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Writing certifiably correct system software is still very labor-intensive, and current programming languages

are not well suited for the task. Proof assistants work best on programs written in a high-level functional style,

while operating systems need low-level control over the hardware. We present DeepSEA, a language which

provides support for layered specification and abstraction refinement, effect encapsulation and composition,

and full equational reasoning. A single DeepSEA program is automatically compiled into a certified łlayerž

consisting of a C program (which is then compiled into assembly by CompCert), a low-level functional Coq

specification, and a formal (Coq) proof that the C program satisfies the specification. Multiple layers can be

composed and interleaved with manual proofs to ascribe a high-level specification to a program by stepwise

refinement. We evaluate the language by using it to reimplement two existing verified programs: a SHA-256

hash function and an OS kernel page table manager. This new style of programming language design can

directly support the development of correct-by-construction system software.
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1 INTRODUCTION

Formal verification is the surest way to create bug-free secure programs, and low-level system
software is a particularly important verification target because the correctness of all other software
depends on the OS and language runtime. But writing such software remains very expensive.
Part of the problem is due to the lack of good programming language support. Program verifi-

cation works best when programs are written at a high abstraction level and support equational
reasoning, while systems programming uses effects and requires low-level control of hardware
resources. Existing languages make different trade-offs between these two goals: C-like languages
favor control; memory-safe languages, and functional programming languages such as OCaml and
Haskell, are easier to reason about but force the programmer to, for example, use a garbage collector;
and total, pure languages (as provided in proof assistants such as Coq [The Coq development team
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2014]) support full equational reasoning so they can directly express how a program’s implementa-
tion satisfies its specification, but do not provide any support for low-level programming. A classic
paper on programming language design [Hoare 1974] advocated that a good programming language
should support both implementation and specification:

... The first, and very difficult, aspect of (program) design is deciding what the program

is to do, and formulating this as a clear, precise, and acceptable specification. Often just

as difficult is deciding how to do it: how to divide a complex task into simpler subtasks,

and to specify the purpose of each part, and define clear, precise, and efficient interfaces

between them. A good programming language should give assistance in expressing not

only how the program is to run, but what it is intended to accomplish; and it should enable

this to be expressed at various levels, from the overall strategy to the details of coding and

data representation. ...

More than four decades later, the community has widely adopted Hoare’s approach of specifying
a system at multiple levels, moving from low-level implementation to high-level specification.
However, even today no single existing language seems ideal for this task. Instead, two recent
projects on OS verification [Gu et al. 2015; Klein et al. 2014] essentially wrote the kernel twice:
first in a C-like language, and then as a łmodelž or łspecificationž in a functional language that
can be reasoned about in a proof assistant. A large part of the verification effort was then spent on
proving that the C implementation indeed satisfied the specification.

We are interested in the kind of verification tasks exemplified by OS development: proving full
functional correctness for systems composed of many modules and with nontrivial functionality.
With current technology, this requires manual proofs, so we assume that our users will spend much
of their time writing proofs in an interactive proof assistant like Coq, but we want to remove as
much busy-work as possible, and help them structure their system into separate modules so that
the rest of the system can be verified by using just the module interface and not its implementation.

In this paper, we present a new programming language named DeepSEA (for Deep Simulation of
Executable Abstraction) that combines low-level programming with abstract specification. DeepSEA
is organized around four ideas.
Equational reasoning. Each DeepSEA term can be desugared into a corresponding functional

specification, a typed lambda expression, which can be reasoned about equationally in a proof
assistant. Effects are modelled by monadic programs.
Layered specification. Like C, DeepSEA does not come with a built-in runtime system or

garbage collector. This is kept managable by structuring the system in abstraction layers, to specify
the program in terms of a simpler abstract datatype (e.g., unbounded integers instead of 32-bit
words). When verifying higher level layers, one can assume that the lower layers behave according
to the abstract specification, and the DeepSEA compiler will prove that the raw C implementation
behaves accordingly.
Effect encapsulation and composition. Each DeepSEA layer consists of a set of objects that

are built on top of another layer. Similar to object-oriented languages, the state of an object can only
be changed by the methods defined in that object, in other words each DeepSEA object encapsulates
its internal side-effects.
Abstraction refinement. One can not hope to completely automatically verify a large system

with respect to a user-friendly specification: this must be done in steps, and sometimes with manual
proofs. We structure this process as a series of refinement proofs, which are composed to show
that the linked program refines the linked specification. In DeepSEA there are two ways to build
new layers: One can either add new methods, which are automatically proved to refine their
(automatically generated, low-level) functional specifications, or one can add new specifications
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for existing methods, which creates a manual proof goal to show that the old specification refines
the new one. These steps can be interleaved in a stack of layers.
This style of verification in terms of layers, objects, and functional specifications is inspired by

the CertiKOS group [Gu et al. 2015], who successfully used it for building multiple certified OS
kernels. However, the current CertiKOS development effort requires manually writing both the
Clight [Blazy and Leroy 2009] implementation and the Coq layer specification, and a large manual
(or semi-automatic) proof relating the two, and then manually use a separate layer library (in Coq)
to compose the layers. DeepSEA provides support for layer definition, implementation, refinement,
and composition within a single language.

We begin by presenting the key ingredients of DeepSEA through a series of examples, and show
how they can be used to reason equationally about low-level code. (Sec. 2). Then we proceed to
explain in more detail our specific new contributions:

• We define a functional core language which is small enough to allow us to write a verifying
compiler with a reasonable effort, yet feature-rich enough to support CertiKOS-style kernel
development. (Sec. 3)
• We define a calculus of layer operations, which give a concrete syntactic way to describe
the style of stepwise refinement which the CertiKOS team implemented łby handž in Coq.
(Sec. 3.1).
• We describe the design of our verified compiler, which provides an end-to-end verified
compilation chain from functional specifications down to assembly code. (Sec. 4)
• In particular, the compiler includes a novel framework for protecting the user from de-
tails about low-level data representation by automatically generating a refinement relation
between concrete and abstract data (Sec. 4.2), automatically generating proofs about data
representation (Sec. 4.4), and letting the user specify assertions in order to guide the automatic
tactics (Sec. 4.3).
• We re-implement two existing verified programs (a cryptographic hash function and an OS
kernel memory allocator), and compare the proof effort. Using DeepSEA significantly reduces
the proof effort while still allowing adequate low-level control. (Sec. 5)

Finally we discuss related work (Sec. 6) and conclude.

2 DEEPSEA BY EXAMPLE

Consider the task of writing a memory allocator. This is used as part of the virtual memory manager
(VMM) in order to find an unused page to serve a fault. The following code is a simplified excerpt
from the case study in Section 5.3, which re-implemented part of the CertiKOS VMM.

The central piece of state required is the allocation table, which records which physical pages are
currently in use, and the main method is palloc which allocates a new page. The method palloc

is implemented in terms of additional state and operations. These can be high-level, such as a set of
numbered containers which record the memory quota each process is entitled to and how much it
is currently using (in order to decide whether to honor or decline requests for additional memory).
The state can also be very low-level, e.g. whether the CPU is in user or kernel mode.

In DeepSEA, all state is encapsulated inside objects and manipulated through methods. We begin
by specifying the types of the methods using object signatures.

signature CPUSig = {

initialized : unit -> bool; ...

}

signature ContainerSig = {

container_get_usage : int -> int; (* returns number of pages used by process i *)
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container_alloc : int -> bool (* request another page for process i, return

false if exceeded its quota. *)

container_split : int * int * int -> int; (* decrement the quota for i by n pages,

and give them to a new process j. *)

...

}

signature PMMSig = {

mem_init : int -> unit; (* Initialize the system. *)

palloc : int -> int; (* Allocate a new page for use by process i. *)

...

}

The corresponding implementation is given in the form of an object declaration. The algorithm
is very simple: we maintain a statically allocated array (of size maxpage, a constant), which for each
page tracks whether the page is in use (b), what type of memory it contains (t), and a reference
count. The palloc method scans the array to find the first unused page. Additionally, before
marking the page as used, we call container_alloc to check that process id has not used up its
quota. Page 0 is always marked as in use, so palloc returns 0 to signal that the allocation failed, and
callers will check the return value.

