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Abstract. In this paper, we present a program logic for proving that a
program does not release information about sensitive data in an unin-
tended way. The most important feature of the logic is that it provides
a formal security guarantee while supporting “declassification policies”
that describe precise conditions under which a piece of sensitive data
can be released. We leverage the power of Hoare Logic to express the
policies and security guarantee in terms of state predicates. This allows
our system to be far more specific regarding declassification conditions
than most other information flow systems.
The logic is designed for reasoning about a C-like, imperative language
with pointer manipulation and aliasing. We therefore make use of ideas
from Separation Logic to reason about data in the heap.

1 Introduction

Information Flow Control (IFC) is a field of computer security concerned with
tracking the propagation of information through a system. A primary goal of
IFC reasoning is to formally prove that a system does not inadvertently leak
high-security data to a low-security observer. A major challenge is to precisely
define what ”inadvertently” should mean here.

A simple solution to this challenge, taken by many IFC systems (e.g., [7, 8,
14, 19, 23]), is to define an information-release policy using a lattice of security
labels. A noninterference property is imposed: information cannot flow down
the lattice. Put another way, any data that the observer sees can only have been
influenced by data with label less than or equal to the observer’s label in the
lattice. This property is sometimes called pure noninterference.

Purely-noninterfering systems are unfortunately not very useful. Almost all
real-world systems need to violate noninterference sometimes. For example, con-
sider one of the most standard security-sensitive situations: password authen-
tication. In order for a password to be useful, there must be a way for a user
to submit a guess at the password. If the guess is incorrect, then the user will
be informed as such. However, the information that the guess was incorrect is
dependent on the password itself; the user (who might be a malicious attacker)
learns that the password is definitely not the one that was guessed. This repre-
sents a flow of information (albeit a minor one) from the high-security password
to the low-security user, thus violating noninterference. In a purely noninterfer-
ing system, sensitive data has no way whatsoever of affecting the outcome of a



computation, and so the situation is essentially equivalent to the data not being
present in the system at all.

There have been numerous attempts at refining the notion of inadvertent
information release beyond the rules of a strict lattice structure. IFC systems
commonly allow for some method of declassification, a term used to describe an
information leak (i.e., an information flow moving down the security lattice) that
is understood to be in some way “acceptable” or “purposeful” (as opposed to
“inadvertent”). These declassifications violate the pure noninterference property
described above. Ideally, an IFC system should still provide some sort of security
guarantee even in the presence of declassification. It is quite rare, however, for a
system to have a satisfactory formal guarantee. Those that do usually must make
significant concessions that limit the generality or practicality of the system.

Our primary goal is to leverage the strengths of a program logic to devise a
powerful IFC system that provides formal security guarantees even in the pres-
ence of declassification. A secondary goal is to avoid relational reasoning, which
is usually required for the more expressive IFC reasoning systems (e.g., [15]) due
to the nature of noninterference, but can be very difficult to use in practice.

We achieve these goals by using unary state predicates to refine the pure
noninterference property into one that cleanly describes exactly how a piece
of high-security data could affect observable output. Instead of simply saying
that an observer cannot distinguish between any values of the high-security
data, we say that the observer cannot distinguish between any values among a
particular set — the set described by the state predicate. This method of refining
pure noninterference to express a semantic notion of declassification appears in
many previous IFC reasoning systems (e.g., [3],[15],[20]), though we take a rather
unique approach toward designing a system that establishes the property. Our
contributions in this paper are as follows:

– We define a novel, security-aware semantics for a simple imperative language
with pointer arithmetic and aliasing. The semantics instruments state with
security labels, and tracks information flow through propagation of these
labels. We show that this semantics is sensible and overhead-free by relating
its executions back to a standard small-step operational semantics without
labels.

– We present a program logic for formally verifying the safety of a program
under the security-aware semantics. The logic builds upon Hoare Logic [9]
and Separation Logic [16, 17], and uses a unary predicate language syntax
that has the ability to refer to security labels in the program state. Note that
our choice of Separation Logic is somewhat arbitrary — we need to reason
about low-level pointer manipulation, but a different pointer-analysis logic
may be just as suitable.

– We prove a strong, termination-insensitive security guarantee for any pro-
gram that is verified using our program logic. This guarantee generalizes
traditional pure noninterference to account for semantic declassification.

– All of the technical work in this paper is fully formalized and proved in the
Coq proof assistant. The Coq development can be found at [6].



The remainder of this paper is organized as follows: Section 2 informally
discusses how our system works and highlights contributions; Section 3 defines
our language, state model, and operational semantics; Section 4 describes the
program logic and its soundness theorem relative to the operational semantics;
Section 5 describes the noninterference-based security guarantee provided by the
program logic; Section 6 describes related work; and Section 7 concludes.

2 Informal Discussion

In this section, we will describe our system informally in order to provide some
high-level motivation. We pick a starting point of a C-like, imperative language
with pointer arithmetic and aliasing, as we would like our logic to be applicable
to low-level systems code. The main operations of our language are variable
assignment x := E, heap dereference/load x := [E], and heap dereference/store
[E] := E′. The expressions E can be any standard mathematical expressions
on program variables, so pointer arithmetic is allowed. Aliasing is also clearly
allowed since [x] and [y] refer to the same heap location if x and y contain the
same value.

