue keeps changing, so how can we track the set of threads

in the queue by a static inspection of the program? Here we follow the approach used for

type-checking the dynamic data heap [69], which is dynamically updated by the store

instruction and extended by the alloc instruction. We can ensure our invariant holds as

long as the following conditions are satisfied:

• At the initial state (when the program starts to run) we can find a Θ to type-check

the initial Q. Usually the initial Q only contains the main thread, which will start to

execute its first instruction, so we can simply assign the assumption/guarantee in

the specification of the static main thread to the dynamic main thread.

• For each instruction in the program, assume that before the execution of the instruc-

tion there is a Θ such that Q is well typed. Then as long as certain constraints are

satisfied to execute the instruction, there must exist a Θ′ that can type check the

1This is a temporary formulation to illustrate the basic idea. We will use different definitions in the formal
development of CMAP in Section 5.3.
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resulting Q′. For most instructions which do not change the content of the thread

queue, this condition can be trivially satisfied. We are only interested in the “fork”

and “exit” operation which will change the content of Q.

For the “exit” instruction, the second condition can also be satisfied by the following

lemma which can be trivially proven.

Lemma 5.1 (Thread Deletion)

If Q is well-typed with regard to Θ, then, for all t ∈ Q, we know Q \ {t} is well-typed

with regard to Θ \ {t}.

For the “fork” instruction, things are trickier. We need to ensure that the new child

thread does not interfere with threads in the parent thread’s environment. We also require

that the parent thread does not interfere with the child thread. The following lemma

ensures the first requirement.

Lemma 5.2 (Queue Extension I)

Suppose Q is well-typed with regard to Θ and the current executing thread is t. If

• Θ(t) = (A,G);

• a new thread t′ is created by t;

• (A′, G′) is the instantiation of the corresponding static thread specification by the

thread argument;

• A ⇒ A′ and G′ ⇒ G;

then Q′ ∪ {t′} is well-typed with regard to Θ′{t′;(A′, G′)}, where Q′ = Q \ {t} and

Θ′ = Θ \ {t}.

Here Q′ is the environment of the current thread t. Since t does not interfere with its en-

vironment (becauseQ is well-typed), we know that its assumption A is an approximation

of what the environment can guarantee (Ge), and similarly that G is an approximation
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of the environment’s assumption (Ae). By this interpretation, we can unify the concepts

of the current running thread’s assumption/guarantee with its environment’s guaran-

tee/assumption. To ensure the new thread t′ does not interfere with t’s environment, we

need G′ ⇒ Ae and Ge ⇒ A′, which can be derived from G′ ⇒ G and A ⇒ A′.

Still, we need to ensure that thread t does not interfere with t′. As mentioned above,

A and G are approximations of Ge and Ae, respectively. Since the environment is ex-

tended with the child thread, the guarantee G′
e for the new environment is Ge ∨ G′ and

the assumption for the new environment A′e is Ae ∧ A′. We want to change A and G cor-

respondingly to reflect the environment change. First, the following lemma says that the

specification of a dynamic thread can be changed during its lifetime.

Lemma 5.3 (Queue Update)

Suppose Q is well-typed with regard to Θ and that the current executing thread is t. If

• Θ(t) = (A,G);

• G′′ ⇒ G and A ⇒ A′′;

• the subsequent behavior of the current thread satisfies (A′′, G′′);

then Q is well-typed with regard to Θ{t;(A′′, G′′)}.

Now we can change the specification of the parent thread t to let it reflect the change of

the environment.

Lemma 5.4 (Queue Extension II)

Suppose Q is well-typed with regard to Θ and the current executing thread is t. If

• Θ(t) = (A,G);

• a new thread t′ is created by t;

• (A′, G′) is the instantiation of the corresponding static thread specification by the

thread argument;

• (A ⇒ A′) ∧ (G′ ⇒ G);
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• the remainder behavior of the thread t also satisfies (A ∨G′, G ∧A′);

then Q ∪ {t′} is well-typed with regard to Θ{t′ ; (A′, G′), t ; (A ∨G′, G ∧A′)}.

If t later creates another thread t′′, because the specification of t already reflects the exis-

tence of t′, by Lemma 5.2 we know that t′′ will not interfere with t′ as long as its specifi-

cation satisfies the constraints. Therefore we do not need to explicitly check that t′ and t′′

are activated from the same static thread or that multiple activations of a static thread do

not interfere with each other.

These lemmas are used to prove the soundness of CMAP. They are somewhat simi-

lar to the heap update and heap extension lemmas used in TAL’s soundness proof [69].

People familiar with the traditional rely-guarantee method may feel this is nothing but

the parallel composition rule used to support nested cobegin/coend. However, by com-

bining the invariant-based proof technique used by type systems and the traditional rely-

guarantee method, we can now verify multi-threaded assembly program with a more flex-

ible program structure than the cobegin/coend structure. In particular, programs which are

not properly nested, as shown in Figure 5.4(c) and the main2 program in Figure 5.3, can

be supported in our system. This is one of the most important contributions of this paper.

5.2.2 Parameterized Assumption/Guarantee

The assumptions and guarantees are interfaces between threads, which should only talk

about shared resources. As we allow multiple activations of static threads, the behavior of

a dynamic thread may depend on its arguments, which is the thread’s private data. There-

fore, to specify a static thread, the assumption and guarantee need to be parameterized

over the thread argument.

In our thread model, the flat memory space is shared by all threads, and as in most

operating systems, the register file is saved at the moment of context switch. Therefore the

register file is thread-private data. The thread argument is stored in a dedicated register.

Rather than letting the assumption and guarantee be parameterized over the thread
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Figure 5.5: Code sharing between different threads

argument, we let them be parameterized over the whole register file. This makes our spec-

ification language very expressive. For instance, we allow the dynamic thread to change

its specification during its lifetime to reflect change in the environment. If the thread has

private data that tracks the composition of the environment, and its specification is pa-

rameterized by such data, then its specification automatically changes with the change of

the data, which in turn results from the change of the thread environment. This is the

key technique we use to support unbounded dynamic thread creation, as shown in the

program main2 in Figure 5.3.

5.2.3 Support of Modular Verification

The rely-guarantee method supports thread modularity well, i.e., code of one thread can

be verified independently without inspecting other threads’ code. However, it does not

have good support for code reuse. In CCAP, each thread has its own code heap and there

is no sharing of code between threads. As Figure 5.5(a) shows, if an instruction sequence

is used by multiple threads, it has multiple copies in different threads’ code heaps, each

copy verified with regard to the specifications of these threads.

Based on the rely-guarantee method, the thread modularity is also supported in our
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system. In addition, using our “lazy” checking of thread non-interference, and by the

queue update lemma, we can allow instruction sequences to be specified independently

of their calling thread, thus achieving better modularity.

As shown in Figure 5.5(b), we assign an assumption/guarantee pair to the specifica-

tion of each instruction sequence, and require the instruction sequence be well-behaved

with regard to its own assumption/guarantee. Similar to threads, the instruction se-

quence is well-behaved if, when it is executed by a dynamic thread, its execution is safe

and satisfies its guarantee, as long as other dynamic threads in the environment satisfy the

assumption. The instruction sequence only needs to be verified once with respect to its

own specification, and can be executed by different threads as long as certain constraints

are satisfied.

Intuitively, it is safe for a dynamic thread t with specification (Ai, Gi) to execute the

instruction sequence labeled by f as long as executing it does not require a stronger as-

sumption than Ai, nor does it violate the guarantee Gi. Therefore, if the specification of f

is (A, G), t can call f as long as Ai ⇒ A and G ⇒ Gi. The intuition is backed up by our

queue update lemma.

5.3 The CMAP Logic

In this section, we present the CMAP logic based on an abstract machine, which extends

the machine shown in Section 2.2 with a thread queue Q. In the next Chapter, we will

discuss the embedding of the CMAP logic into the OCAP framework for our original

machine model.

5.3.1 The Abstract Machine

As shown in Figure 5.6, the machine has 16 general purpose registers and two special

registers. The rt register records the thread id (t) of the currently executing thread. The ra

register is used to pass argument when a new thread is created.
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(Program) P ::= (C, S,Q, pc)
(CodeHeap) C ::= {f0 ; ι0, . . . , fn ; ιn}

(State) S ::= (H,R)
(Memory) H ::= {l0 ; w0, . . . , ln ; wn}
(RegFile) R ::= {r0 ; w0, . . . , r15 ; w15, rt ; w, ra ; w}
(Register) r ::= r0 | . . . | r15 | rt | ra

(Labels) f, l ::= n (nat nums)
(Word) w ::= i (integers)

(TQueue) Q ::= {t0 ; (R0, pc0), . . . , tn ; (Rn, pcn)}
(ThrdID) t ::= n (nat nums)

(Instr) ι ::= yield | fork f, rs | addu rd, rs, rt | addiu rd, rs, w | beq rs, rt, f
| bgtz rs, f | lw rd, w(rs) | subu rd, rs, rt | sw rt, w(rs) | j f | exit

(InstrSeq) I ::= ι | ι; I
Figure 5.6: The abstract machine

We model the queue Q of ready threads as a partial mapping from the thread id to an

execution context of a thread. The thread id t is a natural number generated randomly at

run time when the thread is created. The thread execution context includes the snapshot

of the register file and the program point where the thread will resume its execution. Note

that Q does not contain the current executing thread, which is different from the dynamic

thread queue used in Section 5.2.1.

In addition to the normal instructions we have seen in the original machine, we add

primitives fork, exit and yield to support multi-threaded programming, which can be viewed

as system calls to a thread library. We do not have a join instruction because thread join can

be implemented in this machine using synchronization. Operational semantics of this ab-

stract machine is shown in Figure 5.7. Here the functions NextS(pc,ι)( ) and NextPC(ι,S)( )

give the next state and program counter after executing the instruction ι at pc and state S.

The definitions are the same with those defined in Chapter 2.2 and are omitted here.

The primitive fork f, rs creates a new thread that will starts executing from f, and

passes the value in rs to it as the argument. The new thread will be assigned a fresh thread

id and placed in the thread queue waiting for execution. The current thread continues

with the subsequent instructions.
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(C, (H,R),Q, pc) 7−→ P′

if C(pc) = then P′ =
fork f, rs (C, (H,R),Q{t;(R′, f)}, pc+1)

if t 6∈ dom(Q), t 6= R(rt),
and R′ = {r0 ; , . . . , r15 ; , rt ; t, ra ; R(rs)}

yield (C, (H,R′),Q′ \ {t}, pc′)
where Q′ = Q{R(rt);(R, pc+1)}, t ∈ dom(Q′) and Q′(t) = (R′, pc′)

exit (C, (H,R′),Q \ {t}, pc′)
where t ∈ dom(Q) and Q(t) = (R′, pc′)

exit (C, (H,R),Q, pc) if Q = ∅
other ι (C,S′,Q, pc′)

where S′ = NextS(pc,ι)(S) and pc′ = NextPC(ι,S)(pc)

Figure 5.7: Operational Semantics for the CMAP Machine

At a yield instruction, the current thread will give up the control of the machine. Its

execution context is stored inQ. The scheduler will pick one thread non-deterministically

from the thread queue (which might be the yielding thread itself), restore its execution

context, and execute it.

The exit instruction terminates the execution of the current thread and non-deterministically

selects a thread from the thread queue. If the thread queue is empty, the currently running

thread is the last thread in the system. The machine reaches a stuttering state, i.e., the next

program configuration is always the same with the current one.

5.3.2 Program Specifications

The specification constructs of CMAP are defined in Figure 5.8. As in SCAP, the speci-

fication ψ for the code heap contains pairs of code labels and the specifications θ for the

corresponding code blocks. The code block specification θ is a quadruple (p, ĝ,A,G). The

assertion p is the precondition required to execute the code block. The local guarantee ĝ,

as explained in Section 5.1.2, describes a valid state transition – it is safe for the current

thread to yield control only after making a state transition specified by ĝ. We also assign a

pair ofA andG to each code block as part of its specification. As explained in Section 5.2.3,
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(CdSpec) θ ::= (p, ĝ,A,G)

(CdHpSpec) ψ ::= {(f0, θ0), . . . , (fn, θn)}
(StatePred) p ∈ State → Prop

(Assumption) A ∈ RegFile → Memory → Memory → Prop

(Guarantee) G, ĝ ∈ RegFile → Memory → Memory → Prop

(QSpec) Θ ::= {t0 ; (p0,A0,G0), . . . , tk ; (pk,Ak,Gk)}
Figure 5.8: Specification Constructs of CMAP

the code block can be certified with respect to its own A and G without knowing which

thread executes it. Here the A and G reflect knowledge of the dynamic thread environ-

ment at the time the instruction sequence is executed. Assumptions and guarantees (e.g.,

A, G and ĝ) are CiC terms with type RegFile → Memory → Memory → Prop, i.e., predicates

over a register file and two data heaps. Assumptions and guarantees specify the behavior

of threads by describing the change of shared memory. As mentioned in Section 5.2.2,

they are parameterized over the register file, which contains the private data of threads.

We also define the specification Θ of active threads in the thread queue Q. Within Θ,

each triple (p,A,G) specifies a dynamic thread at the point when it yields the control or

it is just created. The assertion p gives the constraint of the state when the thread gets

control back to execute its remaining instructions. The assumption and guarantee used

by the thread at the yield point are given by A and G. As we said in Section 5.2.1, the A

and G of each dynamic thread may change during the lifetime of the thread. Notice that

Θ is not part of the program specification. It is used only in the soundness proof. also

note that we do not need the local guarantee ĝ in specifications for threads in Q, because

they need to fulfill the guarantee G and use G as the initial local guarantee when they are

scheduled to resume execution.
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5.3.3 Inference Rules

Well-formed programs. The following PROG rule shows the invariants that need to be

maintained during program transitions.

S = (H,R) t = R(rt)

ψ ` C :ψ p S ψ `{(p, ĝ,A,G)} pc : C[pc]

ψ; Θ; ĝ ` {(C,S)}Q NI(Θ{t;(p,A,G)},Q{t;(R, pc)})
ψ ` (C, S,Q, pc)

(PROG)

The PROG rule requires that there be a quadruple (p, ĝ,A,G) specifying the current

code block. Also there exists a Θ that specifies threads in Q. As in CAP, we require that

the code heap be well-formed with respect to ψ, the current program state satisfy p, and

that it be safe to execute the code block C[pc] given the specification ψ and (p, ĝ,A,G).

Here C[pc] is defined as:

C[f] =




C(f) if C(f) = j f′ or C(f) = exit

ι;C[f+1] otherwise.

In addition, we check that Q satisfies the specification Θ, given the code heap, the current

state and the local guarantee for the remaining state transition the current thread needs

to make before it yields. Also we enforce that assumptions and guarantees for the current

thread and threads in Q implies non-interference.

The non-interference assertion NI(Θ,Q) requires that each dynamic thread be compat-

ible with all the other. It is formally defined as:

NI(Θ,Q) , ∀ti, tj ∈ dom(Θ).∀H,H′.

ti 6= tj → Gi Ri H H′ → Aj Rj H H′ (5.1)

where ( ,Ai,Gi) = Θ(ti), ( ,Aj ,Gj) = Θ(tj), (ri, ) = Q(ti) and (rj , ) = Q(tj).

99



Well-formed dynamic threads. The DTHRDS rule ensures each dynamic thread in Q is

in good shape with respect to the specification Θ, the current program state S, and the

transition ĝ that the current thread need do before other threads can take control.

(Rk, pck) = Q(tk), (pk,Ak,Gk) = Θ(tk), for all tk ∈ dom(Q)

∀H,H′. pk (H,Rk) → Ak Rk H H′ → pk (H′,Rk)

∀H′. ĝ R H H′ → pk (H′,Rk)

ψ `{(pk,Gk,Ak,Gk)} pck : C[pck]

ψ; Θ; ĝ ` {(C, (H,R))}Q (DTHRDS)

The first line gives the specification of each thread when it reaches a yield point, and

its execution context. The premise in line 2 requires that if it is safe for a thread to take

control at certain state, it should be also safe to do so after any state transition satisfying its

assumption. Note that the state transition will not affect the thread-private data in rk. The

next premise describes the relationship between the local guarantee of the current thread

and the preconditions of other threads. For any transitions starting from the current state

(H, r), as long as it satisfies ĝ, it should be safe for other threads to take control at the

result state. The last line requires that for each thread its remainder instruction sequence

must be well formed. Note we use Gk as the local guarantee because after yield, a thread

starts a new “atomic transition” described by its global guarantee.

Well-formed code heap. The CDHP rule is similar to the well-formed code heap rules in

CAP or SCAP: a code heap is well formed if every instruction sequence is well-formed

with respect to its corresponding specification in ψ.

for all (f, θ) ∈ ψ′ : ψ `{θ} f : C(f)
ψ ` C :ψ′

(CDHP)
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Thread creation. The FORK rule describes constraints on new thread creation, which en-

forces the non-interference between the new thread and existing threads.

(f′, (p′,G′,A′,G′)) ∈ ψ

A⇒ A′′ G′′ ⇒ G (A ∨G′′) ⇒ A′ G′ ⇒ (G ∧ A′′)
∀R,H,R′,H′. (R(rt) 6= R′(rt) ∧ R(rs) = R′(ra)) → p (H,R) → ĝ R H H′ → p′ (H′,R′)

∀R,H,H′. p′ (H,R) → A′ R H H′ → p′ (H,R′)

ψ `{(p, ĝ,A′′,G′′)} f+1 : I

ψ `{(p, ĝ,A,G)} f : fork f′, rs; I
(FORK)

As explained in Section 5.2.1, the parent thread can change its specification to reflect

the change of the environment. To maintain the non-interference invariant, constraints

between specifications of the parent and child threads have to be satisfied, as described in

Lemma 5.4. Here we enforce these constraints by premises in line 2, where (A∨G′′) ⇒ A′

is the shorthand for:

∀H,H′,H′′,R,R′. p (H,R) → R(rt) 6= R′(rt) → R(rs) = R′(ra)

→ (A ∨G′′) R H′ H′′ → A′ R′ H′ H′′ ,

and G′ ⇒ (G ∧ A′′) for:

∀H,H′,H′′,R,R′. p (H,R) → R(rt) 6= R′(rt) → R(rs) = R′(ra)

→ G′ R′ H′ H′′ → (G ∧ A′′) R H′ H′′ .