The object implementation assumes that a lower layer (or underlay for short) will provide some
functionality, and similar to ML functors [MacQueen 1984], definitions are made with respect to a
signature {iflags: CPUSig;...} which specifies what objects the underlay should provide. Every
effectful expression is typedwith respect to such a signature, which tracks which effectful operations
are available at that point in the program. (This is similar to how effectful code in e.g. Haskell
łlives insidež a particular monad). In this case, among other things we assume that the environment
provides an object container which satisfies ContainerSig. DeepSEA supports special-purpose
loops, here first x = .. to .. suchthat .. then .. else .. which searches a range for the first
integer satisfying a test. Using a special- rather than a general-purpose loop aids proof automation.

type ATType = ATResv | ATKern| ATNorm

type ATInfo = {b : bool; t : ATType; c : int}

object PMM ({iflags: CPUSig; container:ContainerSig...}) : PMMSig {

let nps : int := 0 (*number of pages*)

let AT : array[maxpage] ATInfo := array_init

let palloc id =

assert iflags.initialized ();

let n = nps in

first i = 0 to n suchthat AT[i].b = false

then begin

let within_quota = container.container_alloc id in

if within_quota then begin

AT[i].b := true;

i

end else

0

end else

0

...

}
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2.1 Assertions

Methods often have preconditions. For example, the arguments must be in a certain range, or they
may only be called after initialization. We express such preconditions using assert-statements.
Semantically, the meaning of a failing assert is that the program execution becomes undefined.
However, DeepSEA is set up so that this never happens: during verification the programmer proves
that all asserts will be satisfied, so there is no need to check them at runtime and the compiler
ignores them when generating code.
Unlike function preconditions in some other programming languages, assert statements can

occur in the middle of a function body as well as at the beginning. This can be convenient for the
programmer, and fits naturally with the semantics we use (the execution reaches that point and
then aborts).

2.2 Equational Reasoning and Low-level Data Representation

Having defined palloc, we want to prove theorems about it. For example, we may want to prove
that requests will be granted as long as the quota is not exceeded, or that calling palloc twice will
return two different page numbers.

In order to enable this, DeepSEA automatically generates a functional specification of eachmethodś
a function with the same behavior, but written in pure Coq to enable equational reasoning.
Since DeepSEA itself is not pure, we need to encode effects functionally. We use the standard

technique of writing code in a monad. As we have seen above, commands can have two side effects:
modifying the object state, and triggering a failing assertion. We can capture that by modeling
ła command that returns Až by using the monadic type DS A ≡ T → Option (T ×A) where T is the
type of mutable state and implement the usual helper functions such as gets : (T → A) → DS A and
guard : Bool→ DS ().

PMM_palloc_opt (id : Z) : DS Z :=

(v <- MContainerIFlags_initialized_opt;; guard v);; (* assert iflags.initialized (); *)

n <- gets nps;; (* let n = nps in *)

s <- get;;

first_spec (* first i = ... *)

(fun i : Z => (* suchthat AT[i].b = false *)

b <- gets (fun s => (ZMap.get i (AT s)).(b));;

ret (b==false))

(fun i : Z => (* then *)

within_quota <- MContainerContainer_container_alloc_opt id;;

(if within_quota (* if within_quota *)

then (*then *)

modify (fun s => (* AT[i].b := true; *)

s {AT : ZMap.set n ((ZMap.get n (AT s)) {b : true }) (AT s)});;

ret i (* i *)

else ret 0)) (* else 0 *)

(fun i => ret 0) (* else 0 *)

0 n s (* ... first i = 0 to n *)

The example shows how the various features of DeepSEA are handled. DeepSEA generates a Coq
function for each method, e.g. palloc in the first line and container_alloc from the underlay.
The name of the specification function ends with _opt because it uses the łoption monadž to
represent assertion failures. Specifically, assertions are handled using the helper function guard

which returns a value in Option, either SOME or NONE. The mutable state of the object is handled
by the state monad: the type DS bool implicitly takes an extra argument s, which is a record
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with a field for each variable in the programÐe.g. the field accessor AT. The monad is quite simple
thanks to the minimalistic feature set of DeepSEA (Sec. 3). In particular there is no dynamic object
creation, so the set of record fields can be fixed. The łfirstž loop is translated by using a Coq function
first_spec which applies its first argument function to each number between 0 and n and then
calls the second argument function on the result.
Like all specifications generated by DeepSEA, PMM_palloc_opt is a deterministic function, as

opposed to only specifying some nondeterministic set of possible return values (such as łthis
function returns a sorted listž). Ultimately the user will manually prove some correctness property
about these specifications, but we believe in the approach of first proving a łdeepž specification [Gu
et al. 2015] which says exactly what the implementation does in a functional form, and DeepSEA

largely automates this first step.
The generated spec follows the input program line by line, and in fact basically looks the same

as the input except for the surface syntax. (In the above figure we added comments to show the
corresponding lines in the source program.) The user will probably end up spending more time
looking at this spec than at the input program, because proving anything interesting about it still
requires a similar amount of work as proving something about a function originally written in Coq.
However, for the user doing the verification this is much better than directly reasoning about

C programs in Coq. First, we are working with an ordinary Coq function, rather than having to
reason indirectly about a formalization in Coq of the C operational semantics. Second, we have
abstracted away a lot of the details of the data representation. Instead of C’s 32-bit integers, the
Coq program operates on mathematical unbounded integers Z. Instead of an array, the allocation
table is represented by a mathematical finite map ZMap. Although the ATType will be represented as
a C integer, the DeepSEA program defines it as an algebraic data type, which is good for verification
because it concisely expresses what valid data looks like and lets us use pattern matching syntax
to enforce that all the possible cases are covered. The programmer can annotate the datatype
declaration to specify the concrete representation, which is useful when the x86 ISA requires
particular bit patterns in the page table.

type ATType [[int]] =

ATResv [[= 0]] | ATKern [[= 1]] | ATNorm [[= 2]]

This extra power requires additional invariants. For example, not every int corresponds to a
valid ATType, only the ones between 0 and 2 do. To prove that the compiled code implements the
functional specification, the compiler needs to maintain a nontrivial relation between the abstract
state and the corresponding C program state. Similarly, each integer operation must be proven to
not overflow its 32-bit format, and each array access must be proven to be in bounds. Behind the
scenes, the DeepSEA compiler uses a library of Coq tactics to automatically prove these properties
(Sec. 4.4). The tactics can deal with basic arithmetic operations, and values that are computed by
straight-line code, but they may get stuck on more complicated problems. Here, DeepSEA’s notion
of assertions play a second role, by pushing the verification conditions to the user.

For example, in the page table init method, there is a somewhat complicated loop which analyses
the parameters provided via the bootloading, and then assigns the variable nps. As mentioned
above, we need that nps < maxpage, but we cannot expect an automated theorem prover to prove
something about a number n computed by an arbitrary loop. Instead, we add an assertion.

let mem_init mbi =

(* loop to compute n. *)

assert n < maxpage;

nps := n;

(* more initialization code. *)
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In the generated specification, this corresponds to one more guard statement, i.e. one more place
where the function may be undefined (return NONE). So in order to prove something useful about
the function, the programmer will need to invent a strong enough loop invariant to prove the
inequality. Meanwhile, DeepSEA is set up so that any asserted formula is automatically added as an
assumption for the automated tactics to use (Sec. 4.3), so the correctness of array accesses becomes
easy to prove. The assertion moved the proof obligation from the machine to the human.

2.3 Invariants

It is also possible to specify that the state of an object satisfies an invariant, which must be preserved
by all methods. Often this is needed in order to prove that the assert-statements in a method are
satisfied if they refer to data from the object fields.

For example, one of the objects in the memory manager is the Container, which keeps track of
how much memory each process is entitled to, and has methods to transfer some of a process’s
quota to its child processes. (See above for method type declarations.) It is implemented by keeping
an array of structs:

type AgentContainer = {

ac_quota : int; ac_usage : int;

ac_parent : int; ac_children : int_list; ac_used : bool

}

object Container (iflags : CPUSig) : ContainerSig {

let AC : array[NUM_ID] AgentContainer := array_init

...

}

We need many invariants about this data, for example that the parent and child ids and the
quota numbers are always in-range. We do not duplicate Coq’s facilities for writing mathematical
definitions. Instead we define the invariant as a predicate in Coq, which we can later refer to in the
DeepSEA source file. Note that this definition uses the abstracted representation of the data, e.g. the
numbers are mathematical integers and the array is represented by a finite map (ZMap).

Record ContainerPool_valid (C : AgentContainer) : Prop := {

cvalid_id : forall i, ac_used (ZMap.get i C) = true -> 0 <= i < NUM_ID;

cvalid_quota : forall i, ac_used (ZMap.get i C) = true ->

ac_quota (ZMap.get i C) <= Int.max_unsigned;

...