2.1 Security Labels

Our instrumented language semantics will track information flow by attaching a
security label to every value in the program state. For simplicity of presentation,
we will assume that the only labels are Lo and Hi (a more general version of
our system allows labels to be any set of elements that form a lattice structure).
Unlike many static IFC reasoning systems, we attach the label to the value
rather than the location. This means that a program is allowed to, for example,
overwrite some Lo data stored in variable x with some other Hi data. Many other
systems would instead label the location x as Lo, meaning that Hi data could
never be written into it. Supporting label overwrites allows our system to verify
a wider variety of programs.

Label propagation is done in a mostly obvious way. If we have a direct as-
signment such as x := y, then the label of y’s data propagates into x along
with the data itself. We compute the composite label of an expression such as
2∗x+z to be the least upper bound of the labels of its constituent parts (for the
two-element lattice of Lo and Hi, this will be Lo if and only if each constituent
label is Lo). For the heap-read command x := [E], we must propagate both the
label of E and the label of the data located at heap address E into x. In other
words, if we read some low-security data from the heap using a high-security
pointer, the result must be tainted as high security in order for our information
flow tracking to be accurate. Similarly, the heap-write command [E] := E′ must
propagate both the label of E′ and the label of pointer E into the location E in
the heap. As a general rule for any of these atomic commands, we compute the
composite label of the entire read-set, and propagate that into all locations in
the write-set.



2.2 Noninterference

As discussed in Section 1, the ultimate goal of our IFC system is to prove a formal
security guarantee that holds for any verified program. The standard security
guarantee is noninterference, which says that the initial values of Hi data have
no effect on the “observable behavior” of a program’s execution. We choose to
define observable behavior in terms of a special output channel. We include an
output command in our language, and an execution’s observable behavior is
defined to be exactly the sequence of values that the execution outputs.

The standard way to express this noninterference property formally is in
terms of two executions: a program is deemed to be noninterfering if two ex-
ecutions of the program from observably equivalent initial states always yield
identical outputs. Two states are defined to be observably equivalent when only
their high-security values differ. Thus this property describes what one would
expect: changing the value of any high-security data in the initial state will cause
no change in the program’s output.

We refine this noninterference property by requiring a precondition to hold on
the initial state of an execution. That is, we alter the property to say that two ex-
ecutions will yield identical outputs if they start from two observably equivalent
states that both satisfy some state predicate P . This weakening of noninterfer-
ence is interesting for two reasons. First, it provides a link between information
flow security and Hoare Logic (a program logic that derives pre/postconditions
as state predicates). Second, this property describes a certain level of dependency
between high-security inputs and low-security outputs, rather than the complete
independence of pure noninterference. This means that a program that satisfies
this weaker noninterference may be semantically declassifying data. In this sense,
we can use this property as an interesting security guarantee for a program that
may declassify some data. To better understand this weaker version of noninter-
ference, let us consider a few examples.

Public Parity Suppose we have a variable x that contains some high-security
data. We wish to specify a declassification policy which says that only the parity
of the Hi value can be released to the public. We will accomplish this by verifying
the security of some program with a precondition P that says “x contains high
data, y contains low data, and y = x%2”. Our security property then says that
if we have an execution from some state satisfying P , then changing the value of
x will not affect the output as long as the new state also satisfies P . Since y is
the parity of x and is unchanged in the two executions, this means that as long
as we change x to some other value that has the same parity, the output will be
unchanged. Indeed, this is exactly the property that one would expect to have
with a policy that releases only the parity of a secret value: only the secret’s
parity can influence the observable behavior.

Public Average Suppose we have three secrets stored in x, y, and z, and we
are only willing to release their average as public (e.g., the secrets are employee
salaries at a particular company). This is similar to the previous example, except



that we now have multiple secrets. The precondition P will say that x, y, and z
all contain Hi data, a contains Lo data, and a = (x+ y+ z)/3. In this situation,
noninterference will say that we can change the value of the set of secrets from
any triple to any other triple, and the output will be unaffected as long as the
average of the three values is unchanged.

Public Zero Suppose we have a secret stored in x, and we are only willing to
release it if it is zero. We could take the approach of the previous two examples
and store a public boolean in another variable which is true if and only if x is 0.
However, there is an even simpler way to represent the desired policy without
using an extra variable. Our precondition P will say that either x is 0 and
its label is Lo, or x is nonzero and its label is Hi. This is an example of a
conditional label : a label whose value depends on some state predicate. If x is
0, then noninterference says nothing since there is no high-security data in the
state. If x is nonzero, then noninterference says that changing its value (but not
its label) will have no effect on the output as long as P still holds; in order for
P to still hold, we must be changing x to some other nonzero value. Hence all
nonzero values of x will look the same to an observer. Conditional labels are a
novelty of our system; we will see in Section 4 how they can be a powerful tool
for verifying the security of a program.