Above non-interference checks use the extra knowledge that:

• the new thread id is different with its parent’s, i.e., R(rt) 6= R′(rt);

• the argument of the new thread comes from the parent’s register rs, i.e., R(rs) =

R′(ra);

• the parent’s register file satisfies the precondition, i.e., p (H,R).
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In most cases, the programmer can just pick (A ∨ Ĝ′) and (G ∧ Â′) as A′′ and G′′

respectively, where Ĝ′ and Â′ are instantiations of G′ and A′ using the value of the child’s

argument.

The premise in line 3 says that after the current thread completes the transition de-

scribed by ĝ, it should be safe for the new thread to take control with its new register file

(R′), whose relationship between the parents register file R is satisfied.

The next premise requires that the precondition p′ for the new thread is stable with

respect to its assumption A′. Therefore, the new thread can be scheduled to run after any

number of state transitions, as long as each of them satisfies A′.

The last premise checks the well-formedness of the remainder instruction sequence.

Since the fork instruction does not change states, we need not change the precondition p

and ĝ.

Yielding and termination.

∀R,H,H′. p (H,R) → A R H H′ → p (H,R′) ∀R,H. p (H,R) → ĝ R H H

ψ `{(p,G,A,G)} f+1 : I

ψ `{(p, ĝ,A,G)} f : yield; I
(YIELD)

The YIELD rule requires that it is safe for the yielding thread to take back control after

any state transition satisfying the assumption A. Also the current thread cannot yield

until it completes the required state transition, i.e., an identity transition satisfies the local

guarantee ĝ. Lastly, one must certify the remainder instruction sequence with the local

guarantee reset to G.

∀R,H. p (H,R) → ĝ R H H
ψ `{(p, ĝ,A,G)} f : exit; I

(EXIT)

The EXIT rule is simple: it is safe for the current thread to terminate its execution only after

it finishes the required transition described by ĝ, which is an identity transition. The rest
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of the current block following exit will not be executed, so we do not need to check its

well-formedness.

Other instructions.

ι ∈ {addu rd, rs, rt, addiu rd, rs, w, subu rd, rs, rt, lw rd, w(rs), sw rt, w(rs)}, rd 6∈ {rt, ra}

p⇒ p′ ◦ NextS(f,ι) ∀S, S′. p S→ ĝ′ NextS(f,ι)(S) S′ → ĝ S S′

A⇒ A′ ◦ NextS(f,ι) G′ ◦ NextS(f,ι) ⇒ G ψ `{(p′, ĝ′,A′,G′)} f+1 : I

ψ `{(p, ĝ,A,G)} f : ι; I
(SIMP)

The SIMP rule covers the verification of instruction sequences starting with a simple

command such as an arithmetic instruction or a memory operation instruction. We re-

quire that the program not update registers rt and ra. In these cases, one must find an

intermediate precondition (p′, ĝ′,A′,G′) under which the remainder instruction sequence

I is well-formed.

The intermediate assertion p′ must hold on the updated machine state, and the inter-

mediate guarantee ĝ′ applied to the updated machine state must be no weaker than the

current guarantee ĝ applied to the current state. Recall the definition of p⇒ p′ ◦NextS(f,ι)

in Equaiton 3.1 (Section 3.1.1).

Since A and G are parameterized over R, which will be changed by the instruction

ι, we may change A and G to ensure the assumption does not become stronger and the

guarantee does not become weaker. Here we use A⇒ A′ ◦ NextS(f,ι) as a short hand for:

∀R0,R1,H0,H1. p (H0,R0) ∧ (NextS(f,ι)(H0,R0) = (H1,R1))

→ ∀H,H′. A R0 H H′ → A′ R1 H H′ .

The definition for G′ ◦ NextS(f,ι) ⇒ G is similar.
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(f′, (p′, ĝ′,A′,G′)) ∈ ψ

p⇒ p′ A⇒ A′ G′ ⇒ G

∀R,H,H′. p (H,R) → ĝ′ R H H′ → ĝ R H H′

ψ `{(p, ĝ,A,G)} f : j f′
(J)

The J rule checks the specification of the target instruction sequence. As mentioned be-

fore, each instruction sequence can have its own specification, independent of the thread

that will jump to it. It is safe for a thread to execute an instruction sequence as long as ex-

ecuting the instruction sequence does not require a stronger assumption than the thread’s

assumption A, nor does it break the guarantee G of the thread.

(f′, (p′, ĝ′,A′,G′)) ∈ ψ A⇒ A′ G′ ⇒ G

∀S. p S→ (S.R(rs) > 0) → p′ S

∀R,H,H′. p (H,R) → (R(rs) > 0) → ĝ′ R H H′ → ĝ R H H′

∀S. p S→ (S.R(rs) ≤ 0) → p′′ S

∀R,H,H′. p (H,R) → (R(rs) ≤ 0) → ĝ′′ R H H′ → ĝ R H H′

ψ `{(p′′, ĝ′′,A,G)} f+1 : I

ψ `{(p, ĝ,A,G)} f : bgtz rs, f′; I
(BGTZ)

(f′, (p′, ĝ′,A′,G′)) ∈ ψ A⇒ A′ G′ ⇒ G

∀S. p S→ (S.R(rs) = S.R(rt)) → p′ S

∀R,H,H′. p (H,R) → (R(rs) = R(rt)) → ĝ′ R H H′ → ĝ R H H′

∀S. p S→ (S.R(rs) 6= S.R(rt)) → p′′ S

∀R,H,H′. p (H,R) → (R(rs) 6= R(rt)) → ĝ′′ R H H′ → ĝ R H H′

ψ `{(p′′, ĝ′′,A,G)} f+1 : I

ψ `{(p, ĝ,A,G)} f : beq rs, rt, f′; I
(BEQ)

Rules for conditional branching instructions are similar to the J rule, which are straight-

forward to understand.
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5.3.4 Soundness of CMAP

The soundness of CMAP inference rules with respect to the operational semantics of the

machine is established following the syntactic approach of proving type soundness [99].

From the “progress” and “preservation” lemmas, we can guarantee that, given a well-

formed program under compatible assumptions and guarantees, the current instruction

sequence will be able to execute without getting “stuck”. As before, we define P 7−→n P′

as the relation of n-step program transitions. The soundness of CMAP is formally stated

as Theorem 5.7.

Lemma 5.5 (Progress)

For all ψ and P, if ψ ` P, then there exists P′ such that P 7−→ P′.

Proof. We prove the lemma by case analysis of all ι at pc. If ι is one of add, sub, movi,

fork, exit, or yield instructions, the program can always make a step by the definition of the

operational semantics. If ι is a ld or st instruction, the side conditions for making a step,

as defined by the operational semantics, are established by the SIMP rule. If ι is bgt, beq,

or jd, the operational semantics may fetch a code block from the code heap; such a code

block exists by the inversion of the CDHP rule. 2

Lemma 5.6 (Preservation)

For all ψ, P and P′, if ψ ` P and P 7−→ P′, then we have ψ ` P′.

kwProof. Suppose P = (C, (H,R),Q, pc). Let t = R(rt). By the assumption ψ ` P and the

inversion of the PROG rule, we know that there exist p, ĝ, A, G and Θ such that

1. ψ ` C :ψ;

2. p S;

3. ψ `{(p, ĝ,A,G)} pc : C[pc];

4. ψ; Θ; ĝ ` {(C,S)}Q;
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5. NI(Θ{t;(p,A,G)},Q{t;(R, pc)}) (see Section 5.3.3 for the definition of NI).

We prove the lemma by case analysis over C[pc]. Here we only give the detailed proof of

cases where C[pc] starts with fork or yield. Proofs for the rest of cases are trivial.

Case C[pc] = fork f, rs; I.

By the operational semantics, we know that P′ = (C, S,Q{t′;(R′, f)}, pc+1), where

t′ 6∈ dom(Q), t′ 6= t, and R′ = {r0 ; , . . . , r15 ; , rt ; t, ra ; R(rs)}. According to

3 and the inversion of the FORK rule, we know that there exist p′, A′, G′, A′′ and G′′ such

that

f.1 (f, (p′,G′,A′,G′)) ∈ ψ;

f.2 A⇒ A′′, G′′ ⇒ G, (A ∨G′′) ⇒ A′, and G′ ⇒ (G ∧ A′′);

f.3 ∀R,H,R′,H′. (R(rt) 6= R′(rt) ∧ R(rs) = R′(ra)) → p (H,R) → ĝ R H H′ → p′ (H′,R′);

f.4 ψ `{(p, ĝ,A′′,G′′)} pc+1 : I;

f.5 ∀R,H,H′. p′ (H,R) → A′ R H H′ → p′ (H,R′)

Then we let Θ′ = Θ{t′;(p′,G′,A′,G′)}.

According to the PROG rule, to prove ψ ` P′, we need to prove the following:

• ψ ` C :ψ, which trivially follows 1. Since C never changes, we will omit the proof of

it in the following cases;

• p S, which follows 2;

• ψ `{(p, ĝ,A′′,G′′)} pc+1 : I, which follows f.4.

• ψ; Θ′; ĝ ` {(C,S)}Q{t′;(R′, f)}. By 4 and the inversion of the DTHRDS rule, we

need to check the following for the new thread t′:

– ∀H′,H′′.p′ (H′, r′) → A′ r′ H′ H′′ → p′ (H′′, r′). By f.5.

– ψ `{(p′,G′,A′,G′)} f : C[f]. By 1 and f.1.

106



– ∀H′. ĝ R H H′ → p′ (H′,R′). By 2, and f.3.

• NI(Θ′{t;(p,A,G)},Q′{t;(R, pc)}), where Q′ = Q{t′;(R′, f)}. By 2, 5, f.2, and

Lemma 5.4.

Case C[pc] = yield; I.

By the operational semantics, we know that P′ = (C, (H,R′),Q′ \ {t′}, pc′), where Q′ =

Q{t;(R, pc+1)}, t′ ∈ dom(Q′) and (R′, pc′) = Q′(t′).

If t′ = t, the yield instruction is like a no-op instruction. The proof is trivial. So we just

consider the case that t′ ∈ dom(Q) and (r′, ι′) = Q(t′).

By 4 we know that there exist p′, g′ and G′ such that (p′,A′,G′) = Θ(t′). We let Θ′ =

(Θ{t;(p,A,G)}) \ {t′}. According to the PROG rule, to prove lspec ` P′, we need to

prove:

• p (H, r′).

By 4 and the inversion of the DTHRDS rule, we know that ∀H′. ĝ R H H′ → p′ (H′,R′),

also by 2, 3 and the inversion of the YIELD rule we get ĝ R H H. Therefore we can

prove p′ (H, r′).

• ψ `{(p′,G′,A′,G′)}C[pc′]. By 4 and the inversion of the DTHRDS rule.

• ψ; Θ′;G′ ` {(C, (H, r′))}Q′ \ {t′} (where Q′ = Q{t;(R, pc+1)} and t′ 6= t). To

prove this, we only check the following for the yielding thread:

– ∀H,H′. p (H,R) → A R H H′ → p (H′,R). This follows 3 and the inversion of

the YIELD rule.

– ψ `{(p,G,A,G)} pc+1 : I. This follows 3 and the inversion of the YIELD rule.

– ∀H′. G′ R′ H H′ → p (H′,R). By 5 we know ∀H′,H′′.G′ r′ H′ H′′ → A r H′ H′′.

Therefore, we only need prove: ∀H′′.A H H′′ → p (H′′, r). By 3, the inversion of

the YIELD rule, and 2 we get it.
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• NI(Θ′{t′;(p′,A′,G′)},Q{t;r, pc+1)}), which follows 5.

Note thatQ{t;r, pc+1)}) = (Q′ \ {t′}){t′;(r′, pc′)}, whereQ′ = Q{t;(R, pc+1)}
and (R′, pc′) = Q′(t′).

Case other cases, the proof is trivial. The whole proof is formalized in Coq [31]. 2

From the progress and preservation lemmas, we can prove that execution of P would

never get stuck as long as P satisfy the global invariant formalized by the PROG rule, i.e.,

ψ ` P. More importantly, the global invariant holds over every intermediate machine

configuration during execution, from which we can derive rich properties of programs. In

the following soundness theorem, we show the support of partial correctness. In addition

to non-stuckness, the soundness theorem says that the assertions specified in ψ holds

when the corresponding code labels are reached through jump or branch instructions.

Theorem 5.7 (Soundness)

For all n, ψ and P, if ψ ` P, then there exists P′ such that P 7−→n P′. Also, suppose

P′ = (C, S,Q, pc), we have

(1) if C(pc) = j f, then there exist p, ĝ, A and G such that (f, (p, ĝ,A,G)) ∈ ψ and p S;

(2) if C(pc) = beq rs, rd, f and S.R(rs) = S.R(rd), then there exist p, ĝ, A and G such

that (f, (p, ĝ,A,G)) ∈ ψ and p S;

(3) if C(pc) = bgtz rs, f and S.R(rs) > 0, then there exist p, ĝ, A and G such that

(f, (p, ĝ,A,G)) ∈ ψ and p S.

Proof. The proof is very simple. By doing induction over n and applying the progress

and preservation lemmas, we can prove a conclusion stronger than non-stuckness, i.e.,

we can prove ψ ` P′ in addition to the existence of P′. Then propositions (1), (2) and (3)

become trivial by inversion of the PROG rule. 2
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5.4 Examples

5.4.1 Unbounded Dynamic Thread Creation

In Figure 5.3 we showed a small program main2 which spawns child threads within a

while loop. This kind of unbounded dynamic thread creation cannot be supported using

the cobegin/coend structure. We show how such a program is specified and verified using

our logic. To simplify the specification, we trivialize the function f and g and let f(i) = i

and g(x, ) = x + 1.

We assume the high-level program works in a preemptive mode. Figure 5.9 shows the

CMAP implementation, where yield instructions are inserted to simulate the preemption.

This also illustrates that our logic is general enough to simulate the preemptive thread

model.

To certify the safety property of the program, the programmer needs to find a speci-

fication for the code heap. In Figure 5.9 we show definitions of assertions that are used

to specify the program. Proof sketches are also inserted in the program. Following our

convention set in Chapter 4, we use the register name $r and [l] to represent values con-

tained in r and the memory location l, respectively. We also use primed representations

$r′ and [l]′ to represent values in the resulting state of a state transition (i.e., the second

argument of ĝ, A and G).

The following formulae show the specifications of code heap, and the initial memory

and program counter pc.

ψ , { (main, (True,G0,A0,G0) ),

(chld, (p,G,A,G) ),

(loop, (p′,G1,A1,G1) ),

(cont, (p3,G3,A3,G3) )

}
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p , 0 ≤ $ra < 100 A , [data+$ra] = [data+$ra]′

G , ∀i.((0 ≤ i < 100) ∧ (i 6= $ra)) → ([data+i] = [data+i]′)

A0 , ∀i.(0 ≤ i < 100) → ([data+i] = [data+i]′) G0 , True

A1 , ∀i.((0 ≤ i < 100) ∧ (i ≥ $r1)) → ([data+i] = [data+i]′)
G1 , ∀i.((0 ≤ i < 100) ∧ (i < $r1)) → ([data+i] = [data+i]′)
A2 , ∀i.((0 ≤ i < 100) ∧ (i > $r1)) → ([data+i] = [data+i]′)
G2 , ∀i.((0 ≤ i < 100) ∧ (i ≤ $r1)) → ([data+i] = [data+i]′)

A3 , True G3 , ∀i.(0 ≤ i < 100) → ([data+i] = [data+i]′)
p′ , (0 ≤ $r1 < 100) ∧ ($r2 = 1) ∧ ($r3 = 100) p3 , $r1 = 100

main : −{(True,G0,A0,G0)}
addiu $r1, $r0, 0
addiu $r2, $r0, 1
addiu $r3, $r0, 100
j loop

loop : −{(p′,G1,A1,G1)}
beq $r1, $r3, cont
yield
sw $r1, data($r1)
yield
fork chld, $r1
−{(p′,G1,A2,G2)}
yield
addu $r1, $r1, $r2
−{(p′,G1,A1,G1)}
yield
j loop

cont : −{(p3,G3,A3,G3)}
. . .

chld : −{(p,G,A,G)}
addiu $r1, $r0, data
yield
addu $r1, $r1, $ra
yield
lw $r2, 0($r1)
yield
addiu $r3, $r0, 1
yield
addu $r2, $r2, $r3
yield
sw $r2, 0($r1)
exit

Figure 5.9: Loop: the CMAP program
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Initial H , {data ; , . . . , data + 99 ; }
Initial pc , main

For each child thread, it is natural to assume that no other threads will touch its share

of the data entry and guarantee that other threads’ data entry will not be changed, as

specified by A and G. For the main thread, it assumes at the beginning that no other

threads in the environment will change any of the data entries (A0).

Specifying the loop body is not easy. We need to find a loop invariant (p′,G1,A1,G1)

to attach to the code label loop. At first glance, A1 and G1 can be defined the same as

A3 and G3, respectively. However, this does not work because our FORK rule requires

G ⇒ G1, which cannot be satisfied. Instead, our A1 and G1 are polymorphic over the

loop index r0, which reflects the composition of the changing thread environments. At

the point that a new child thread is forked but the value of r0 has not been changed to

reflect the environment change, we explicitly change the assumption and guarantee to A2

and G2. When the value of r0 is increased, we cast A2 and G2 back to A1 and G1.

5.4.2 The Readers-Writers Problem

Our logic is general enough to specify and verify general properties of concurrent pro-

grams. In this section, we give a simple solution of the readers-writers problem and show

that there is no race conditions. This example also shows how P/V operations and lock

primitives can be implemented and specified in CMAP.

Figure 5.10 shows the C-like pseudo code for readers and writers. Note that this simple

code just ensures that there is no race conditions. It does not ensure fairness. Verification

of liveness properties is part of our future work. We assume that 100 readers and writers

will be created by a main thread. The main thread and its specification will be very similar

to the main program shown in the previous section, so we omit it here and just focus on the

readers and writers code. The array of rf and wf are not necessary for the implementation.