}.

Definition MContainer_high_level_invariant data := ContainerPool_valid (AC data).

2.4 Layer Composition

Once the objects are defined, they can be grouped into layers. A layer provides a view of the state
of the whole system at a suitable abstraction level.

For example, the low-level hardware model in CertiKOS includes an object iflagswhich exposes,
for example, whether the CPU is in kernel or user mode, and also an object flat_memwhich provides
a raw view of the memory in the computer. We group these together into a layer called MBoot, and
ascribe it a layer signature MBootSig. Both objects depend on the same lower-level interface (in
this case the empty signature {}, because these are trusted layers at the lowest level and therefore
make no imports). Programming against MBootSig is like writing a program to run immediately
after the boot loader finishes, without any OS to help manage the computer.
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layer signature MBootSig

= { iflags : CPUSig; flat_mem : FlatMemSig }

layer MBoot : [ {} ]MBootSig

= { iflags = MBootCPU; flat_mem = MBootFlatMem }

Typically, layers are defined on top of some non-empty signature. For example, the methods
used to implement the Container object have preconditions about being in kernel mode, which are
stated using an object iflags. We can now create a new layer MContainerImpl, which augments
MBoot with an object tracking memory quotas. The MBootSig stated inside [ ] describes the layer
right beneath it.

layer signature MContainerSig

= { iflags : CPUSig; flat_mem : FlatMemSig; container : ContainerSig }

layer MContainerImpl : [MBootSig]MContainerSig

= { container = Container }

At this point, the layer expression can also be annotated with the invariant that the data in this
layer satisfies.

layer MContainerImpl : [MBootSig]MContainerSig

= { container = Container } assert "MContainer_high_level_invariant"

Note that the typing rules for layers do not require the signatures to match exactly (the types can
be łrelaxedž). For example, MContainerImpl only uses the iflags object, but the underlying layer
also provides flat_mem. Also, even though only container is mentioned in the layer definition,
iflags and flat_mem are mentioned in the signature, and passed through from the underlay. This
is a common idiom; intuitively, programming against MContainerImpl is like working with a new
abstract machine which has been augmented with a memory accounting facility. If we don’t want
to pass through an object, it can be hidden by omitting it from the layer signature.

Two layers defined against the same underlay can be composed horizontally, L1 ⊕ L2, producing
a new layer containing the objects of both. Similarly, two layers can be composed vertically, L1@L2,
if the underlay signature required by L1 matches the signature exported by L2. For example, we
can instantiate MContainerImpl with the underlay MBoot to create a ground layer (i.e. one making
no imports). In a ground layer the specification can be evaluated fully (because all methods have
known specifications), and of course only ground layers can be compiled to executable code. This
is shown by the list of imports (in square brackets) being the empty set {}.

layer MContainer_impl : [ {} ]MContainerSig

= MContainerImpl @ MBoot

2.5 Pure Layer Refinement

The point of abstraction layers is to present a view of the state of the program. As we saw above,
one way to create such layers is the same as what programmers in conventional C-like languages
do: write a new set of methods which call the API exposed by the lower layer. But DeepSEA also
provides a second way: to keep the same set of methods, but change their specifications and the
type of the program state.

Concretely, DeepSEA objects and layers can be marked as logical, meaning that we don’t expect
to automatically generate C code from the methods in them. The methods can still be desugared
into Coq functions in the same way as above, and additionally one can import arbitrary types
and function definitions written directly in Coq. If L1 is a logical layer, L2 is some other layer,
and the user has manually defined a binary relation R between the state of L1 and L2, then the
expression L1 :> L2 with R defines an pure refinement L2. The DeepSEA compiler will generate a
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proof obligation for each method, where the user has to manually show that the logical specification
in L1 can be simulated by the specifications in L2.

For a simple example, consider the assert statement in mem_initmentioned above. We can define
a new layer L1 which has the same method except it omits the assert statement, and use the identity
relation for R. Since we do not generate code for L1 we do not need the assert statement to guide
the automated tactics. The compiler will create an obligation asking us to prove that the methods
mem_init in L1 and L2 always return the same value; which is trivial except we need to show
that the assertion in L2 is satisfied. The layer (L1 :> L2 with R) can then be used as an underlay
for further layers, and the generated specifications will include the łbetterž specification, so this
allows us to insert a manual proof (of the asserted formula) into a development which mostly used
automated proofs.

For the Container object, we use pure layer refinement in a more interesting way to add a form
of ghost state. In the executable code, we just need to track how many children each process has
(if a process has nonzero children it can’t be deleted yet), but for proving properties it is useful to
have an explicit list of each process’s children.
We handle this by defining two objects, the concrete MContainerImpl which stores an integer

count, and the logical MContainer which keeps a (mathematical) Coq list. The user defines a
relation ContainerRefineDataRel which states that the integer count corresponds to the length
of the list, and for every method such as container_split, DeepSEA will ask the user to prove a
set of theorems such as:

forall a0 a1 a2 d1 d2 d1' r,

ContainerRefineDataRel d1 d2 ->

MContainerContainer_container_split_spec a0 a1 a2 d1 = Some (r, d1') ->

exists d2', MContainerContainerImpl_container_split_spec a0 a1 a2 d2 = Some (r, d2')

/\ ContainerRefineDataRel d1' d2'

The theorem just says that the implementation method satisfies the new specification we are
ascribing to it, but there are two interesting points to note. First, it’s stated entirely in terms of the
generated functional specifications, so when proving it we are insulated from the grubby details
of C. (The function ..._split_spec is a simple wrapper around ..._split_opt.) Second, it’s stated in
the downwards direction, the implementation simulates the specification, which is generally easier
to prove (this way we don’t have to invent an abstract list). Because all our specifications are
deterministic functions, we can use known techniques [Gu et al. 2016; Leroy 2009] to automatically
also show an upwards simulation as a corollary, and by composing the simulations we get that the
executable code refines the high-level specification.
Pure layer refinement lets us apply the refinement-based approach that previous groups have

used, but in a more selective way. Instead of writing duplicate implementations and specifications
for the entire program, we can generate most of the specifications automatically but manually add
custom specifications for individual methods as required.
A single DeepSEA layer expression such as

layer MContainer_impl : [ { } ] MContainerSig =

(MContainer :> MContainerImpl with "ContainerRefineDataRel") @ MContainerLow @ MBoot_impl

provides a short way to explain multiple proof steps: it takes a concrete layer MContainerLow,
ascribes more informative specifications MContainer to some of the methods, and satisfies its
dependencies using another layer MBoot_impl. In previous work, this involved writing hundreds of
lines of Coq code spread over multiple files. In DeepSEA it is possible to see the large-scale structure
of the proof at a glance.
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3 THE DEEPSEA LANGUAGE

The DeepSEA language consists of a small typed expression and command language, and a layer
calculus to glue them together.
The DeepSEA compiler works in two steps. It first parses and type-checks the input file and

creates a typed intermediate term, which is finally desugared into a functional specification. The
desugaring acts as the formal semantics for the DeepSEA language. As we will see, the desugaring is
a very simple transformation, so the programmer can easily look at the generated specifications and
work with them in an interactive proof assistant. The language shown in this section corresponds
to abstract syntax after parsing, omitting a few convenience features provided by the type-checker.

Omitted features. In order to keep the implementation simple, the functionality of the language is
kept minimal. There is no use of C pointers and no built-in support of dynamic memory allocation
(every DeepSEA object is realized as a set of static variables), so programs that need dynamic
allocation will have to implement it themselves (using indices into an array, like the page table in
Sec. 2). The CertiKOS kernel was written in this style, avoiding the use of pointers in order to not
have to reason about aliasing. There are also no higher-order functions.
DeepSEA also does not natively support concurrency, or low level features like interrupt handlers,

access to system registers, etc. This means that one can not write an operating system entirely
in DeepSEA, but the design is interoperable with existing CertiKOS-style software development,
so the user can manually write C or assembly code for the parts that fall outside the scope of
DeepSEA. This is analogous to how existing operating systems are written in a mixture of C and
inline assembly.