3 Language and Semantics

Our programming language is defined as follows:

(Exp) E ::= x | c | E + E | · · ·
(BExp) B ::= false | E = E | B ∧B | · · ·
(Cmd) C ::= skip | outputE | x := E | x := [E] | [E] := E | C;C

| ifB thenC elseC | whileB doC

Valid code includes variable assignment, heap load/store, if statements, while
loops, and output. Our model of a program state, consisting of a variable store
and a heap, is given by:

(Lbl) L ::= Lo | Hi
(Val) V ::= Z× Lbl

(Store) s ::= Var→ option Val
(Heap) h ::= N→ option Val
(State) σ ::= Store×Heap

Given a variable store s, we define a denotational semantics JEKs that evaluates
an expression to a pair of integer and label, with the label being the least upper
bound of the labels of the constituent parts. The denotation of an expression
also may evaluate to None, indicating that the program state does not contain
the necessary resources to evaluate. We have a similar denotational semantics for
boolean expressions. The formal definitions of these semantics are omitted here



JEKs = Some (n, l)

〈(s, h), x := E, K〉 −→
l′
〈(s[x 7→ (n, l t l′)], h), skip, K〉

(ASSGN)

JEKs = Some (n1, l1) h(n1) = Some (n2, l2)

〈(s, h), x := [E], K〉 −→
l′
〈(s[x 7→ (n2, l1 t l2 t l′)], h), skip, K〉

(READ)

JEKs = Some (n1, l1) h(n1) 6= None JE′Ks = Some (n2, l2)

〈(s, h), [E] := E′, K〉 −→
l′
〈(s, h[n1 7→ (n2, l1 t l2 t l′)]), skip, K〉

(WRITE)

JEKσ = Some (n, Lo)

〈σ, outputE, K〉 [n]−→
Lo
〈σ, skip, K〉

(OUTPUT)

JBKσ = Some (true, l) l v l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C1, K〉

(IF-TRUE)

JBKσ = Some (false, l) l v l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C2, K〉

(IF-FALSE)

JBKσ = Some ( , Hi)
〈mark vars(σ, ifB thenC1 elseC2), ifB thenC1 elseC2, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, ifB thenC1 elseC2, K〉 −→
Lo
〈σ′, skip, K〉

(IF-HI)

JBKσ = Some (true, l) l v l′

〈σ, whileB doC, K〉 −→
l′
〈σ, C; whileB doC, K〉

(WHILE-TRUE)

JBKσ = Some (false, l) l v l′

〈σ, whileB doC, K〉 −→
l′
〈σ, skip, K〉

(WHILE-FALSE)

JBKσ = Some ( , Hi)
〈mark vars(σ, whileB doC), whileB doC, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, whileB doC, K〉 −→
Lo
〈σ′, skip, K〉

(WHILE-HI)

〈σ, C1;C2, K〉 −→
l
〈σ, C1, C2 :: K〉

(SEQ)

〈σ, skip, C :: K〉 −→
l
〈σ, C, K〉

(SKIP) 〈σ, C, K〉 −→0
l
〈σ, C, K〉

(ZERO)

〈σ, C, K〉 o−→
l
〈σ′, C′, K′〉 〈σ′, C′, K′〉 o′−→n

l
〈σ′′, C′′, K′′〉 n > 0

〈σ, C, K〉 o++o′−→n+1
l

〈σ′′, C′′, K′′〉
(SUCC)

Fig. 1. Security-Aware Operational Semantics



as they are standard and straightforward. Note that we will sometimes write
JEKσ as shorthand for JEK applied to the store of state σ.

Figure 1 defines our operational semantics. The semantics is security-aware,
meaning that it keeps track of security labels on data and propagates these labels
throughout execution in order to track which values might have been influenced
by some high-security data. The semantics operates on machine configurations,
which consist of program state, code, and a list of commands called the con-
tinuation stack (we use a continuation-stack approach solely for the purpose of
simplifying some proofs). The transition arrow of the semantics is annotated with
a program counter label, which is a standard IFC construct used to keep track of
information flow resulting from the control flow of the execution. Whenever an
execution enters a conditional construct, it raises the pc label by the label of the
boolean expression evaluated; the pc label then taints any assignments that are
made within the conditional construct. The transition arrow is also annotated
with a list of outputs (equal to the empty list when not explicitly written) and
the number of steps (equal to 1 when not explicitly written).

Note Two rules of our semantics are omitted here, but can be found in the Coq
development [6]. These rules make sure that a low-context execution will diverge
safely (rather than get stuck) when it attempts to run a high-context execution
that diverges. These rules are necessary for technical reasons, but they ultimately
have no significant bearing on our end-to-end noninterference guarantee, since
that guarantee only ever mentions terminating executions.

Two of the rules for conditional constructs make use of a function called
mark vars. The function mark vars(σ,C) alters σ by setting the label of each
variable in modifies(C) to Hi, where modifies(C) is a standard syntactic func-
tion returning an overapproximation of the store variables that may be modified
by C. Thus, whenever we raise the pc label to Hi, our semantics taints all store
variables that appear on the left-hand side of an assignment or heap-read com-
mand within the conditional construct, even if some of these commands do not
actually get executed. Note that regardless of which branch of an if statement
is taken, the semantics taints all the variables in both branches. This is required
for noninterference, due to the well-known fact that the lack of assignment in a
branch of an if statement can leak information about the branching expression.
Consider, for example, the following program:

1 y := 1;

2 if (x = 0) then y := 0 else skip;

3 if (y = 0) then skip else output 1;

Suppose x contains Hi data initially, while y contains Lo data. If x is 0, then y
will be assigned 0 at line 2 and tainted with a Hi label (by the pc label). Then
nothing happens at line 3, and the program produces no output. If x is nonzero,
however, nothing happens at line 2, so y still has a Lo label at line 3. Thus the
output command at line 3 executes without issue. Therefore the output of this
program depends on the Hi data in x, even though our instrumented semantics
executes safely. We choose to resolve this issue by using the mark vars function



in the semantics. Then y will be tainted at line 2 regardless of the value of x,
and so the semantics will get stuck at line 3 when x is nonzero. In other words,
we would only be able to verify this program with a precondition saying that
x = 0 — the program is indeed noninterfering with respect to this precondition
(according to our generalized noninterference definition described in Section 2).

