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Compositionality is at the core of programming languages research and has become an important goal toward

scalable verification of large systems. Despite that, there is no compositional account of linearizability, the
gold standard of correctness for concurrent objects.

In this paper, we develop a compositional semantics for linearizable concurrent objects. We start by

showcasing a common issue, which is independent of linearizability, in the construction of compositional

models of concurrent computation: interaction with the neutral element for composition can lead to emergent

behaviors, a hindrance to compositionality. Category theory provides a solution for the issue in the form of

the Karoubi envelope. Surprisingly, and this is the main discovery of our work, this abstract construction is

deeply related to linearizability and leads to a novel formulation of it. Notably, this new formulation neither

relies on atomicity nor directly upon happens-before ordering and is only possible because of compositionality,

revealing that linearizability and compositionality are intrinsically related to each other.

We use this new, and compositional, understanding of linearizability to revisit much of the theory of

linearizability, providing novel, simple, algebraic proofs of the locality property and of an analogue of the

equivalence with observational refinement. We show our techniques can be used in practice by connecting our

semantics with a simple program logic that is nonetheless sound concerning this generalized linearizability.

CCS Concepts: • Theory of computation → Parallel computing models; Denotational semantics;
Categorical semantics;Programverification;Program specifications; • Software and its engineering
→ Correctness.
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1 INTRODUCTION
Linearizability is a notion of correctness for concurrent objects introduced in the 90s by Herlihy

and Wing [1990]. Since then, it has become the gold standard for correctness of concurrent objects:

it is taught in university courses, known by programmers in industry, and commonly used in

academia. Its success can be justified by a myriad of factors: it is a safety property in a variety

of settings [Guerraoui and Ruppert 2014]; it appears to capture a large class of useful concurrent

objects; it allows for linearizable concurrent objects to be horizontally composed together while

preserving linearizability, what Herlihy and Wing [1990] call locality; it aids in the derivation of

other safety properties [Herlihy and Wing 1990]; it is intuitive: a linearizable concurrent object

essentially behaves as if their operations happened atomically under any concurrent execution, a

property that has been formalized by the notion of linearization point by Herlihy and Wing [1990],

and by an observational refinement property by Filipovic et al. [2010].
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1.1 The State of the Theory of Linearizability
Linearizability is commonly used to define correctness of concurrent objects and to aid in verification

of concurrent code. We believe that the current theory of linearizability suffers from a few biases.

Atomicity: Because the classic definition of linearizability is based on linearizing to an atomic

specification, most of the subsequent work on it has focused on atomicity. Even though Filipovic

et al. [2010] have noticed that the insight of linearizability lies not in atomicity, but rather in

preservation of happens-before order, most of the subsequent work still focuses on atomicity. This

is true even though many useful concurrent objects do not linearize, leading to numerous variations

on the theme [Castañeda et al. 2015; Goubault et al. 2018; Haas et al. 2016; Neiger 1994].

Compositionality: The typical approach to assembling verified concurrent objects into a larger

system relies on a refinement property in the style of Filipovic et al. [2010]. Usually, there is a syntacti-

cally defined programming language for expressing concurrent code and often specifications as well.

The code is verified by linking a library 𝐿′
𝐵
with an implementation 𝑁 = 𝑁1 ∥ . . . ∥ 𝑁𝑘 , specified in

the programming language, to form a syntactic term Link 𝐿′
𝐵
;𝑁 . A trace semantics ⟦−⟧ allows one

𝑁

𝐿′
𝐵

𝑀

𝐿′
𝐴

to obtain the traces for the resulting interface ⟦Link 𝐿′
𝐵
;𝑁⟧, and an observational

refinement property allows to consider instead a linearized library 𝐿𝐵 linked with

𝑁 to reason about the linearizability of the library that 𝑁 implements. Now, suppose

one is given an implementation 𝑀 relying on a library 𝐿′
𝐴
, that is Link 𝐿′

𝐴
;𝑀 , to

implement 𝐿′
𝐵
. There is no obvious way to compose𝑀 and 𝑁 so to re-use their proofs

of linearizability to obtain a linearizable object Link 𝐿′
𝐴
; (𝑁 ◦𝑀). At best, one has

to either syntactically link them together, and re-do the proofs, or inline𝑀 in 𝑁 and

re-verify the code obtained through this process.

Syntax: As outlined in Compositionality, there is also a bias towards syntax, even

in Filipovic et al. [2010], one of the foundational papers on linearizability. This becomes an issue

when different components are modeled by different computational models but need to be connected

nonetheless (such as when one wants to model both hardware and software components, or when

components are written in different programming languages). This situation occurs in real systems.

For instance, Gu et al. [2015, 2016, 2018]’s verified OS contains components in both C and Asm.

The way they manage to make the two interact is by only composing components after compiling

C code into Asm using CompCert [Leroy 2009], a solution which is yet again reliant on syntactic

linking. Less optimistically, there would be no compiler to aid with this. In this context, an entire

metatheory for the interaction between the two languages would need to be developed, together

with a theory of observational refinement across programming languages. In a large heterogeneous

system this becomes unwieldy, as there could be several computational models involved. Meanwhile,

a compositional abstract model could embed each heterogeneous component and reason about

them at a more coarse-grained level.

Theory: Overall, the theory of linearizability is rather underdeveloped. There are essentially two
characterizations: the original happens-before order one from Herlihy and Wing [1990], and the

observational refinement one from Filipovic et al. [2010]. Guerraoui and Ruppert [2014] addressed

the folklore that linearizability is a safety property, while Goubault et al. [2018] gave a novel

formulation of linearizability in terms of local rewrite rules and showed that linearizability may be

seen as an approximation operation by proving a certain Galois connection. Otherwise, there isn’t

a clean theory that addresses the semantic and computational content of linearizability, providing

foundations for properties such as locality and observational refinement. As a side-effect of this,

the proofs of these properties are rather complicated. A more general and abstract theory of

linearizability could not only simplify these issues, but also be more easily adapted to novel settings

where there is no obvious happens-before ordering.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



A Compositional Theory of Linearizability 38:3

Verification: These issues are even more relevant in formal verification, especially when tar-

geting large heterogeneous systems. A recent line of work [Koenig and Shao 2020; Oliveira Vale

et al. 2022] maintains that compositional semantics is essential for the scalable verification of such

systems. The idea is that individual components are verified in domain specific semantic models

targeting fine-grained aspects of computation, and appropriate for the verification task. This is

necessary as semantic models for verification are tailored to make the verification task tractable. But

then, these components are embedded into a general compositional model, shifting the granularity

of computation to the coarse-grained behavior of components. This general model acts as the com-

positional glue connecting the system together. As linearizability is the main correctness criterion

for concurrent objects, a compositional model of linearizable objects is necessary to provide that

glue for large, heterogeneous, potentially distributed, concurrent systems.

1.2 Summary and Main Contributions
• In this paper, we develop a compositional model of linearizable concurrent objects. We first

construct a concurrent game semantics model (§3). For the sake of clarity, we strive for the

simplest game model expressive enough to discuss linearizability: a bare-bones sequential

game model interleaved to form a sequentially consistent model of concurrent computation.

• As with other models of concurrent computation, the model in §3 fails to have a neutral
(or identity) element for composition. We remedy this in §4 by using a category-theoretical

construction called the Karoubi envelope. We argue that this construction comes with two

transformations 𝐾Conc− and EmbConc− converting between the models from §3 and §4.

• Surprisingly, the process of constructing the model in §4 reveals that linearizability is at

the heart of compositionality, and in particular we do not need to define linearizability: it

emerges out of the abstract construction of a concurrent model of computation, as we discuss

in §5. We show this by giving a generalized definition of linearizability and then by showing

its tight connection to 𝐾Conc−, leading to a novel abstract definition of linearizability.

• We then give a computational interpretation of linearizability in §5.3 by showing that proofs

of linearizability correspond to traces of a certain program ccopy.
• Simultaneously, these new foundations reveal that compositionality is also at the heart of

linearizability. In §5.4 we give an analogue of the usual contextual refinement result around

linearizability which admits an extremely simple proof because of our formalism.

• In §5.5 we revisit Herlihy-Wing’s locality result and provide a novel proof of locality based

on our computational interpretation and abstract formulation of linearizability, leading to a

more structured and algebraic proof of a generalized locality property.

• In §6 we revisit our construction from the point of view of category theory, showing that it

can be generalized to other settings with similar structure.

• In §7 we showcase that our model is practical by connecting our semantics with a concrete

program logic, and showing how the theory can be used to compose concurrent objects and

their implementations together to build larger objects.

We cover some background, motivation, and main results informally in §2. A sequence of

appendices, provides a novel characterization of atomicity, an object-based semantics of linearizable

concurrent objects and their implementations, and a more detailed account of our program logic.

There, we use this characterization of atomicity to show how our constructions specialize to the

corresponding results surrounding classical linearizability and how they compare with interval-

sequential linearizability.
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2 BACKGROUND AND OVERVIEW
2.1 Background
2.1.1 Game Semantics. Since Herlihy and Wing [1990] was published, many techniques have

been developed by the programming languages and the distributed systems communities to model

concurrent computation. One technique that has risen to prominence, mostly due to its success in

proving full abstraction results for a variety of programming languages, is game semantics [Abram-

sky et al. 2000; Blass 1992; Hyland and Ong 2000]. Its essence lies in adding more structure to traces,

which are called plays in the paradigm. These plays describe well-formed interactions between two

parties, historically called Proponent (P) and Opponent (O). A game 𝐴 (or 𝐵) provides the rules

of the game by describing which plays are valid; types are interpreted as games. As one typically

takes the point of view of the Proponent, and models the environment as Opponent, programs of

type 𝐴 ⊸ 𝐵 (a linear program that produces a play from 𝐵 by interacting with 𝐴) are interpreted

as strategies 𝜎 : 𝐴 ⊸ 𝐵 for the Proponent to “play” this game against the Opponent. A strategy is

essentially a description of how the Proponent reacts to any move by the Opponent in any context

that may arise in their interaction. The standard way of composing strategies informally goes by the

motto of “interaction + hiding”: given strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 the strategy 𝜎 ;𝜏 : 𝐴 ⊸ 𝐶

is constructed by letting 𝜎 and 𝜏 interact through their common game 𝐵, obtaining a well-formed

interaction across 𝐴, 𝐵 and 𝐶 , and then hiding the interaction in 𝐵 to obtain an interaction that

appears to happen only in 𝐴 and 𝐶 .

2.1.2 A Surprising Coincidence. Ghica and Murawski [2004] constructed a concurrent game seman-

tics to give a fully abstract model of Idealized Concurrent Algol (ICA). In attempting to construct

their model of ICA, they faced a problem: the naive definition of concurrent strategy does not

construct a category for lack of an identity strategy. In other words, there is no strategy id𝐴 : 𝐴 ⊸ 𝐴

such that 𝜎 ; id𝐴 = 𝜎 holds for any strategy 𝜎 : 𝐴, a basic property of a compositional model. Their

solution was to consider strategies that are “saturated” under a certain rewrite system.

Interestingly, the same rewrite system appears in Goubault et al. [2018]’s work on linearizability.

There, they gave an alternative definition of linearizability based on a certain string rewrite system

over traces. The key rule of this rewrite system is:

ℎ · 𝛼𝛼𝛼:::𝑚 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · ℎ′⇝ ℎ · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ 𝛼𝛼𝛼:::𝑚 · ℎ′

if and only if 𝛼 ≠ 𝛼 ′ and𝑚 is an invocation or𝑚′ is a return. That is, two events 𝛼𝛼𝛼:::𝑚 and 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ in
a trace ℎ · 𝛼𝛼𝛼:::𝑚 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · ℎ′ may be swapped when they are events by different threads, 𝛼 and 𝛼 ′, and
the swap makes an invocation occur later or a return occur earlier. These swaps precisely encode

happens-before order preservation.

Surprisingly, this rewrite relation is an instance of that appearing in Ghica and Murawski [2004].

The coincidence is unexpected, Ghica and Murawski [2004] are simply attempting to construct

a compositional model of concurrent computation, without regard for linearizability. They make

their model compositional by considering only strategies saturated under a rewrite relation which

happens to encode preservation of happens-before order. So why should this rewrite system appear

as a result of obtaining an identity for strategy composition?