3.1 The Typed Language

Expressions are typed in just a variable environment Γ, while commands are typed with respect to
both Γ and a layer signature I . The signature I specifies the set of objects in the underlay (named
by slot identifiers s), and for each underlying object it specifies the types of its methods (named by
method names fi ). The expression/command typing rules are entirely standard for a simply-typed
language, and the way commands and pure expressions are sequenced is very similar to other
effectful calculi (such as the languages of Moggi [Moggi 1989] and Levy [Levy 1999]), so in this
paper we omit the typing rules and just show the syntax of the language (Figure 1).
A and B range over types. These include defined type names τ , primitive types like int and bool,

as well as pair types A × B, tagged union types A + B, functions, arrays (of fixed size N ), record
types, and algebraic datatypes. We saw examples of the last two in Sec. 2 (ATInfo and ATType).
Next, we syntactically distinguish (side-effect-free) expressions e from (effectful) commands

c . Expressions include variables, constants, arithmetic operations (±) and comparisons (≶), and
operations like construction of pairs and tagged values. Arrays are constructed (as uninitialized
memory) by array_init, and accessed by e[e ′]. Finally we can construct new records, access
record fields, and construct datatype values.
Commands include returning a pure expression (val(e )), sequencing commands (let), reading

and writing object fields (v), case-analyzing and destructing data (if, match), bounded loops (for),
and invoking operations from the underlay interface (s . f e).
assert(c ) states a method precondition. The asserted expression c is a boolean, so it’s simply-

typed and evaluable. This is in contrast to layer invariants ϕ, which are given as part of the layer
definitions, and can be any proposition in the underlying theorem prover.

Layer expressions. The more novel part of the calculus is how the commands are organized into
layers. A layer in DeepSEA is a description of the state of the system and a collection of methods to
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(Types)
A,B ::= τ | int | bool | unit | A × B | A + B | A→ B

| array[N]A | XA{si 7→ Ai }
∗

| XA{s1 Ā1 X
s
1| · · · |sn Ān X s

n }

(Expressions and commands)
e ::= x | n | e1 ± e2 | e1 ≶ e2 | true | false

| () | (e1, e2) | inl(e ) | inr(e )

| array_init | e[e] | {si 7→ ei }
∗ | e .s | s ē

c ::= val(e ) | v | v ← e | s . f e | let x = c1 in c2
| if e then c1 else c2
| match e with inl(x ) ⇒ c1| inr(y) ⇒ c2
| match e with (x ,y) ⇒ c

| match e with s1 x̄1 ⇒ c1| · · · | sn x̄n ⇒ cn
| assert(c )

| for x = e1 to e2 do c

S ::= { fi : Ai }
∗ I ::= {si 7→ Si }

∗

D ::= objectw := O

| layer l := C

| layer l := C assert ϕ

| type τ := A (Type definition)
O ::= ObjI {{vj : Bj := ej }

∗; { fi x := ci }
∗}(Constructors)

| ([I ]S :> [I ′]S ) w (Relaxations)
C ::= {si 7→ wi }

∗ (Constructors)
| l1@l2 (Instantiations)
| l1 ⊕ l2 (Aggregations)
| ([I1]I2 :> [I ′1]I

′
2) l (Relaxations)

| l1 :> l2 with R (Refinements)
P ::= D; P | ∅ (Programs)

Fig. 1. Syntax

manipulate that state. Typically a given method will only affect a small portion of the full system
state (e.g. a disk driver will never touch the state of the network), and in order to express this
we partition the state into several objects, where each object consists of some state and a set of
methods. Semantically there is no difference between grouping states and methods into one object
or several, but because the DeepSEA type system enforces encapsulation, the objects could enable
better reasoning principles, e.g. in future work we may automatically generate łframe lemmas.ž
To define a new layer in DeepSEA, we first define several objects by definitions of the form

objectw := ObjI {{vj : Bj := ej }
∗; { fi x := ci }

∗}

Each object contains a set of data fields named vj , with type Bj and initial value ej , and a set of
methods fi . The method bodies ci are checked with respect to the underlay I , and in an environment
extended with the object fields. The judgment produces a new object type declarationw : [I ]{ fi :

Ai → Ci }
∗} which will be in scope when the subsequent definitions are checked.
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If an object can be defined with respect to some underlay signature I , it will also work over any
larger interface I ′. We express this using relaxation ([I ]S :> [I ′]S )w . In the surface syntax, both
object definition and relaxation can be combined in a single definition object w (I) : S {...}.
Then the various objects are assembled into layers. A layer which exports objects I2 and is

implemented on underlying methods I1 is given the type [I1]I2. There are five ways to define such
a layer. First, by directly specifying the objects ({si 7→ wi }

∗). Second, if l1 can be implemented
on top of the interface exposed by l2, then the two can be combined into a single layer l1@l2 by
vertical composition. Third, two layers l1 and l2 which are defined for the same underlay interface
I can similarly be combined into a single layer l1 ⊕ l2 by horizontal composition as long as their
defined names do not clash. Fourth, one can relax the type of an existing layer to a weaker type
(([I1]I2 :> [I ′1]I

′
2) l). The syntax for relaxation is verbose in the AST because it is fully annotated,

but in the source language the programmer can write just l :> [I ′1]I
′
2 and the elaborator will infer

the original type [I1]I2.
Fifth, two layers can be combined when one refines the other (l1:>l2 with R), as we explained in

section 2.5. For the expression to be well typed the two layers must expose the same signature. In
addition to type checking, the compiler will also create proof obligations requiring the programmer
to prove that R is a simulation relation. Trying to ascribe a łwrongž specification l1 to l2 will yield
a well-typed but unverifiable program.

In the figure the language gives a name to every object and layer expression (in other words, the
layer expressions are in łA-normal formž). In the source language there is no such restriction; the
elaborator will expand out compound layer expressions.

3.2 Desugaring

In order to verify a program, we want to express what it is doing in a form that is easy to reason
about. To that end, we desugar each layer into simply-typed lambda calculus. To express the fact
that a layer depends on its underlay, we assume that the typing context contains variables for each
of the objects exported by the underlay.
Further, as mentioned in section 2.2, we write code in the state monad to encode effects func-

tionally. We assume that the environment includes operators ret, bind, set : T → MT unit, and
get : MTT . Given these we can desugar DeepSEA terms into lambda calculus expressions. DeepSEA
expressions are a subset of lambda calculus and are directly embedded when desugaring. Commands
are rewritten using the monadic combinators as follows. Note that because for-loops are bounded,
they can be translated using a total function forM.

spec (val(e )) = ret e

spec (v ) = bind get (λt . t .v )

spec (v ← e ) = bind get

(λt . set {t with v = e})

spec (let x = c1 in c2) = bind spec (c1) (λx . spec (c2))

spec (s . f e ) = s . f e

spec (if e then c1 else c2) = if e then spec (c1) else spec (c2)

spec (for x = e1 to e2 do c ) = forM e1 e2 spec (c )

spec (match e with (x ,y) ⇒ c ) = match e with (x ,y) ⇒ spec (c )

spec (assert(c )) = guard spec (c )

Given the functional specification for each method, we can define the meaning of the larger
units (objects and layers). To do so, we translate DeepSEA layer expressions into the layer calculus
of Gu et al. [2015]. Direct object definitions are translated to finite maps from identifiers to methods
specifications, while the @, ⊕ and :> operations are translated into the corresponding layer
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In OCaml

In Coq

Refinement

DeepSEA source file

Abstract syntax tree

Typed inter-
mediate term

Deep specification Clight function

LAsm function

executable

Tactics

Parse and type check

Coq-specific elaboration

Desugaring (section 3.2) Synthesis (section 4)

CompCert

Pretty printer and assembler

Fig. 2. The DeepSEA compilation pipeline

calculus combinators. The layer calculus Coq library automatically composes refinement proofs
when building larger layers from smaller ones.

4 CERTIFIED COMPILATION

Our compiler (Fig. 2) takes an input file written in DeepSEA language and generates a C imple-
mentation, a functional Coq specification and a Coq proof that the implementation satisfies the
specification. The first step is a frontend implemented in OCaml which typechecks the input and
generates a directory of Coq files containing the AST of the program and the proofs for each
layer. These files import the main functions and correctness theorems from the DeepSEA Coq
implementation, so the full implementation of DeepSEA is 10,212 lines of OCaml and 18,235 lines
(excluding comments) of Coq.