The operational semantics presented here is mixed-step and manipulates se-
curity labels directly. In order to make sense of such a non-standard semantics,
we relate it to a standard one that erases labels. We omit the formal definition of
this erasure semantics here since it is exactly the expected small-step operational
semantics for a simple imperative language. The definition can be found in the
technical report and Coq development [6].

The erasure semantics operates on states without labels, and it does not use
continuation stacks. Given a state σ with labels, we write σ̄ to represent the
same state with all labels erased from both the store and heap. We will also use
τ to range over states without labels. Then the following two theorems hold:

Theorem 1. Suppose 〈σ, C, []〉 o−→∗ 〈σ′, skip, []〉 in the instrumented seman-

tics. Then, for some τ , 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics.

Theorem 2. Suppose 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics, and

suppose 〈σ, C, []〉 never gets stuck when executed in the instrumented semantics.

Then, for some σ′, 〈σ, C, []〉 o−→∗ 〈σ′, skip, []〉 in the instrumented semantics.

These theorems together guarantee that the two semantics produce identical
observable behaviors (outputs) on terminating executions, as long as the instru-
mented semantics does not get stuck. Our program logic will of course guarantee
that the instrumented semantics does not get stuck in any execution satisfying
the precondition.

4 The Program Logic

In this section, we will present the logic that we use for verifying the security of
a program. A logic judgment takes the form l ` {P}C {Q}. P and Q are the
pre- and postconditions, C is the program to be executed, and l is the pc label
under which the program is verified. P and Q are state assertions, whose syntax
and semantics are given in Figure 2.

Note We allow assertions to contain logical variables, but we elide the details
here to avoid complicating the presentation. In Figure 2, we claim that the type
of JP K is a set of states — in reality, the type is a function from logical variable
environments to sets of states. In an assertion like E 7→ (n, l), the n and l may be
logical variables rather than constants, and E may itself contain logical variables.
The full details of logical variables can be found in the technical report and Coq
development [6].



P,Q ::= emps | emph | E 7→ | E 7→ (n, l) | B | x.lbl = l

| x.lbl v l | lbl(E) = l | ∃X . P | P ∧Q | P ∨Q | P ∗Q

JP K : P(state)

(s, h) ∈ JempK ⇐⇒ h = ∅
(s, h) ∈ JE 7→ K ⇐⇒ ∃a, n, l . JEKs = Some a ∧ h = [a 7→ (n, l)]

(s, h) ∈ JE 7→ (E′, l)K ⇐⇒ ∃a, b . JEKs = Some a ∧ JE′Ks = Some b ∧ h = [a 7→ (b, l)]

(s, h) ∈ JBK ⇐⇒ JBKs = Some true

(s, h) ∈ Jx.lbl = lK ⇐⇒ ∃n . s(x) = Some (n, l)

(s, h) ∈ Jx.lbl v lK ⇐⇒ ∃n, l′ . s(x) = Some (n, l′) and l′ v l

(s, h) ∈ Jlbl(E) = lK ⇐⇒
⊔

x∈vars(E)

snd(s(x)) = l

(s, h) ∈ J∃X . P K ⇐⇒ ∃v ∈ Z + Lbl . (s, h) ∈ JP [v/X]K
(s, h) ∈ JP ∧QK ⇐⇒ (s, h) ∈ JP K ∩ JQK
(s, h) ∈ JP ∨QK ⇐⇒ (s, h) ∈ JP K ∪ JQK

(s, h) ∈ JP ∗QK ⇐⇒

∃h0, h1 . h0 ] h1 = h

and (s, h0) ∈ JP K
and (s, h1) ∈ JQK


Fig. 2. Assertion Syntax and Semantics

Definition 1 (Sound judgment). We say that a judgment l ` {P}C {Q} is
sound if, for any state σ ∈ JP K, the following two properties hold:

1. The operational semantics cannot get stuck when executed from initial con-
figuration 〈σ, C, []〉 under context l.

2. If the operational semantics executes from initial configuration 〈σ, C, []〉 un-
der context l and terminates at state σ′, then σ′ ∈ JQK.

Selected inference rules for our logic are shown in Figure 3. The rules make
use of two auxiliary syntactic functions, vars(P ) and no lbls(P, S) (S is a set
of store variables). The first function returns the set of all store variables that
appear somewhere in P , while the second checks that for each variable x ∈ S,
x.lbl does not appear anywhere in P .

The (IF)/(WHILE) rules may look rather complex, but almost all of that is
just describing how to reason about the mark vars function that gets applied
at the beginning of a conditional construct when the pc label increases. An
additional complexity present in the (IF) rule involves the labels lt and lf . In
fact, these labels describe a novel and interesting feature of our system: when
verifying an if statement, it might be possible to reason that the pc label gets
raised by lt in one branch and by lf in the other, based on the fact that B holds
in one branch but not in the other. This is interesting if lt and lf are different



mark vars(P, S, l, l′)
4
=


P , if l v l′

P ∧

(∧
x∈S

l t l′ v x.lbl

)
, otherwise

l ` {emp} skip {emp}
(SKIP)