They are introduced as auxiliary variables just for specification and verification purpose.
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Variables :
int[100] rf, wf;
int cnt, writ, l, v;

Initially :
rf[i] = wf[i] = 0, 0 ≤ i < 100;
cnt = 0 ∧ writ = 1 ∧ l = 0;

writer(int x){
while(true){
P(writ);

wf[x] := 1;

write v . . .

wf[x] := 0;

V(writ);
}

}

reader(int x){
while(true){
lock acq(l);
if (cnt = 0){
P(writ);

}
cnt := cnt + 1;
rf[x] := 1;

lock rel(l);

read v . . .

lock acq(l);
rf[x] := 0;
cnt := cnt− 1;
if(cnt = 0){
V(writ);

}
lock rel(l);

}}

Figure 5.10: Readers & writers : the high-level program

acq(f) : −{}
yield
addiu $r1, $r0, l
lw $r2, 0($r1)
bgtz $r2, acq
sw $rt, 0($r1)
j f

rel(f) : −{}
yield
sw $r0, l($r0)
j f

p writ(f) : −{}
yield
addiu $r1, $r0, writ
lw $r2, 0($r1)
beq $r2, $r0, p writ
sw $r0, 0($r1)
j f

v writ(f) : −{}
addiu $r1, $r0, 1
addiu $r2, $r0, writ
sw $r1, 0($r2)
j f

Figure 5.11: Lock & semaphore primitives
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reader : −{(p1, ĝ,Ar,Gr)}
JD acq(cont 1)

cont 1 : −{(p2, ĝ,Ar,Gr)}
yield
lw $r2, cnt($r0)
yield
beq $r2, $r0, getw
j inc cnt

getw : −{(p3, ĝ,Ar,Gr)}
JD p writ(inc cnt)

inc cnt : −{(p4, ĝ,Ar,Gr)}
yield
lw $r2, cnt($r0)
yield
addiu $r3, $r0, 1
addu $r2, $r2, $r3
sw $r2, cnt($r0)
yield
addiu $r1, $r0, 1
sw $r1, rf($ra)
−{(p5, ĝ,Ar,Gr)}
JD rel(cont 2)

cont 2 : −{(p6, ĝ,Ar,Gr)}
yield
. . .
yield
−{(p6, ĝ,Ar,Gr)}
JD acq(cont 3)

cont 3 : −{(p7, ĝ,Ar,Gr)}
yield
sw $r0, rf($ra)
yield
lw $r2, cnt($r0)
yield
addiu $r3, $r0, 1
subu $r2, $r2, $r3
sw $r2, cnt($r0)
yield
beq $r2, $r0, relw
−{(p8, ĝ,Ar,Gr)}
JD rel(reader)

relw : −{(p9, ĝ,Ar,Gr)}
yield
JD v writ(cont 4)

cont 4 : −{(p8, ĝ,Ar,Gr)}
JD rel(reader)

writer : −{(p10, ĝ,Aw,Gw)}
JD p writ(cont 5)

cont 5 : −{(p11, ĝ1,Aw,Gw)}
addiu $r1, $r0, 1
sw $r1, wf($ra)
yield
. . .
yield
sw $r0, wf($ra)
−{(p11, ĝ2,Aw,Gw)}
JD v writ(writer)

Figure 5.12: Readers & writers : the CMAP program
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inv1 , ([l] = 0) → (
∑

i[rf+i]) = [cnt] inv2 , (
∑

i[wf+i]) ≤ 1
inv3 , ((

∑
i[wf+i]) = 1) → ([cnt]=0 ∧ [writ]=0)

inv4 , ([writ] = 1) → ([cnt] = 0) Inv , inv1 ∧ inv2 ∧ inv3 ∧ inv4

idr , ∀i. [rf+i] = [rf+i]′

idr1(i) , ∀j. (i 6= j) → ([rf+j] = [rf+j]′) idr2(i) , [rf+i] = [rf+i]′

idw , ∀i. [wf+i] = [wf+i]′

idw1(i) , ∀j. (i 6= j) → ([wf+j] = [wf+j]′) idw2(i) , [wf+i] = [wf+i]′

Ar , idr2([$ra]) ∧ (([rf+$ra] = 1) → [v] = [v]′) ∧ ([l] = $rt → [cnt] = [cnt]′)
Gr , idw ∧ idr1($ra) ∧ ([v] = [v]′) ∧ ([l] 6∈ {$rt, 0} → [cnt] = [cnt]′)

Aw , idw2($ra) ∧ (([wf+$ra] = 1) → [v] = [v]′)
Gw , idr ∧ idw1($ra) ∧ (([writ]=0 ∧ [wf+$ra]=0) → [v] = [v]′)

ĝ , λR,H,H′. H = H′
ĝ1 , λR,H,H′. H{wf+$ra;1} = H′
ĝ2 , λR,H,H′. H{writ;1} = H′
p1 , ([rf+$ra] = 0) ∧ ([l] 6= $rt) ∧ Inv
p2 , ([rf+$ra] = 0) ∧ ([l] = $rt) ∧ Inv
p3 , p2 ∧ ([cnt] = 0) ∧ Inv
p4 , p2 ∧ ([writ] = 0) ∧ Inv
p5 , ([rf+$ra] = 1) ∧ ([l] = $rt) ∧ Inv
p6 , ([rf+$ra] = 1) ∧ ([l] 6= $rt) ∧ ([cnt] > 0) ∧ Inv
p7 , ([rf+$ra] = 1) ∧ ([l] = $rt) ∧ ([cnt] > 0) ∧ Inv
p8 , ([l] = $rt) ∧ ([rf+$ra] = 0) ∧ Inv
p9 , ([l] = $rt) ∧ ([rf+$ra] = 0) ∧ ([writ] = 0) ∧ ([cnt] = 0) ∧ Inv
p10 , ([wf+$ra] = 0) ∧ Inv
p11 , ([wf+$ra] = 0) ∧ ([writ] = 0) ∧ ([cnt] = 0) ∧ Inv

Figure 5.13: Program specifications
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Figure 5.12 shows the CMAP implementation of the high-level pseudo code. Yielding

is inserted at all the intervals of the atomic operations of the high-level program. The lock

primitives and P/V operations, as shown in Figure 5.11, are implemented as program

macros parameterized by the return label. They will be instantiated and inlined in the

proper position of the code. We introduce a pseudo instruction JD to represent the inlining

of the macro.

We define the global invariant and reader/writer’s assumptions and guarantees in

Figure 5.13. The code heap specifications are embedded in the code as annotations, as

shown in Figure 5.12. Specifications of lock primitives and P/V operations are given at

places they are inlined. Definitions of assertions and local guarantees used in code heap

specifications are shown in Figure 5.13.

The assertion inv1 says that out of the critical section protected by the lock, the value

of the counter cnt is always consistent and reflects the number of the readers that can

read the value of v; inv2 says at one time there is at most one writer that can change

the value of v; while inv3 and inv4 states the relationship between the counter cnt, the

semaphore variable writ and the actual number of writers that can write the data, which

must be maintained to ensure the mutual exclusive access between readers and writers.

The program invariant Inv, which is the conjunction of the four, must be satisfied at any

step of the execution.

The assumptions and guarantees of readers and writers are parameterized by their

thread id (in rt) and thread argument (in ra). The reader assumes (Ar) that if it has the

right to read the data v (i.e., rf[ra] = 1), nobody can change the data. Also, if it owns

the lock, nobody else can change the value of the counter. Finally, it assumes its auxiliary

variable rf[ra] will never be changed by others. Readers guarantee (Gr) that they will

never change the shared data v and auxiliary variables of other threads, and it will not

revise the counter unless it owns the lock. Writers’ assumption (Aw) and guarantee (Gw)

are defined in a similar way to ensure the non-interference.
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Variables:
nat m, n;
nat[2] flag;

Main :
m := α; n := β;
flag[0] := 0;
fork(gcd, 0);
flag[1] := 0;
fork(gcd, 1);
while (!flag[0])
yield;

while (!flag[1])
yield;

post proc . . .

void gcd(int x){
while (m 6= n){
if ((m > n)&&(x = 0))
m := m− n;

else if ((m < n)&&(x = 1))
n := n− m;

}
flag[x] := 1;

}

Figure 5.14: GCD: high-level program

5.4.3 Partial Correctness of A Lock-Free Program

Figure 5.15 and 5.16 give the CMAP implementation of the Euclidean algorithm to com-

pute the greatest common divisor (GCD) of α and β, stored at locations m and n ini-

tially. This is a lock-free algorithm, i.e., no synchronization is required to ensure the

non-interference even if atomic operations are machine instructions. To show the lock-

free property, we insert yield instructions at every program point of the chld thread (some

yield instructions are omitted in the main thread for clarity).

In Figure 5.17 we show definitions of assertions used to specify the program. The fol-

lowing formulae show the (partial) specifications of the code heap, and the initial memory

and instruction sequence.

ψ , {(main, (True,G0,A0,G0)), (chld, (p2 ∧ p8,Gg,Ag,Gg)), . . . }
Initial H , {m ; , n ; , flag ; , (flag + 1) ; }
Initial pc , main

The partial correctness of the gcd algorithm is inferred by the fact that p2 is established at

the entry point and Gg is satisfied.

116



main : −{(True,G0,A0,G0)}
j begn

begn : −{(True,G0,A0,G0)}
addiu $r1, $r0, α
sw $r1, m($r0)
yield
addiu $r1, $r0, β
sw $r1, n($r0)
yield
addiu $r1, $r0, flag
sw $r0, 0($r1)
yield
fork chld, $r0

next : −{p0 ∧ p2, ĝ,A1,G1}
yield
sw $r0, 1($r1)
yield
addiu $r2, $r0, 1
fork chld, $r2

join1 : −{p0 ∧ p2 ∧ p3, ĝ,A2,G2}
yield
lw $r2, 0($r1)
beq $r0, $r2, join1

join2 : −{p0 ∧ p2 ∧ p4, ĝ,A2,G2}
yield
lw $r2, 1($r1)
beq $r0, $r2, join2

post : −{(p2 ∧ p5, ĝ,A2,G2)}
yield
. . .

Figure 5.15: GCD: the main thread

chld : −{(p2 ∧ p8,Gg,Ag,Gg)}
j gcd

gcd : −{p2 ∧ p8}
yield
lw $r1, m($r0)
yield
−{p2 ∧ p10}
lw $r2, n($r0)
yield
−{p2 ∧ p11}
beq $r1, $r2, done
yield
subu $r3, $r1, $r2
yield
bgtz $r3, calc1
yield
j calc2

done : −{p1 ∧ p2 ∧ p8}
yield
addiu $r1, $r0, 1
yield
sw $r1, flag($ra)
exit

calc1 : −{p2 ∧ p12}
yield
beq $r0, $ra, cld1
yield
j loop

cld1 : −{p2 ∧ p13}
yield
sw $r3, m($r0)
yield
j loop

calc2 : −{p2 ∧ p14}
yield
addiu $r3, $r0, 1
yield
beq $r3, $ra, cld2
yield
j loop

cld2 : −{p2 ∧ p15}
yield
subu $r3, $r2, $r1
yield
sw $r3, n($r0)
yield
j loop

Figure 5.16: GCD: the chld thread
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id1 , [m] = [m]′ id2 , [n] = [n]′

id3 , ([flag+0] = [flag+0]′) ∧ ([flag+1] = [flag+1]′)

G0 , True A0 , id1 ∧ id2 ∧ id3

p , id2 ∧ ([m] > [n] → (GCD([m], [n]) = GCD([m]′, [n]′))) ∧ ([m] ≤ [n] → id1)
p′ , id1 ∧ ([m] < [n] → (GCD([m], [n]) = GCD([m]′, [n]′))) ∧ ([m] ≥ [n] → id2)

Gg , ([flag+$ra]′ = 0 → (($ra = 0 ∧ p) ∨ ($ra = 1 ∧ p′)))
∧([flag+$ra]′ = 1 → (id1 ∧ id2 ∧ [m]′ = [n]′))
∧([flag+$ra] = 1 → H = H′)
∧([flag+(1− $ra)] = [flag+(1− $ra)]′)

Ag , ([flag+$ra]′ = 0) → (([flag+$ra] = [flag+$ra]′)
∧(($ra = 0 ∧ p′) ∨ ($ra = 1 ∧ p)))

G1 , G0 ∧ ([flag+0]′ = 0 → (([flag+0] = [flag+0]′) ∧ p′))
A1 , A0 ∨ (([flag+1] = [flag+1]′) ∧ ([flag+0]′ = 0 → p)

∧([flag+0]′ = 1 → (id1 ∧ id2 ∧ [m]′ = [n]′)))
∧([flag+0] = 1 → H = H′))

G2 , G1 ∧ ([flag+1]′ = 0 → (([flag+1] = [flag+1]′) ∧ p))
A2 , A1 ∨ (([flag+0] = [flag+0]′) ∧ ([flag+1]′ = 0 → p′)

∧([flag+1]′ = 1 → (id1 ∧ id2 ∧ [m]′ = [n]′)))
∧([flag+1] = 1 → H = H′))

ĝ , H = H′ p0 , $r1 =flag p1 , [m]=[n]
p2 , GCD([m], [n]) = GCD(α, β) p3 , [flag+0] = 0 ∨ ([flag+0] = 1 ∧ p1)
p4 , ([flag+1] = 0 ∨ [flag+1] = 1) ∧ [flag+0] = 1 ∧ p1

p5 , ([flag+0] = 1) ∧ ([flag+1] = 1) ∧ p1

p6 , ($ra = 0) ∧ ([flag+0] = 0) p7 , ($ra = 1) ∧ ([flag+1] = 0)
p8 , p6 ∨ p7

p10 , (p6 ∧ $r1 = [m]) ∨ (p7 ∧ ($r1 ≤ [n] → $r1 = [m]))
p11 , (p6 ∧ $r1 = [m] ∧ ($r1 ≥ $r2 → $r2 = [n]))

∨(p7 ∧ $r2 = [n] ∧ ($r1 ≤ $r2 → $r1 = [m]))

p12 , ($r3 = $r1−$r2) ∧ ($r3 > 0)
∧($ra = 0 → ([flag+0] = 0) ∧ ($r1 = [m]) ∧ ($r2 = [n]))

p13 , p6 ∧ p12

p14 , ($r1 < $r2) ∧ ($ra = 1 → ([flag+1] = 0) ∧ ($r1 = [m]) ∧ ($r2 = [n]))
p15 , p7 ∧ p14

Figure 5.17: GCD: Assertion Definitions
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Two child threads are created using the same static thread chld. They use thread argu-

ments to distinguish their task. Correspondingly, the assumption Ag and Gg of the static

thread chld also use the thread argument to distinguish the specification of different dy-

namic copies. The child thread does not change its assumption and guarantee throughout

its lifetime. Therefore we omit Ag and Gg in the code heap specifications. Since we insert

yield instructions at every program point, every local guarantee is simplyGg, which is also

omitted in the specifications.

At the data initiation stage, the main thread assumes no threads in the environment

changes [m], [n] and the flags, and guarantees nothing, as shown in A0 and G0 (see Fig-

ure 5.17). After creating child threads, the main thread changes its assumption and guar-

antee to reflect the changing environment. The new assumption is just the disjunction of

the previous assumption and the guarantee of the new thread (instantiated by the thread

id and thread argument), similarly the new guarantee is the conjunction of the previous

guarantee and the new thread’s assumption.

This example also shows how thread join can be implemented in CMAP by synchro-

nization. We use one flag for each thread to indicate if the thread is alive or not. The

assumptions and guarantees of the main thread also take advantages of these flags so that

it can weaken its guarantee and strengthen its assumption after the child threads die.

5.5 Discussions and Summary

CMAP is proposed to certify multi-threaded assembly code with unbounded dynamic

thread creations. The work is related to two directions of research: concurrency veri-

fication and PCC. The rely-guarantee method [59, 90, 93, 1, 38, 102] is one of the best

studied technique for compositional concurrent program verification. However, most

of the work on it are based on high-level languages or calculi, and none of them sup-

port unbounded dynamic thread creation. On the other hand, many PCC frameworks

[72, 69, 6, 46, 101, 27, 102] have been proposed for machine/assembly code verification,
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but most of them only support sequential code. The only intersection point of these two

directions is the work on CCAP [102], which applies the R-G method at the assembly level

to verify general concurrency properties, like mutual exclusion and deadlock-freedom.

Unfortunately, CCAP does not support dynamic thread creation either.

Recently, O’Hearn and others [78, 14, 13] applied separation logic to reason about con-

current programs. Bornat et al. [13] showed how to verify the race-free property of a

program solving the readers and writers problem, which is similar to the program pre-

sented in this paper. However, their work heavily depends on the higher-level language

features, such as resources and conditional critical regions. As other traditional work

on concurrency verification, they only support nested cobegin/coend structure. It is not

clear how their technique can be applied to support assembly code verification with un-

bounded dynamic thread creation. The relationship between rely-guarantee reasoning

and concurrent separation logic will be studied in Chapter 7.

A number of model checkers have been developed for concurrent software verifi-

cation, but most of them only check programs with a fixed finite number of threads

[53, 29, 48, 18, 41, 39]. The CIRC algorithm [49] supports unbounded number of threads,

but it does not model the dynamic thread creation and the changing thread environment.

Qadeer and Rehof [84] pointed out that verification of concurrent Boolean program with

unbounded parallelism is decidable if the number of context switches is bounded, but

they do not directly verify dynamic thread creation either. Given a context bound k, they

reduce a dynamic concurrent program P to a program Q with k+1 threads and verify Q

instead. 3VMC [100] supports both unbounded number of threads and dynamic thread

creation, but it is not based on the rely-guarantee method and does not support composi-

tional verification.

Many type systems are also proposed to reason about concurrent programs [36, 37, 40,

42]. Unlike CMAP, which uses high-order predicate logic to verify general program prop-

erties, they are designed to automatically reason about specific properties of programs,

like races, deadlocks and atomicity. Also, they do not directly generate proofs about pro-
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gram properties. Instead, proofs are implicitly embedded in their soundness proofs.

CMAP extends previous work on R-G method and CCAP with dynamic thread cre-

ation. We unify the concepts of a thread’s assumption/guarantee and its environment’s

guarantee/assumption, and allow a thread to change its assumption and guarantee to

track the changing environment caused by dynamic thread creation. Code segments in

CMAP can be specified and verified once and used in multiple threads with different as-

sumptions and guarantees, therefore CMAP achieves better modularity than CCAP. Some

practical issues, such as argument passing at thread creation, thread local data, and mul-

tiple invocation of one copy of thread code, are also discussed to support practical multi-

threaded programming. CMAP has been developed using the Coq proof assistant, along

with a formal soundness proof and the verified example programs.