4.1 Generating Runnable Code

The generated specifications are produced by applying a Coq function to the AST. For the im-
plementations, DeepSEA first applies a Coq function on the same AST representation to obtain
a C AST defined in Coq, then applies CompCert to compile it into x86 assembly. Because we
import CompCert (which is written in Coq) into our Coq project, we get an internalized end-to-end
correctness theorem from the specifications down to assembly. This correctness theorem is stated
using CompCert’s operational semantics for the łClightž C subset and for Assembly: we prove
łif the functional spec evaluates to a value, then the generated C program evaluates to the same
valuež, which composes with the CompCert correctness statement łif the C program evaluates to a
value, then the compiled assembly evaluates to the same valuež. (In particular, this means that the
evaluation of the C program is defined, with no C undefined behavior.)
In order to actually produce executable code the entire Coq project is compiled (using Coq’s

extraction mechanism) into an OCaml program which, if executed, will print out the assembly.
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C type ty ::= uint32_t

| struct({idi 7→ tyi }
∗)

| array(ty,n) | void

C value vl ::= Vint n | Vptr p

Ext. C value cv ::= CVval vl

| {idi 7→ cvi }
∗

| [cvi ]
∗

p
ty
⇝
m

cv

∀n. 0 ≤ n < N ⇒ p + n × sizeof(ty)
ty
⇝
m

cvn

p
array(ty,N )
⇝
m

[cvi ]
∗

ϕ = (idi ,τi )
∗ ∀i . p + field_offset(idi ,ϕ)

τ
⇝
m

cvi

p
struct(ϕ )
⇝
m

{si 7→ cvi }
∗

p
ty
⇝
m

CVval(load(m,p))

Fig. 3. Complex values and match relation.

Alternatively, this program can be given a command-line option to only pretty-print the C code
without compiling it, and the user can then use a faster but less trustworthy compiler, like gcc.

This setup creates a very small trusted computing base. One must inspect the statement of the
theorems one proves about the programs, and any specifications from a łtrustedž layer at the
bottom of the layer stack. And we rely on the x86 assembly semantics formalized by CompCert,
the correctness of CompCert pretty printer phase (since the assembly semantics don’t specify
the binary instruction format), and the correctness of Coq (including extraction). On the other
hand, although we use CompCert’s C semantics we don’t need to trust it since CompCert itself is
verified. (Of course, if you use gcc, you also have to trust CompCert’s C semantics, CompCert’s
pretty-printer, and the gcc implementation.) Similarly a bug in the DS frontend (written in OCaml)
could make it generate a bogus Coq specification, but typically the generated Coq specifications
are not the end product. For example, in the SHA case study (Sec. 5.2 below) we go on to prove that
those specifications are equivalent to a nicer functional spec.

4.2 Datatype Synthesis

We now go on to describe the structure of the compilation and correctness proof in detail. First,
in order to relate the łmathematicalž types (e.g. unbounded integers, algebraic datatypes) in the
generated spec with the C types in the code, the compiler must generate two things. First a
refinement relation R, which relates a Coq record containing one mathematical value for each object
field in the input program, to a Clight memory which concretely represents the program state.
Second, for each object field v it must generate a set of operations to load and assign to the field,
and each operation must be proven correct with respect to the refinement relation.

This task is done in two steps. First, Clight only has a notion of word-sized values (integers and
pointers), which is inconveniently low-level. We define a grammar of extended C values (either
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Type assign. rty : A→ ty

rty (int) = uint32_t

rty (uint) = uint32_t

rty (bool) = uint32_t

rty (unit) = void

rty (A × B) = struct({idA 7→ rty (A), idB 7→ rty (B)})

rty ({si 7→ Ai }) = struct({si 7→ rty (Ai )}
∗)

rty (array[N]A) = array(rty (A),N )

Type rel. RA ⊆ P (A × cv)

Rint n CVval(Vint n) ⇐⇒ 0 ≤ n < 232

Ruint (Vint n) (CVval(Vint n)) ⇐⇒ True

Rbooltrue (Vint n)) ⇐⇒ (n = 1)
Rboolfalse (Vint n)) ⇐⇒ (n = 0)
Runit () (Vint n) ⇐⇒ (n = 0)

RA

RAa cva RBb cvb

RA×B (a,b) {idA 7→ cva , idB 7→ cvb }

∀i . RAi ai cvi

R {si 7→Ai }{si 7→ ai }
∗ {si 7→ cvi }

∗

∀i . 0 ≤ i < N =⇒ RAiai cvi

Rarray[N ]A[ai ]
∗ [cvi ]

∗

R t (m,a)

RAi t .vi cvi pi
rty (Ai )
⇝
m

cvi

R t (m,a)
for each new field vi : Ai

Fig. 4. Datatype implementation and refinement relation

word-sized values, structs, or arrays), and inductively define the łmatchž relation p
ty
⇝
m

cv which

states that the C memory m and pointer p represents the complex value cv. (Fig. 3). For word-
sized types ty, the match relation simply looks up the pointer in the memory using the operation
load(m,p) which is defined in the CompCert C semantics. For complex types, it recursively checks
that each element of the struct or array value matches the corresponding memory location.

Second, for each type A we choose a C type rty (A), and define a refinement relation RA between
specification values and extended C values. (Fig. 4) The relation can equivalently be considered
as a map from specification values to extended C values, and a domain on which the relation is
valid. There can usefully be more than one such relation for the same underlying C datatype. For
example, DeepSEA provides two integer types which are both implemented by unsigned C int:

• For int the generated specifications use mathematical unbounded integers, which is good
for counting things, so arithmetic like x + y in the DeepSEA program creates specifications
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Γ ⊢L e1 : A⇝ e ′1 Γ ⊢R e2 : A⇝ e ′2 access_mode(rty (A)) = By_value

I | Γ ⊢c e1 ← e2 : unit
z
⇝ e ′1 ← e ′2

I | Γ ⊢c assert c : unit
z
⇝ skip

I | Γ ⊢c c1 : unit
z
⇝ s1 I | Γ ⊢c c2 : A

z
⇝ s2

I | Γ ⊢c c1; c2 : A
z
⇝ s1; s2

I | Γ ⊢c c1 : A
x
⇝ s1 I | Γ,x : A ⊢c c2 : B

z
⇝ s2

I | Γ ⊢c let x = c1 in c2 : B
z
⇝ s1; s2

Γ ⊢R ei : int⇝ e ′i I | Γ,x : int ⊢c c : unit
z
⇝ s

I | Γ ⊢c for x = e1 to e2 do c : unit
z
⇝

x := e ′1; while (x < e ′2) {s;x := x + 1}

Fig. 5. Command synthesis (selected rules)

that use mathematical addition, but we generate a verification condition (See Sec 4.3 below)
to prove that the operations do not overflow.
• The type uint is also implemented as unsigned C ints, but the specifications use nonnega-
tive integers modulo 232, which is good for bitwise operations and does not generate any
verification condition. The relation is defined inductively by the cases shown in the figure.

For user-defined types, the refinement relation and operations are defined by following the
structure of the DeepSEA type and composing a set of typeclass combinators for łarray of Tž, łstruct
ofž etc. The typeclass instances automatically generate specifications of the effect of C operations
such as adding numbers, so these operators are proved correct by construction. An additional set of
operations are provided for loading/assigning (variables), projecting out part (for pairs or structs),
or indexing (for arrays). For user-defined algebraic datatypes, the hints on the datatype constructor
(Sec. 2.2) are turned into a function which maps specification values to C structs or C integers.

Finally, the individual relations are put together to create the refinement relationR for a complete
layer. In the C semantics we are targeting, the program state is a pair (m,a) of a C memory and
an łabstract valuež a (which is used to model trusted primitives). In the generated specification
we have a record value t , with one field vi with a specification value for each object field in the
DeepSEA program, while in the generated program we have one C global variable identifier pi for
each object field. The layer refinement relation is defined pointwise for each new field (i.e. each
field that was defined in the current layer), by first applying RAi to each newly defined field, and
then composing with the match relation.

Note that R defines a refinement relation for an entire layer, while R defines refinement for each
field. The rule of RA×B relates a Coq pair to a C struct with two fields. Rule R {si 7→Ai } means that a
Coq constructor with multiple fields can be related to a C struct with corresponding fields. The
rule Rarray[N ]A relates a Coq finite map [ai ]

∗ to a C array [cvi ]
∗.