Lo ` {lbl(E) = Lo ∧ emp} outputE {lbl(E) = Lo ∧ emp}
(OUTPUT)

x /∈ vars(E′)

l ` {E = E′ ∧ lbl(E) = l′ ∧ emp}x := E {x = E′ ∧ x.lbl = l′ t l ∧ emp}
(ASSIGN)

x /∈ vars(E1) ∪ vars(E2)

l ` {x = E1 ∧ lbl(E) = l1 ∧ E 7→ (E2, l2)}x := [E] {x = E2 ∧ x.lbl = l1 t l2 t l ∧ E[E1/x] 7→ (E2, l2)}
(READ)

l ` {lbl(E) = l1 ∧ lbl(E′) = l2 ∧ E 7→ } [E] := E′ {E 7→ (E′, l1 t l2 t l)}
(WRITE)

P ⇒ B ∨ ¬B B ∧ P ⇒ lbl(B) = lt
¬B ∧ P ⇒ lbl(B) = lf S = modifies(ifB thenC1 elseC2)

lt t lf v6 l⇒ no lbls(P, S) lt t l ` {B ∧ mark vars(P, S, lt, l)}C1 {Q}
lf t l ` {¬B ∧ mark vars(P, S, lf , l)}C2 {Q}

l ` {P} ifB thenC1 elseC2 {Q}
(IF)

P ⇒ lbl(B) = l′

S = modifies(whileB doC) l′ v6 l⇒ no lbls(P, S)
l′ t l ` {B ∧ mark vars(P, S, l′, l)}C {mark vars(P, S, l′, l)}

l ` {P} whileB doC {¬B ∧ mark vars(P, S, l′, l)}
(WHILE)

l ` {P}C1 {Q} l ` {Q}C2 {R}
l ` {P}C1;C2 {R}

(SEQ)

P ′ ⇒ P Q⇒ Q′ l ` {P}C {Q}
l ` {P ′}C {Q′}

(CONSEQ)

l ` {P1}C {Q1} l ` {P2}C {Q2}
l ` {P1 ∧ P2}C {Q1 ∧Q2}

(CONJ)

l ` {P}C {Q} modifies(C) ∩ vars(R) = ∅
l ` {P ∗R}C {Q ∗R}

(FRAME)

Fig. 3. Selected Inference Rules for the Logic



1 i := 0;

2 while (i < 64) do

3 x := [A+i];

4 if (x = 0)

5 then

6 output i

7 else

8 skip;

9 i := i+1

Fig. 4. Example: Alice’s Private Calendar

labels. In every other static-analysis IFC system we are aware of, a particular pc
label must be determined at the entrance to the conditional, and this pc label
will propagate to both branches. We will provide an example program later in
this section that illustrates this novelty.

Given our logic inference rules, we can prove the following theorem:

Theorem 3 (Soundness). If l ` {P}C {Q} is derivable according to our in-
ference rules, then it is a sound judgment, as defined in Definition 1.

We will not go over the proof of this theorem here since there is not really any-
thing novel about it in regards to security. The proof is relatively straightforward
and not significantly different from soundness proofs in other Hoare/separation
logics. The primary theorem in this work is the one that says that any verified
program satisfies our noninterference property — this will be discussed in detail
in Section 5.

4.1 Example: Alice’s Calendar

In the remainder of this section, we will show how our logic can be used to verify
an interesting example. Figure 4 shows a program that we would like to prove
is secure. Alice owns a calendar with 64 time slots beginning at some location
designated by constant A. Each time slot is either 0 if she is free at that time,
or some nonzero value representing an event if she is busy. Alice decides that all
free time slots in her calendar should be considered low security, while the time
slots with events should be secret. This policy allows for others to schedule a
meeting time with her, as they can determine when she is available. Indeed, the
example program shown here prints out all free time slots.

Figure 5 gives an overview of the verification, omitting a few trivial details. In
between each line of code, we show the current pc label and a state predicate that
currently holds. The program is verified with respect to Alice’s policy, described
by the precondition P defined in the figure. This precondition is the iterated
separating conjunction of 64 calendar slots; each slot’s label is Lo if its value is
0 and Hi otherwise. A major novelty of this verification regards the conditional
statement at lines 4-8. As mentioned earlier, in other IFC systems, the label of



P
4
=

63∗
i=0

(A+ i 7→ (ni, li) ∧ ni = 0 ⇐⇒ li = Lo)

Lo ` {P}
1 i := 0;

Lo ` {P ∧ 0 ≤ i ∧ i.lbl = Lo}

2 while (i < 64) do

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}

3 x := [A+i];

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
(x = 0 ⇐⇒ x.lbl = Lo)}

4 if (x = 0)

5 then

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

6 output i

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
7 else

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x 6= 0 ∧ x.lbl = Hi}

8 skip;

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x 6= 0 ∧ x.lbl = Hi}

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
9 i := i+1

Lo ` {P ∧ 0 ≤ i ∧ i.lbl = Lo}

Lo ` {P ∧ i ≥ 64 ∧ 0 ≤ i ∧ i.lbl = Lo}

Fig. 5. Calendar Example Verification



the boolean expression “x = 0” would have to be determined at the time of
entering the conditional, and its label would then propagate into both branches
via the pc label. In our system, however, we can reason that the expression’s
label (and hence the resulting pc label) will be different depending on which
branch is taken. If the “true” branch is taken, then we know that x is 0, and
hence we know from the state assertion that its label is Lo. This means that
the pc label is Lo, and so the output statement within this branch will not leak
high-security data. If the “false” branch is taken, however, then we can reason
that the pc label will be Hi, meaning that an output statement could result in
a leaky program (e.g., if the value of x were printed). This program does not
attempt to output anything within this branch, so it is still valid.