2.2 An Example on Compositionality
Compositionality is not only important for providing semantics to programming languages, but

also for the sake of scalability in formal verification. We now provide a few examples of how

compositionality helps profitably organize a verification effort.
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2.2.1 Coarse-Grained Locking. We model an object Lock with acq and rel operations which take

no arguments and return the value ok. We can encapsulate this information as the signature:

Lock := {acq : 1, rel : 1}
where 1 = {ok}. We denote by †Lock the type of traces using operations of Lock and by 𝑃†Lock the
set of those traces. An example of a concurrent trace in 𝑃†Lock is

𝛼1𝛼1𝛼1:::acq 𝛼2𝛼2𝛼2:::acq 𝛼2𝛼2𝛼2:::ok 𝛼3𝛼3𝛼3:::acq 𝛼2𝛼2𝛼2:::acq 𝛼3𝛼3𝛼3:::ok 𝛼2𝛼2𝛼2:::ok

this trace linearizes to the following atomic trace, also in 𝑃†Lock, called atomic because every

invocation immediately receives its response

𝛼2𝛼2𝛼2:::acq 𝛼2𝛼2𝛼2:::ok 𝛼2𝛼2𝛼2:::acq 𝛼2𝛼2𝛼2:::ok 𝛼3𝛼3𝛼3:::acq 𝛼3𝛼3𝛼3:::ok

As usual, concurrent objects are specified by sets of traces. In this way, a concurrent lock object is

specified as a prefix-closed set of traces 𝜈 ′
lock
⊆ 𝑃†Lock. To be correct this specification 𝜈 ′

lock
should

linearize to the atomic specification 𝜈lock ⊆ 𝑃†Lock given by the set of traces 𝑠 ∈ 𝑃†Lock such that:

if 𝑠 = 𝑠1 · 𝛼1𝛼1𝛼1:::𝑚1 · 𝛼2𝛼2𝛼2:::𝑚2 · 𝛼3𝛼3𝛼3:::𝑚3 · 𝛼4𝛼4𝛼4:::𝑚4 · 𝑠2 then

• If𝑚1 = acq then 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 and𝑚2 =𝑚4 = ok and𝑚3 = rel;
• If𝑚1 = rel then 𝛼1 = 𝛼2, 𝛼3 = 𝛼4,𝑚3 = acq and𝑚2 =𝑚4 = ok;

and moreover, if 𝑠 is non-empty, then its first invocation is acq. We take the convention that a

primed specification is more concurrent than its un-primed counterpart.

A typical application of a lock is synchronizing accesses to a resource shared by several asyn-

chronous computational agents. For instance, suppose we have a sequential queue with signature:

Queue := {enq : N→ 1, deq : N + {∅}}
Its concurrent specification 𝜈 ′

queue
can be specified as the largest set of traces 𝑠 ∈ 𝑃†Queue such that

if 𝑠 = 𝑝 ·𝛼𝛼𝛼:::deq ·𝛼𝛼𝛼:::𝑘 · 𝑠 ′ and 𝑝 is atomic then either qstate(𝑝) = 𝑘 :: 𝑞′ or qstate(𝑝) = [ ] and 𝑘 = ∅,
where qstate is an inductively defined function taking an atomic trace 𝑝 and returning the state

qstate(𝑝) of the queue after executing the trace 𝑝 from the empty queue [ ]. Note that as soon as any
non-atomic interleaving happens in a trace of 𝜈 ′

queue
the behaviors of enq and deq are unspecified

and therefore completely non-deterministic. This reflects the assumption that this Queue object is
a sequential implementation that is not resilient to concurrent execution.

Such aQueue object can be shared across several agents by locking around all the operations

of Queue, as demonstrated in the following implementation 𝑀squeue : Lock ⊗Queue ⊸ Queue
implementing a shared queue using a lock and a sequential queue implementation (see Fig. 1). Note

that when several independent objects must be used together, we use the linear logic tensor product

− ⊗ − to compose them horizontally into a new object, such as in the source type of𝑀squeue.

The queue object 𝜈 ′
squeue

implemented by𝑀squeue is linearizable to the usual atomic specification

𝜈squeue of aQueue. But observe that 𝜈 ′
queue

is not linearizable to 𝜈squeue. This means that the com-

position of 𝜈 ′
lock

and 𝜈 ′
queue

into an object of type Lock ⊗Queue specified as 𝜈 ′
lock
⊗ 𝜈 ′

queue
(the set

of all sequentially consistent interleavings of 𝜈 ′
lock

and 𝜈 ′
queue

) is also not linearizable to an atomic

specification. This is enough for approaches which are over-reliant on atomicity to be unable to

handle this situation cleanly. A solution there is to remove the dependence on the non-linearizable

queue by inlining its implementation in terms of programming language primitives. This solution is

unfortunate, as intuitively what𝑀squeue does is turn a non-linearizable queue into a linearizable one.

Inlining its implementation removes the connection between the sequential implementation and

the code implementing this sharing pattern. Instead, what one would like to do is to be able to use

off-the-shelf sequential components freely, just like in the code in Fig. 1. Meanwhile, by divorcing

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



38:6 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

𝑀squeue:

Import Q:Queue
Import L:Lock

enq(k) { deq() {

L.acq(); L.acq();

r <- Q.enq(k); r <- Q.deq();

L.rel(); L.rel();

ret r ret r

} }

𝑀lock:

Import F:FAI
Import C:Counter
Import Y:Yield

acq() { rel() {

my_tick <- F.fai(); C.inc();

while (cur_tick ≠ my_tick) { ret ok

Y.yield (); }

cur_tick <- C:get()

}

ret ok

}

Fig. 1. SharedQueue implementation (left), and Lock implementation (right)

linearizability from atomicity, we will still have that 𝜈 ′
lock
⊗ 𝜈 ′

queue
is linearizable to 𝜈lock ⊗ 𝜈 ′queue

according to a generalized notion of linearizability. We connect our model with a program logic to

show that the code in Fig. 1 does implement a linearizable Queue object correctly.

2.2.2 Implementing a Lock. A typical implementation for Lock is the ticket lock implementation

(see Fig. 1), relying on a sequential counter and a fetch-and-increment object with signatures

Counter := {inc : ok, get : N} FAI := {fai : N}
The FAI object comprises a single operation fai which both returns the current value of the fetch-

and-increment object and increments it. It is well known that the concurrent 𝜈 ′
fai

object specification

is linearizable to an atomic one 𝜈fai.

The Counter object 𝜈 ′
counter

has a subtler specification. It models a semi-racy sequential counter

implementation similarly to the queue from §2.2.1. But different from the racy queue, the counter

must be slightly more defined, as the lock implementation requires that the sequential implementa-

tion be resilient to concurrent get calls, and with respect to concurrent get and inc calls. However,
if inc calls happen concurrently, the behavior is undefined. This is not an issue for the lock imple-

mentation because it never happens in a valid execution of a lock. We model this by assuming that

the concurrent specification of the Counter, 𝜈 ′
counter

, is linearizable (in our generalized sense) with

respect to a less concurrent one, 𝜈counter, given by the largest set of traces 𝑠 ∈ 𝑃†Counter satisfying:
If 𝑠 = 𝑝 · 𝛼𝛼𝛼:::get ·𝑚 · 𝑠 ′ then𝑚 = 𝛼𝛼𝛼:::𝑘 and if moreover 𝑝↾{inc:ok} is atomic and even-length then 𝑘 = #inc(𝑝),
where #inc(−) is an inductively defined function returning the number #inc(𝑝) of inc calls in 𝑝 .
Note that we do not bother defining what 𝜈 ′

counter
actually is, as our proofs, using a refinement

property à la Filipovic et al. [2010], will only rely on the linearized strategy 𝜈counter.

Occasionally, one implements the ticket lock so that it yields while spinning so to let other agents

get access to the underlying computational resource (such as processor time). For some purposes,

this is crucial to obtain better liveness properties. For this, we define a signature

Yield := {yield : 1}
with concurrent specification 𝜈 ′

yield
given by

𝜈 ′
yield

:= {𝑠 ∈ 𝑃†Yield | 𝑠 = 𝑠1 · 𝛼𝛼𝛼:::yield · 𝑠2 · 𝛼𝛼𝛼:::ok · 𝑠3 ⇒ there is a pending yield in 𝑠1 · 𝑠2}
that is to say, a call by 𝛼 to yield is only allowed to return if another agent calls yield concurrently

with 𝛼 . A typical trace of 𝜈 ′
yield

looks like:

𝛼1𝛼1𝛼1:::yield 𝛼2𝛼2𝛼2:::yield 𝛼2𝛼2𝛼2:::ok 𝛼3𝛼3𝛼3:::yield 𝛼1𝛼1𝛼1:::ok 𝛼2𝛼2𝛼2:::yield 𝛼3𝛼3𝛼3:::ok
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Now, observe that by definition, 𝜈 ′
yield

contains no atomic traces, as yield only returns if another

yield happens concurrently with it. That means that no atomic linearized specification for 𝜈 ′
yield

will

be faithful to its actual behaviors. Despite that, its traces can always be simplified, while preserving

happens-before-order, so that between a yield invocation and its return ok the only events that

appear are the ok for the agent who took over the computational resource and the yield call for the

agent who yielded, like so:

𝛼2𝛼2𝛼2:::yield 𝛼1𝛼1𝛼1:::yield 𝛼2𝛼2𝛼2:::ok 𝛼3𝛼3𝛼3:::yield 𝛼1𝛼1𝛼1:::ok 𝛼2𝛼2𝛼2:::yield 𝛼3𝛼3𝛼3:::ok

That is to say, Yield is linearizable (in our sense) to a non-atomic specification, and we can still

use our observational refinement property to simplify the reasoning on the side of the client of

Yield. With the Yield object at hand, we verify that the implementation in Fig. 1 for the ticket lock

is linearizable using a program logic. Once𝑀lock and𝑀squeue are individually verified, we can use

a vertical composition operation −;− to compose them into a program implementing the shared

Queue directly on top of FAI, Counter and Yield while preserving the fact that this composed

implementation implements a linearizable Queue object. We depict this example in Fig. 2.

𝜈 ′
fai

⊗ 𝜈 ′
counter

⊗ 𝜈 ′
yield

𝑀lock

𝜈 ′
lock

𝜈fai ⊗ 𝜈counter ⊗ 𝜈yield

𝑀lock

𝜈 ′
lock

𝑙𝑖𝑛.
======⇒
𝑝𝑟𝑜𝑜 𝑓

𝜈lock
⊑ 𝜈 ′

lock
⊗ 𝜈 ′

queue

𝑀squeue

𝜈 ′
squeue

𝜈lock ⊗ 𝜈 ′
queue

𝑀squeue

𝜈 ′
squeue

===⇒ 𝜈squeue

⊑

𝜈 ′
fai

⊗ 𝜈 ′
counter

⊗ 𝜈 ′
yield

𝑀lock

𝜈 ′
lock

⊗
𝜈 ′
queue

ccopy

𝜈 ′
queue

𝑀squeue

𝜈 ′
squeue

===⇒ 𝜈squeue

Fig. 2. In our compositional model, off-the-shelf components can be composed horizontally by using the linear
logic tensor product − ⊗ −. Each component’s implementation is verified against its linearized specification
individually (left). Refinement and generalized linearizability allow to use the simpler specifications 𝜈fai, and
𝜈yield to prove that 𝜈 ′lock, implemented by𝑀lock is linearizable to 𝜈lock. By assuming 𝜈 ′counter linearizable to the
specification 𝜈counter, it is unnecessary to know the actual concurrent behavior of the racy counter. Vertical
composition (right) allows one to compose the two implementations together to obtain a fully concurrent
description of the composed system while maintaining that after the composition 𝜈 ′squeue is still linearizable
to 𝜈squeue. We use ccopy to denote the neutral (or identity) element for composition, discussed in §3.2.

2.3 Overview
Our work will address the question raised at §2.1.2 by showing that linearizability is already baked

in a compositional model of computation. Crucially, our goal is to show that a model of concurrent

computation with enough structure naturally gives rise to its own notion of linearizability, and

that linearizability is intrinsically connected to the compositional structure of the model.

For this, we define a model of sequentially consistent, potentially blocking, concurrent com-

putation GameConc, inspired by Ghica and Murawski [2004]. Similarly to their model, this model

fails to have a neutral element for composition −;−. An abstract construction called the Karoubi

envelope allows us to construct from GameConc a compositional model GameConc which does have

neutral elements. This new model GameConc differs from GameConc in that its strategies 𝜎 of type
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A ⊸ B are strategies of GameConc that moreover are invariant upon composition with a certain

strategy called ccopy−. This strategy corresponds to the traces of a program where each agent in

the concurrent system runs the code in Fig. 3 in parallel, which implements 𝑓 by importing an

implementation of 𝑓 itself, or alternatively to an 𝜂-redex 𝜆𝑥 .𝑓 𝑥 .