4.3 Compiling Expressions and Commands

The compiler translates DeepSEA expressions and commands to C expressions and commands, using
a set of fairly unsurprising rules (excerpted in Fig. 5). Because object fields behave differently when
loading and assigning, there are separate translation rules for expressions used as L- and R-values.
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SC (v, t ) = True

SC (e1 ← e2, t ) = True

SC (assert c, t ) = (spec (c ) t = true)

SC (let x = c1 in c2, t ) = SC (c1, t )

∧ (SC (c1, t ) ⇒ let (x , t ′) = spec (c1) t in SC (c2, t
′))

SC (for x = e1 to e2 do c, t ) = ∀x . e1 ≤ x < e2 ⇒ SC (c, t )

VC (v, t ) = LC (spec (v ) t )

VC (e1 ← e2, t ) =

LC (spec (e1) t ) ∧ ((spec (e2) t ) ∈ dom(RA)

VC (assert c, t ) = True

VC (let x = c1 in c2, t ) =VC (c1, t )

∧ (SC (c1, t ) ⇒ let (x , t ′) = spec (c1) t inVC (c2, t
′))

VC (for x = e1 to e2 do c, t ) =

VC (c, Z.iter (e2 − e1) (λ(x , t
′). (x + 1, spec (c ) t ′)) (e1, t ))

Fig. 6. Safety condition and verification condition (selected rules)

The let. . .in statements become assignment to local variables, assert is omitted, and first-loops
become a while loop that breaks when the condition is met. The translation is parameterized by a
local variable z, which is a place to store the łreturn valuež of a command (z may be unused later,
compare the rules for let and for c1; c2).
The bulk of the implementation of DeepSEA consists of a theorem, proven in Coq, that the

command translation is correct with respect to the desugaring.

Data abstraction verification conditions. However, this theorem is not unconditionally true; e.g.
programs are only correctly compiled if all data values remain in range. Therefore, we also define a
predicate VC (c, t ), the verification condition, which states that the command c can be correctly
executed from state t . The DeepSEA compiler writes to a separate file a set of lemmas stating that
VC holds for all methods in every state that satisfies the layer invariant. This design lets us separate
the correctness of compilation (proven as a single theorem in the DeepSEA library) from theVC
(proven by Ltac tactics for each compiled DeepSEA program).

The definition ofVC is given in Fig. 6. The interesting base cases are loading object fields (v)
and assigning to them (e1 ← e2). In both cases, if there is an array access, DeepSEA will generate a
VC to do bound checking (denoted as LC). Any time something is written to an object field, a
VC will be generated to ensure the value of expression e2 is in the range that can be represented
by the underlying C type ((spec (e2) t ) ∈ dom(RA), e.g., that there are no integer overflows). The
predicate LC is defined for each datatype as part of the typeclass machinery described in Sec. 4.2.

For a complex method c , we produce aVC (c, t ) which is a conjunction of all the LC conditions.
The interesting part here is the handling of assertions. For example, in the mem_init function
(Sec. 2.2) array accesses can only be proved valid because of assert (n < maxpage). This is handled
by an auxiliary predicate SC (c, t ), which states that c can be executed in state t without any
failing asserts. This predicate is referred to in the definition ofVC (see the case for let) to add an
additional helpful assumption to the VC.

Apart from the definition ofVC, the compiler correctness theorem (proven in Coq) is a standard
simulation between specification and C operational semantics:
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Theorem 1 (Command downward simulation). Given a command c , its C implementation

impl (c ) and specification spec (c ): if spec (c ) starts executing from a state t whereVC (c, t ) is satisfied,

and it can terminate successfully in a state t ′, then for a memorym that has above refinement relation

R t (m,a), there exists another memory m′ where executing impl (c ) from m leads to it and has

refinement relation R t ′ (m′,a′).

Using such a simulation result for each function, we can prove a contextual refinement [Gu et al.
2015] theorem for an entire layer (see Sec. 4.6).

4.4 Solving the Verification Conditions

For each DeepSEA program, the compiler then needs to solveVCs for all the methods. In general,
proving suchVC is an undecidable problem because the statements include arbitrary functional
specifications, for example a program might compute a value n using a complicated computation
and then use n as an array index.

However, DeepSEA uses a set of tactics written in Coq’s Ltac language to analyze the condition to
solve many cases and minimize our user’s work. Actually this Ltac is robust enough that it can solve
allVC which appear in our case studies (Sec. 5) automatically. The Ltac gradually decomposes
VC and introduces SC into context. The SC express assumptions that are available at a given
point in the execution. For instance, after executing let x = c1, the current state should be almost
the same as before except x being mapped to c1. For each loop, DeepSEA automatically generates a
simple loop invariant stating which fields in the abstract states remain the same after execution of
the loop body, then proves that loop invariant holds during entire loop and uses that to update the
assumption over the state. This design approach minimizes what user needs to specify in source
code. And even if such a loop invariant is insufficient to solveVC, users can look into the generated
VC to compose more suitable loop invariants or even do the entire proof themselves.
In the end, the VC will be decomposed into multiple requirements over states in various

execution points, such as an array’s index staying within bound and variables not overflowing.
In each subgoal, the context contains certain assumptions introduced by the above Ltac tactics.
DeepSEA will also add more assumptions by instantiating layer invariants with current state. Then
it tries to solve them by applying auto and omega (a Coq tactic to prove arithmetic inequalities).
These tactics are sufficient for the programs in our case studies, but if they fail for some input

program the DeepSEA user can extend the set of tactics, or fall back on writing a manual proof in
the generated file.

4.5 Compiling Objects and Layers

Each DeepSEA object depends on an underlay signature, declares some number of fields, and defines
methods. When being compiled to Coq, it is decomposed to only methods, but each method is
parameterized on the łobject contextž (using Coq’s łsectionsž feature). An object context contains
the specification of each method in the underlay, as well as the type of program state and łlensž
functions for each object fields (the lenses include the datatype operations described in Sec. 4.2).

When compiling an object, we go through the object methods one by one, and compile the method
body in isolation. Finally, we assemble these definitions into layer interfaces and implementations
as done manually by Gu et al. [2015].

4.6 Layer Refinement Proofs

We follow the idea and terminology of Gu et al. [2015] to break a system into multiple layers. A
bottom layer has some trusted methods, and every other layer is built on top of another one. Each
layer implements some new methods or refines its underlying layer, but all the methods called from
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static int COUNTER = 0;

static int STACK[MAX_COUNTER];

int incr_counter() {

COUNTER = COUNTER + 1;

return COUNTER;

}

void push(int x) {

unsigned int idx = get_counter();

// An error if stack is full:

incr_counter();

STACK[idx] = x;

}

object Counter : CounterSig {

...

object Stack (counter : CounterSig) : StackSig {

let STACK : array[MAX_COUNTER] int := array_init

let push x =

let idx = counter.get_counter() in

counter.incr_counter();

STACK[idx] := x

...

logical object AStack (_:StackSig) : AStackSig {

let stack : list int := int_nil

let push x =

let s = stack in

let len = int_length(s) in

assert len < MAX_COUNTER-1;

stack := int_cons(x,s)

...

layer FINAL : [{}]STACKSig =

ASTACK :> (STACK @ COUNTER) with "RefineStack"

Fig. 7. Excerpts from the CCAL tutorial (left) and the DeepSEA reimplementation (right)

such a layer must satisfy the underlying layer’s specification. We combine the specifications of a
layer’s exposed methods to form this layer’s interface I . If a layer with interface I is built on top of
another layer with interface I ′, then we say it has type [I ′]I . To verify a big system built in such
manner, we only need to prove downward simulation (Theorem 2) for each layer, then apply the
soundness theorem from Gu et al. [2015] to get the refinement between the entire implementation
and the specification.

Finally, the generated files contain calls to layer library combinators to piece together the method
definitions into a layer interface definitionÐand crucially, use Theorem 1 for each method body to
prove a refinement theorem for the entire layer:

Theorem 2 (Layer downward simulation). Given a layer l of type [I ′]I with interface L and an

underlying layer l ′ of type [∅]I ′ that has a layer interface L′, if the verification conditions hold for

every method defined in layer l then the layer interface L is a refinement of the layer implementation

running over L′.

5 CASE STUDIES

To check that the language is expressive enough to write real software, we selected three existing
certified system software projects and re-wrote parts of them in DeepSEA: a minimal stack manager,
a tiny implementation of the SHA hash function, and a memory manager for an operating system.

5.1 Stack Example from the CCAL Tutorial

The CertiKOS team used a stack of integers to explain the certified concurrent abstraction layer
(CCAL) methodology.1 The program is trivial (Fig 7), but comparing the original proofs from the
tutorial with our reimplementation provides a qualitative understanding of how DeepSEA reduces
proof effort. The original development consists of 1074 lines of Coq code (645 lines definitions

1Presented at the 2017 DeepSpec Summer School, https://deepspec.org/event/dsss17/lecture_shao.html.
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and 429 lines proofs). It structures the verification of the stack methods into two refinement steps:
C-to-low and low-to-abstract. Starting with source code in Clight, it first refines the stack operations
into low-level specifications that work on CompCert types for memories. Then it performs a low-
to-abstract refinement that represents the stack as a Coq list. A large fraction of the development
is not proof scripts, but rather the manually written specifications and definitions of each layer.
In the DeepSEA version (Fig. 7, right), much of this is automated. The compiler correctness

theorem (Sec. 4.3) handles all reasoning about operational semantics, subsuming the C-to-low step.
Most of the low-to-abstract step (defining a refinement relation between C values and abstract
values) is handled by the generic constructions for datatypes (Sec. 4.2), and the data abstraction
verification conditions are simple enough that the automated tactics (Sec. 4.4) can handle them. In
this way we automatically verify that the Stack object satisfies its generated specification.