Since the program is verified with respect to precondition P , the noninterfer-
ence guarantee for this example says that if we change any high-security event
in Alice’s calendar to any other high-security event (i.e., nonzero value), then
the output will be unaffected. In other words, an observer cannot distinguish be-
tween any two events occurring at a particular time slot. This seems like exactly
the property Alice would want to have, given that her policy specifies that all
free slots are Lo and all events are Hi.

5 Noninterference

In this section, we will discuss the method for formally proving our system’s
security guarantee. Much of the work has already been done through careful
design of the security-aware semantics and the program logic. The fundamental
idea is that we can find a bisimulation relation for our Lo-context instrumented
semantics. This relation will guarantee that two executions operate in lock-step,
always producing the same program continuation and output.

The bisimulation relation we will use is called observable equivalence. It intu-
itively says that the low-security portions of two states are identical; the relation
is commonly used in many IFC systems as a tool for proving noninterference.
In our system, states σ1 and σ2 are observably equivalent if: (1) they contain
equal values at all locations that are present and Lo in both states; and (2) the
presence and labels of all store variables are the same in both states. This may
seem like a rather odd notion of equivalence (in fact, it is not even transitive,
so “equivalence” is a misnomer here) — two states can be observably equivalent
even if some heap location contains Hi data in one state and Lo data in the
other. To see why we need to define observable equivalence in this way, consider
a heap-write command [x] := E where x is a Hi pointer. If we vary the value of
x, then we will end up writing to two different locations in the heap. Suppose
we write to location 100 in one execution and location 200 in the other. Then
location 100 will contain Hi data in the first execution (as the Hi pointer taints
the value written), but it may contain Lo data in the second since we never wrote
to it. Thus we design observable equivalence so that this situation is allowed.



The following definitions describe observable equivalence formally:

Definition 2 (Observable Equivalence of Stores). Suppose s1 and s2 are
variable stores. We say that they are observably equivalent, written s1 ∼ s2, if,
for all program variables x:

– If s1(x) = None, then s2(x) = None.
– If s1(x) = Some (v1, Hi), then s2(x) = Some (v2, Hi) for some v2.
– If s1(x) = Some (v, Lo), then s2(x) = Some (v, Lo).

Definition 3 (Observable Equivalence of Heaps). Suppose h1 and h2 are
heaps. We say that they are observably equivalent, written h1 ∼ h2, if, for all
natural numbers n:

– If h1(n) = Some (v1, Lo) and h2(n) = Some (v2, Lo), then v1 = v2.

We say that two states are observably equivalent (written σ1 ∼ σ2) when
both their stores and heaps are observably equivalent. Given this definition, we
define a convenient relational denotational semantics for state assertions as:

(σ1, σ2) ∈ JP K2 ⇐⇒ σ1 ∈ JP K ∧ σ2 ∈ JP K ∧ σ1 ∼ σ2

In order to state noninterference cleanly, it helps to define a “bisimulation
semantics” consisting of the following single rule (the side condition will be
discussed below):

〈σ1, C, K〉
o−→
Lo
〈σ′1, C ′, K ′〉

〈σ2, C, K〉
o−→
Lo
〈σ′2, C ′, K ′〉 (side condition)

〈σ1, σ2, C, K〉 −→ 〈σ′1, σ′2, C ′, K ′〉

This bisimulation semantics operates on configurations consisting of a pair of
states and a program. As two executions progress step-by-step, the bisimulation
semantics makes sure that the executions continue to produce identical outputs
and step to identical programs. The semantics requires a Lo program counter
label because two executions from observably equivalent states may in fact step
to different programs when the program counter label is Hi.

With this definition of a bisimulation semantics, we can split noninterference
into the following progress and preservation properties.

Theorem 4 (Progress). Suppose we derive Lo ` {P}C {Q} using our pro-
gram logic. For any (σ1, σ2) ∈ JP K2, suppose we have

〈σ1, σ2, C, K〉 −→∗ 〈σ′1, σ′2, C ′, K ′〉,

where σ′1 ∼ σ′2 and (C ′,K ′) 6= (skip, []). Then there exist σ′′1 , σ′′2 , C ′′, K ′′ such
that

〈σ′1, σ′2, C ′, K ′〉 −→ 〈σ′′1 , σ′′2 , C ′′, K ′′〉



Theorem 5 (Preservation). Suppose we have σ1 ∼ σ2 and 〈σ1, σ2, C, K〉 −→
〈σ′1, σ′2, C ′, K ′〉. Then σ′1 ∼ σ′2.

For the most part, the proofs of these theorems are relatively straightforward.
Preservation requires proving the following two simple lemmas about Hi-context
executions:

1. Hi-context executions never produce output.
2. If the initial and final values of some location differ across a Hi-context

execution, then the location’s final value must have a Hi label.

There is one significant difficulty in the proof that requires discussion. If C
is a heap-read command x := [E], then Preservation does not obviously hold.
The reason for this comes from our odd definition of observable equivalence; in
particular, the requirements for a heap location to be observably equivalent are
weaker than those for a store variable. Yet the heap-read command is copying
directly from the heap to the store. In more concrete terms, the heap location
pointed to by E might have a Hi label in one state and Lo label in the other;
but this means x will now have different labels in the two states, violating the
definition of observable equivalence for the store.

We resolve this difficulty via the side condition in the bisimulation semantics.
The side condition says that the situation we just described does not happen.
More formally, it says that if C has the form x := [E], then the heap location
pointed to by E in σ1 has the same label as the location pointed to by E in σ2.