Import F

f(a) {

r <- F.f(a);

ret r

}

. . .

Import F

f(a) {

r <- F.f(a);

ret r

}

...
...

GameConc GameConc

𝐾Conc

EmbConc

Fig. 3. Code corresponding to ccopy− (left); Diagram depicting the operations 𝐾Conc and EmbConc (right)

This construction comes with some infrastructure: a saturation operation 𝐾Conc and a forgetful

operation EmbConc, depicted in Fig. 3. Importantly, 𝐾Conc 𝜎 is defined to be ccopyA;𝜎 ; ccopyB while

EmbConc 𝜎 is by definition just 𝜎 itself. The central but simple result of this paper is that

Proposition 2.1 (Abstract Linearizability). A strategy 𝜎 : A ∈ GameConc is linearizable to a
strategy 𝜏 : A ∈ GameConc if and only if

𝜎 ⊆ 𝐾Conc 𝜏

By linearizability we mean a generalized, but concrete, definition of linearizability which nonethe-

less faithfully generalizes Herlihy-Wing linearizability when 𝜏 is an atomic strategy. It is important

to emphasize that because 𝐾Conc arises from the Karoubi envelope construction, not only it does

not involve happens-before ordering, but also it immediately suggests an abstract definition of

linearizability which could be sensible anywhere this abstract construction is used.

We give yet another characterization of linearizability by showing that the strategy ccopy−,
corresponds to proofs of linearizability, giving a computational interpretation to proofs of lineariz-

ability (where 𝑠↾A denotes the projection of the trace 𝑠 to events of A). We call this a computational
interpretation because ccopy− is the denotation of the concrete program in Fig. 3.

Proposition 2.2 (Computational Interpretation). 𝑠1 linearizes to 𝑠0, both plays of type A, if
and only if there exists a play 𝑠 ∈ ccopyA such that

𝑠↾A0
= 𝑠0 𝑠↾A1

= 𝑠1

Then, we show a property analogous to the usual contextual refinement property, admitting a

very simple proof due to the abstract formalism we develop.

Proposition 2.3 (Interaction Refinement). 𝜈 ′
𝐴
: A ∈ GameConc is linearizable to 𝜈𝐴 : A ∈

GameConc if and only if for all concurrent games B and 𝜎 : A ⊸ B it holds that

𝜈 ′𝐴;𝜎 ⊆ 𝜈𝐴;𝜎

After that, we define a tensor product A ⊗ B amounting to all the sequentially consistent

interleavings of traces of type A with traces of type B. We then use the insight given by the

computational interpretation of linearizability proofs and show that for any A and B:

ccopyA⊗B = ccopyA ⊗ ccopyB

This equation can be interpreted to say that proofs of linearizability for objects of type A ⊗ B
correspond to a pair of a proof of linearizability for the A part and a separate proof of linearizability
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for the B part. We use this insight to give a more general account of the locality property originally

appearing in Herlihy and Wing [1990], obtaining as a corollary the following locality property:

Proposition 2.4 (Locality). Let 𝜈 ′
𝐴
: A, 𝜈 ′

𝐵
: B and 𝜈𝐴 : A, 𝜈𝐵 : B. Then

𝜈 ′ = 𝜈 ′
𝐴
⊗ 𝜈 ′

𝐵
is linearizable w.r.t. 𝜈 = 𝜈𝐴 ⊗ 𝜈𝐵

if and only if
𝜈 ′
𝐴
is linearizable w.r.t. 𝜈𝐴 and 𝜈 ′

𝐵
is linearizable w.r.t. 𝜈𝐵

Perhaps more important than the property itself is the methodology we use to establish it. Rather

than the usual argument using partial orders, originally from Herlihy and Wing [1990] and also

appearing in a setting closer to ours in Castañeda et al. [2015], we give an algebraic proof relying

on the abstract definition of linearizability from Prop. 2.1.

At this point we will have all the ingredients to compose concurrent objects into larger systems,

such as in the example in Fig. 2. We showcase this by using a program logic to verify individual

components. Vertical composition corresponds to strategy composition −;−. Horizontal composi-

tion is provided by the tensor product − ⊗ − which is well-behaved with respect to linearizability

due to the locality property. As our model is enriched over a simple notion of refinement, we will

also have that these constructions are harmonious with refinement. The interaction refinement

property allows us to leverage the linearized specification of components to ease reasoning.

3 CONCURRENT GAMES
In this section, we define our model of concurrent games, built by interleaving several copies of a

sequential game model. We start by defining a simple model of sequential games GameSeq in §3.1.

Then, we define the interleaved model GameConc in §3.2 and observe that it defines a semicategory.

3.1 Sequential Games
Before we proceed, we briefly define a sequential game model. Similar models appear elsewhere in

the literature. See, for instance Abramsky and McCusker [1999]; Hyland [1997], which we suggest

for the reader who seeks a detailed treatment. Our concurrent model amounts to interleaving

several sequential agents which behave as in the sequential game model we define now.

As we outlined in §2.1.2, types are interpreted as games. In the following definitions Alt(𝑆, 𝑆 ′) is
the set of sequences of 𝑆 + 𝑆 ′ that alternate between 𝑆 and 𝑆 ′, ⊑ is the prefix relation, and ⊑even is
the even-length prefix relation.

Definition 3.1. A (sequential) game 𝐴 is a pair (𝑀𝐴, 𝑃𝐴) of a set of polarizedmoves𝑀𝐴 = 𝑀𝑂
𝐴
+𝑀𝑃

𝐴

and a non-empty, prefix-closed, set of alternating sequences 𝑃𝐴 ⊆ Alt(𝑀𝑂
𝐴
, 𝑀𝑃

𝐴
) of𝑀𝐴, called plays,

such that every non-empty play 𝑠 ∈ 𝑃𝐴 starts with a move in𝑀𝑂
𝐴
.

The moves in 𝑀𝑂
𝐴

are the Opponent moves, and those in 𝑀𝑃
𝐴
the Proponent moves. Every

sequential game 𝐴 defines a labeling map 𝜆𝐴 : 𝑀𝐴 → {𝑂, 𝑃} by the universal property of the sum.

An example of a game is the unit game Σ in which Opponent is allowed to ask a question 𝑞

which Proponent may answer with a response 𝑎. In this way, 𝑀𝑂
Σ = {𝑞} and 𝑀𝑃

Σ = {𝑎}, and Σ
admits exactly the following three plays:

𝑃Σ := { 𝜖 , 𝑞 , 𝑞 −−−−−→ 𝑎 }
corresponding to the empty play, the play where Opponent has asked 𝑞 and waits for a response

from the Proponent, and a play where Proponent has replied.

Games can be composed together to form new games. Of particular importance for us will be

the tensor 𝐴 ⊗ 𝐵 of two games 𝐴 and 𝐵, and the linear implication 𝐴 ⊸ 𝐵. In the following, we

denote by 𝑠↾𝐴 the projection of 𝑠 to its largest subsequence containing only moves of the game 𝐴.
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Definition 3.2. Let 𝐴 and 𝐵 be (sequential) games. The tensor product of 𝐴 and 𝐵 is the game

𝐴 ⊗ 𝐵 = (𝑀𝐴⊗𝐵, 𝑃𝐴⊗𝐵) defined by:

𝑀𝑂
𝐴⊗𝐵 := 𝑀𝑂

𝐴 +𝑀
𝑂
𝐵 𝑀𝑃

𝐴⊗𝐵 := 𝑀𝑃
𝐴 +𝑀

𝑃
𝐵 𝑃𝐴⊗𝐵 := {𝑠 ∈ Alt(𝑀𝑂

𝐴⊗𝐵, 𝑀
𝑃
𝐴⊗𝐵) | 𝑠↾𝐴 ∈ 𝑃𝐴 ∧ 𝑠↾𝐵 ∈ 𝑃𝐵}

The game 𝐴 ⊸ 𝐵 = (𝑀𝐴⊸𝐵, 𝑃𝐴⊸𝐵) is defined by:

𝑀𝑂
𝐴⊸𝐵 := 𝑀𝑃

𝐴 +𝑀
𝑂
𝐵 𝑀𝑃

𝐴⊸𝐵 := 𝑀𝑂
𝐴 +𝑀

𝑃
𝐵 𝑃𝐴⊸𝐵 := {𝑠 ∈ Alt(𝑀𝑂

𝐴⊸𝐵, 𝑀
𝑃
𝐴⊸𝐵) | 𝑠↾𝐴 ∈ 𝑃𝐴 ∧ 𝑠↾𝐵 ∈ 𝑃𝐵}

The plays of 𝐴 ⊗ 𝐵 are essentially plays of 𝐴 and 𝐵 interleaved in a sequential play, so that 𝐴 ⊗ 𝐵
corresponds to independent horizontal composition. The game 𝐴 ⊸ 𝐵 meanwhile corresponds to

switching the roles of Opponent and Proponent in 𝐴 and then taking the tensor with 𝐵.

As a matter of illustration, the maximal plays (under prefix ordering) for the games Σ0 ⊗ Σ1 (the

two plays on the left) and Σ0 ⊸ Σ1 (the two plays on the right) are depicted below. We denote

by Σ0, Σ1 the two components of these types, both of which are instances of the game Σ. We will

similarly add an index to the moves of each component.

Σ1 𝑞1 𝑎1 𝑞1 𝑎1

Σ0 𝑞0 𝑎0 𝑞0 𝑎0

⊗
Σ1 𝑞1 𝑎1 𝑞1 𝑎1

Σ0 𝑞0 𝑎0
⊸

Observe that in the game Σ ⊗ Σ Opponent can choose to start in either component, while in the

game Σ ⊸ Σ Opponent must start in the target component (Σ1) due to the flip of polarity in the

source component (Σ0). In Σ ⊗ Σ only Opponent may switch components, while in Σ ⊸ Σ only

Proponent may switch components because of alternation (these are typically called the switching

conditions of sequential games).

Continuing along what we outlined in §2.1.2, programs are interpreted as strategies.

Definition 3.3. A (sequential) strategy 𝜎 over the game 𝐴, denoted 𝜎 : 𝐴, consists of a non-empty,

prefix-closed and 𝑂-receptive set of plays in 𝑃𝐴, where 𝑂-receptivity is defined as:

If 𝑠 ∈ 𝜎 , Opponent to move at 𝑠 and 𝑠 · 𝑎 ∈ 𝑃𝐴, then 𝑠 · 𝑎 ∈ 𝜎

A morphism between sequential games 𝐴 and 𝐵 will then be defined as a strategy for the game

𝐴 ⊸ 𝐵. Strategy composition is defined as usual by “interaction + hiding”. Formally,

Definition 3.4. Given games 𝐴, 𝐵,𝐶 we define the set int(𝐴, 𝐵,𝐶) of finite sequences of moves

from𝑀𝐴 +𝑀𝐵 +𝑀𝐶 as follows:

𝑠 ∈ int(𝐴, 𝐵,𝐶) ⇐⇒ 𝑠↾𝐴,𝐵 ∈ 𝑃𝐴⊸𝐵 ∧ 𝑠↾𝐵,𝐶 ∈ 𝑃𝐵⊸𝐶
The interaction int(𝜎, 𝜏) of two strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 is given by the set

int(𝜎, 𝜏) := {𝑠 ∈ int(𝐴, 𝐵,𝐶) | 𝑠↾𝐴,𝐵 ∈ 𝜎 ∧ 𝑠↾𝐵,𝐶 ∈ 𝜏}
And finally, the composition 𝜎 ;𝜏 is defined as:

𝜎 ;𝜏 := {𝑠↾𝐴,𝐶 | 𝑠 ∈ int(𝜎, 𝜏)}

Proposition 3.5. Strategy composition is well-defined and associative.

The neutral element for strategy composition is the (sequential) copycat strategy.

Definition 3.6. The (sequential) copycat strategy copy𝐴 : 𝐴 ⊸ 𝐴 is defined as

copy𝐴 := {𝑠 ∈ 𝑃𝐴⊸𝐴 | ∀𝑝 ⊑even 𝑠 .𝑝↾𝐴1
= 𝑝↾𝐴2

}

Proposition 3.7. The copycat strategy is the neutral element for strategy composition.

We collect these results as the category GameSeq of sequential games defined in the following.
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Definition 3.8. The category GameSeq of sequential games and (sequential) strategies is the

category whose objects are sequential games𝐴, 𝐵,𝐶 and whose morphisms are strategies 𝜎 : 𝐴 ⊸ 𝐵,

𝜏 : 𝐵 ⊸ 𝐶 . Strategy composition is given by 𝜎 ;𝜏 : 𝐴 ⊸ 𝐶 and the neutral elements for strategy

composition are given by the copycat strategy copy𝐴 : 𝐴 ⊸ 𝐴.