CMAP is designed as a general program logic for assembly level multi-threaded pro-

grams. Although directly specifying and proving CMAP programs may be daunting, it is

simpler at the higher level, and it is possible to compile code and specifications at higher

level down to CMAP code. Also, there are common concurrent idioms that would permit

the assumption/guarantee to be generated automatically during compilation. For exam-

ple, for critical sections protected by lock, the assumption is always like ”nobody else will

update the protected data if I am holding the lock...” (see Figure 5.13). Another scenario

is illustrated by the example shown in Figure 5.3 and 5.9, where each thread is exclusively

responsible for a single piece of global data. In these scenarios, the assumption is always

like ”nobody else will touch my share of data” and the guarantee is like ”I will not up-

date other threads’ data”. Automatically generating assumptions/guarantees and proofs

for common idioms, and compiling higher level concurrent programs and specifications

down to CMAP, will be our future work.

121



Chapter 6

Applications of OCAP

We have seen the embedding of TAL in OCAP in Chapter 3, and SCAP in OCAP in Chap-

ter 4. In this chapter, we show OCAP’s support of interoperability of different verification

systems, which can be applied to link certified program modules at different abstraction

levels. Applications presented here are derived from the joint work I have done with

Zhaozhong Ni, Zhong Shao and Yu Guo [33].

6.1 Linking TAL with Certified Runtime

As discussed in Capter 3, TAL [69] treats memory allocation as an abstract primitive in-

struction that is not available in any real Instruction Set Architectures (ISAs). We cannot

use TAL to certify implementations of memory allocation library because TAL enforces

the invariant that types of values stored in data heap cannot change during program ex-

ecution. Although the invariant of type-preserving memory update frees programmers

from worrying about memory aliasing, it is too high-level to type-check the code im-

plementing memory allocations, which does type-changing memory update. In order to

solve this problem, we can augment TAL’s type system with linearity and explicit con-

trol of memory aliasing [98], but this would make the type system more complicated and

lose the abstraction in the original TAL. We take a different approach here: we still use
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Figure 6.1: Interoperation with TAL and SCAP

TAL to certify code that does type-preserving memory update and enjoy the abstraction

provided by TAL, but use SCAP to certify implementations of memory allocations. In

TAL, we change the primitive instruction for memory allocation to a function call to the

implementation, so we directly handle real machine code with no special instructions.

In this section, we use a simple function newpair to do memory allocation. The code

for newpair is specified and certified in SCAP without knowing about the future inter-

operation with TAL. The client code is certified in TAL. There is also a TAL interface for

newpair so that the call to newpair can be type-checked. Given our embedding of TAL

and SCAP in OCAP and the corresponding interpretations, we can prove that the TAL

interface for newpair is compatible with the SCAP interface. Linking of newpair with its

client code is done in OCAP.

The tricky part is that TAL and SCAP have different views about machine states. As

shown in Figure 6.1, TAL (the left side) only knows the heap reachable from the client

code. It believes that newpair will magically generate a memory block of two-word size.

The free list of memory blocks (FList) and other parts of the system resource is invisible

to TAL code and types. SCAP (on the right side) only cares about operations over the

free list. It does not know what the heap for TAL is. But when it returns, it has to ensure
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that the invariant in TAL is not violated. As we will show in this section, the way we use

specification interpretations and our SCAP have nice support of memory polymorphism.

They help us achieve similar effect of the frame rule in separation logic [80].

6.1.1 Certifying newpair in SCAP.

The newpair function takes no argument and returns a memory block of two-word size.

The reference to the memory block is saved in the register r30 as the return value. The

callee-save registers are r1, . . . , r9. The following code schema shows the implementation

CSCAP of newpair, which largely follows the malloc function certified by Yu et al. [101].

Since this chapter is focused on interoperations between different systems instead of il-

lustrating the usage of individual system, we omit the actual code and its specification

details here, which would not affect the linking in OCAP.

newpair:
...
jr r31

Before we specify the newpair function in SCAP, we first define separation logic connec-

tors in our meta-logic:

l 7→ i , λS. dom(S.H) = {l} ∧ S.H(l) = i

l 7→ , λS. ∃n. (l 7→ n) S

p1 ∗ p2 , λ(H,R). ∃H′,H′′. H = H′ ]H′′ ∧
p1 (H′,R) ∧ p2 (H′′,R)



p

q




∗ ID , λ(H1,R1), (H2,R2).

∀H,H′1. H1 =H′1 ]H ∧ p (H′1,R1) →
∃H′2. H2 =H′2 ]H ∧ q (H′2,R2)

Following Yu et al.’s specification for malloc [101], we use an assertions FList to spec-

ify a well-formed list of free memory blocks maintained by newpair. The SCAP code
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specification for newpair is (pn, gn) where

pn , FList

gn , (∀r∈{r1, . . . , r9, r31}. r = r′) ∧



FList

FList ∗ (r30
′ 7→ ) ∗ (r30

′+1 7→ )




∗ ID .

Recall that g in SCAP specifies the guarantee of functions. We use r to represent the value

of r in the first state (the current state), while the primed value r′ means the value of r

in the second state (the return state). Here the precondition pn requires there is a well-

formed list of free memory blocks in the heap. The guarantee gn says the function will

reinstate the value of callee-save registers and the return address before it returns. Also,

as shown in Figure 6.1, the original FList is split into a smaller FList and a memory block

of two-word size. It is also important to see that gn requires that the rest of the memory

is unchanged. Therefore, execution of newpair would not break invariants established in

TAL over the part of the memory accessible from client code.

The specification for the code heapCSCAP containing the newpair function is as follows:

ψs , {(newpair, (pn, gn)), . . . } .

After newpair is specified in SCAP, we would have the SCAP derivation for the fol-

lowing SCAP judgment:

ψs `{(pn, gn)} newpair : Inewpair (6.1)

where Inewpair = CSCAP[newpair].
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6.1.2 Certifying the caller in TAL.

The following code schema (CTAL) shows part of the code for the caller getm. Code follow-

ing the jal instruction is labeled by cont, which is passed to newpair as the return address.

When we reach the label cont, we know the register r30 points to a pair of fresh memory

cells.

getm:
jal newpair

cont: ... ; r30 points to a pair

We use the following TAL code heap specification to type check the above code CTAL.

In addition to specifications for getm and cont, newpair is also specified here, so that the

function call to it can be type checked in TAL. In ψt, each code label is associated with one

type, so we present it in the form of a partial mapping (which is a special form of binary

relations).

ψt , { newpair; [α1, . . . , α9]. {r1 ;α1, . . . , r9 ;α9,

r31 ;∀[]. {r1 ;α1, . . . , r9 ;α9, r30 ;〈τ0, τ ′0〉}},
getm ; [. . . ]. {r1 ;τ1, . . . , r9 ;τ9, . . .},
cont ; [. . . ]. {r1 ;τ1, . . . , r9 ;τ9, r30 ;〈τ0, τ ′0〉}.

Recall that TAL types are defined in Figure 3.5. TAL uses register file types as precondi-

tions for instruction sequences. From TAL’s point of view (see Fig. 6.1), newpair takes no

argument and returns a reference in r30 pointing to two fresh memory cells with types τ

and τ ′. The tag 0 means they are uninitialized memory cells (see Section 3.5). Also values

of callee-save registers have to be preserved, which is enforced by the polymorphic type.

After CTAL is certified in TAL, we get derivations for the following TAL judgments.

ψt `{ψt(getm)} getm : Igetm (6.2)

ψt `{ψt(cont)} cont : Icont (6.3)

where Igetm = CTAL[getm] and Icont = CTAL[cont].
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6.1.3 Linking the caller and callee

So far, we have specified and certified the caller and callee independently in TAL and

SCAP. When one of them is specified, we need no knowledge about the system in which

the other is specified. Our next step is to link the caller and the callee in OCAP, given our

previous embedding of TAL and SCAP in OCAP. We suppose the language ID for TAL

and SCAP are ρ and ρ′, respectively.

Recall that the interpretation for TAL’s register file types is [[ ]](ρ,r)
LTAL

, as defined by

formula 3.13, where r is an open parameter specifying the invariant of data heap used by

TAL’s runtime systems. Here we use FList to instantiate r. Then we define DTAL as:

DTAL , {ρ ; 〈LTAL, [[ ]](ρ,FList)
LTAL

〉}.

The interpretation for SCAP specifications is [[ ]](ρ
′,D)

LSCAP
(see Section 4.6 for the defini-

tion), where D is an open parameter describing verification systems in which the client

code is certified. So we use DTAL to instantiate D in this case. Then the language dictionary

DFULL for both languages is:

DFULL , DTAL ∪ {ρ′ ; 〈LSCAP, [[ ]](ρ
′,DTAL)

LSCAP
〉} .

Merging the code of the caller and the callee, we get:

CFULL , {getm;Igetm, cont;Icont, newpair;Inp, . . . } .

Then we lift TAL and SCAP specifications to get the OCAP specification ΨFULL for

CFULL (recall that (newpair, (pn, gn)) ∈ ψs):

ΨFULL , {( getm , 〈ρ , LTAL , ψt(getm) 〉 ),

( cont , 〈ρ , LTAL , ψt(cont) 〉 ),

( newpair, 〈ρ′, LSCAP, (pn, gn) 〉 ),

( newpair, 〈ρ , LTAL , ψt(newpair) 〉 ), . . . } .
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To certify CFULL, we need to construct the proof for:

DFULL; ΨFULL ` CFULL :ΨFULL (6.4)

By applying the OCAP CDHP rule, we need derivations for the well-formedness of each

instruction sequence in OCAP. By the soundness of the embedding of TAL (Theorem 3.13)

and the embedding of SCAP (Theorem 4.1), we can convert derivations (6.2), (6.3) and

(6.1) to corresponding OCAP derivations for free. The only tricky part is to show the

newpair code is well-formed with respect to the TAL specification, i.e.,

DFULL `{〈a〉ΨFULL
} newpair : Inewpair

where a = [[[ 〈ρ, LTAL, ψt(newpair) 〉 ]]]DFULL
.

(6.5)

To prove (6.5), we prove the following theorem, which says the TAL specification for

newpair is compatible with the SCAP one under their interpretations. Then we apply the

OCAP WEAKEN rule and get (6.5).

Theorem 6.1

Let a = [[[ 〈ρ,LTAL, ψt(newpair) 〉 ]]]DFULL
, we have

a⇒ [[[ 〈ρ′, LSCAP, (ψs(newpair))〉 ]]]DFULL
.

To prove Theorem 6.1, we need to prove the following lemmas:

Lemma 6.2 (Heap Extension in TAL)

If ψ ` H :Φ, ψ; Φ ` R :Γ, l 6∈ dom(Φ) and l 6∈ ψ, then

(1) ψ ` H{l;w} :Φ{l;τ0};

(2) ψ; Φ{l;τ0} ` R :Γ.
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Figure 6.2: Concurrent Code at Different Abstraction Levels

Lemma 6.3 (Register File Update)

If ψ; Φ ` R :Γ and ψ; Φ ` w :τ , then ψ; Φ ` R{r;w} :Γ{r;τ}.

Proof of Lemmas 6.2 and 6.3 are very similar to their counterparts in the original

TAL [70]. The whole linking process has been formalized [31] in Coq.

6.2 Certified Threads and Scheduler

As an important application of OCAP, we show how to construct a fully certified package

for concurrent code without putting the thread scheduler code into the trusted computing

base, yet still support thread-modular verification.
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6.2.1 The Problem

Almost all work on concurrency verification assumes built-in language constructs for con-

currency, including the work for low-level code, such as CCAP by Yu and Shao [102] and

and CMAP shown in Chapter 5.

The top part of Figure 6.2 shows a (fairly low-level) abstract machine with built-in

support of threads. Each thread has its own program counter (pc). The index i points to

the current running thread. This index and the pc of the corresponding thread decide the

next instruction to be executed by the machine. The machine provides a primitive yield

instruction. Executing yield will change the index i in a nondeterministic way, therefore

the control is transferred to another thread. All threads share the data heap H and the

register file R. The machine model is very similar to the one used in our CMAP, except

that threads in this model also share the register file, i.e., we do not save the register file

as part of the execution context during context switching. It can be viewed as a simplified

model of our CMAP machine.

As introduced in Chapter 5, the classic rely-guarantee method [59] allows concurrent

code in such a machine to be certified in a thread modular way. The method assigns spec-

ifications A and G to each thread. A and G are predicates over a pair of states. They are

used to specify state transitions. The guarantee G specifies state transitions made by the

specified thread between two yield points. The assumption A specifies the expected state

transition made by other threads while the specified thread is waiting for the processor.

If all threads satisfy their specifications, the following non-interference property ensures

proper collaboration between threads:

NI[(A1,G1), . . . , (An,Gn)] , Gi ⇒ Aj ∀i 6= j .

Note the definition of NI here is simpler than formula 5.1 in Chapter 5 because we do not

need to handle thread-private register file here.

As explained in CMAP, to certify concurrent code, we prove that each thread fulfills
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its guarantee as long as its assumption is satisfied. When we certify one thread, we do

not need knowledge about other threads. Therefore we do not have to worry about the

exponential state space.

However, this beautiful abstraction also relies on the built-in thread abstraction. In a

single processor machine such as our TM (see Figure 2.1), there is no built-in abstractions

for threads. As shown in the bottom part of Figure 6.2, we have multiple execution con-

texts saved in heap as the thread queue. Code Ci calls the thread scheduler (implemented

by CS), which switches the current context (pc) with one in the thread queue and jumps to

the pc saved in the selected context. All we have at this level is sequential code.

It is difficult to use the rely-guarantee method to certify the whole system consist-

ing of Ci and CS . We cannot treat CS as a special thread because the context-switching

behavior cannot be specified unless first-class code pointers is supported. It is already

very challenging to support first-class code pointers in a sequential setting [75], and we

do not know any existing work supporting first-class code pointers in a rely-guarantee

based framework for concurrent code. On the other hand, certifying all the code, includ-

ing Ci, as sequential code loses the abstraction of threads and the nice thread modularity

provided by the rely-guarantee method.

In this section, we use a variation of CMAP to certify user thread code Ci. The vari-

ation, called CMAP–, can be viewed as a simplified CMAP logic without considering

thread creation, termination and thread-local register files. Each Ci is specified and certi-

fied following the rely-guarantee method, as if it works at the high-level machine shown

in Figure 6.2, although it actually runs at the low-level machine and thread yielding is

achieved by calling the function Cs that implements the scheduler instead of executing an

abstract “yield” instruction. The scheduler codeCS is certified as sequential code in SCAP.

From SCAP point of view, the context switching is no more special than memory load and

store, as we will show below. Then the certified code can be linked in OCAP. This two-

level approach also allows us to avoid treating code pointers stored in each thread context

as first-class code pointers.
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6.2.2 Certifying The Scheduler Code in SCAP

User threads yield by calling the scheduler with the return address saved in register r31.

The scheduler will save r31 in the current context, put the context in the thread queue,

pick another execution context, restore r31, and finally return by jumping to r31. Then the

control is transferred to the selected thread.

We have made several simplifications in the above procedure: we do not save the

register file in the thread context because it is shared by threads. Also threads do not have

stacks. Data structures for the scheduler is thus very simple, as shown in Figure 6.3. Each

thread context only contains the saved pc. The global constant tq points to the queue

containing execution contexts of ready threads. The queue is organized as a linked list.

We use TQ(tq, Q) to specify a well-formed linked list pointed by tq containing Q. Q is an

abstract (nonempty) list of code labels [pc1, . . . , pcn]. The global constant cth points to a

node detached from the linked list. It contains the context of the current running thread

and a dummy pointer pointing to the tail of the list.

The scheduler is then given the following specification (ps, gs), where |Q| represents
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(StPred) p, q ∈ State → Prop

(Assumption) A ∈ State → State → Prop

(Guarant.) ĝ,G ∈ State → State → Prop

(CdSpec) θ ::= (p, ĝ,A,G)

(CHSpec) ψ ::= {(f0, θ0), . . . , (fn, θn)}

Figure 6.4: Specification Constructs for CMAP–

the set of elements in the list Q.

ps , ∃Q. (cth 7→ ) ∗ (cth+1 7→ ) ∗ TQ(tq, Q) ∗ True

gs , (∀r ∈ r0, . . . r30.r = r′)∧
∀Q.∃pcx ∈ |Q| ∪ {r31}.∃Q′.(|Q′| = |Q| ∪ {r31} \ {pcx})∧

r31
′ = pcx ∧





(cth 7→ ) ∗ (cth+1 7→ ) ∗ TQ(tq, Q)

(cth 7→ pcx) ∗ (cth+1 7→ ) ∗ TQ(tq, Q′)




∗ ID

The precondition ps simply requires that there is a node and a well-formed ready queue in

the heap. The guarantee gs requires that, at the return point of the scheduler, the register

file (except r31) be restored; a label pcx be picked from Q (or it can still be old r31) and

be saved in r31; the thread queue be well-formed; and the rest part of data heap not be

changed. Note gs leaves the scheduling strategy unspecified. As we can see, this SCAP

specification for the scheduler code CS does not need any knowledge about the CMAP–

logic.

6.2.3 CMAP– for User Thread Code

The code specifications in CMAP– is also a quadruple (p, ĝ,A,G), as shown in Figure 6.4.

A,G and ĝ have similar meanings as their counterparts in CMAP, except that they are now

predicates over a pair of program states in our low level machine shown in Chapter 2. As

usual, p is a predicate over the current state.

We use LCMAP− to represent the type of θ (in CiC). The following lift function converts
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ψ ` C :ψ′ (Well-formed code heap)

for all (f, θ) ∈ ψ′: ψ `{θ} f : C[f]

ψ ` C :ψ′
(CDHP)

ψ `{(p, ĝ,A,G)} f : I (Well-formed instruction sequence)

ψ `{(p′, ĝ′,A,G)} f+1 : I ι∈{addu, addiu, lw, subu, sw}
p⇒ p′ ◦ NextS(f,ι) ∀S, S′. p S→ ĝ′ (NextS(f,ι)(S)) S′ → ĝ S S′

ψ `{(p, ĝ,A,G)} f : ι; I
(SEQ)

∀S. p S→ ĝ S (S.H,S.R{r31 ;f+1})
∀S, S′ .p S→ A S S′ → p S′ (f+1, (p,G,A,G)) ∈ ψ

ψ `{(p, ĝ,A,G)} f : jal yield; I
(YIELD)

Figure 6.5: Selected CMAP– Rules

ψ for CMAP– to the OCAP code heap specification Ψ.

xψyρ , {(f, 〈ρ, LCMAP− , (p, ĝ,A,G)〉) | (f, (p, ĝ,A,G)) ∈ ψ}

In Figure 6.5 we show some selected CMAP– rules, which are very similar to CMAP

rules. As we explained before, since this variation works in the low-level machine that

does not have an abstract yield, it yields the control by calling the runtime library yield

(i.e., jal yield). The YIELD rule is revised accordingly. To certify the user thread code Ci,

we use CMAP– rules and construct the derivation ψ ` Ci :ψ′.