This side condition is sufficient for proving Preservation. However, we still
need to show that the side condition holds in order to prove Progress. This fact
comes from induction over the specific inference rules of our logic. For example,
consider the (READ) rule from Section 4. In order to use this rule, the precodi-
tion requires us to show that E 7→ (n, l2). Since both states σ1 and σ2 satisfy
the precondition, we see that the heap locations pointed to by E both have label
l2, and so the side condition holds. Note that the side condition holds even if l2
is a logical variable rather than a constant.

In order to prove that the side condition holds for every verified program, we
need to show it holds for all inference rules involving a heap-read command. In
particular, this means that no heap-read rule in our logic can have a precondition
that only implies E 7→ .

Now that we have the Progress and Preservation theorems, we can easily
combine them to prove the overall noninterference theorem for our instrumented
semantics:

Theorem 6 (Noninterference, Instrumented Semantics). Suppose we de-
rive Lo ` {P}C {Q} using our program logic. Pick any state σ1 ∈ JP K, and
consider changing the values of any Hi data in σ1 to obtain some σ2 ∈ JP K.
Suppose, in the instrumented semantics, we have

〈σ1, C, []〉 o1−→∗
Lo
〈σ′1, skip, []〉 and 〈σ2, C, []〉 o2−→∗

Lo
〈σ′2, skip, []〉.

Then o1 = o2.



Finally, we can use the results from Section 3 along with the safety guaranteed
by our logic to prove the final, end-to-end noninterference theorem:

Theorem 7 (Noninterference, Erasure Semantics). Suppose we derive Lo `
{P}C {Q} using our program logic. Pick any state σ1 ∈ JP K, and consider chang-
ing the values of any Hi data in σ1 to obtain some σ2 ∈ JP K. Suppose, in the
erasure semantics, we have

〈σ̄1, C〉
o1−→∗ 〈τ1, skip〉 and 〈σ̄2, C〉

o2−→∗ 〈τ2, skip〉.

Then o1 = o2.

6 Related Work

There are many different systems for reasoning about information flow. We will
briefly discuss some of the more closely-related ones here.

Some IFC systems with declassification, such as HiStar [26], Flume [11], and
RESIN [25], reason at the operating system or process level, rather than the
language level. These systems can support complex security policies, but their
formal guarantees suffer due to how coarse-grained they are.

On the language-level side of IFC [18], there are many type systems and
program logics that share similarities with our logic.

Amtoft et al. [1] develop a program logic for proving noninterference of a
program written in a simple object-oriented language. They use relational asser-
tions of the form “x is independent from high-security data.” Such an assertion is
equivalent to saying that x contains Lo data in our system. Thus their logic can
be used to prove that the final values of low-security data are independent from
initial values of high-security data — this is pure noninterference. Note that, un-
like our system, theirs does not attempt to reason about declassification. Some
other differences between these IFC systems are:

– We allow pointer arithmetic, while they disallow it by using an object-
oriented language. Pointer arithmetic adds significant complexity to infor-
mation flow reasoning. In particular, their system uses a technique similar to
our mark vars function for reasoning about conditional constructs, except
that they syntactically check for all locations in both the store and heap
that might be modified within the conditional. With the arbitrary pointer
arithmetic of our system, it is not possible to syntactically bound which
heap locations will be written to, so we require the additional semantic tech-
nique described in Section 5 that involves enforcing a side condition on the
bisimulation semantics.

– Our model of observable behavior provides some extra leniency in verifi-
cation. Our system allows bad leaks to happen within the program state,
so long as these leaks are not made observable via an output command.
In their system (and most other IFC systems), the enforcement mechanism
must prevent those leaks within program state from happening in the first
place.



Banerjee et al. [3] develop an IFC system that specifies declassification poli-
cies through state predicates in basically the same way that we do. For example,
they might have a (relational) precondition of “A(x ≥ y),” saying that two states
agree on the truth value of x ≥ y. This corresponds directly to a precondition
of “x ≥ y” in our system, and security guarantees for the two systems are both
stated relative to the precondition. The two systems have very similar goals, but
there are a number of significant differences in the basic setup that make the
systems quite distinct:

– Their system does not attempt to reason about the program heap at all. They
have some high-level discussions about how one might support pointers in
their setup, but there is nothing formal.

– Their system enforces noninterference primarily through a type system (rather
than a program logic). The declassification policies, specified by something
similar to a Hoare triple, are only used at specific points in the program where
explicit “declassify” commands are executed. A type system enforces pure
noninterference for the rest of the program besides the declassify commands.
Their end-to-end security guarantee then talks about how the knowledge of
an observer can only increase at those points where a declassify command
is executed (a property known in the literature as “gradual release”). Thus
their security guarantee for individual declassification commands looks very
similar to our version of noninterference, but their end-to-end security guar-
antee looks quite different. We do not believe that there is any comparable
notion of gradual release in our system, as we do not have explicit program
points where declassification occurs.

– Because they use a type system, their system must statically pick security
labels for each program variable. This means that there is no notion of
dynamically propagating labels during execution, nor is there any way to
express our novel concept of conditional labels. As a result, the calendar
example program of Section 4 would not be verifiable in their system.