A useful example of sequential games to keep in mind are games associated to effect signatures.

Definition 3.9. An effect signature is given by a collection of operations, or effects, 𝐸 = (𝑒𝑖 )𝑖∈𝐼
together with an assignment ar(−) : 𝐸 → Set of a set for each operation in 𝐸. This is conveniently

described by the following notation:

𝐸 = {𝑒𝑖 : ar(𝑒𝑖 ) | 𝑖 ∈ 𝐼 }

Cursorily, we can define a game GameSeq (𝐸) associated with an effect signature 𝐸 as the game

which has as 𝑂 moves the set of effects 𝑒 ∈ 𝐸 and as 𝑃 moves the set ∪𝑒∈𝐸ar(𝑒) of arities in 𝐸. We

take the freedom of writing 𝐸 for GameSeq (𝐸). The typical plays of 𝐸 appear below in the left and

consist of an invocation of an effect 𝑒 ∈ 𝐸 followed by a response 𝑣 ∈ ar(𝑒).
𝐸 : 𝑒 𝑣 †𝐸 : 𝑒1 𝑣1 𝑒2 𝑣2 . . . 𝑒𝑛 𝑣𝑛

We can lift such a game 𝐸 to a game †𝐸 that allows several effects of 𝐸 to be invoked in sequence.

Its plays, depicted above on the right, consist of sequences of invocations 𝑒𝑖 ∈ 𝐸 alternating with

their responses 𝑣𝑖 ∈ ar(𝑒𝑖 ). The examples in §2.2 were all specified using effect signatures. It is easy

to observe that †𝐸 accurately captures the type of sequential traces of an object with 𝐸 as interface.

For example, the game corresponding to the Counter signature defined in §2.2 has as maximal

plays the plays depicted below on the left. †Counter allows for several plays ofCounter to be played
in sequence. Note, however, that it merely specifies the shape of the interactions with †Counter.
Two plays of †Counter are displayed on the right.

inc ok

∀𝑛 ∈ N. get 𝑛

get 3 inc ok get 7 get 2 inc

inc ok get 1 get 1 inc ok

3.2 Concurrent Games
We assume as a parameter a countable set of agent names Υ. These names will be used to distinguish

different agents playing a concurrent game𝐴𝐴𝐴. We are now ready to define concurrent games.

Definition 3.10. A concurrent game𝐴𝐴𝐴 = (𝑀A, 𝑃A) is defined in terms of an underlying sequential

game 𝐴 = (𝑀𝐴, 𝑃𝐴) in the following way:

• Its set of moves𝑀A is given by the disjoint sum𝑀A :=
∑
𝛼 ∈Υ𝑀𝐴. That is to say, its moves are

of the form 𝛼𝛼𝛼:::𝑚 ∈ 𝑀A for any agent 𝛼 ∈ Υ and move𝑚 ∈ 𝑀𝐴.

• Its set of plays 𝑃𝐴𝐴𝐴 is the set 𝑃𝐴𝐴𝐴 := 𝑃Φ
𝐴
of self-interleaving of plays of the sequential game 𝐴.

Formally, denote by 𝑠 ∥ 𝑡 the set of interleavings of the finite sequences 𝑠 and 𝑡 . Given sets of

finite sequences 𝑆,𝑇 , we define the set of interleavings 𝑆 ∥ 𝑇 and the set of self-interleavings 𝑆Φ:

𝑆 ∥ 𝑇 :=
⋃

𝑠∈𝑆,𝑡 ∈𝑇
𝑠 ∥ 𝑡 𝑆Φ :=

⋃
𝑛∈N

⋃
{𝛼1,...,𝛼𝑛 }∈P𝑛 (Υ)

(𝜄𝛼1 (𝑆) ∥ . . . ∥ 𝜄𝛼𝑛 (𝑆))

where P𝑛 (Υ) denotes the set of subsets of Υ of size 𝑛, and 𝜄𝛼 (𝑠) labels every move𝑚 in 𝑠 , of every

sequence 𝑠 ∈ 𝑆 with the label 𝛼 denoted by 𝛼𝛼𝛼:::𝑚.

The sequential game 𝐴 is the game that each agent 𝛼 ∈ Υ plays locally. We denote by 𝜋𝛼 (𝑠)
the projection of a concurrent play 𝑠 ∈ 𝑃𝐴𝐴𝐴 to the local play 𝜋𝛼 (𝑠) by agent 𝛼 . In particular, for

any play 𝑠 ∈ 𝑃A, 𝜋𝛼 (𝑠) ∈ 𝑃𝐴. Observe that a concurrent game A with underlying sequential game
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𝐴 = (𝑀𝐴, 𝑃𝐴) is completely determined by its underlying sequential game 𝐴 per the formula

A = (∑𝛼 ∈Υ𝑀𝐴, 𝑃
Φ
𝐴
). Because of this, it is convenient to write A = (𝑀𝐴, 𝑃𝐴) when specifying a

concurrent game, as we will do for the rest of the paper.

Along the lines of our sequential gamemodel GameSeq we now define the notion of a (concurrent)

strategy over a (concurrent) game𝐴𝐴𝐴.

Definition 3.11. Let𝐴𝐴𝐴 = (𝑀𝐴, 𝑃𝐴) be a concurrent game. A (concurrent) strategy 𝜎 over𝐴𝐴𝐴, denoted

𝜎 : 𝐴𝐴𝐴, is a non-empty, prefix-closed, 𝑂-receptive subset of 𝑃𝐴𝐴𝐴, where 𝑂-receptivity is defined by:

If 𝑠 ∈ 𝜎 , 𝑜 an Opponent move and 𝑠 · 𝑜 ∈ 𝑃𝐴𝐴𝐴, then 𝑠 · 𝑜 ∈ 𝜎 .

The definition of a concurrent strategy is mostly analogous to that of a sequential game. In

fact, 𝜋𝛼 (𝜎) is a sequential strategy over the sequential game 𝐴 for every 𝛼 ∈ Υ. We again defined

morphisms by first defining an implication game𝐴𝐴𝐴 ⊸ 𝐵𝐵𝐵, which simply instantiates the underlying

sequential game as the sequential implication game.

Definition 3.12. Given concurrent games𝐴𝐴𝐴 = (𝑀𝐴, 𝑃𝐴) and 𝐵𝐵𝐵 = (𝑀𝐵, 𝑃𝐵),where 𝐴 = (𝑀𝐴, 𝑃𝐴)
and 𝐵 = (𝑀𝐵, 𝑃𝐵) are sequential games, we define the concurrent game𝐴𝐴𝐴 ⊸ 𝐵𝐵𝐵 as:

𝐴𝐴𝐴 ⊸ 𝐵𝐵𝐵 := (𝑀𝐴⊸𝐵, 𝑃𝐴⊸𝐵)

Strategy composition is defined analogously to the sequential case.

Definition 3.13. Given concurrent games A = (𝑀𝐴, 𝑃𝐴),B = (𝑀𝐵, 𝑃𝐵),C = (𝑀𝐶 , 𝑃𝐶 ) we define
the set int(A,B,C) of finite sequences of moves from𝑀A +𝑀B +𝑀C as follows:

𝑠 ∈ int(A,B,C) ⇐⇒ 𝑠↾A,B ∈ 𝑃A⊸B ∧ 𝑠↾B,C ∈ 𝑃B⊸C

Then, the parallel interaction int(𝜎, 𝜏) of two strategies 𝜎 : A ⊸ B and 𝜏 : B ⊸ C is the set

int(𝜎, 𝜏) := {𝑠 ∈ int(A,B,C) | 𝑠↾A,B ∈ 𝜎 ∧ 𝑠↾B,C ∈ 𝜏}
And finally, the composition 𝜎 ;𝜏 is defined as:

𝜎 ;𝜏 := {𝑠↾A,C | 𝑠 ∈ int(𝜎, 𝜏)}

Proposition 3.14. Strategy composition is well-defined and associative.

Prop. 3.14 establishes a semicategorical structure to concurrent games and strategies (recall that

a semicategory is a category without the requirement of neutral elements for composition).

Definition 3.15. The semicategory GameConc has concurrent games A,B as objects and concurrent

strategies 𝜎 : A ⊸ B as morphisms. Composition is given by −;−.

We define the game †E of concurrent traces over the signature 𝐸 by first defining E := (𝑀𝐸, 𝑃𝐸)
and then †E := (𝑀†𝐸, 𝑃†𝐸). So the game †E has each agent playing the corresponding sequential

game †𝐸 concurrently. This justifies all the notation used in §2.2, and in particular all the traces

depicted serve as examples of plays of games †E for the respective effect signatures. Effect signatures

as games and the replay modality †− admit a rich theory. We treat it in more detail in Appendix E.

4 CONCURRENT GAMES AND SYNCHRONIZATION
In §3.2, we defined a concurrent game semantics modeling potentially blocking sequentially con-

sistent computation and we noted that we obtain a semicategorical structure. In this section we

discuss the issue with neutral elements (§4.1) and present a solution by constructing from the

semicategory GameConc a category GameConc of concurrent games (§4.2), presented abstractly, and

discuss some infrastructure around it (§4.3,§4.4). We finalize by adapting a result of Ghica and

Murawski [2004] which allows us to give a concrete characterization of this category (§4.5).
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4.1 The Copycat Strategy
In order to appreciate the difficulty with neutral elements in concurrent models, one must first

understand what such a neutral element looks like. So let’s first ground the discussion on sequential

computation. As we saw in §3.1, the neutral element in GameSeq is the copycat strategy copy−.
The name comes from the fact that it replicates 𝑂 moves from the target component to the source

component and replicates 𝑃 moves from the source component to the target component. In the

case of copyΣ : Σ ⊸ Σ there is only one possible interaction (displayed on the left):

Σ 𝑞 𝑎

Σ 𝑞 𝑎

⊸

Import Σ

q () {

a <- q

ret a

}

Fig. 4. Maximal play of copyΣ (left) and corresponding pseudocode (right)

All other plays of copyΣ are prefixes of this play. This strategy corresponds to the implementation

displayed on the right of Fig. 4, for the method 𝑞 using a library that already implements the method

𝑞. Suppose we compose the copycat with itself, that is, we build the strategy copyΣ; copyΣ, and
recall the motto “interaction + hiding”. The resulting interaction prior to hiding is:

Σ 𝑞 𝑎

Σ 𝑞 𝑎

Σ 𝑞 𝑎

⊸
⊸

Import Σ0

q () {

a <- (a' <- q; ret a')

ret a

}

Fig. 5. Maximal play of int(copyΣ, copyΣ) (left) and corresponding pseudocode (right).

The middle row of the interaction is the one that is then hidden. It simultaneously plays the role

of the source of the play in the top two rows, and the target in the play in the bottom two rows.

The resulting interaction, after hiding, is the interaction from Fig. 4, as expected. In terms of the

corresponding implementations composing the two strategies amounts to inlining the code of one

into the other, as depicted in the right of Fig. 5.

In the concurrent version Σ ∈ GameConc of Σ each agent of Υ locally plays Σ. The obvious neutral
element in this situation would be to have each agent 𝛼, 𝛼 ′ ∈ Υ locally run copyΣ, a strategy we call
ccopyΣ : Σ ⊸ Σ, which is akin to linking the code from Fig. 4 for each agent in Υ. ccopyΣ therefore

consists of all plays which are interleavings of copyΣ. One such play is the play 𝑡 displayed below:

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

⊸

∈ ccopyΣ

Now, consider a strategy 𝜎 : Σ ⊸ Σ consisting only of the play 𝑠 below (and its prefixes):

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

Σ 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑞

⊸

∈ 𝜎
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The plays 𝑠 and 𝑡 can interact in the following two ways (among others) when considering the

composition 𝜎 ; ccopyΣ:

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

Σ 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑞

⊸
⊸

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

Σ 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑞

⊸
⊸

Each of these interactions results in a different ordering of the last two moves: 𝛼 ′𝛼 ′𝛼 ′:::𝑎 and 𝛼𝛼𝛼:::𝑞.

Therefore, the strategy 𝜎 ; ccopyΣ includes both of the following plays:

𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑎 · 𝛼 ′𝛼 ′𝛼 ′:::𝑎 · 𝛼𝛼𝛼:::𝑞 , 𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑎 · ·𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑎 ∈ 𝜎 ; ccopyΣ

This is despite the fact that the second play is not in 𝜎 . Therefore, ccopyΣ is not a neutral element.