Program invariants and the interpretation. During program execution, we want the

following invariants to hold at each state with specification (p, ĝ,A,G):

• p holds on the state visible to the user thread;

• there are well-formed thread queue Q and other runtime data structures as specified

in Section 6.2.2;

• each pci in Q is a code pointer with specification (pi,Gi,Ai,Gi);
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• assumptions and guarantees of threads (including the executing one) are compati-

ble, i.e., NI[. . . , (Ai,Gi), . . . , (A,G)];

• if pi holds at a state S, any state transition satisfies the assumption Ai does not break

pi, i.e., ∀S, S′. pi S→ Ai S S′ → pi S′;

• when we reach a state that ĝ is satisfied (i.e., the current thread can yield), it is safe

for all threads in Q to take over the control, i.e., (ĝ S) ⇒ pi for all i, where S is the

current program state.

These invariants are very similar to the invariants formalized by the PROG rule in CMAP.

Here, the following interpretation for CMAP– specification (p, ĝ,A,G) formalizes these

invariants.

[[ (p, ĝ,A,G) ]]ρLCMAP−
, λΨ, S.

∃H1,H2, Q. H1 ]H2 = S.H ∧ p (H1,S.R)∧
(cth 7→ ∗ cth+1 7→ ∗ TQ(tq, Q)) (H2,S.R)∧
WFTQ(Q, ĝ (H1, S.R),A,G,Ψ)

where

WFTQ([pc1 . . . pcn], q,A,G, Ψ) ,

∀i. ∃pi,Ai,Gi. (pci, 〈ρ,LCMAP− , (pi,Gi,Ai,Gi)〉) ∈ Ψ

∧NI[. . . , (Ai,Gi), . . . , (A,G)]

∧(∀S, S′.pi S→ Ai S S′ → pi S′) ∧ (q⇒ pi)

6.2.4 Linking the scheduler with threads.

To link the certified scheduler with user thread code, we assign language IDs ρ and ρ′ to

SCAP and CMAP– respectively. The following dictionary Dc contains the interpretation

for CMAP–.

Dc , {ρ′ ; 〈LCMAP− , [[ ]]ρ
′

LCMAP−
〉} .

Using Dc to instantiate the open parameter, SCAP interpretation is now [[ ]](ρ,Dc)
LSCAP

(see

Chapter 4 for the definition). Since the scheduler has been certified, applying Theorem 4.1
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will automatically convert the SCAP proof into OCAP proof.

However, CMAP– derivations does not immediately give us a complete OCAP deriva-

tion. Readers may have notice that, in the YIELD rule, we jump to the yield without check-

ing the specification of yield. It is not surprising that we cannot prove the YIELD rule as

an OCAP lemma derivable from the OCAP JAL rule. Fortunately, the following theorem

helps us construct sound OCAP proof from CMAP– derivations after we know the spec-

ification of yield at the time of linkage. Proof of the theorem is similar to the soundness

proof for CMAP and has been fully formalized in Coq.

Theorem 6.4 (CMAP– Soundness)

Let D = Dc ∪ {ρ ; 〈LSCAP, [[ ]](ρ,Dc)
LSCAP

〉} and Ψs = {(yield, 〈ρ, LSCAP, (ps, gs) 〉 )}.

1. If we have ψ `{(p, ĝ,A,G)} f : I, then D `{〈a〉Ψ} f : I, where Ψ = xψyρ′ ∪Ψs and

a = [[ (p, ĝ,A,G) ]]ρ
′

LCMAP−
.

2. If we have ψ ` C :ψ′ in CMAP–, then D; Ψ ` C :xψ′yρ′ , where Ψ = xψyρ′ ∪Ψs.

6.3 Summary

In this chapter, we show two applications of the OCAP framework. The first one links

TAL code with a simple memory allocation library. In original TAL, the memory allocation

library is treated as a primitive in an abstract machine. The type system in TAL is too high-

level to certify the implementation of the library itself. The TAL shown here is adapted to

the low-level machine which contains no abstract primitives. The primitive instruction is

replaced with a function call to the run-time library, which can be certified in SCAP. Then

the well-typed TAL code is linked with certified SCAP code in our OCAP framework to

get full certified software package.

In the second application, we link non-preemptive concurrent code with run-time li-

brary for yield. We can certify user threads using a high-level logic for concurrency verifi-

cation, although there is no built-in abstraction of threads in our machine. The yield opera-
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tion in the user thread code is implemented by calling the runtime function. We certify the

implementation of the yield library in SCAP and link it with certified user threads. Be-

fore this work, we have never seen a fully certified concurrent program without trusting

the implementation of thread libraries. Recently Ni et al. [77] certified a non-preemptive

thread library using an extension of XCAP [75]. They treat code pointers saved in the

threads’ execution contexts as first class code pointers. As a result, specifications of thread

control blocks have to use recursive types. It is also unclear how to link the thread library

certified in this approach with user thread code.

Another interesting application of the OCAP framework is done by Lin et al. [64]. They

used SCAP to certify a conservative garbage collector for TAL and linked it with TAL code

in the OCAP framework. Guo et al. [43] also embedded CMAP into the OCAP framework

and showed how to link multi-threaded user code certified in CMAP with certified thread

libraries in the OCAP framework.
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Chapter 7

R-G Reasoning and Concurrent

Separation Logic

As we have discussed before, the rely-guarantee (R-G) method [59] (also known as assume-

guarantee (A-G) method together with the assume-commit method by Misra and Chandy [67])

provides nice support of thread modularity in the sense that each thread is verified with

regard to its own specifications, and without looking into code of other threads. Invariants

of state transitions are specified using assumptions and guarantees. Each thread ensures

that its atomic transitions satisfy its guarantee to the environment (i.e., the collection of all

other threads) as long as its assumption is satisfied by the environment. Non-interference

is guaranteed as long as threads have compatible specifications, i.e., the guarantee of each

thread satisfies the assumptions of all other threads. As shown in Chapters 5 and 6, the R-

G method is very general and does not require language constructs for synchronizations,

such as locks or conditional critical regions (CCRs) [51]. However, we have to ensure each

atomic transition made by a thread satisfies the thread’s guarantee. In a preemptive set-

ting, we have to check this for each atomic instruction, which complicates the verification

procedure. Also, assumptions and guarantees are usually complicated and hard to de-

fine, because they specify global invariants for all shared resources during the program

execution.
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Another approach to modular verification of shared-state concurrent programs is con-

current separation logic (CSL) by Brookes and O’Hearn [14, 78, 16, 79]. It applies the

local-reasoning idea from separation logic [57, 87] to verify shared-state concurrent pro-

grams with memory pointers. Separation logic assertions are used to capture ownerships

of resources. Separating conjunction enforces the partition of resources. Verification of se-

quential threads in CSL is no different from verification of sequential programs. Memory

modularity is supported by using separating conjunction and frame rules. However, fol-

lowing Owicki and Gries [81], CSL works only for well-synchronized programs in the sense

that transfer of resource ownerships can only occur at entry and exit points of critical re-

gions. It is unclear how to apply CSL to support general concurrent programs with ad-hoc

synchronizations.

In this chapter we study the relationship between CSL and R-G reasoning. We pro-

pose the Separated Rely-Guarantee Logic (SAGL), which extends R-G reasoning with the

local-reasoning idea in separation logic. Instead of treating all resources as shared, SAGL

partitions resources into shared and private. Like in CSL, each thread has full access to

its private resources, which are invisible to its environments. Shared resources can be

accessed in two ways in SAGL: they can be accessed directly, or be converted into pri-

vate first and then accessed. Conversions between shared and private can occur at any

program point, instead of being coupled with critical regions. Both direct accesses and

conversions are governed by guarantees, so that non-interference is ensured following R-

G reasoning. Private resources are not specified in assumptions and guarantees, therefore

specifications in SAGL are simpler and more modular than R-G reasoning.

Then we will show that CSL can be viewed as a specialization of SAGL with the in-

variant that shared resources are well-formed outside of critical regions. The specialization is

pinned down by formalizing the CSL invariant as a specific assumption and guarantee

in SAGL. Our formulation can also be viewed as a novel approach to proving the sound-

ness of CSL. Different from Brookes’ proof based on an action-trace semantics [14, 16],

we prove that CSL inference rules are lemmas in SAGL with the specific assumption and
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guarantee. The soundness of SAGL is then proved following the syntactic approach to

type soundness [99]. The proofs are formalized in the Coq proof assistant [24].

Here we study the relationship between R-G reasoning and CSL based on an exten-

sion of the MIPS-style low-level machine with built-in lock/unlock and memory alloca-

tion/free primitives, so that it can be readily applied to build certified low-level software

packages. Another advantage is that the simplicity of the machine language and its se-

mantics makes the formulation much simpler. For instance, we do not use variables,

instead we only use register files and memory. Therefore we do not need to formalize the

complicated syntactic constraints enforced in CSL over shared variables. Unlike the ma-

chine used for CMAP, the abstract machine works in a preemptive setting: execution of a

thread can be preempted by others at any program point. We use this preemptive thread

model so that the variation of CSL presented here is consistent with the origial work by

Brookes and O’Hearn. The material in this chapter is derived from research I have done

jointly with Rodrigo Ferreira and Zhong Shao [32].

7.1 The Abstract Machine

Figure 7.1 defines the model of an abstract machine and the syntax of the assembly lan-

guage. The whole program state P contains a shared memory H, a lock mapping Lwhich

maps a lock to the id of its owner thread, and n threads [T1, . . . ,Tn]. The memory is

modeled as a finite partial mapping from memory locations l (natural numbers) to word

values (natural numbers). Each thread Ti contains its own code heap C, register file R, the

instruction sequence I that is currently being executed, and its thread id i. Here we allow

each thread to have its own register file, which is consistent with most implementation of

thread libraries where the register file is saved in the execution context when a thread is

preempted.

The code heap Cmaps code labels to instruction sequences, which is a list of assembly

instructions ending with a jump instruction. The set of instructions we present here are
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(Program) P ::= (H, [T1, . . . ,Tn],L)
(Thread) Ti ::= (C,R, I, i)

(CodeHeap) C ∈ Labels ⇀ InstrSeq
(Memory) H ∈ Labels ⇀ Word
(RegFile) R ∈ Register → Word

(LockMap) L ::= Locks ⇀ {1, . . . , n}
(Register) r ::= r0 | . . . | r31

(Labels) f, l ::= n (nat nums)
(Locks) l ::= n (nat nums)
(Word) w ::= i (integers)

(InstrSeq) I ::= j f | jr rs | ι; I
(Instr) ι ::= addu rd, rs, rt | addiu rd, rs, i | alloc rd, rs | beq rs, rt, f | bgtz rs, f

| free rs | lock l | lw rt, i(rs) | subu rd, rs, rt | sw rt, i(rs) | unlock l

Figure 7.1: The Abstract Machine

the commonly used subsets in RISC machines. We also use lock/unlock primitives to do

synchronization, and use alloc/free to do dynamic memory allocation and free.

The step relation ( 7−→ ) of program states (P) is defined in Figure 7.2. We use the

auxiliary relation (H,T,L) t7−→ (H′,T′,L′) to define the effects of the execution of the

thread T. Here we follow the preemptive thread model where execution of threads can

be preempted at any program point, but execution of individual instructions is atomic.

Operational semantics of most instructions are standard. Note that we do not support

reentrant-locks. If the lock l has been acquired, execution of the “lock l” instruction will

be blocked even if the lock is owned by the current thread. The relation NextSι defines the

effects of the sequential instruction ι over memory and register files. Its definition is very

similar to the NextSrelationdefinedinFigure 2.3, except that we have two new instructions

here, i.e., alloc and free.

The abstract machine is similar to the one for CMAP, but it supports preemptive

threads and there is no yield instruction. Also, it does not have fork and exit, which are

orthogonal to our focus on the relationship between R-G reasoning and CSL. The ma-

chine has lock and unlock instructions, which are used to simulate CCRs at higher level, as

141



(H, [T1, . . . ,Tn],L) 7−→ (H′, [T1, . . . ,Tk−1,T′k,Tk+1, . . . ,Tn],L′)
if (H,Tk,L) t7−→ (H′,T′k,L′) for any k;

where

(H, (C,R, I, k),L) t7−→ (H′,T′,L′)
if I = then (H′,T′,L′) =

j f (H, (C,R, I′, k),L) where I′ = C(f)

jr rs (H, (C,R, I′, k),L) where I′ = C(R(rs))

bgtz rs, f; I′
(H, (C,R, I′, k),L)
(H, (C,R, I′′, k),L)

if R(rs) ≤ 0
if R(rs) > 0 and I′′ = C(f)

beq rs, rt, f; I′
(H, (C,R, I′, k),L)
(H, (C,R, I′′, k),L)

if R(rs) 6= R(rt)
if R(rs) = R(rt) and I′′ = C(f)

lock l; I′ (H, (C,R, I′, k),L{l;k})
(H, (C,R, I, k),L)

if l 6∈ dom(L)
if l ∈ dom(L)

unlock l; I′ (H, (C,R, I′, k),L \ {{l}}) if L(l) = k

ι; I′ for other ι (H′, (C,R′, I′, k),L) where (H′,R′) = NextSι(H,R)

and

if ι = then NextSι(H,R) =
addu rd, rs, rt (H,R{rd ;R(rs)+R(rt)})
addiu rd, rs, i (H,R{rd ;R(rs)+i})
lw rt, i(rs) (H,R{rt ;H(R(rs)+i)}) when R(rs)+i ∈ dom(H)
subu rd, rs, rt (H,R{rd ;R(rs)−R(rt)})
sw rt, i(rs) (H{R(rs)+i;R(rt)},R) when R(rs)+i ∈ dom(H)
alloc rd, rs (H{l, . . . , l+R(rs)−1; },R{rd ;l})

where l, . . . , l+R(rs)−1 6∈ dom(H)
free rs (H \ {R(rs)},R) when R(rs) ∈ dom(H)

Figure 7.2: Operational Semantics of the Machine

used in the original work on CSL [78, 14].

Note the way we distinguish “blocking” states from “stuck” states caused by unsafe

operations, e.g., freeing dangling pointers. If an unsafe operation is made, there is no

resulting state satisfying the step relation ( t7−→ ) for the current thread. If a thread tries to

acquire a lock which has been taken, it stutters: the resulting state will be the same as the

current one (therefore the lock instruction will be executed again).
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(XState) X ::= (H, (R, i),L)
(ProgSpec) Φ ::= ([Ψ1, . . . ,Ψn], [(A1,G1), . . . , (An,Gn)])
(CHSpec) Ψ ::= {f ; a}∗

(Assert) a ∈ XState → Prop

(Assume) A ∈ XState → XState → Prop

(Guarantee) G ∈ XState → XState → Prop

Figure 7.3: Specification Constructs for AGL

7.2 AGL: an R-G Based Program Logic

In this section we present an R-G based program logic (AGL) for our assembly language.

AGL is a variation of the CMAP– logic shown in Chapter 6 or the CCAP logic by Yu and

Shao [102] which applies the R-G method for assembly code verification, but it works for

the preemptive thread model instead of the non-preemptive model.

Figure 7.3 shows the specification constructs for AGL. For each thread in the program,

its specification contains three parts: the specification Ψ for the code heap, the assumption

A and the guarantee G. The specification Φ of the whole program just groups specifica-

tions for each thread.

Assumptions and guarantees are meta-logic predicates over a pair of extended thread

states X, which contains the shared memory H, the thread’s register file R and id k, and

the global lock mapping L. As in CMAP, the assumption A for a thread specifies the

expected invariant of state transitions made by the environment. The arguments it takes

are extended thread states before and after a transition, respectively. The guarantee G of

a thread specifies the invariant of state transitions made by the thread itself.

The code heap specification Ψ assigns a precondition a to each instruction sequence in

the code heapC. The assertion a is a meta-logic predicate over the extended thread stateX.

It ensures the safe execution of the corresponding instruction sequence. As before, we do

not assign postconditions to instruction sequences. Since each instruction sequence ends

with a jump instruction, we use the assertion at the target address as the postcondition.

Note we do not need a local guarantee ĝ here as we did for CMAP, because we are
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Φ, [a1, . . . , an] ` P (Well-formed program)

Φ = ([Ψ1, . . . , Ψn], [(A1,G1), . . . , (An,Gn)])
NI([(A1,G1), . . . , (An,Gn)]) Ψk,Ak,Gk `{ak} (H,Tk,L) for all k

Φ, [a1, . . . , an] ` (H, [T1, . . . ,Tn],L)
(PROG)

Ψ,A,G `{a} (H,T,L) (Well-formed thread)

a (H, (R, k),L) Ψ,A,G ` C :Ψ Ψ,A,G `{a} I
Ψ,A,G `{a} (H, (C,R, I, k),L)

(THRD)

Ψ,A,G ` C :Ψ′ (Well-formed code heap)

∀f ∈ dom(Ψ′) : Ψ,A,G `{Ψ′(f)}C(f)
Ψ,A,G ` C :Ψ′ (CDHP)

Ψ,A,G `{a} I (Well-formed instr. sequences)

Ψ,A,G `{a} ι {a′} Ψ,A,G `{a′} I (a◦A)⇒a

Ψ,A,G `{a} ι; I
(SEQ)

∀X@(H, (R, k),L). a X→ Ψ(R(rs)) X (a◦A)⇒a

Ψ,A,G `{a} jr rs
(JR)

∀X. a X→ Ψ(f) X (a◦A)⇒a

Ψ,A,G `{a} j f
(J)

Figure 7.4: AGL Inference Rules

using a preemptive thread model, and each atomic transition is made by only one machine

instruction instead of a sequence of instructions between two yield instructions. So the

state transition made by each instruction needs to satisfy the global guarantee G. Also,

A and G are not changing during threads’ execution because we are not dealing with

dynamic thread creation.