Sometimes that may be enough, and we could stop there. However, the generated specification
for push/pop uses the generic datatype machinery, which represents the array by a finite map from
integers (ZMap) in Coq. The hand-written tutorial instead represented the state of the stack by a
list, which makes sense since there are no random array accesses. DeepSEA can not automatically
generate such a specification, but we write a purely logical specification AStack using the Coq
list type, and state a pure refinement between that and the implementation in the same way we
described in Sec. 2.5. The user must write down a suitable refinement relation in Coq:

Definition RefineStack (d1 d2: global_abstract_data_type) :=

COUNTER d2 = length (stack d1)

/\ forall n:, (n < length (stack d1)) ->

nth_error (stack d1) (length (stack d1) - 1 - n) = Some (ZMap.get n (STACK d2)).

DeepSEA generates the statement of a downwards refinement lemma and asks us to prove it:

Lemma ASTACK_AStack_push_exists : forall a0 d1 d2 d1',

RefineStack d1 d2 ->

high_level_invariant d1 -> high_level_invariant d2 ->

execStateT (AStack_push_opt a0) d1 = ret d1'->

exists d2', execStateT (Stack_push_opt a0) d2 = ret d2' /\ RefineStack d1' d2'.

This is the same type of downward refinement statements that CCAL users prove manually. There
is no particular short-cut for writing this proof, and it took us about 110 lines of Coq. That’s still
much less than the original CCAL tutorial, since we only reason about functional data structures
ZMap and list (not C), and we only have to prove the key lemmas for the method specifications
themselves (not the scaffolding to link together the layers).

5.2 The SHA-256 Cryptographic Hash Function

The first realistic project we examine is Appel’s verification of the SHA-256 hash function [Appel
2015]. Appel starts with two existing artifacts: on the one hand the open-source OpenSSL imple-
mentation (about 235 lines of C), and on the other hand the FIPS 180-4 Secure Hash Standard (about
16 pages of English text and math notation).

To prove that these match, he first translates the mathematical functions in the standard into

169 lines of Coq (these are six functions Ch(x ,y, z),Maj (x ,y,x ), Σ {256}0 , Σ {256}1 , σ {256}0 , σ {256}1 which

operates on 32-bit words, the message schedule functionWt and round function H
(i ) which operate

on message blocks, and the hash function H which ties them all together).
Although these are well-defined functions, it is not possible to execute them efficiently, because

the standard definesWt in a łnaivež recursive way, which would take exponential time to run.
So in order to experiment with the specification, Appel also defines a functional programming
implementation in Coq, and proves (in 2424 lines of Coq) that it computes the same result. This can
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be run (but requires a full runtime system with garbage collection etc). The functional programming
implementation does not play any role in the rest of the development, but provides a way to exercise
the specification before embarking on the full proof.

The proof of the C code itself is 6539 lines of Coq developed using the VST program logic [Appel
2011]. The correctness theorem for the hash function is a Hoare triple which states a refinement
square: if the concrete starting state of the C program (defined in terms of pointers etc) is related
(via a manually defined Coq relation) to a textm (a mathematical Coq type), then after calling the
hash function the concrete C variables are related to the hash value H (m).

let fresh block_id =

if block_id < 0x10000000 then

begin

for i = 0 to 16 do

let t = fbr.read(block_id, i) in

buffer[i] := t

end;

for i = 16 to 64 do

let d0 = buffer[i-16] in

let d1 = buffer[i-7] in

let t0 = buffer[i-15] in

let s0 = bitop.sigma0(t0) in

let t1 = buffer[i-2] in

let s1 = bitop.sigma1(t1) in

buffer[i] := (s1 + d1) + (s0 + d0)

let block_data_order block_id =

sha256_word.fresh(block_id);

sha256_word.load_regs();

begin for i = 0 to 64 do

sha256_word.rnd(i)

end;

sha256_word.add_regs()

Fig. 8. Excerpt from our SHA implementation.

Our implementation. A basic tradeoff of our
approach is that the user must write programs
in DeepSEA rather than verifying existing C pro-
grams. So instead of starting with an existing
C implementation, we write a new program, in
about 400 lines of DeepSEA. Fig. 8 shows an il-
lustrative excerpt. The function fresh tabulates
Wt for a message block, while block_data_order

implements H (i ) .

Limitations. To save effort we take a few
short-cuts when we re-implement the code, so
our final artifact has a little less functionality
than the OpenSSL version. First, we decided
not to implement the code to pad the message,
and assume it is given as an array of 64-byte
blocks. Also, we assume that the entire mes-
sage is available at once, while the OpenSSL
implementation allows adding more data incre-
mentally. These could be implemented, with
some more developer effort.

A deeper limitation is that the OpenSSL func-
tion interface takes a pointer to the data, while
DeepSEA generally assumes that objects encap-
sulate all their data in field variables (we believe
it will be easier to prove theorems about pro-
grams if clients use methods to query other
objects, instead of a pointer to their innards, so that it is clear who maintains the object invariants).
One can emulate pointers to shared data by having a dedicated object containing a buffer, and
instead of pointers passing around numbers which are used as indexes into that buffer, but for
this hash example we just assume a lowest layer which contains the message data and exposes it
through a łgetž method.

Proof. Does our new implementation compute the correct hash value? Yes. We know this because
we prove that it satisfies exactly the mathematical specification developed by Appel, copied verbatim.
However, in our development we never have to reason about C semantics; for each function we
prove a refinement between the desugared specification generated by the DeepSEA compiler, and
the mathematical function defined by Appel.
This illustrates the typical way DeepSEA fits into a larger development. We first generate low-

level functional specs for each method in the program, and then we load those specs into Coq to
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interactively prove some theorem about them. In this case, the theorem is a refinement result, but
for a different project it might be some other kind of correctness property.

In total there are about 664 lines of manual Coq proof. However, as mentioned above our program
is more limited than OpenSSL SHA, and for this reason we also do not prove a refinement for the
bottom layer containing the data array (instead we add a hypothesis which states that the values it
returns correspond to a padded message). For a more fair comparison, we can consider just the C
function block_data_order which processes a single block (and the DeepSEA helper functions fresh
and rnd). Our Coq proofs are about 308 lines of function refinement, while Appel’s proof (in files
verif_sha_bdo*.v) are about 1788 lines.

Notably, proving that our implementation satisfies the mathematical specification appears no
harder than to prove that Appel’s functional programming implementation does so. We attained
our goal: we support proofs by equational reasoning as well as in a functional language, while still
generating low-level code.

Performance. The full OpenSSL implementation does more sophisticated copying of data (and
testing whether it needs padding) than our DeepSEA version. We omit the padding step and let
the lowest layer in our test harness provide bytes directly from a buffer with no copying, and
comment out the corresponding code in the OpenSSL version. When compiled with the same
compiler (gcc -O3), the DeepSEA version is slightly faster than OpenSSL (hashing 100 MB/s vs 90
MB/s), although OpenSSL is in any case not extremely optimized and a faster implementation [Gay
2005] can do 180 MB/s. Although programming directly in C offers more control over performance,
for this example DeepSEA is fast enough.

5.3 The CertiKOS memory manager

The other project we evaluate is the memory manager for the CertiKOS OS kernel by Gu et al. [Gu
et al. 2015]. While the SHA example shows how DeepSEA reduces the burden of individual proofs
(the lines of proof/lines of code ratio), the memory manager example is interesting because the
original code is split into multiple modules and has non-trivial state, so it shows that the DeepSEA
feature set can handle nontrivial programs, and also help organize them.
CertiKOS is organized into a stack of layers (which inspired DeepSEA), and at the bottom of it

are three families of functionalities: quota management łcontainer,ž physical memory management
łallocation table,ž and virtual memory management łpage table.ž They are implemented in one,
three, and seven layers, which each consist of manually written C code, Coq specifications, and
Coq refinement proofs. We have re-implemented these 11 layers in DeepSEA, as we described in
Sec. 2. The generated code is essentially the same as the original CertiKOS implementation, so
there is no difference in performance.
In this case study, we do not go on to prove any high-level correctness theorem about the

generated spec. This is because the memory manager is only a part of the original CertiKOS
development, and in this part, the CertiKOS team only proved the correspondence between code
and functional specification. Higher layers built on and included these specifications, and then
eventually proved correctness theorems [Costanzo et al. 2016] about the linked artifact. Thus, using
DeepSEA the only task is to write the program itself: our generated specifications are at the same
level of abstraction as hand-written specifications that the CertiKOS team produced.