This issue is not due to a bad choice of candidate for a neutral element, it turns out that there is

no strategy that behaves like the neutral element for every concurrent strategy. This is the issue that

Ghica and Murawski [2004] faced and is a common issue in compositional models of concurrent

computation. Now, if strategies were required to be saturated under the rewrite system from §2.1.2

(where we interpret invocation as 𝑂 move and return as 𝑃 move), then 𝜎 would not be a valid

strategy, as it must include both orderings to be saturated. While saturation solves the issue, the

deeper question of why happens-before order preservation appears remains.

4.2 Concurrent Games and Saturated Strategies
We start by formally defining the concurrent copycat strategy ccopy:

Definition 4.1. The concurrent copycat strategy ccopyA : A ⊸ A is defined as the self-

interleaving of the sequential copycat strategy copy𝐴 : 𝐴 ⊸ 𝐴 defined as

ccopyA := copyΦ𝐴

Proposition 4.2. ccopyA is idempotent.

This observation is all it takes to make use of an abstract construction called the Karoubi envelope

to construct a model of concurrent games where ccopy− does act as the neutral element for strategy

composition, as we will treat in detail in §6. This construction allows us to construct a category

GameConc that specializes GameConc to strategies that are well-behaved upon composition with

the family of idempotents ccopy−. Concretely, GameConc is defined as follows:

Definition 4.3. The category GameConc has as objects concurrent games A, B and as morphisms

strategies 𝜎 : A ⊸ B ∈ GameConc saturated in that

ccopyA;𝜎 ; ccopyB = 𝜎

Composition is given by strategy composition −;− with the concurrent copycat ccopy− as identity.
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4.3 Refinement for Concurrent Strategies
We endow the semicategory of concurrent strategies with an order enrichment, which also gives

our notion of refinement. We order strategies 𝜎, 𝜏 ∈ GameConc (A,B) by set containment 𝜎 ⊆ 𝜏 .
This assembles the hom-set GameConc (A,B) into a join-semilattice. Joins are given by union of

strategies, which are well-defined as prefix-closure, non-emptiness and receptivity are all preserved

by unions. Composition is well-behaved with respect to this ordering in the following sense:

Proposition 4.4. Strategy composition is monotonic and join-preserving.

Refinement is a pesky issue in the context of concurrency, non-determinism, and undefined

behavior. We do not purport to address this issue in this paper. Instead, we choose trace set

containment to remain faithful with linearizability, where this notion of refinement is prevalent.

Interestingly, strategy containment is a standard notion of refinement in game semantics as well.

4.4 The Semifunctors 𝐾Conc and EmbConc
The abstract treatment in §6 will also show that the abstract construction giving rise to GameConc
comes with some infrastructure around it for free. For instance, it readily gives a forgetful semi-

functor from GameConc (seen here as a semicategory instead of a category) to GameConc

EmbConc : Semi GameConc −→ GameConc

acting as the identity semifunctor. We will omit applications of EmbConc when it causes no harm.

There is also a transformation which takes a not necessarily saturated concurrent strategy 𝜎 and

constructs the smallest strategy that is saturated and contains 𝜎 , which we name

𝐾Conc : GameConc → Semi GameConc

as defined in §6, and explicitly given by:

A
𝐾Conc↦−−−−−−−−−→ A 𝜎 : A ⊸ B

𝐾Conc↦−−−−−−−−−→ ccopyA;𝜎 ; ccopyB

unfortunately this mapping does not assemble into a semifunctor. Despite that, 𝐾Conc is an oplax

semifunctor, in the sense described in the following proposition.

Proposition 4.5. For any 𝜎 : A ⊸ B and 𝜏 : B ⊸ C:

𝐾Conc (𝜎 ;𝜏) ⊆ 𝐾Conc (𝜎);𝐾Conc (𝜏)

It is straight-forward to check that𝐾Conc is continuous, that is, it is monotonic and join-preserving.

It is important to emphasize that while we give concrete definitions for these operations, they come

from the abstract construction we describe for an arbitrary semicategory in §6.

4.5 Fine-Grained Synchronization in Concurrent Games
In §4.2, we gave a rather abstract definition for the strategies in GameConc. Ghica [2019], in a

slightly different setting, observed that this abstract definition is equivalent to a concrete one,

originally appearing in Ghica and Murawski [2004], involving the rewrite system we discussed in

§2.1.2, which we now adapt to our setting.

Definition 4.6. Let A = (𝑀𝐴, 𝑃𝐴) be a concurrent game. We define an abstract rewrite system

(𝑃A,⇝𝐴𝐴𝐴) with local rewrite rules:

• ∀𝑚,𝑚′ ∈ 𝑀𝐴 .∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ∧ 𝜆A (𝑚) = 𝜆A (𝑚′) ⇒ 𝛼𝛼𝛼:::𝑚 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′⇝𝐴𝐴𝐴 𝛼
′𝛼 ′𝛼 ′:::𝑚′ · 𝛼𝛼𝛼:::𝑚

• ∀𝑜, 𝑝 ∈ 𝑀𝐴 .∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ∧ 𝜆A (𝑜) = 𝑂 ∧ 𝜆A (𝑝) = 𝑃 ⇒ 𝛼𝛼𝛼:::𝑜 · 𝛼 ′𝛼 ′𝛼 ′:::𝑝 ⇝𝐴𝐴𝐴 𝛼
′𝛼 ′𝛼 ′:::𝑝 · 𝛼𝛼𝛼:::𝑜

The main result of this section is the following alternative characterization of saturation.
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Proposition 4.7. A strategy 𝜎 : A ⊸ B is saturated if and only if

∀𝑠 ∈ 𝜎.∀𝑡 ∈ 𝑃A⊸B.𝑡 ⇝𝐴𝐴𝐴⊸𝐵𝐵𝐵 𝑠 ⇒ 𝑡 ∈ 𝜎

The key lemma to show this alternative characterization is the synchronization lemma, as coined

by Ghica [2019], which plays a similar role to concurrent games as does the switching condition in

sequential games. It essentially establishes that there is still synchronization happening under this

liberal setting, all enabled by the fact that each agent is still synchronizing with itself.

It is useful to define a closure operator over sets of plays. Given a set of plays 𝑆 ⊆ 𝑃A we call

strat (𝑆) : A the least strategy containing 𝑆 , obtained as the prefix and receptive closure of 𝑆 .

Proposition 4.8 (Synchronization Lemma). Let 𝑠 = 𝑝 ·𝛼𝛼𝛼:::𝑚 ·𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝑝 ′ be a play of A ⊸ B. Let
𝜎 = strat (𝑝 · 𝛼𝛼𝛼:::𝑚 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝑝 ′). Then,

𝑝 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝛼𝛼𝛼:::𝑚 · 𝑝 ′ ∈ ccopyA;𝜎 ; ccopyB ⇐⇒ 𝛼𝛼𝛼:::𝑚 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′⇝A⊸B 𝛼
′𝛼 ′𝛼 ′:::𝑚′ · 𝛼𝛼𝛼:::𝑚

The core of the proof of Prop. 4.8 lies in the dynamics of ccopy−. If we focus on an agent 𝛼 ∈ Υ,
a typical play in ccopyB behaves as displayed below on the left.

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎

𝛼𝛼𝛼:::𝑞 . . . . . . 𝛼 ′𝛼 ′𝛼 ′:::𝑎

. . . 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 . . .

Observe that no matter what the other agents are doing it is always the case that the copy of an 𝑂

move in the target appears later in the source, and a copy of a 𝑃 move in the target appears earlier

in the source. So if we have a play 𝑠 ∈ 𝑃B such that 𝑠 = 𝑝 ·𝛼𝛼𝛼:::𝑞 ·𝛼 ′𝛼 ′𝛼 ′:::𝑎 · 𝑝 ′ any of its interactions with

ccopyB, such as in strat (𝑠) ; ccopyB, look something like the play displayed above on the right.

After hiding the interaction in the source, the resulting play can at most make 𝛼𝛼𝛼:::𝑞 appear earlier

and 𝛼 ′𝛼 ′𝛼 ′:::𝑎 appear later, so it cannot change their order. For any of the other cases for the polarities

of those two moves, there is always a case where they can appear swapped as the result of the

interaction. So the proof of Prop. 4.8 is a case analysis of the polarities of 𝛼𝛼𝛼:::𝑚 and 𝛼 ′𝛼 ′𝛼 ′:::𝑚′.

5 LINEARIZABILITY
In this section, we argue that linearizability emerges from the Karoubi construction used to define

GameConc and establish several of the main results of this paper. In §5.1 we establish that 𝐾Conc
exactly corresponds to a general notion of linearizability which is improved in §5.2, while in §5.3

we observe that plays of ccopy− correspond to proofs of linearizability. In §5.4 we show a property

analogous to the usual observational refinement property, and in §5.5 we show the locality property.

5.1 Linearizability
We start by defining linearizability.

Definition 5.1. We say a play 𝑠 ∈ 𝑃A is linearizable to a play 𝑡 ∈ 𝑃A if there exists a sequence of

Opponent moves 𝑠𝑂 ∈ (𝑀𝑂
A )∗ and a sequence of Proponent moves 𝑠𝑃 ∈ (𝑀𝑃

A)∗ such that

𝑠 · 𝑠𝑃 ⇝A 𝑡 · 𝑠𝑂
A play 𝑠 ∈ 𝑃A is linearizable with respect to a strategy 𝜏 : A ∈ GameConc if there exists 𝑡 in 𝜏

such that 𝑠 is linearizable to 𝑡 . If every play of a strategy 𝜎 : A is linearizable with respect to 𝜏 : A
then we say 𝜎 is linearizable with respect to 𝜏 .

In this general definition of linearizability, 𝑠𝑃 completes some pending 𝑂 moves with a response

by 𝑃 while the sequence 𝑠𝑂 plays the role of the pending invocations that are removed from 𝑠 . Note

that 𝑡 need not be atomic and may still have pending Opponent moves. The rewrite relation⇝A
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plays the role of preservation of happens-before order. In this sequentially consistent formulation

of concurrent games, this generalized definition of linearizability is closely related to interval-

sequential linearizability [Castañeda et al. 2015], what we address in more detail in Appendix

D. When the linearized strategy is specialized to atomic strategies only, we obtain Herlihy-Wing

linearizability. In Appendix B we give a thorough account of the specialization to atomic games.

The central result of this paper is a characterization of 𝐾Conc in terms of linearizability.

Proposition 5.2. For any 𝜏 : A ∈ GameConc

𝐾Conc 𝜏 = {𝑠 ∈ 𝑃A | 𝑠 is linearizable with respect to 𝜏}
Proof. Suppose 𝑠 ∈ 𝐾Conc 𝜏 . By Prop. 4.7 it follows that there exists 𝑡 ∈ 𝜏 such that 𝑠 ⇝A 𝑡 and

therefore by setting 𝑠𝑂 = 𝑠𝑃 = 𝜖 we are done.

Suppose there are 𝑠𝑃 and 𝑠𝑂 such that 𝑠 · 𝑠𝑃 ⇝A 𝑡 · 𝑠𝑂 . By receptivity 𝑡 · 𝑠𝑂 ∈ 𝜏 . By Prop. 4.7,

𝑠 · 𝑠𝑃 ∈ 𝐾Conc 𝜏 . By prefix-closure, 𝑠 ∈ 𝐾Conc 𝜏 , as desired. □

A lot of this proposition is taken for by Prop. 4.7. Observe that 𝜏 ’s receptivity explains why some

Opponent moves 𝑠𝑂 may be removed, while the fact that the play can be completed with Proponent

moves 𝑠𝑃 arises from prefix-closure. We also find it important to remind the reader that 𝐾Conc is

defined in terms of its role in the relationship between a semicategory and its Karoubi envelope, as

will be treated in detail in §6. In this way, Prop. 5.2 shows that linearizability arises as a result of an

abstract construction solving the problem of lack of neutral elements in our concurrent model of

computation. An immediate corollary of Prop. 5.2 is an alternative definition of linearizability.

Corollary 5.3 (Abstract Linearizability). A strategy 𝜎 : A ∈ GameConc is linearizable to a
strategy 𝜏 : A if and only if

𝜎 ⊆ 𝐾Conc 𝜏

As 𝐾Conc appear as a result of an abstract construction, this alternative definition may be used

even in situations where there is no candidate for a happens-before-ordering or a rewrite relation

such as − ⇝ −. As matter of example, Ghica [2013] defines a compositional model of delay-

insensitive circuits. There, the Karoubi envelope is used to turn a model of asynchronous circuits

which is not physically realizable into one that is. This abstract definition of linearizability implied

by Prop. 5.3 and developed in detail in §6 could be adapted to that setting to give a notion of

linearizability for delay-insensitive circuits.