Delimited Release [19] is an IFC system that allows certain prespecified ex-
pressions (called escape hatches) to be declassified. For example, a declassifica-
tion policy for high-security variable h might say that the expression h%2 should
be considered low security. Relaxed Noninterference [12] uses a similar idea, but
builds a lattice of semantic declassification policies, rather than syntactic es-
cape hatches — e.g., h would have a policy of λx . x%2. Our system can easily
express any policy from these systems, using a precondition saying that some
low-security data is equal to the escape hatch function applied to the secret data.
Our strong security guarantee is identical to the formal guarantees of both of
these systems, saying that the high-security value will not affect the observable
behavior as long as the escape hatch valuation is unchanged.

Relational Hoare Type Theory (RHTT) [15] is a logic framework for verify-
ing information-flow properties. It is based on a highly general relational logic.
The system can be used to reason about a wide variety of security-related no-
tions, including declassification, information erasure, and state-dependent access
control. While RHTT can be extremely expressive, it seems to achieve different



goals than our system. We began with a desire to formally reason about the
propagation of security labels through a system, and to specify declassification
policies in terms of these labels. Thus the natural choice for us was to use a
syntactic representation for labels and explicitly add them into program state.
Ideally, we could use these labels to represent different principals, and thus be
able to specify interesting policies in a decentralized setting. RHTT, on the other
hand, is built around a semantic notion of security labels. Instead of saying that
x is Lo, one says that in two corresponding states, x has the same value. This
allows policies to be highly expressive, but also can make it quite difficult to
understand what a given policy is saying. It is unclear how one should go about
representing a decentralized setting in RHTT, where there is interaction between
the data of various principals.

Intransitive noninterference [13] is a declassification mechanism whereby cer-
tain specific downward flows are allowed in the label lattice. The system formally
verifies that a program obeys the explicitly-allowed flows. These special flows are
intransitive — e.g., we might allow Alice to declassify data to Bob and Bob to
declassify to Charlie, but that does not imply that Alice is allowed to declas-
sify to Charlie. The intransitive noninterference system is used to verify simple
imperative programs; their language is basically the same as ours, except with-
out the heap-related commands. One idea for future work is to generalize our
state predicate P into an action G that precisely describes the transformation
that a program is allowed to make on the state. If we implemented this idea,
it would be easy to embed the intransitive noninterference system. The action
G would specify exactly which special flows are allowed (e.g., the data’s label
can be changed from Alice to Bob or from Bob to Charlie, but not from Alice
to Charlie directly). Ideally, we would have a formal noninterference theorem in
terms of G that would give the same result as the formal guarantee in [13].

Another related system is Chong and Myers’ lambda calculus with down-
grading policies [5]. This system shares a similar goal to ours: to provide an
end-to-end security guarantee relative to declassification policies. In their sys-
tem, the language contains explicit declassify commands, and certain conditions
(specified via the policy syntax) must be verified at the point of declassification.
The actual method for verifying these conditions is left as a parameter of the
system. While both of our systems prove an end-to-end guarantee, these guar-
antees seem to be rather different. Theirs provides a road map describing how a
Hi piece of data may end up affecting observable behavior, while ours specifies
which values that piece of data could have in order to affect observable behavior.
It is unclear how either guarantee would be described in the other system.

Self-composition [4] is an approach to noninterference reasoning that essen-
tially converts relational predicates into unary ones. The fundamental idea is
that we can prove a program C is noninterfering by making a copy of it, C ′, giv-
ing all variables in C ′ a fresh name, and then executing the composed program
C;C ′. A pre/postcondition for C;C ′ of x = x′, for example, will then effectively
say that x is a low-security location. Our system, just like the self-composition
approach, is based on the desire to deal with unary predicates rather than rela-



tional ones. Unlike the self-composition approach, however, we use a syntactic
notion of labels, and we do not perform any syntactic translations on the pro-
gram. Additionally, it is unclear whether the self-composition approach can be
used for programs that do odd things with pointer arithmetic and aliasing. In-
deed, in [4], there is an explicitly-stated assumption that the address values of
pointers do not affect the control flow of programs.

All of the language-based IFC systems mentioned so far, including our own
system, use static reasoning. There are also many dynamic IFC systems (e.g., [2,
10, 22, 24]) that attempt to enforce security of a program during execution. Be-
cause dynamic systems are analyzing information flow at runtime, they will incur
some overhead cost in execution time. Static IFC systems need not necessarily
incur extra costs. Indeed, our final noninterference theorem uses the erasure
semantics, meaning that there is no overhead whatsoever.

Finally, Sabelfeld and Sands [21] define a road map for analyzing declassi-
fication policies in terms of four dimensions: who can declassify, what can be
declassified, when can declassification occur, and where can it occur. Our notion
of declassification can talk about any of these dimensions if we construct the
precondition in the right way. The who dimension is most naturally handled via
the label lattice, but one could also imagine representing principals explicitly in
the program state and reasoning about them in the logic. The what dimension is
handled by default, as the program state contains all of the data to be declassi-
fied. The when dimension can easily be reasoned about by including a time field
in the state. Similarly, the where dimension can be reasoned about by including
an explicit program counter in the state.

7 Conclusion

In this paper, we described a novel program logic for reasoning about informa-
tion flow in a low-level language with pointer arithmetic. Our system uses an
instrumented operational semantics to statically reason about the propagation
of syntactic labels. Our logic can reason about labels conditioned on state pred-
icates — as far as we are aware, the example program of Section 4 cannot be
verified in any other IFC system that uses syntactic labels.

In the future, we hope to extend our work to handle termination-sensitivity,
dynamic memory allocation, nondeterminism, and concurrency. We also plan to
develop some automation and apply our logic to actual operating system code.
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