Inference rules. Inference rules of AGL are presented in Figs. 7.4 and 7.5. The PROG

rule defines the well-formedness of the program P with respect to the program specifi-

cation Φ and the set of preconditions ([a1, . . . , an]) for the instruction sequences that are

currently executed by all the threads. Checking the well-formedness of P involves two
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Ψ,A,G `{a} ι {a′} (Well-formed instructions)

∀X@(H, (R, k),L). a X ∧ l 6∈ dom(L) → a′ X′ ∧G X X′
where X′ = (H, (R, k),L{l;k}).

Ψ,A,G `{a} lock l {a′} (LOCK)

∀X@(H, (R, k),L). a X→ L(l) = k ∧ a′ X′ ∧G X X′
where X′ = (H, (R, k),L \ {l}).

Ψ,A,G `{a} unlock l {a′} (UNLOCK)

∀X@(H, (R, k),L).∀l. a X ∧ ({l, . . . , l+R(rs)−1} ∩ dom(H) = ∅) →
R(rs) > 0 ∧ a′ X′ ∧G X X′

where X′ = (H{l, . . . , l+R(rs)−1; }, (R{rd ;l}, k),L)

Ψ,A,G `{a} alloc rd, rs {a′} (ALLOC)

∀X@(H, (R, k),L). a X→ R(rs) ∈ dom(H) ∧ a′ X′ ∧G X X′
where X′ = (H \ {R(rs)}, (R, k),L)

Ψ,A,G `{a} free rs {a′} (FREE)

∀X@(H, (R, k),L). a X→ (R(rs)+i) ∈ dom(H) ∧ a′ X′ ∧G X X′
where X′ = (H{R(rs)+i;R(rt)}, (R, k),L)

Ψ,A,G `{a} sw rt, i(rs) {a′} (SW)

∀X@(H, (R, k),L). a X→ (R(rs)+i) ∈ dom(H) ∧ a′ X′
where X′ = (H, (R{rd ;H(R(rs)+i)}, k),L)

Ψ,A,G `{a} lw rd, i(rs) {a′} (LW)

∀X@(H, (R, k),L). a X→ ((R(rs) ≤ 0 → a′ X) ∧ (R(rs) > 0 → Ψ(f) X))

Ψ,A,G `{a} bgtz rs, f {a′} (BGTZ)

∀X@(H, (R, k),L). a X→ ((R(rs) 6= R(rt) → a′ X) ∧ (R(rs) = R(rt) → Ψ(f) X))

Ψ,A,G `{a} beq rs, rt, f {a′} (BEQ)

∀X@(H, (R, k),L). a X→ a′ X′ ι ∈ {addu, addiu, subu}
where X′ = (H′, (R′, k),L), and (H′,R′) = NextSι(H,R)

Ψ,A,G `{a} ι {a′} (SIMPLE)

Figure 7.5: AGL Inference Rules (cont’d)
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steps. First we check the compatibility of assumptions and guarantees for all the threads.

The predicate NI is redefined here for the new settings:

NI([(A1,G1), . . . , (An,Gn)]) , ∀i, j,H,H′,Ri,R′i,Rj ,L,L′.

i 6= j → Gi (H, (Ri, i),L) (H′, (R′i, i),L′) → Aj (H, (Rj , j),L) (H′, (Rj , j),L′) ,

(7.1)

which simply says that the guarantee of each thread should satisfy assumptions of all

other threads. Then we apply the THRD rule to check that implementation of each thread

actually satisfies the specification. Each thread Ti is verified separately, therefore thread

modularity is supported.

In the THRD rule, we require that the precondition a be satisfied by the current ex-

tended thread state (H, (R, k),L); that the thread code heap satisfy its specification Ψ, A

and G; and that it be safe to execute the current instruction sequence I under the precon-

dition a and the thread specification.

The CDHP rule checks the well-formedness of thread code heaps. It requires that each

instruction sequence specified in Ψ′ be well-formed with respect to the imported inter-

faces specified in Ψ, the assumption A and the guarantee G.

The SEQ rule and the JR rule ensure that it is safe to execute the instruction sequence

if the precondition is satisfied. If the instruction sequence starts with a normal sequential

instruction ι, we need to come up with an assertion a′ which serves both as the postcondi-

tion of ι and as the precondition of the remaining instruction sequence. Also we need to

ensure that, if the current thread is preempted at a state satisfying a, a must be preserved

by any state transitions (by other threads) satisfying the assumption A. This is enforced

by (a◦A)⇒a:

(a◦A)⇒a , ∀X,X′. a X ∧ A X X′ → a X′ .

If we reach the last jump instruction of the instruction sequence, the JR rule requires

that the assertion assigned to the target address in Ψ be satisfied after the jump. It also

requires that a be preserved by state transitions satisfying A. Here we use the syntactic
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sugar ∀X@(x1, . . . , xn). P (X, x1, . . . , xn) to mean that, for all tuple X containing elements

x1, . . . , xn, the predicate P holds. It is formally defined as:

∀X, x1, . . . , xn.(X = (x1, . . . , xn)) → P (X,x1, . . . , xn) .

The notation λX@(x1, . . . , xn). f(X, x1, . . . , xn) that we use later is defined similarly. The

rule for direct jumps (j f) is similar to the JR rule and requires no further explanation.

Instruction rules require that the precondition ensure the safe execution of the instruc-

tion; and that the resulting state satisfy the postcondition. Also, if shared states (H and

L) are updated by the instruction, we need to ensure that the update satisfies the guaran-

tee G. For the lock instruction, if the control falls through, we know that the lock is not

held by any thread. This extra knowledge can be used together with the precondition a to

show the postcondition is satisfied by the resulting state. The rest of instruction rules are

straightforward and will not be explained here.

Soundness. The soundness of AGL shows that the PROG rule enforces the non-interference

and the partial correctness of programs with respect to the specifications. It is proved fol-

lowing the syntactic approach [99] to proving soundness of type systems. We first prove

the following progress and preservation lemma.

Lemma 7.1 (AGL-Progress) For any program P = (H, [T1, . . . ,Tn],L), if

Φ, [a1, . . . , an] ` P, then, for any thread Tk, there exist H′, T′k and L′ such that

(H,Tk,L) t7−→ (H′,T′k,L′).

Lemma 7.2 (AGL-Preservation) If Φ, [a1, . . . , an] ` P and (P 7−→ P′), then there exist

a′1, . . . , a
′
n such that Φ, [a′1, . . . , a

′
n] ` P′.

The soundness theorem follows the progress and preservation lemmas.

Theorem 7.3 (AGL-Soundness) For any program Pwith specification

Φ = [Ψ1, . . . , Ψn], [(A1,G1), . . . , (An,Gn)], if Φ, [a1, . . . , an] ` P, then,
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• for any m, there exists a P′ such that (P 7−→m P′);

• for any m and P′ = (H′, [T′1, . . . ,T′n],L′), if (P 7−→m P′), then,

– Φ, [a′1, . . . , a
′
n] ` P′ for some a′1, . . . , a

′
n;

– for any k, there exist H′′, T′′k and L′′ such that (H′,T′k,L′)
t7−→ (H′′,T′′k,L′′);

– for any k, if T′k = (Ck,R′k, j f, k), then Ψk(f) (H′, (R′k, k),L′) holds;

– for any k, if T′k = (Ck,R′k, jr rs, k), then Ψk(R′k(rs)) (H′, (R′k, k),L′) holds;

– for any k, if T′k = (Ck,R′k, beq rs, rt, f; I, k) and R′k(rs) = R′k(rt),

then Ψk(f) (H′, (R′k, k),L′) holds;

– for any k, if T′k = (Ck,R′k, bgtz rs, f; I, k) and R′k(rs) > 0,

then Ψk(f) (H′, (R′k, k),L′) holds.

Note that our AGL does not guarantee deadlock-freedom, which can be easily achieved

by enforcing a partial order of lock acquiring in the LOCK rule. We do not show the proof

details here, which are very similar to the proof of SAGL’s soundness shown in the next

section.

7.3 SAGL: Separated Rely-Guarantee Logic

AGL is a general program logic supporting thread modular verification of concurrent

code. However, because it treats all memory as shared resources, it does not have good

memory modularity, and assumptions and guarantees are hard to define and use. For

instance, suppose we partition the memory into n blocks and each block is assigned to

one thread. Each thread simply works on its own part of memory and never accesses

other parts. This scenario is not unusual in parallel programs and non-interference is

trivially satisfied. However, to certify the code in AGL, the assumption for each thread

has to be like “my private part of memory is never updated by others”, and the guarantee

is like “I will not touch other threads’ private memory”. During program verification, we
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(CHSpec) Ψ ::= {f ; (a, ν)}∗
(Assert) a, ν ∈ XState → Prop

Figure 7.6: Extension of AGL Specification Constructs in SAGL

have to prove for each individual instruction that the guarantee is not broken, even if it

is trivially true. To make things worse, if each thread dynamically allocates memory and

uses the allocated memory as private resources, as shown in the example in Section 7.5,

the domain of private memory becomes dynamic, which makes it very hard to define the

assumption and guarantee.

In this section, we extend AGL with explicit partition of private resources and shared

resources. The extended logic, which we call Separated Rely-Guarantee Logic (SAGL),

has much better support of memory modularity than AGL without sacrificing any ex-

pressiveness. Borrowing the local-reasoning idea in separation logic, private resources

of one thread are not visible to other threads, therefore will not be touched by others.

Assumptions and guarantees in SAGL only specifies shared resources, therefore in the

scenario above the definition of SAGL assumption and guarantee becomes completely

trivial since there is no shared resources. The dynamic domain of private memory caused

by dynamic memory allocation/free is no longer a challenge to define assumptions and

guarantees because private memory does not have to be specified.

Figure 7.6 shows the extensions of AGL specifications for SAGL. In the specification

Ψ of each thread code heap, the precondition assigned to each code label now becomes

a pair of assertions (a, ν). The assertion a plays the same role as in AGL. It specifies the

shared resources (all memory are treated as shared in AGL). The assertion ν specifies the

private resources of the thread. Other threads’ private resources are not specified.

Inference rules. The inference rules of SAGL are shown in Figures 7.7 and 7.8. They

look very similar to AGL rules. In the PROG rule, as in AGL, we check the compatibility

of assumptions and guarantees, and check the well-formedness of each thread. However,
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Φ, [(a1, ν1), . . . , (an, νn)] ` P (Well-formed program)

Φ = ([Ψ1, . . . ,Ψn], [(A1,G1), . . . , (An,Gn)]) NI([(A1,G1), . . . , (An,Gn)])
Hs ]H1 ] · · · ]Hn = H Ψk,Ak,Gk `{(ak, νk)} (Hs,Hk,Tk,L) for all k

Φ, [(a1, ν1), . . . , (an, νn)] ` (H, [T1, . . . ,Tn],L)
(PROG)

Ψ,A,G `{(a, ν)} (Hs,Hv,T,L) (Well-formed thread)

a (Hs, (R, k),L) ν (Hv, (R, k),L|k) Ψ,A,G ` C :Ψ Ψ,A,G `{(a, ν)} I
Ψ,A,G `{(a, ν)} (Hs,Hv, (C,R, I, k),L)

(THRD)

Ψ,A,G ` C :Ψ′ (Well-formed code heap)

∀f ∈ dom(Ψ′) : Ψ,A,G `{Ψ′(f)}C(f)
Ψ,A,G ` C :Ψ′ (CDHP)

Ψ,A,G `{(a, ν)} I (Well-formed instr. sequences)

Ψ,A,G `{(a, ν)} ι {(a′, ν ′)} Ψ,A,G `{(a′, ν ′)} I (a◦A)⇒a Precise(a)
Ψ,A,G `{(a, ν)} ι; I

(SEQ)

Precise(a) (a◦A)⇒a ∀X@(H, (R, k),L). (a ∗ ν) X→ (a′ ∗ ν ′) X ∧ (bGc(a,a′) X X)
where (a′, ν′) = Ψ(R(rs))

Ψ,A,G `{(a, ν)} jr rs
(JR)

Precise(a) (a◦A)⇒a ∀X. (a ∗ ν) X→ (a′ ∗ ν ′) X ∧ (bGc(a,a′) X X)
where (a′, ν ′) = Ψ(f)

Ψ,A,G `{(a, ν)} j f
(J)

Figure 7.7: SAGL Inference Rules
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Ψ,A,G `{(a, ν)} ι {(a′, ν ′)} (Well-formed instructions)

∀X@(H, (R, k),L). (a ∗ ν) X ∧ l 6∈ dom(L) → (a′ ∗ ν ′) X′ ∧ (bGc(a,a′) X X′)
where X′ = (H, (R, k),L{l;k})

Ψ,A,G `{(a, ν)} lock l {(a′, ν′)} (LOCK)

∀X@(H, (R, k),L). (a ∗ ν) X→ L(l) = k ∧ (a′ ∗ ν ′) X′ ∧ (bGc(a,a′) X X′)
where X′ = (H, (R, k),L \ {l})

Ψ,A,G `{(a, ν)} unlock l {(a′, ν ′)} (UNLOCK)

∀X@(H, (R, k),L).∀l. (a ∗ ν) X ∧ {l, . . . , l+R(rs)−1} 6∈ dom(H) →
R(rs) > 0 ∧ (a′ ∗ ν ′) X′ ∧ (bGc(ν,ν′)) X X′

where X′ = (H{l, . . . , l+R(rs)−1; }, (R{rd ;l}, k),L)

Ψ,A,G `{(a, ν)} alloc rd, rs {(a′, ν ′)} (ALLOC)

ι ∈ {addu, addiu, subu, lw, sw, free}
∀X@(H, (R, k),L). (a ∗ ν) X

→ ∃(H′,R′) = NextSι(H,R). (a′ ∗ ν ′) X′ ∧ (bGc(ν,ν′)) X X′
where X′ = (H′, (R′, k),L)

Ψ,A,G `{(a, ν)} ι {(a′, ν ′)} (SIMPLE)

∀X@(H, (R, k),L). (a ∗ ν) X→ ((R(rs) ≤ 0 → (a′ ∗ ν ′) X ∧ (bGc(ν,ν′)) X X)
∧(R(rs) > 0 → (a′′ ∗ ν ′′) X ∧ (bGc(ν,ν′′)) X X))

where (a′′, ν ′′) = Ψ(f)

Ψ,A,G `{(a, ν)} bgtz rs, f {(a′, ν′)} (BGTZ)

∀X@(H, (R, k),L). (a ∗ ν) X→ ((R(rs) 6= R(rt) → (a′ ∗ ν ′) X ∧ (bGc(ν,ν′)) X X)
∧(R(rs) = R(rt) → (a′′ ∗ ν ′′) X ∧ (bGc(ν,ν′′)) X X))

where (a′′, ν ′′) = Ψ(f)

Ψ,A,G `{(a, ν)} beq rs, rt, f {(a′, ν′)} (BEQ)

Figure 7.8: SAGL Inference Rules (Cont’d)
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here we require that there be a partition of memory into n + 1 parts: one part Hs is shared

and other parts H1, . . . ,Hn are privately owned by the threads T1, . . . ,Tn, respectively.

When we check the well-formedness of thread Tk, the memory in the extended thread

state is not the global memory. It just contains Hs and Hk.

The THRD rule in SAGL is similar to the one in AGL, except that the memory visible

by each thread is separated into two parts: the shared Hs and the private Hv. We require

that assertions a and ν hold overHs andHv respectively. Since ν only specifies the private

resource, we use the “filter” operator L|k to prevent ν from having access to the ownership

information of locks not owned by the current thread:

(L|k)(l) ,





k L(l) = k

undefined otherwise
(7.2)

i.e., L|k is a subset of Lwhich maps locks to k.

In the SEQ rule, we use (a, ν) as the precondition. However, to ensure that the pre-

condition is preserved by state transitions satisfying A, we only check a (i.e., we check

(a◦A)⇒a) because A only specifies shared resources. We know that the private resources

will not be touched by the environment. We require a to be precise to enforce the unique

boundary between shared and private resources. Following the definition in CSL [78], an

assertion a is precise if and only if for any memory H, there is at most one subset H′ that

satisfies a, i.e.,

Precise(a) , ∀H,R, k,L,H1,H2. (H1 ⊆ H) ∧ (H2 ⊆ H)∧
a (H1, (R, k),L) ∧ a (H2, (R, k),L) → H1 = H2 .

(7.3)

The JR rule requires a be precise and it be preserved by state transitions satisfying the

assumption. Also, the specification assigned to the target address needs to be satisfied by

the resulting state of the jump, and the identity state transition made by the jump satisfies
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the guarantee G. We use the separating conjunction of the shared and private predicates

as the pre- and post-condition. We define a ∗ ν as:

a ∗ ν , λ(H, (R, k),L).

∃H1,H2.(H1 ]H2 = H) ∧ a (H1, (R, k),L) ∧ ν (H2, (R, k),L|k) .
(7.4)

Again, the use of L|k prevents ν from having access to the ownership information of locks

not owned by the current thread. We use f1 ] f2 to represent the union of finite partial

mappings with disjoint domains.

To ensure G is satisfied over shared resources, we lift G to bGc(a,a′):

bGc(a,a′) , λX@(H, (R, k),L),X′@(H′, (R′, k′),L′).

∃H1,H2,H′1,H′2. (H1 ]H2 = H) ∧ (H′1 ]H′2 = H′)

∧ a (H1, (R, k),L) ∧ a′ (H′1, (R′, k′),L′)

∧ G (H1, (R, k),L) (H′1, (R′, k′),L′) ,

(7.5)

Here we use precise predicates a and a′ to enforce the unique boundary between shared

and private resources.

As expected, the SAGL rule for each individual instruction is almost the same as its

counterpart in AGL, except that we always use the separating conjunction of predicates

for shared and private resources. Each instruction rule requires that memory in states

before and after the transition can be partitioned to private and shared; private parts

satisfy private predicates and shared parts satisfy shared predicates and G.

It is important that we always combine shared predicates with private predicates in-

stead of checking separately the relationship between a and a′ and between ν and ν ′. This

gives us the ability to support dynamic redistribution of private and shared memory. In-

stead of enforcing static partition, we allow that part of private memory becomes shared

under certain conditions and vice versa. As we will show in the next section, this ability

makes our SAGL very expressive and is the enabling feature that makes the embedding
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of CSL into SAGL possible. This also explains why we require bGc(a,a′) holds over state

transitions made by every instruction: even though the instruction does not changeH and

L, we may change the partition between private and shared memory at the end of this in-

struction, which would affect other threads and thus this change must satisfy bGc(a,a′).