This abstract construction will also allow us to give a more general but simple proof of the

refinement property in §5.4 and locality in §5.5.

5.2 Strong Linearizability
This alternative and abstract characterization also suggests the following variation of linearizability:

Definition 5.4. We say 𝜎 : A ∈ GameConc is strongly linearizable to 𝜏 : A when 𝜎 is linearizable

with respect to 𝜏 and 𝜏 ⊆ 𝜎 .
We call this strong because it implies the conventional notion of linearizability as defined in 5.1.

In particular, atomic strong linearizability implies Herlihy-Wing linearizability. Note that when 𝜎

is strongly linearizable with respect to 𝜏 we obtain that:

𝐾Conc 𝜏 ⊆ 𝐾Conc 𝜎 = 𝜎

Together with Corollary 5.3 it follows that 𝜎 = 𝐾Conc 𝜏 so that 𝜎 is fully characterized by its

linearization. Therefore, a strongly linearizable 𝜎 is a strategy which is in the image of 𝐾Conc.

Concretely, strong linearizability is what most intuitively call linearizability. Indeed, in works

based on operational semantics there is always the possibility that by chance the scheduler schedules
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the threads in such a way that it generates an atomic execution for the system. Those atomic

executions turn out to be exactly the linearization of the objects that are studied in that context.

When an object is non-strongly linearizable to a specification, it means that the specification is

not accurate: it is an over-approximation. For example, it is easy to prove that every concurrent

strategy is linearizable to some atomic strategy. In particular, 𝜈 ′yield is (Herlihy-Wing) linearizable

to an atomic spec 𝜈 with plays of the form:

𝛼1𝛼1𝛼1:::yield · 𝛼1𝛼1𝛼1:::ok · 𝛼1𝛼1𝛼1:::yield · 𝛼1𝛼1𝛼1:::ok · . . . · 𝛼𝑛𝛼𝑛𝛼𝑛:::yield · 𝛼𝑛𝛼𝑛𝛼𝑛:::ok

But 𝜈 ′yield does not strongly linearize to 𝜈 . Moreover, 𝜈 does not make sense as a specification for yield.
Standard linearizability does not rule out such bad specifications, while strong linearizability does.

Our formalism shows exactly in which sense non-strong linearizability yields an over-approximation:
If 𝜎 is strongly linearizable to 𝜏 then 𝜎 = 𝐾Conc 𝜏 , as we showed above. Meanwhile, when 𝜎 is

linearizable to 𝜏 but not strongly linearizable, we have a strict containment 𝜎 ⊂ 𝐾Conc 𝜏 .

5.3 Computational Interpretation of Linearizability
We just saw that linearizability can be characterized by the transformation 𝐾Conc. We now offer yet

another perspective on linearizability by providing a computational interpretation of linearizability

proofs. Recall that in our discussion in §4.1 we observed that ccopy− is the denotation of a concrete

program. Interestingly, the plays of ccopy− correspond to proofs of linearizability.

Proposition 5.5. 𝑠1 ∈ 𝑃A linearizes to 𝑠0 ∈ 𝑃A if and only if there is a play 𝑠 ∈ ccopyA such that

𝑠↾A0
= 𝑠0 𝑠↾A1

= 𝑠1

Proof. For this, one first proves that every play 𝑠 ∈ ccopyA satisfies 𝑠↾A1
⇝A 𝑠↾A0

. Then,

prefix-closure and receptivity of ccopyA allow for linearizability to be used instead of − ⇝− −,
similarly to the the proof of Prop. 5.2. See Appendix H for a detailed proof. □

What Prop. 5.5 essentially establishes is that proofs of linearizability encode executions of the

code in Fig. 3, and that executions of the code in Fig. 3 encode proofs of linearizability. Intuitively, the

reason for this is that in a play of ccopyA an𝑂 move followed by a 𝑃 move in the target component

forms an interval around their corresponding moves in the source component. So if we have two

such pairs by different agents, one happening entirely before the other, then their corresponding

moves in the source must happen in the same order. This means that happens-before order is

preserved from the target component to the source component. See the figure below depicting a

play of ccopyΣ:

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

5.4 Interaction Refinement
One is often interested in implementing an interface of type B making use of some other interface

of type A by using an implementation specified as a saturated strategy of type 𝜎 : A ⊸ B. Now, the
game A appears in a negative position in the type A ⊸ B. Because of this there is a contravariant
effect to linearizability on⊸ in that if 𝑠 ⇝A⊸B 𝑡 then, while 𝑠↾B is “more concurrent” than 𝑡↾B,
𝑠↾A is “less concurrent” than 𝑡↾A. This intuition leads to the following result analogous to the

observational refinement equivalence of Filipovic et al. [2010].
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Proposition 5.6 (Interaction Refinement). 𝜈 ′
𝐴
: A ∈ GameConc is linearizable to 𝜈𝐴 : A ∈

GameConc if and only if for all concurrent games B and 𝜎 : A ⊸ B ∈ GameConc it holds that

𝜈 ′𝐴;𝜎 ⊆ 𝜈𝐴;𝜎
Proof. By Corollary 5.3, monotonicity of composition, and saturation of 𝜎 :

𝜈 ′𝐴;𝜎 ⊆ 𝐾Conc 𝜈𝐴;𝜎 = (ccopy1;𝜈𝐴; ccopyA);𝜎 = (ccopy1;𝜈𝐴); (ccopyA;𝜎) = 𝜈𝐴;𝜎
For the reverse direction, simply observe that:

𝜈 ′𝐴 ⊆ 𝜈 ′𝐴; ccopyA ⊆ 𝜈𝐴; ccopyA = ccopy1;𝜈𝐴; ccopyA = 𝐾Conc 𝜈𝐴

□

This immediately implies a stronger result under strong linearizability

Corollary 5.7. Let 𝜈 ′
𝐴
: A ∈ GameConc is strongly linearizable w.r.t. to 𝜈𝐴 : A ∈ GameConc if and

only for all B and 𝜎 : A ⊸ B ∈ GameConc:

𝜈 ′𝐴;𝜎 = 𝜈𝐴;𝜎

5.5 Locality
We revisit the locality property from Herlihy and Wing [1990] by reformulating the notion of an

object system with several independent objects as the linear logic tensor product ⊗. For this we
start with a faux definition of tensor product.

Definition 5.8. If A = (𝑀𝐴, 𝑃𝐴) and B = (𝑀𝐵, 𝑃𝐵) are games in GameConc, we define the game

A ⊗ B ∈ GameConc as A ⊗ B = (𝑀𝐴⊗𝐵, 𝑃𝐴⊗𝐵). We denote by 1 the game 1 = (𝑀1, 𝑃1).
Given strategies 𝜎𝐴 : A and 𝜎𝐵 : B we define the strategy 𝜎𝐴 ⊗ 𝜎𝐵 : A ⊗ B as the set

(𝜎𝐴 ∥ 𝜎𝐵) ∩ 𝑃A⊗B, the set of sequentially consistent interleavings of 𝜎𝐴 and 𝜎𝐵 .

We call this a faux tensor product because there is no reasonable definition of a monoidal
semicategory for lack of neutral elements with which to express the coherence conditions. Despite

that, the − ⊗ − operation becomes a proper tensor product when specialized to GameConc.

Proposition 5.9. (GameConc,− ⊗ −, 1) assembles into a symmetric monoidal closed category.

This structure is obtained by mapping the corresponding structural maps in GameSeq through

an interleaving functor. In particular, Prop. 5.9 says that − ⊗ − is a bifunctor in GameConc, so that

Proposition 5.10. For all concurrent games A, B:

ccopyA⊗B = ccopyA ⊗ ccopyB

This rather simple result is rather auspicious given the computational interpretation of ccopy−
in terms of linearizability proofs seen in §5.3. This property, together with the fact that − ⊗ − is a

bi-semifunctor, readily implies that 𝐾Conc distributes over the tensor product.

Proposition 5.11. Let 𝜎𝐴 : A ⊸ A′ and 𝜎𝐵 : B ⊸ B′. Then:

𝐾Conc (𝜎𝐴 ⊗ 𝜎𝐵) = 𝐾Conc 𝜎𝐴 ⊗ 𝐾Conc 𝜎𝐵

Proof.

𝐾Conc (𝜎𝐴 ⊗ 𝜎𝐵) = ccopyA⊗B; (𝜎𝐴 ⊗ 𝜎𝐵); ccopyA′⊗B′ (Def.)

= (ccopyA ⊗ ccopyB); (𝜎𝐴 ⊗ 𝜎𝐵); (ccopyA′ ⊗ ccopyB′) (Prop. 5.10)

= (ccopyA;𝜎𝐴; ccopyA′) ⊗ (ccopyB;𝜎𝐵 ; ccopyB′) (bi-semifunctoriality of − ⊗ −)
= 𝐾Conc 𝜎𝐴 ⊗ 𝐾Conc 𝜎𝐵 (Def.)

□
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which gives as corollary a generalization of Herlihy and Wing [1990]’s locality theorem.

Corollary 5.12 (Locality). Let 𝜈 ′
𝐴
: A, 𝜈 ′

𝐵
: B ∈ GameConc and 𝜈𝐴 : A, 𝜈𝐵 : B ∈ GameConc. Then

𝜈 ′ = 𝜈 ′
𝐴
⊗ 𝜈 ′

𝐵
is linearizable w.r.t. 𝜈 = 𝜈𝐴 ⊗ 𝜈𝐵

if and only if
𝜈 ′
𝐴
is linearizable w.r.t. 𝜈𝐴 and 𝜈 ′

𝐵
is linearizable w.r.t. 𝜈𝐵

Proof. By Prop. 5.11 and Prop. 5.2

𝜈 ′ = 𝜈 ′𝐴 ⊗ 𝜈 ′𝐵 ⊆ 𝐾Conc (𝜈𝐴 ⊗ 𝜈𝐵) = 𝐾Conc 𝜈𝐴 ⊗ 𝐾Conc 𝜈𝐵

in particular,

𝜈 ′𝐴 = (𝜈 ′𝐴 ⊗ 𝜈 ′𝐵)↾A ⊆ (𝐾Conc 𝜈𝐴 ⊗ 𝐾Conc 𝜈𝐵)↾A = 𝐾Conc 𝜈𝐴

𝜈 ′𝐵 = (𝜈 ′𝐴 ⊗ 𝜈 ′𝐵)↾B ⊆ (𝐾Conc 𝜈𝐴 ⊗ 𝐾Conc 𝜈𝐵)↾B = 𝐾Conc 𝜈𝐵

For the reverse direction, we have:

𝜈 ′ = 𝜈 ′𝐴 ⊗ 𝜈 ′𝐵 ⊆ 𝐾Conc 𝜈𝐴 ⊗ 𝐾Conc 𝜈𝐵 = 𝐾Conc (𝜈𝐴 ⊗ 𝜈𝐵)
□

We would like to observe that not only our methodology yields a stronger result in Prop. 5.10

and 5.11, but also that it supports simpler, mostly algebraic proofs. Meanwhile, even in the simpler

case of atomic linearizability, Herlihy and Wing [1990]’s original proof is rather ad hoc.

6 THE KAROUBI ENVELOPE AND ABSTRACT LINEARIZABILITY
In this section, we establish the main abstract tools we used to construct models of concurrent

computation. The most important points of this section are the definitions of C𝑒 , 𝐾𝑒 , and Emb𝑒 ,
which we wrote concretely as GameConc,𝐾Conc and EmbConc in the main development. An extended

version of this section is available in Appendix A.

Given a semicategory C the Karoubi envelope is the category Kar C which has as objects pairs:

(𝐶 ∈ C, 𝑒 : 𝐶 → 𝐶)
of an object 𝐶 and an idempotent 𝑒 of 𝐶 . Recall that an idempotent of an object is simply an

idempotent endomorphism of that object, in the sense that 𝑒◦𝑒 = 𝑒 . Amorphism 𝑓 : (𝐶, 𝑒) → (𝐶 ′, 𝑒 ′)
in Kar C is a morphism 𝑓 : 𝐶 → 𝐶 ′ of the underlying semicategory C that is invariant upon the

idempotents, involved in the sense that:

𝑒 ′ ◦ 𝑓 ◦ 𝑒 = 𝑓
which we call a saturated morphism of C. Observe that by construction the Karoubi envelope Kar C
is indeed a category by defining the neutral elements by the equation id(𝐶,𝑒) = 𝑒 .