Implementation effort. Because it automatically proves the correspondence between C code and
Coq specifications, using DeepSEA drastically reduces the amount of code that needs to be written.
The following table shows the number of lines it takes to define various parts in both settings.

The MBoot layer implements quota management, MContainer layer defines at_get_c and
at_set_c that get and set the reference count of each allocation table entry,MALInit layer initializes
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memory management such as computing number of pages and initializing allocation table,MALOp
layer defines palloc and pfree.
On the CertiKOS side, the spec column shows the number of lines of Coq that define the

specifications of methods, the Clight column shows the number of lines the abstract syntax tree
takes up, and the correctness proof column shows the number of lines of proof script for the
simulation proof between Coq specification and Clight implementation. All these are written
manually, which is 8235 lines in total.

On the DeepSEA side, all the user needs to do is writing down the DeepSEA source program (810
lines). Although we mentioned that users might need to prove the verification conditionVC in
complicated cases, here our Ltac can prove all of them automatically.

Layer
DeepSEA CertiKOS

Source Spec Spec Clight Correctness

MBoot 248 1601 80 569
MContainer 358 257 649 2132
MALInit 87 204 329 791
MALOp 117 286 409 928

Total 810 8235

Note that most operations defined in MBoot are trusted, that is, they only have specifications,
but the implementation will be supplied separately and the programmer must ensure that the
implementation matches the spec. This is why the original CertiKOS Clight code and correctness
proofs for MBoot are relatively small.

6 RELATED WORK

Languages for systems programming. There has been much work on the development of systems
programming languages [Apple 2015; Bershad et al. 1995; Gosling et al. 1996; Grossman et al. 2002;
Hunt and Larus 2007; Microsoft Corp., et al. 2001; Mitchell et al. 1979; Nelson 1991; Odersky et al.
2005; The Rust Team 2015], including the use of advanced type systems to rule out various forms
of run-time errors [Apple 2015; Odersky et al. 2005; The Rust Team 2015]. But these languages are
still not suitable for building certified code: they lack formal (layered, functional) specifications
and direct equational reasoning. Full functional correctness proofs themselves rule out all run-time
errors (e.g., our compiler correctness theorem implies that if the specification does not return
None, the generated C code does not encounter undefined behavior), so we are content with a
simply-typed type system.

Functional languages with reasoning support. Instead of ascribing a functional specification to
a program written in an imperative language, one can use a verified compiler for an existing
functional language, such as CakeML [Tan et al. 2016] or CertiCoq [Anand et al. 2017], and then
embed and reason about the programs in a proof assistant [Guéneau et al. 2017]. However, these
languages use a large runtime system with a garbage collector, so they are not suited for low-level
systems programming. DeepSEA carefully picks a small enough subset of features that it can be
directly translated into C, yet used for realistic programs.

Cogent. The work most closely related to our aims is the Cogent language [Amani et al. 2016;
O’Connor et al. 2016], which also aims to automatically generate C code and proof assistant
specifications, and is motivated by the experience of the seL4 verified kernel. However, the detailed
language design is completely different. Cogent deals with straight-line code, and the main focus is
on a functional treatment of malloc/free. For DeepSEA we are interested in detailed user control
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over datatypes, loops, and in large-scale modular structure. Our choice of features were based on
the examples in the CertiKOS project [Gu et al. 2015, 2016, 2018], which did not use malloc/free,
but made very heavy use of refinement layers. DeepSEA provides such layers as a basic construct.

Hoare-style reasoning about low-level code. We made a detailed comparison with the Verified
Software Toolchain (VST) [Appel 2011] in the SHA case study (Sec. 5.2). One big design difference
is that VST uses Hoare logic instead of equational reasoning, i.e. VST formalizes the syntax of C
programs and provides rules for proving pre- and post-conditions of program fragments, while
DeepSEA represents programs as Coq functions that are reasoned about using the native Coq
logic. The automatically generated DeepSEA specifications still look quite łimperative,ž but the
difference becomes more important when using pure layer refinement since then the user can
replace parts of the specifications with arbitrary functional programs. Low∗ [Protzenko et al. 2017]
and Bedrock [Chlipala 2011] also offer Hoare-style reasoning about a C subset or C-like language.
The C semantics are quite low-level, so typically a user writes a pure functional specification

and then uses the Hoare rules to prove equivalence of the spec and the C program. By contrast,
DeepSEA’s generated specs are already at the level of abstraction of handwritten CertiKOS functional
specs (Sec. 5.3).
Simpl [Schirmer 2006] translates a C subset into an imperative language and provides a Hoare

logic, but C expressions are translated directly into Isabelle/HOL expressionsÐso it uses the Hoare
approach for statements and the DeepSEA approach for expressions. Autocorres [Greenaway et al.
2012, 2014] further translates a Simpl program into a fully monadic HOL function, and tries to
abstract from bounded ints into mathematical integers. The end result therefore looks similar
to DeepSEA, but while the DeepSEA user writes łmonad-ishž program which gets translated to C,
Autocorres translates a subset of C into monads; and while DeepSEA tries to automatically prove
integer overflows (but the user may need to add asserts), Autocorres first puts asserts everywhere
and then tries to remove as many asserts as possible using rewrite rules. Therefore, Autocorres
relies heavily on Isabelle/HOL’s support for automatic rewriting. DeepSEA’s verification condition
generator, which creates a large conjunction of formulas, is a better fit for Coq’s proof automation,
which works by pattern matching the form of the formula to be proven.

VST provides access to all features of C, while DeepSEA, Low∗ and Simpl target a limited subset
of C. DeepSEA, VST, and Bedrock give end-to-end machine-checked correctness proofs down to
assembly, Simpl/Autocorres gives a machine-checked proof to C, while the Low∗ translation to C
was only proved correct on paper. None of these languages address large-scale proof structure like
DeepSEA’s layers.

Frama-C/WP. Frama-C [Kirchner et al. 2015] is one of the most established tools for verification
of C programs. It supports many approaches to verificationÐthe most related one is the łWPž
deductive verification module, which lets programmers annotate a C program with pre- and post-
conditions written in a specification language called ACSL, which then generate goals for either
an automatic or interactive theorem prover. It has been applied to verify parts of hypervisors/mi-
crokernels [Blanchard et al. 2015, 2018; Mangano et al. 2016]. The emphasis of ACSL is on logic
formulas: it includes first- and higher-order quantifiers, separation-logic connectives, inductive
definitions, built-in sets and lists, and recursive definitions. Accordingly, most use-cases verify a
single data structure, e.g. a list or mapping, that can be easily specified by a first-order logic formula.
DeepSEA’s functional specifications are written in a full-featured programming language (Coq),
which we believe will scale better to large systems.

Certified program synthesis. Software synthesis [Delaware et al. 2015; Kuncak et al. 2012; Manna
and Waldinger 1971; Solar-Lezama 2008; Srivastava et al. 2010; The Kestrel Institute 2015; Torlak

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 136. Publication date: October 2019.



DeepSEA: A Language for Certified System Software 136:25

and Bodik 2014] aims to apply powerful decision procedures and theorem provers to automatically
generate programs from specifications. Because large specifications are difficult to write, existing
synthesis work often applies sophisticated algorithms to produce small pieces of code. DeepSEA
offers a complementary perspective: its goal is to let programmers decompose a system into
many simpler objects, to specify each object, and define interfaces between them. With layered
specification and refinement, each layer can incorporate different local synthesis tools with varying
degrees of abstraction and automation. We anticipate that synthesis will play a major role in
DeepSEA-like languages in the future.

7 CONCLUSION

Certified systems programming is a unique challenge for language design: operating systems are
inherently low-level and effectful, while software verification requires high-level abstractions
and pure functions. In DeepSEA, we bridge this chasm automaticallyÐfrom a single input pro-
gram we derive the relation between ADTs and bytes, and between functional specification and
implementation.
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