AGL can be viewed as a specialized version of SAGL where all the ν’s are set to emp

(emp is an assertion which can only be satisfied by memory with empty domain).

Soundness. Soundness of SAGL is proved following the syntactic approach [99] to prov-

ing soundness of type systems.

Lemma 7.4 If Ψ,A,G ` C :Ψ, then dom(Ψ) ⊆ dom(C).

Lemma 7.5 (Thread-Progress) If Ψ,A,G `{(a, ν)} (Hs,Hv,Tk,L),

dom(Hs) ∩ dom(Hv) = ∅, and Tk = (C,R, I, k), then there exist H′, R′, I′ and L′ such that

(Hs ∪Hv,Tk,L) t7−→ (H′,T′k,L′), where T′k = (C,R′, I′, k).

Proof sketch: From Ψ,A,G `{(a, ν)} (Hs,Hv,Tk,L) and dom(Hs)∩dom(Hv) = ∅, we know

(1) Ψ,A,G `{(a, ν)} I; (2) Ψ,A,G ` C : Ψ; and (3) (a ∗ ν) (Hs ∪ Hv, (R, k),L). If I =

j f (I = jr rs), by (1) and the J (JR) rule, we know f ∈ dom(Ψ) (R(rs) ∈ dom(Ψ)). By

Lemma 7.4, we know the target address is a valid code label in C, therefore it is safe to

execute the jump instruction. If I = ι; I′, we know by (1) that there are a′ and ν ′ such that

Ψ,A,G `{(a, ν)} ι {(a′, ν′)}. By inspection of instruction rules, we know it is always safe

to execute the instruction ι as long as the state satisfy a ∗ ν. Since we have (3), the thread

can progress by executing ι. 2

Lemma 7.6 (Thread-Progress-Monotone) If (H,Tk,L) t7−→ (H′,T′k,L′),

where Tk = (C,R, I, k) and T′k = (C,R′, I′, k), then, for any H0 such that

dom(H) ∩ dom(H)0 = ∅, there exists H′′ and R′′ such that (H ∪H0,Tk,L) t7−→ (H′′,T′′k,L′),

where T′′k = (C,R′′, I′, k).
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Proof sketch: The proof trivially follows the definition of the operational semantics. Note

that we model memory H as a finite partial mapping, so the monotonicity also holds for

alloc. 2

Lemma 7.7 (SAGL-Progress) For any program P = (H, [T1, . . . ,Tn],L),

if Φ, [(a1, ν1), . . . , (an, νn)] ` P, then, for any thread Tk, there exist H′, T′k and L′ such that

(H,Tk,L) t7−→ (H′,T′k,L′).

Proof sketch: By inversion of the PROG rule, Lemma 7.4 and Lemma 7.6. 2

Lemma 7.8 If Ψ,A,G `{(a, ν)} (Hs,Hv,Tk,L), then (a◦A)⇒a and Precise(a).

Lemma 7.9 (Thread-Preservation) If Ψ,A,G `{(a, ν)} (Hs,Hv,Tk,L),

dom(Hs) ∩ dom(Hv) = ∅, and (Hs ∪Hv,Tk,L) t7−→ (H′,T′k,L′), where Tk = (C,R, I, k)

and T′k = (C,R′, I′, k), then there exist a′, ν ′, H′s and H′v such that H′s ]H′v = H′,

G (Hs, (R, k),L) (H′s, (R′, k),L′), and Ψ,A,G `{(a′, ν ′)} (H′s,H′v,T′k,L′).

Proof sketch: By Ψ,A,G `{(a, ν)} (Hs,Hv,Tk,L) and inversion of the THRD rule, we know

Ψ,A,G `{(a, ν)} I. Then we prove the lemma by inspection of the structure of I and the

inversion of the corresponding instruction sequence rules and instruction rules. 2

Lemma 7.10 (Thread-Inv) If Ψ,A,G `{(a, ν)} (Hs,Hv,Tk,L),

dom(Hs) ∩ dom(Hv) = ∅, and (Hs ∪Hv,Tk,L) t7−→ (H′,T′k,L′), where Tk = (C,R, I, k)

and T′k = (C,R′, I′, k), then

• if I = j f, then (a′ ∗ ν ′) (H′, (R′, k),L′) holds, where (a′, ν′) = Ψ(f);

• if I = jr rs, then (a′ ∗ ν ′) (H′, (R′, k),L′) holds, where (a′, ν ′) = Ψ(R(rs));

• if I = beq rs, rt, f; I′ and R(rs) = R(rt), then (a′ ∗ ν ′) (H′, (R′, k),L′) holds, where

(a′, ν ′) = Ψ(f);

• if I = bgt rs, rt, f; I′ and R(rs) > R(rt), then (a′ ∗ ν ′) (H′, (R′, k),L′) holds, where

(a′, ν ′) = Ψ(f);
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Proof sketch: By Ψ,A,G `{(a, ν)} (Hs,Hv,Tk,L) and inversion of the THRD rule, we know

Ψ,A,G `{(a, ν)} I. The lemma trivially follows inversion of the J rule, the JR rule, the BEQ

rule and the BGT rule. (The J rule is similar to the JR rule. The BEQ rule and the BGT rule are

similar to their counterparts in AGL. These rules are not shown in Figure 7.7.) 2

Lemma 7.11 (Thread-Frame) If (H,Tk,L) t7−→ (H′,T′k,L′),

H = H1 ]H2, and there exists H′′1 and T′′k such that (H1,Tk,L) t7−→ (H′′1,T′′k,L′), then there

exists H′1 such that H′ = H′1 ]H2, and (H1,Tk,L) t7−→ (H′1,T′k,L′).

Proof sketch: By inspection of the operational semantics of instructions. 2

Lemma 7.12 (SAGL-Preservation) If Φ, [(a1, ν1) . . . , (an, νn)] ` P and (P 7−→ P′), where

Φ = ([Ψ1, . . . , Ψn], [(A1,G1), . . . , (An,Gn)]), then there exist a′1, ν ′1, . . . , a′n, ν ′n such that

Φ, [(a′1, ν
′
1) . . . , (a′n, ν′n)] ` P′.

Proof sketch: If the thread k executes its instruction in the step P 7−→ P′, we know:

• the private memory of other threads will not be touched, following Lemma 7.11;

and

• other threads’ assertions ai for shared resources are preserved, following Lemma 7.8,

Lemma 7.9 and the non-interference of specifications, i.e., NI([(A1,G1), . . . , (An,Gn)]).

Then, by the PROG rule, it is easy to prove Φ, [(a′1, ν
′
1) . . . , (a′n, ν ′n)] ` P′ for some a′1, ν ′1, . . . ,

a′n, ν ′n. 2

Finally, the soundness of SAGL is formulated in Theorem 7.13. In addition to the safety

of well-formed programs, it also characterizes partial correctness: assertions assigned to

labels in Ψ will hold whenever the labels are reached.

Theorem 7.13 (SAGL-Soundness) For any program Pwith specification

Φ = ([Ψ1, . . . , Ψn], [(A1,G1), . . . , (An,Gn)]), if Φ, [(a1, ν1) . . . , (an, νn)] ` P, then,

• for any natural number m, there exists P′ such that (P 7−→m P′);
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(ProgSpec) φ ::= ([ψ1, . . . , ψn],Γ)
(CHSpec) ψ ::= {f ; ν}∗

(ResourceINV) Γ ∈ Locks ⇀ MemPred
(MemPred) m ∈ Memory → Prop

Figure 7.9: Specification Constructs for CSL

• for any m and P′ = (H′, [T′1, . . . ,T′n],L′), if (P 7−→m P′), then,

– Φ, [(a′1, ν
′
1), . . . , (a

′
n, ν′n)] ` P′ for some a′1, . . . , a

′
n and ν ′1, . . . , ν

′
n;

– for any k, there exist H′′, T′′k and L′′ such that (H′,T′k,L′)
t7−→ (H′′,T′′k,L′′);

– for any k, if T′k = (Ck,R′k, j f, k), then (a′′k ∗ ν ′′k ∗ TRUE) (H′, (R′k, k),L′) holds,

where (a′′k, ν
′′
k ) = Ψk(f);

– for any k, if T′k = (Ck,R′k, jr rs, k), then (a′′k ∗ ν ′′k ∗ TRUE) (H′, (R′k, k),L′) holds,

where (a′′k, ν
′′
k ) = Ψk(R′k(rs));

– for any k, if T′k = (Ck,R′k, beq rs, rt, f; I, k) and R′k(rs) = R′k(rt), then

(a′′k ∗ ν ′′k ∗ TRUE) (H′, (R′k, k),L′) holds, where (a′′k, ν
′′
k ) = Ψk(f);

– for any k, if T′k = (Ck,R′k, bgtz rs, f; I, k) and R′k(rs) > 0, then

(a′′k ∗ ν ′′k ∗ TRUE) (H′, (R′k, k),L′) holds, where (a′′k, ν
′′
k ) = Ψk(f);

Proof sketch: By Lemma 7.7, 7.12 and 7.10. 2

7.4 Concurrent Separation Logic (CSL)

Both AGL and SAGL treat lock/unlock primitives as normal instructions. They do not

require that shared memory be protected by locks. This shows the generality of the R-

G method, which makes no assumption about language constructs for synchronizations.

Any ad-hoc synchronizations can be verified using the R-G method.

If we focus on a special class of programs following Hoare [51] where accesses of

shared resources are protected by critical regions (implemented by locks in our language),
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we can further simplify our SAGL logic and derive a variation of CSL (CSL adapted to our

assembly language).

7.4.1 CSL Specifications and Rules

In CSL, shared memory is partitioned and each part is protected by a unique lock. For

each part of the partition, an invariant is assigned to specify its well-formedness. A thread

cannot access shared memory unless it has acquired the corresponding lock. After the lock

is acquired, the thread takes advantage of mutual-exclusion provided by locks and treats

the part of memory as private. When the thread releases the lock, it must ensure that the

part of memory is well-formed with regard to the corresponding invariant. In this way

the following global invariant is enforced:

Shared resources are well-formed outside critical regions.

Figure 7.9 shows the specification constructs for CSL. The program specification φ

contains a collection of code heap specifications for each thread and the specification Γ

for lock-protected memory. Code heap specification ψ maps a code label to an assertion

ν as the precondition of the corresponding instruction sequence. Here ν plays similar

role of the private predicate in SAGL. Since each thread privately owns the lock protected

memory if it owns the lock, all memory accessible by a thread is viewed as private mem-

ory. Therefore we do not need an assertion a to specify the shared memory as we did in

SAGL. This also explains why we do not need assumptions and guarantees in CSL. The

specification Γ of lock-protected memory maps a lock to an invariant m, which specifies

the corresponding part of memory. The invariant m is simply a predicate over memory

because the register file is private to each thread.

Inference rules. The inference rules for CSL are presented in Figure 7.11. The PROG rule

requires that there be a partition of the global memory into n+1 parts. EachHk is privately

owned by thread Tk. The well-formedness of Tk is checked by applying the THRD rule. Hs
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m ∗ m′ , λH.∃H1,H2. (H1 ]H2 = H) ∧ m H1 ∧ m′ H2

ν ∗ m , λX@(H, (R, k),L).∃H1,H2. (H1 ]H2 = H) ∧ ν (H1, (R, k),L) ∧ m H2

∀∗x∈S. P (x) ,
{

emp if S = ∅
P (xi) ∗ ∀∗x∈S′. P (x) if S = S′ ] {xi}

Precise(m) , ∀H,H1,H2. H1 ⊆ H ∧H2 ⊆ H ∧ m H1 ∧ m H2 → H1 = H2

Precise(Γ) , ∀l ∈ dom(Γ). Precise(Γ(l))

ν ⇒ ν ′ , ∀X. ν X→ ν ′ X
acq l ν , λ(H, (R, k),L). ν (H, (R, k),L{l;k})
rel l ν , λ(H, (R, k),L). L(l) = k ∧ ν (H, (R, k),L \ {l})
ν ◦ NextSι , λ(H, (R, k),L). ∃(H′,R′) = NextSι(H,R). ν (H′, (R′, k),L)

Figure 7.10: Definitions of Notations in CSL

φ, [ν1, . . . , νn] ` P (Well-formed program)

φ = ([ψ1, . . . , ψn], Γ) Hs ]H1 ] · · · ]Hn = H
aΓ (Hs, ,L) Precise(Γ) ψk, Γ `{νk} (Hk,Tk,L) for all k

φ, [ν1, . . . , νn] ` (H, [T1, . . . ,Tn],L)
(PROG)

ψ, Γ `{ν} (H,T,L) (Well-formed thread)

ν (H, (R, k),L|k) ψ, Γ ` C :ψ ψ,Γ `{ν} I
ψ, Γ `{ν} (H, (C,R, I, k),L)

(THRD)

ψ, Γ ` C :ψ′ (Well-formed code heap)

∀f ∈ dom(ψ′) : ψ, Γ `{ψ′(f)}C(f)
ψ, Γ ` C :ψ′

(CDHP)

ψ, Γ `{ν} I (Well-formed instr. sequences)

ψ, Γ `{ν} ι {ν ′} ψ, Γ `{ν ′} I
ψ, Γ `{ν} ι; I

(SEQ)

∀X@(H, (R, k),L). ν X→ ψ(R(rs)) X
ψ, Γ `{ν} jr rs

(JR)

∀X. ν X→ ψ(f) X
ψ, Γ `{ν} j f

(J)

Figure 7.11: CSL Inference Rules
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ψ, Γ `{ν} ι {ν ′} (Well-formed instructions)

ν ∗ m⇒ acq l ν ′

ψ, Γ{l;m} `{ν} lock l {ν ′} (LOCK)
ν ⇒ (rel l ν ′) ∗ m

ψ, Γ{l;m} `{ν} unlock l {ν ′} (UNLOCK)

∀X@(H, (R, k),L).∀l.
ν X ∧ ({l, . . . , l+R(rs)−1} 6∈ dom(H)) → R(rs) > 0 ∧ ν ′ X′

where X′ = (H{l ; , . . . , l+R(rs)−1 ; }, (R{rd ;l}, k),L)

ψ, Γ `{ν} alloc rd, rs {ν ′} (ALLOC)

ν ⇒ ν ′ ◦ NextSι ι ∈ {addu, addiu, subu, lw, sw, free}
ψ, Γ `{ν} ι {ν ′} (SIMPLE)

∀X@(H, (R, k),L). ν X→ ((R(rs) ≤ 0 → ν ′ X) ∧ (R(rs) > 0 → ψ(f) X))
ψ,Γ `{ν} bgtz rs, f {ν ′} (BGTZ)

∀X@(H, (R, k),L). ν X→ ((R(rs) 6= R(rt) → ν ′ X) ∧ (R(rs) = R(rt) → ψ(f) X))
ψ, Γ `{ν} beq rs, rt, f {ν ′} (BEQ)

Figure 7.12: CSL Inference Rules (Cont’d)

is the part of memory protected by free locks (locks not owned by any threads). It must

satisfy the invariants specified in Γ. Here aΓ is the separating conjunction of invariants

assigned to free locks in Γ, which is defined as:

aΓ , λ(H, (R, k),L). (∀∗l∈(dom(Γ)− dom(L)). Γ(l)) H , (7.6)

that is, shared resources are well-formed outside of critical regions. Here ∀∗ is an indexed,

finitely iterated separating conjunction, which is formalized in Figure 7.10. Separating

conjunctions with memory predicates (ν ∗ m and m ∗ m′) are also defined in Figure 7.10. As

in O’Hearn’s original work on CSL [78], we also require invariants specified in Γ to be

precise (i.e., Precise(Γ), as defined in Figure 7.10), therefore we know aΓ is also precise.

The THRD rule checks the well-formedness of threads. It requires that the current ex-

tended thread state satisfies the precondition ν. Since ν only cares about the resource

privately owned by the thread, it takes L|k instead of complete L as argument. Recall that
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ψ, Γ `{ν} I
ψ ∗ m, Γ ] Γ′ `{ν ∗ m} I (FRAME-S)

ψ,Γ `{ν} ι {ν ′}
ψ ∗ m, Γ ] Γ′ `{ν ∗ m} ι {ν ′ ∗ m} (FRAME-I)

where ψ ∗ m , λf. ψ(f) ∗ m if f ∈ dom(ψ)

ψ, Γ `{ν} I ψ, Γ `{ν ′} I
ψ, Γ `{ν ∧ ν ′} I (CONJ-S)

ψ, Γ `{ν1} ι {ν ′1} ψ, Γ `{ν2} ι {ν ′2}
ψ, Γ `{ν1 ∧ ν2} ι {ν ′1 ∧ ν ′2}

(CONJ-I)

Figure 7.13: Admissible Rules for CSL

L|k is defined in (7.2) in Section 7.3 to represent the subset of Lwhich maps locks to k. The

CDHP rule and rules for instruction sequences are similar to their counterparts in AGL and

SAGL and require no more explanation.

In the LOCK rule, we use “acq l ν ′” to represent the weakest precondition of ν ′; and

“ν ⇒ ν ′” for logical implication lifted for state predicates. They are formalized in Fig-

ure 7.10. If the lock l instruction successfully acquires the lock l, we know by our global

invariant that the part of memory protected by l satisfies the invariant Γ(l) (i.e., m), because

l is a free lock before lock l is executed. Therefore, we can carry the knowledge m in the

postcondition ν ′. Also, carrying m in ν ′ allows subsequent instructions to access that part

of memory, since separation logic predicates capture ownerships of memory.

In the UNLOCK rule, “rel l ν ′” is the weakest precondition for ν ′ (see Fig. 7.10). At the

time the lock l is released, the memory protected by l must be well formed with respect

to m = Γ(l). The separating conjunction here ensures that ν ′ does not specify this part of

memory. Therefore the following instructions cannot use the part of memory unless the

lock is acquired again. Rules for other instructions are straightforward and are not shown

here.

Figure 7.13 shows admissible rules for CSL, including the frame rules and conjunction

rules, which can be proved as lemmas in our meta-logic based on the rules shown in

Figure 7.11. The frame rules (the FRAME-S rule and the FRAME-I rule) are very similar to

the hypothetical frame rules presented in [80]. Interested readers can refer to previous

papers on separation logic for their meanings.
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7.4.2 Interpretation of CSL in SAGL

We prove the soundness of CSL by giving it an interpretation in SAGL, and proving CSL

rules as derivable lemmas. This interpretation also formalizes the specialization made for

CSL to achieve the simplicity.