The following is folklore in the theory of semicategories. There is a forgetful functor

Semi : Cat→ SemiCat

which given a category C assigns a semicategory Semi C by forgetting the data about the neutral

elements in C, which also determines its action of transforming functors into semifunctors by

forgetting the fact that it preserves neutral elements. Semi admits a right adjoint

Kar : SemiCat→ Cat

which maps a semicategory C to its Karoubi envelope Kar C.
When C has neutral elements, so that it actually assembles into a category, one obtains a fully

faithful functor (of categories) into the Karoubi envelope by:

C −−−−−→ Kar C 𝐶 ↦−−−−−→ (𝐶, id𝐶 )
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which immediately makes any morphism 𝑓 : 𝐶 → 𝐶 ′ into a morphism 𝑓 : (𝐶, id𝐶 ) → (𝐶 ′, id𝐶′)
due to the unital laws. Note that this functor corresponds to selecting a family (𝑒𝐶 : 𝐶 → 𝐶)𝐶∈C of

idempotents 𝑒𝐶 for each object 𝐶 ∈ C; in this case 𝑒𝐶 = id𝐶 . The mapping of morphisms should

saturate any morphism 𝑓 : 𝐶 → 𝐷 . Hence, it must be given by:

𝑓 ↦−−−−−→ 𝑒𝐷 ◦ 𝑓 ◦ 𝑒𝐶
Unfortunately, for lack of neutral elements in the semicategory case, there is no obvious choice of

idempotents to construct such a functor, and in fact, there is no canonical choice of idempotents

that makes it into a functor. Despite that, there is always a forgetful semifunctor:

Emb : SemiKar C→ C

Intuitively, the Karoubi envelope “splits” an object 𝐶 ∈ C into many versions of itself: one

for each idempotent 𝑒 of 𝐶 . Meanwhile, morphisms 𝑓 : 𝐶 → 𝐷 are “classified” as morphisms

𝑓 : (𝐶, 𝑒) → (𝐶 ′, 𝑒 ′) when they tolerate 𝑒 and 𝑒 ′ as neutral elements. So choosing an idempotent

for each object of C really amounts to choosing a version of each object 𝐶 ∈ C to obtain a category.

We take the intuition we get from these remarks to define the following construction.

Let C be a semicategory enriched over Cat and let

𝑒− = {𝑒𝐶 : 𝐶 → 𝐶}𝐶∈C
be a family of idempotents. Any such family defines a full subcategory C𝑒 of the Karoubi envelope
Kar C of C by restricting the objects to precisely the idempotents in 𝑒−. We call such a subcategory

of Kar C an embeddable subcategory. This naming is justified by the fact that the restriction

Emb𝑒 : Semi C𝑒 → C

of the forgetful functor Emb defines an embedding. There is a candidate for a semifunctor

𝐾𝑒 : C→ Semi C𝑒

going in the reverse direction, and given by

𝐶
𝐾𝑒↦−−−−−−−→ (𝐶, 𝑒𝐶 ) 𝑓 : 𝐶 → 𝐷

𝐾𝑒↦−−−−−−−→ 𝑒𝐷 ◦ 𝑓 ◦ 𝑒𝐶
𝐾𝑒 often fails to be a semifunctor, as we noted. Despite that, semifunctoriality, even weakly, is not

required for our purposes. Observe at this point that GameConc = (GameConc)ccopy and that 𝐾Conc
is precisely the induced mapping 𝐾ccopy.

We are now ready to define abstract linearizability.

Definition 6.1. Let C be an enriched semicategory equipped with a bi-semifunctor

− ⊗ − : C × C→ C

and an object 1 such that (C𝑒 ,− ⊗ −, 1) is a symmetric monoidal category.

We say a morphism 𝑓 : 1→ 𝐶 ∈ C𝑒 is linearizable to a morphism 𝑔 : 1→ 𝐶 ∈ C when

𝑓 ⇒ 𝐾𝑒 𝑔

Since our proofs of locality and interaction refinement on GameConc were abstract, relying on

Prop. 5.3, we can collect the necessary assumptions to obtain those results.

Proposition 6.2. In the following, let C and C𝑒 satisfy the conditions of Def. 6.1.
Interaction Refinement Suppose for all 𝐶 ∈ C and 𝑓 : 1→ 𝐶 ∈ C it holds that

𝑓 ◦ 𝑒1 = 𝑓
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Then 𝑓 : 1→ 𝐶 is linearizable to 𝑔 : 1→ 𝐶 iff and only if for all 𝐷 ∈ C and ℎ : 𝐶 → 𝐷 ∈ C𝑒 it
holds that

ℎ ◦ 𝑓 ⇒ ℎ ◦ 𝑔
Locality 𝐾𝑒 distributes over − ⊗ − in the sense that for all 𝑓 : 𝐶 → 𝐶 ′ and 𝑔 : 𝐷 → 𝐷 ′

𝐾𝑒 (𝑓 ⊗ 𝑔) = 𝐾𝑒 𝑓 ⊗ 𝐾𝑒 𝑔
and if for all 𝐶,𝐶 ′, 𝐷, 𝐷 ′ ∈ C it holds that

C𝑒 (𝐶,𝐶 ′) ⊗ C𝑒 (𝐷, 𝐷 ′) � C𝑒 (𝐶,𝐶 ′) × C𝑒 (𝐷, 𝐷 ′)
then 𝑓 ′

𝐶
: 1→ 𝐶 and 𝑓 ′

𝐷
: 1→ 𝐷 are linearizable to 𝑓𝐶 : 1→ 𝐶 and 𝑓𝐷 : 1→ 𝐷 if and only if

𝑓 ′
𝐶
⊗ 𝑓 ′

𝐷
is linearizable to 𝑓𝐶 ⊗ 𝑓𝐷 .

7 PRAGMATICS
Now that we have established the core results of the paper, we revisit the example in §2.2. We start

by outlining a program logic for showing that certain concurrent programs implement linearizable

objects, which is developed in detail in Appendices E and F. Then, we outline how the theory we

develop can be used to reason about the example from §2.2. Our program logic is adapted from

Khyzha et al. [2017], but contains significant modifications.

7.1 Programming Language
7.1.1 Syntax. We start by defining a language Com for commands over an effect signature 𝐸:

Prim := 𝑥 ← 𝑒 (𝑎) | assert(𝜙) | ret 𝑣 Com := Prim | Com;Com | Com + Com | Com∗ | skip
Prim stands for primitive commands while Com is the grammar of commands. The most important

commands work as follows:

• 𝑥 ← 𝑒 (𝑎) executes the effect 𝑒 ∈ 𝐸 with argument 𝑎, which might contain variables defined

in a local environment Δ ∈ Env.
• ret 𝑣 stores in a reserved variable the value 𝑣 , and may only be called once in any execution.

• assert(𝜙) takes a boolean function over the local environment and terminates computation

if 𝜙 evaluates to False. assert(−) can be used to implement a while loop and if conditionals

in the usual way.

The remaining commands are per usual in a Kleene algebra.

An implementation𝑀 [𝛼] of type 𝐸 → 𝐹 , where 𝐸 and 𝐹 are effect signatures, is then given by a

collection 𝑀 [𝛼] = (𝑀 [𝛼] 𝑓 )𝑓 ∈𝐹 indexed by 𝐹 , so that for each 𝑓 ∈ 𝐹 we have 𝑀 [𝛼] 𝑓 ∈ Com; we

denote the set of implementations by Mod.
Meanwhile, a concurrent module 𝑀 [𝐴] is given by a collection of implementations 𝑀 [𝐴] =
(𝑀 [𝛼])𝛼 ∈𝐴 indexed by a set 𝐴 ⊆ Υ of active agents, so that𝑀 [𝛼] ∈ Mod is an implementation for

each active agent 𝛼 ∈ 𝐴; we denote the set of concurrent modules by CMod.

7.1.2 Operational Semantics. Each primitive command 𝐵 receives an interpretation as a state

transformer ⟦𝐵⟧𝛼 : UndState→ P(UndState) over a set of states UndState := Env × 𝑃†E and

returning a new set of states. A state (Δ, 𝑠) ∈ UndState contains a local environment Δ ∈ Env and
a state represented canonically as a play of 𝑠 ∈ †E. Concretely, 𝑠 is the history of operations on the

underlying object. The state transformer ⟦𝐵⟧𝛼 depends on 𝛼 only in that it tags the events it adds

to the underlying state with an identifier for 𝛼 .

We lift this interpretation function to a local small-step operational semantics

⟨𝐶,Δ, 𝑠⟩ −→𝛼 ⟨𝐶 ′,Δ′, 𝑠 ′⟩ encoding how 𝛼 steps on commands in a mostly standard way

following the Kleene algebra structure of commands. The key difference is that as we do not
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↣ ⊆ Com × Prim × {𝑂, 𝑃 } × Com

𝐵↣𝑂
𝐵 𝐵 𝐵↣𝑃

𝐵 skip

𝐶1 ↣
𝑋
𝐵 𝐶′

1

𝐶1;𝐶2 ↣
𝑋
𝐵 𝐶′

1
;𝐶2 skip;𝐶 ↣𝑋

id 𝐶

𝐶∗ ↣𝑋
id 𝐶 ;𝐶

∗ 𝐶∗ ↣𝑋
id skip

𝐶1 +𝐶2 ↣
𝑋
id 𝐶1 𝐶1 +𝐶2 ↣

𝑋
id 𝐶2

−→ ⊆ (Com × UndState) × Υ × (Com × UndState)

(Δ′, 𝑠′) ∈ ⟦𝐵⟧𝑋𝛼 (Δ, 𝑠) 𝐶 ↣𝑋
𝐵 𝐶′

⟨𝐶,Δ, 𝑠 ⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′⟩
−↠ ⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

𝑓 ∈ 𝐹 𝑎 ∈ par(𝑓 ) ∆′ = ∆[𝛼 : [arg : 𝑎] ]
⟨𝑐 [𝛼 : idle],∆, 𝑠 ⟩ −↠𝑀 ⟨𝑐 [𝛼 : 𝑀 [𝛼 ] 𝑓 ],∆′, 𝑠 ·𝛼𝛼𝛼:::𝑓 ⟩

⟨𝐶,∆, 𝑠↾E ⟩ −→𝛼 ⟨𝐶′,∆′, 𝑠′↾E ⟩
⟨𝑐 [𝛼 : 𝐶 ],∆, 𝑠 ⟩ −↠𝑀 ⟨𝑐 [𝛼 : 𝐶′],∆′, 𝑠′⟩

𝜋𝛼 (𝑠↾F) = 𝑝 · 𝑓
∆(𝛼) (res) = 𝑣 ∈ ar(𝑓 ) ∆′ = ∆[𝛼 : ∅]

⟨𝑐 [𝛼 : skip],∆, 𝑠 ⟩ −↠𝑀 ⟨𝑐 [𝛼 : idle],∆′, 𝑠 ·𝛼𝛼𝛼:::𝑣⟩

Fig. 6. Command Reduction Rules (↣), Local Operational Semantics (−→), and Concurrent Module Opera-
tional Semantics (−↠)

assume the underlying object of type 𝐸 is atomic, primitive commands execute in two separate

steps, one for the invocation and the other for the return. Because of that, the interpretation

function ⟦𝐵⟧𝛼 is decomposed into ⟦𝐵⟧𝑂𝛼 , which is defined only on states where 𝛼 ’s next move is

an invocation, and ⟦𝐵⟧𝑃𝛼 , which is defined only on states where 𝛼 has a pending invocation (the

remaining states). See Fig. 6 for the operational semantics rules. There, id stands for a primitive

command that behaves just like skip but is used exclusively to define the operational semantics.

This small step operational semantics can be lifted to a concurrent module operational semantics

− −↠− − ⊆ (Cont ×ModState) × CMod × (Cont ×ModState)
which takes a continuation Cont := Υ→ {idle} + {skip} + Com and a module stateModState :=
(Υ → Env) × 𝑃†E⊸†F containing the local environments for all the agents, as well as the global

trace of the system (see Fig. 6). The concurrent operational semantics − −↠𝑀 − therefore describes
the possible executions of the concurrent module 𝑀 . The three rules correspond, from top to

bottom, to a target component invocation, a step in the source component, and a return in the

target component.

It is important to note that in our operational semantics, following the object-based semantics

approach, which we develop in detail in Appendix E, all shared state is encapsulated in the under-

lying object of type 𝐸. One of the many consequences of this is that the local environments can

only be modified by their corresponding agents, and are initialized on a call on 𝐹 and emptied on a

return. This limits the lifetime of variables to a single execution of the body of a method.