From SAGL’s point of view, each thread has two parts of memory: the private and the

shared. In CSL, the private memory of a thread includes the memory protected by locks

held by the thread and the memory that will never be shared. The shared memory are

the parts protected by free locks. Therefore, we can use the following interpretation to

translate a CSL specification to a SAGL specification:

[[ ν ]]Γ , (aΓ, ν) (7.7)

[[ψ ]]Γ , λf.[[ψ(f) ]]Γ if f ∈ dom(ψ) , (7.8)

where aΓ formalizes the CSL invariant and is defined by (7.6). We just reuse CSL specifi-

cation ν as the specification of private memory, and use the separating conjunction aΓ of

invariants assigned to free locks as the specification for shared memory.

Since the assumption and guarantee in SAGL only specifies shared memory, we can

define AΓ and GΓ for CSL threads:

AΓ , λX@(H, (R, k),L),X′@(H′, (R′, k′),L′).R = R′ ∧ k = k′ ∧ (aΓ X→ aΓ X′) (7.9)

GΓ , λX@(H, (R, k),L),X′@(H′, (R′, k′),L′). k = k′ ∧ aΓ X ∧ aΓ X′ (7.10)

which enforces the invariant aΓ of shared memory.

With above interpretations, we can prove the following soundness theorem.

Theorem 7.14 (CSL-Soundness) 1. If ψ, Γ `{ν} ι {ν ′} in CSL, then

[[ψ ]]Γ,AΓ,GΓ `{[[ ν ]]Γ} ι {[[ ν ′ ]]Γ} in SAGL;

2. If ψ, Γ `{ν} I in CSL and Precise(Γ), then [[ψ ]]Γ,AΓ,GΓ `{[[ ν ]]Γ} I in SAGL;
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(1) start: -{(emp, emp)}
(2) addiu r1, r0, 1 ;; local int x, y;
(3) alloc r2, r1 ;; x := alloc(1);

-{(emp, r2 7→ )}
(4) addiu r1, r0, m
(5) sw r1, 0(r2) ;; [x] := m;

-{(emp, (r2 7→ m) ∧ r1 = m)}
(6) lw r3, 0(r2) ;; y := [x];

-{(emp, (r2 7→ m) ∧ r1 = m ∧ r3 = m)}
(7) beq r1, r3, safe ;; while(y == m){}
(8) unsafe: -{(emp, False)}
(9) free r0 ;; free(0); (* unsafe! *)
(10) safe: -{(emp, r2 7→ )}
(11) j safe

Figure 7.14: Example 1: Memory Allocation

3. If ψ, Γ ` C :ψ′ in CSL and Precise(Γ), then [[ψ ]]Γ,AΓ,GΓ ` C : [[ψ′ ]]Γ in SAGL;

4. If ψ, Γ `{ν} (Hk,Tk,L) in CSL, Precise(Γ), and aΓ (Hs, ,L), then

[[ψ ]]Γ,AΓ,GΓ `{[[ ν ]]Γ} (Hs,Hk,Tk,L) in SAGL;

5. If ([ψ1, . . . , ψn], Γ), [ν1, . . . , νn] ` P in CSL, then Φ, [[[ ν1 ]]Γ, . . . , [[ νn ]]Γ] ` P in SAGL,

where Φ = ([ [[ψ1 ]]Γ, . . . , [[ψn ]]Γ], [(AΓ,GΓ), . . . , (AΓ,GΓ)]).

7.5 SAGL Examples

We use two complementary examples to demonstrate how SAGL combines merits of AGL

and CSL. Figure 7.14 shows a simple program, which allocates a fresh memory cell and

then writes into and reads from it. Following the MIPS convention, we assume the register

r0 always contains 0. The corresponding high-level pseudo code is given as comments

(followed by “;;”). It is obvious that two threads executing the same code (but may use

different m) will never interfere with each other, therefore the test in line (7) is always

TRUE and the program never reaches the unsafe branch.

It is trivial to certify the code in CSL since there is no memory-sharing at all. However,

due to the nondeterministic operation of the alloc instruction, it is challenging to certify the

code in AGL because the specification of A and G requires global knowledge of memory.
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(m 7→ α) ∗ (n 7→ β)

local int x, y; local int x, y;
while(true){ while(true){

x := [m]; x := [n];
y := [n]; || y := [m];
if(x > y) {[m] := x-y;} if(x > y) {[n] := x-y;}
if(x == y) { break;} if(x == y) { break;}

} }

(m 7→ gcd(α, β)) ∗ (n 7→ gcd(α, β))

Figure 7.15: Example 2: Parallel GCD

We certify the code in SAGL. Assertions are shown as annotations enclosed in “-{}”.

Recall that in SAGL the first assertion in the pair specifies shared resources and the second

one specifies private resources. We treat all the resources as private, therefore the shared

predicate is simply emp. The corresponding A and G are trivial. The whole verification is

as simple as in CSL.

The second example is the GCD example shown in Chapter 5, which is a parallel im-

plementation of the Euclidean algorithm to compute the greatest common divisor (GCD)

of α and β, stored at locations m and n initially. Here we port it to the abstract machine with

a preemptive thread model. The high-level pseudo code is shown in Figure 7.15. Memory

cells at m and n are shared, but locks are not used for synchronization. Here we only show

the code of the two collaborating threads and ignore thread creation, join and termination.

To certify the code in CSL, we have to rewrite it by wrapping each memory-access com-

mand using “lock” and “unlock” commands and by introducing auxiliary variables. This

time we use the “AGL part” of SAGL to certify the code. Figure 7.16 shows the assembly

code of the first thread, with specifications as annotations. Private predicates are simply

emp. The assumption and guarantee are defined below, where we use primed values (e.g.,
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loop: -{(∃x, y. (m 7→ x) ∗ (n 7→ y) ∧ gcd(x, y) = gcd(α, β), emp)}
lw r1, m(r0) ;; r1 <- [m]

-{(∃x, y. (m 7→ x) ∗ (n 7→ y) ∧ gcd(x, y) = gcd(α, β) ∧ r1 = x, emp)}
lw r2, n(r0) ;; r2 <- [n]

-{(∃x, y. (m 7→ x) ∗ (n 7→ y) ∧ gcd(x, y) = gcd(α, β) ∧ r1 = x
∧r2 ≥ y ∧ (x ≥ y → r2 = y), emp)}

beq r1, r2, done ;; if (r1 == r2) goto done
subu r3, r1, r2 ;; r3 = r1 - r2
bgtz r1, calc ;; if (r1 > r2) goto calc
j loop ;; goto loop

calc: -{(∃x, y. (m 7→ x) ∗ (n 7→ y) ∧ gcd(x, y) = gcd(α, β) ∧ (r3 = x− y) ∧ x > y, emp)}
sw r3, m(r0) ;; [m] <- r3
j loop ;; goto loop

done: -{(∃x. (m 7→ x) ∗ (n 7→ x) ∧ x = gcd(α, β), emp)}
j done

Figure 7.16: Parallel GCD–Assembly Code for The First Thread

[m]′ and [n]′) to represent memory values in the resulting state of each action.

A1 , ([m] = [m]′) ∧ ([n] ≥ [n]′) ∧ ([m] ≥ [n] → [n] = [n]′) ∧ (gcd([m], [n]) = gcd([m]′, [n]′))

G1 , ([n] = [n]′) ∧ ([m] ≥ [m]′) ∧ ([n] ≥ [m] → [m] = [m]′) ∧ (gcd([m], [n]) = gcd([m]′, [n]′))

The example shown in Figure 7.17 is adapted from O’Hearn [79]. P-V primitives are

firstly implemented using locks, and then they are used for synchronization. This example

illustrates the support of redistribution of shared and private memory in SAGL.

7.6 Discussions and Summary

O’Hearn [78] and Brookes [14] proposed CSL for a high-level parallel language following

Hoare [51]. Synchronization in the language is achieved by the conditional critical region

(CCR) in the form of “with r when b do c”. Semantics of CCRs is as follows: the statement

c can be executed only if the resource r has not been acquired by others and the Boolean

expression b is true; otherwise the thread will be blocked. We adapt CSL to an assembly
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I(s, x) , (s 7→ x) ∗ ((x = 0 ∧ emp) ∨ (x = 1 ∧ 10 7→ ))
I(s) , ∃x.I((s, x))
Γ , {l1 ; I(free), l2 ; I(busy)}
P_free: -{(aΓ, emp)} ;; while(true){

lock l_1 ;; lock l1
-{(aΓ, I(free))}
lw r1, free(r0) ;;
-{(aΓ, I(free, r1))}
bgtz r1, dec_P ;; if([free]>0) break;
-{(aΓ, r1 = 0 ∧ I(free, r1))}
unlock l_1 ;; unlock l1
-{(aΓ, emp)}
j P_free ;; }

dec_P: -{(aΓ, r1 = 1 ∧ I(free, r1))}
addiu r2, r0, 1
subu r1, r1, r2 ;; [free] <- [free]-1
-{(aΓ, r1 = 0 ∧ I(free, 1))}
st r1, free(r0)
-{(aΓ, (10 7→ ) ∗ I(free, 0))}
-{(aΓ, (10 7→ ) ∗ I(free))}
unlock l_1 ;; unlock l1
-{(aΓ, 10 7→ )}
j body

body: -{(aΓ, 10 7→ )}
addiu r2, r0, m
sw r2, 10(r0) ;; [10] <- m
j V_busy

V_busy: -{(aΓ, 10 7→ )}
lock l_2 ;; lock l2
-{(aΓ, (10 7→ ) ∗ I(busy))}
-{(aΓ, (10 7→ ) ∗ I(busy, 0))}
lw r1, busy(r0)
addiu r1, r0, 1 ;; [busy] <- [busy]+1
sw r1, busy(r0)
-{(aΓ, I(busy, 1))}
unlock l_2 ;; unlock l2
-{(aΓ, emp)}
j done

done: -{(aΓ, emp)}
j done

Figure 7.17: SAGL Example: Synchronizations Based on P-V Operations

166



language. The CCR can be implemented using our lock/unlock primitives. Each lock in

our language corresponds to a resource name at the high-level. Atomic instructions in

our assembly language are very similar to actions in Brookes Semantics [14], where se-

mantic functions are defined for statements and expressions. These semantic functions

can be viewed as a translation from the high-level language to a low-level language simi-

lar to ours. Recently, Reynolds [88] and Brookes [15] have studied grainless semantics for

concurrency. Brookes also gives a grainless semantics to CSL [15].

The PROG rule of our CSL corresponds to O’Hearn’s parallel composition rule [78]. The

number of threads in our machine is fixed, therefore the nested parallel composition state-

ment supported by Brookes [14] is not supported in our language. We studied verification

of assembly code with dynamic thread creation in an earlier paper [34].

CSL is still evolving. Bornat et al. [13] proposed a refinement of CSL with fine-grained

resource accounting. Parkinson et al. [82] applied CSL to verify a non-blocking implemen-

tation of stacks. As in the original CSL, these works also assume language constructs for

synchronizations. We suspect that there exist reductions from these variations to SAGL-

like logics. We leave this as our future work.

Concurrently with our work on SAGL, Vafeiadis and Parkinson [95] proposed another

approach to combining rely/guarantee and separation logic, which we refer to here as

RGSep. Both RGSep and SAGL partition memory into shared and private parts. However,

shared memory cannot be accessed directly in RGSep. It has to be converted into private

first to be accessed. Conversions can only occur at boundaries of critical regions, which is

a built-in language construct required by RGSep to achieve atomicity. RGSep, in principle,

does not assume smallest granularity of transitions. In SAGL, shared memory can be

accessed directly, or be converted into private first and then accessed. Conversions can be

made dynamically at any program point, instead of being coupled with critical regions.

However, like A-G reasoning, SAGL assumes smallest granularity. We suspect that RGSep

can be compiled into a specialized version of SAGL, following the way we translate CSL.

On the other hand, if our instructions are wrapped using critical regions, SAGL might be
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derived from RGSep too.

We also use SAGL as the basis to formalize the relationship between CSL and R-G rea-

soning. We encode the CSL invariant as an assumption and guarantee in SAGL, and prove

that CSL rules are derivable from corresponding SAGL rules with the specific assumption

and guarantee.
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Chapter 8

Conclusions and Future Work

System software consists of program modules that use many language features and span

different abstraction levels. It is extremely difficult to design a verification system (e.g., a

type system or a program logic) to certify all the modules, just like we never use a single

programming language to implement the whole system. We propose a new methodology

in this thesis to solve this problem: we use the most appropriate verification system to

certify individual program modules, and use a foundational open framework to support

interoperability of different verification systems, so that certified modules can be linked

in this common framework.

In this thesis we presented the OCAP framework, which is designed to satisfy the re-

quirements over an open framework: extensibility, modularity and expressiveness. OCAP

is not designed with a priori knowledge of foreign verification systems. It uses an exten-

sible and heterogeneous program specification. Taking advantage of Coq’s support of de-

pendent types, specifications in foreign systems for modules can be easily incorporated as

part of OCAP specifications. The heterogeneous program specification also allows OCAP

to specify embedded code pointers, which enables OCAP’s support for modularity. When

one side of system code or client code is specified and certified in a foreign verification

system, no knowledge about the other side is required. Modules certified in one verifi-

cation system can be adapted in OCAP to interoperate with other modules in a different
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system without redoing the proof. The assertions used in OCAP inference rules are ex-

pressive enough to specify invariants enforced in most type systems and program logics,

such as memory safety, well-formedness of stacks, non-interference between concurrent

threads, etc.. The soundness of OCAP ensures that these invariants are maintained when

foreign systems are embedded in the framework.

We also developed program logics to certify low-level code with different features.

The SCAP logic can be applied to certify sequential assembly code with stack-based con-

trol abstractions. Instead of treating return pointers as first-class code pointers (which

require “impredicative types” [68, 75]), SCAP specifies the invariant at each program

point using a pair of a precondition and a guarantee (which states the obligation that

the current function must fulfill before it can return or throw an exception). These guar-

antees, when chained together, are used to specify the well-formedness of a logical con-

trol stack. A function can also cut to any return pointer on the stack if it can establish

the well-formedness of its control stack. We have shown that SCAP can support most

stack-based control abstractions, including normal function call/return, tail call, excep-

tion handling based on stack cutting and stack unwinding [85], weak continuations in

C-- [85], setjmp/longjmp in C [61], and multi-return function call [89].

The CMAP logic extends rely-guarantee method for shared-state concurrency ver-

ification [59] with unbounded dynamic thread creations. It unifies the concepts of a

thread’s assumption/guarantee and its environment’s guarantee/assumption, and al-

lows a thread to change its assumption/guarantee to track the composition of its dynam-

ically changing environment.

We showed that SCAP and a variation of CMAP (CMAP–) can be embedded into the

OCAP framework. Recent work by Guo et al. [43] has shown that CMAP itself can be em-

bedded into OCAP too. Applications of OCAP to support interoperation of verification

systems are also interesting. In the first application, we showed how to link client code

in TAL with a simple certified memory management library. TAL only supports weak-

memory updates and the free memory is invisible to TAL code. The memory management
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library is specified in SCAP, which supports reasoning about operations over free mem-

ory and still ensures that the invariants of TAL code is maintained. In the second appli-

cation, we showed how to construct foundational certified packages for concurrent code

without trusting the scheduler. The user thread code is certified using the rely-guarantee

method [59]; the thread scheduler is certified as sequential code in SCAP. They are linked

in OCAP to construct FPCC packages. Another application of OCAP, shown by Lin et

al. [64], links TAL code with a conservative garbage collector certified in SCAP.

This thesis also studied the relationship between rely-guarantee reasoning and concur-

rent separation logic, two widely used methodologies for modular verification of shared-

state concurrent programs. The comparison is based on an abstract machine with pre-

emptive threads. We also proposed the SAGL logic, which combines the merits of both

sides. SAGL is as general as rely-guarantee reasoning, but has better support of modular-

ity because of its application of the local-reasoning idea from separation logic. We gave

a formal embedding of a variant of CSL to SAGL by defining the program invariant en-

forced in CSL as special assumptions and guarantees in SCAL. This shows that SAGL is

more general than CSL. It also serves as a new way to prove the soundness of CSL.

Discussions and future work. The design of OCAP follows the invariant-based proof

methodology, which is applied in most verification systems for safety properties. Given

a verification system designed following the same methodology, it can be embedded into

OCAP by defining an interpretation that encodes the program invariant enforced in the

system. The linking of modules certified in different systems actually tests whether invari-

ants enforced in these systems match at the point the interaction occurs. This methodol-

ogy is very general for certifying safety properties of system software, but it is not clear

how to extend it to support other properties, such as termination, liveness, fairness and

resource usages. These properties are especially interesting for embedded and real-time

systems. We will extend the OCAP framework and design program logics to support

them in the future.
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OCAP gives a general framework and formal disciplines for interaction of different

verification systems, but it does not automatically solve the interaction problem for all

systems. Interaction between different systems is always a challenging problem. As we

showed in Chapter 6, in each interoperation scenario, we need to carefully formulate the

program invariants and make sure they actually match at the linking point. This needs to

be done for each specific applications and is non-trivial. We will try to find more applica-

tions to thoroughly test the applicability of OCAP.

The machine used by the OCAP framework is a sequential machine without support

of interrupts and interactions with external devices. If we want to support the preemptive

thread model on a single processor machine, we need to add the support of hardware

interrupts and extend the OCAP framework to support interrupts too. Then we can might

be able to embed SAGL and CSL shown in Chapter 7 into OCAP. Again, this will be part

of the future work.

Another interesting future work is to push the framework and program logics to

higher level. Currently the framework and all the program logics presented in this pa-

per work at the assembly level, therefore we do not need to trust compilers. However, the

specification at the assembly level is very complex because of the low-level details, such

as calling conventions. To solve this problem, we can design program logics for higher

level languages, such as C. Some low-level details can be abstracted away in specifica-

tions for higher-level languages. Then the interpretation that maps high-level specifica-

tions to low-level specifications needs to formalize a compilation procedure for the high

level language. The soundness of the interpretation will be similar to the main theorem

of type-preserving compilations [69].
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