7.1.3 Semantics. We give a concurrent module a denotation by the formula

⟦𝑀⟧ = {𝑠 | ∃𝑐 ∈ Cont.∃∆ ∈ (Υ→ Env).⟨𝑐0,∆0, 𝜖⟩ −↠𝑀 ⟨𝑐,∆, 𝑠⟩}
where 𝑐0 is the initial continuation, and Δ0 has every agent with an empty local environment. We

specialize the operational semantics to the situation where a concurrent object specification 𝜈𝐸 : †E
of type E is provided by defining an operational semantics − −↠𝑀

𝜈𝐸
− which runs 𝑀 on top of

𝜈𝐸 , what we denote as Link 𝜈𝐸 ;𝑀 . We obtain the traces ⟦Link 𝜈𝐸 ;𝑀⟧ analogously to ⟦𝑀⟧ by only

considering steps in the source component that satisfy the specification 𝜈𝐸 . The following result

allows us to connect the programming language back with the theory we have developed so far.
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Proposition 7.1. For any𝑀 ∈ CMod, ⟦𝑀⟧ : †E ⊸ †F is a strategy (in fact, a concurrent object
implementation) and given 𝜈𝐸 : †E,

⟦Link 𝜈𝐸 ;𝑀⟧ = 𝜈𝐸 ; ⟦𝑀⟧

7.2 Program Logic
Here, we present a simple, bare bones, program logic for proving implementations correctly

implement linearizable objects. Despite its simplicity, it is expressive enough to reason about our

notion of linearizability, and we believe it to be extensible.

We encapsulate the information necessary to define a linearizable concurrent object in a pair

(𝜈 ′ : †A, 𝜈 : †A) s.t. 𝜈 ′ ⊆ 𝐾Conc 𝜈

Throughout, we assume the following situation. We have a linearizable concurrent object

(𝜈 ′
𝐸
: †E, 𝜈𝐸 : †E) and would like to show that an implementation𝑀 : 𝐸 → 𝐹 is correct in that when

it runs on top of 𝜈 ′
𝐸
it linearizes to a specification 𝜈𝐹 : †F. When reasoning about Link 𝜈 ′

𝐸
;𝑀 it will

be useful to restrict it with some invariants about its client. For example, usually when using a lock,

one assumes that every lock user strictly alternates between calling acq and rel. So if all clients to

the lock politely follow the lock policy, it is enough to verify only those traces. This policy of strict

alternation is encoded in this strategy 𝜈 ′
𝐹
: †F in our approach.

All in all, the program logic establishes that (𝜈 ′
𝐸
; ⟦𝑀⟧ ∩ 𝜈 ′

𝐹
, 𝜈𝐹 ) is a linearizable con-

current object. For this purpose our program logic uses as proof configurations triples

(∆, 𝑠, 𝜌) ∈ Config := ModState × Poss where Poss is a set of possibilities. While Herlihy and Wing

[1990] use sets of, so-called, linearized values, as possibilities, and Khyzha et al. [2017] uses an

interval partial order, we use a play of Poss := 𝐾Conc 𝜈𝐹 . This means that throughout, if (∆, 𝑠, 𝜌) is
a configuration, we will always maintain as an invariant that 𝑠↾F is linearizable to 𝜌 and that 𝜌 is

linearizable to 𝜈𝐹 . Pre-conditions 𝑃 are given by sets of configurations, while post-conditions 𝑄 ,

rely conditions R, guarantee conditions G are specified as relations over the configurations.

There are three ways through which a configuration can be modified: through a relational

predicate invoke𝛼 (−) which makes an invocation in F, and simultaneously adds it to the state and

the possibility; a commit rule G ⊢𝛼 {𝑃} 𝐵 {𝑄}, where 𝐵 ∈ Prim, which allows one to modify the

state by executing primitive commands over E, but also to add early returns to 𝜌 and to rewrite it

according to −⇝F −; and a pair of post-conditions returned𝛼 (−) and return𝛼 (−) that check if at

the end of execution there is a valid return in the possibility, and then adds it to the state.

Formally, the commit rule, which is the crux of the verification task, is defined below (𝑃𝑂 is the

set of plays in 𝑃 such that 𝑂 is to move for 𝛼):

G ⊢𝛼 {𝑃 } 𝐵 {𝑄 } ⇐⇒
∀(∆, 𝑠, 𝜌) .𝑠↾F ∈ 𝜈′𝐹 ∧ (∆, 𝑠, 𝜌) ∈ 𝑃 ∧ 𝑠↾E ∈ 𝜈𝐸 ∧ (∆

′, 𝑠′) ∈ ⟦𝐵⟧𝛼 (∆, 𝑠) ⇒
𝑠′↾F ∈ 𝜈′𝐹 ∧ ∃𝜌

′.(∆, 𝑠, 𝜌) 𝑄 (∆′, 𝑠′, 𝜌′) ∧ (∆, 𝑠, 𝜌) G (∆′, 𝑠′, 𝜌′) ∧ 𝜌 d 𝜌′

𝜌 d 𝜌′ ⇐⇒ ∃𝑡𝑃 ∈ (𝑀𝑃
F )
∗ .𝜌 · 𝑡𝑃 ⇝†F 𝜌′

stable(R, 𝑃 ) stable(R,𝑄)
𝑄 ◦ 𝑃𝑂 ⊆ 𝑃
G ⊢𝛼 {𝑃 } 𝐵 {𝑄 }
R, G |=𝛼 {𝑃 } 𝐵 {𝑄 }

Prim

The rule considers every state (∆′, 𝑠 ′) reachable by executing the primitive command 𝐵 on behalf

of 𝛼 from a proof state (∆, 𝑠, 𝜌) satisfying: the pre-condition 𝑃 , the source component’s linearized

specification 𝜈𝐸 and the target component’s abstract invariant 𝜈 ′
𝐹
. The proof obligation is then to

choose a new possibility 𝜌 ′ and show that the reached state still satisfies 𝜈 ′
𝐹
, and that the step into

the new proof configuration (∆′, 𝑠 ′, 𝜌 ′) satisfies the post-condition 𝑄 and the guarantee G. This
new possibility 𝜌 ′ must be shown to satisfy 𝜌 d 𝜌 ′, which enforces that 𝜌 ′ only differs from 𝜌 by

adding some returns 𝑡𝑃 to 𝜌 , and potentially linearizing the trace more by performing some rewrites

(𝜌 · 𝑡𝑝 ⇝†F 𝜌 ′). Prim merely adds typical stability requirements on the operation. Lifting this rule
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to a Hoare-style judgement R,G |=𝛼 {𝑃} 𝐶 {𝑄} over any command 𝐶 ∈ Com is straight-forward,

which will be the program logic judgement for function bodies such as𝑀 [𝛼] 𝑓 .
Meanwhile, invoke𝛼 (−), returned𝛼 (−) and return𝛼 (−) are formally defined below, where idle𝛼

is a predicate that checks if 𝛼 is idle in a given state.

(∆, 𝑠, 𝜌) invoke𝛼 (𝑓 (𝑎)) (∆′, 𝑠′, 𝜌′) ⇐⇒
(∆, 𝑠, 𝜌) ∈ idle𝛼 ∧ 𝑠′↾F ∈ 𝜈′𝐹 ∧ (∆

′ (𝛼) = [arg : 𝑎] ∧ ∀𝛼′ ≠ 𝛼.∆′ (𝛼′) = ∆(𝛼′) ∧ 𝑠′ = 𝑠 ·𝛼𝛼𝛼:::𝑓 ∧ 𝜌′ = 𝜌 ·𝛼𝛼𝛼:::𝑓
(∆, 𝑠, 𝜌) returned𝛼 (𝑓 ) (∆′, 𝑠′, 𝜌′) ⇐⇒

𝑠′↾F ∈ 𝜈′𝐹 ∧ (∆
′, 𝑠′, 𝜌′) = (∆, 𝑠, 𝜌) ∧ (∃𝑣 ∈ ar(𝑓 ) .∆(𝛼) (ret) = 𝑣 ∧ (∃𝑝.𝜋𝛼 (𝜌′) = 𝑝 · 𝑣))

(∆, 𝑠, 𝜌) return𝛼 (𝑓 ) (∆′, 𝑠′, 𝜌′) ⇐⇒
∆′ = ∅ ∧ 𝜌′ = 𝜌 ∧ ∃𝑣 ∈ ar(𝑓 ) .∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · 𝑣 ∧ 𝑠′ = 𝑠 ·𝛼𝛼𝛼:::𝑣

Now, given a concurrent module𝑀 = (𝑀 [𝛼])𝛼 ∈Υ where the local implementations are given by

𝑀 [𝛼] = (𝑀 [𝛼] 𝑓 )𝑓 ∈𝐹 verification is finalized by the following two rules:

∀𝑓 ∈ 𝐹 .(∆0, 𝜖, 𝜖) ∈ 𝑃 [𝛼 ] 𝑓 ∀𝑓 ∈ 𝐹 .𝑃 [𝛼 ] 𝑓 ⊆ idle𝛼 stable(R [𝛼 ], 𝑃 [𝛼 ] 𝑓 )
stable(R [𝛼 ],𝑄 [𝛼 ] 𝑓 ) R [𝛼 ], G[𝛼 ] |=𝛼 {invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼 ] 𝑓 } 𝑀 [𝛼 ] 𝑓 {returned𝛼 (𝑓 ) ◦𝑄 [𝛼 ] 𝑓 }

∀𝑓 , 𝑓 ′ ∈ 𝐹 .return𝛼 (𝑓 ′) ◦ returned𝛼 (𝑓 ′) ◦𝑄 [𝛼 ] 𝑓
′ ◦ invoke𝛼 (𝑓 ′) ◦ 𝑃 [𝛼 ] 𝑓

′ ⊆ 𝑃 [𝛼 ] 𝑓

R[𝛼 ], G[𝛼 ] |=𝛼 {∩𝑓 ∈𝐹𝑃 [𝛼 ] 𝑓 } 𝑀 [𝛼 ] {∪𝑓 ∈𝐹𝑄 [𝛼 ] 𝑓 }
Local Impl

∀𝛼 ∈ 𝐴.R[𝛼 ], G[𝛼 ] |=𝛼 {𝑃 [𝛼 ] } 𝑀 [𝛼 ] {𝑄 [𝛼 ] }
∀𝛼, 𝛼′ ∈ 𝐴.𝛼 ≠ 𝛼′ ⇒ G[𝛼 ] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R [𝛼′]

R [𝐴], G[𝐴] |=𝐴 {∩𝛼∈𝐴𝑃 [𝛼 ] } 𝑀 [𝐴] {∪𝛼∈𝐴𝑄 [𝛼 ] }
Conc Impl

Several of the premises of Local Impl and Conc Impl are typical of rely-guarantee reasoning, and

the remaining ones are very similar to those found in Khyzha et al. [2017, 2016]. Of note, is the

highlighted premise in LocalImpl, which makes sure that the pre and post-conditions are defined in

such a way that after executing a method 𝑓 ′ ∈ 𝐹 the system satisfies all the requirements to safely

execute any other method 𝑓 ∈ 𝐹 . Meanwhile, the highlighted premise in ConcImpl makes sure that

the rely condition is stable not only under the guarantee but also under invocations and returns by

other agents. These two program logic rules are justified by the following soundness theorem.

Proposition 7.2 (Soundness). If R[𝐴],G[𝐴] |=𝐴 {𝑃 [𝐴]} 𝑀 [𝐴] {𝑄 [𝐴]} and (𝜈 ′𝐸 : †E, 𝜈𝐸 : †E)
is a linearizable concurrent object then

𝜈 ′𝐸 ; ⟦𝑀 [𝐴]⟧ ∩ 𝜈 ′𝐹 ⊆ 𝐾Conc 𝜈𝐹

The program logic can be extended with quality-of-life features like ghost state, and fancier

notions of possibilities such as using a set of plays of 𝐾Conc 𝜈𝐹 , instead of a single play, for added

flexibility. Another point is that, other than paradigmatic modifications, our programming language

and program logic are close to those of Khyzha et al. [2017]. There are two major differences.

First, our program logic is built to reason about our notion of linearizability (Def. 5.1), while theirs

focuses on Herlihy-Wing linearizability. In particular, their operational semantics can assume that

operations in the source component are atomic, while we cannot. The second is that we maintain

that there exists a valid linearization of the possibility, while they maintain that every linearization

is valid. There are linearizable concurrent objects for which the stronger invariant on possibilities

cannot be maintained, see F. This means that our program logic is more expressive, and therefore

any proof achievable with theirs should admit a straight-forward adaption to ours.
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7.3 Example Revisited
We now revisit the example of §2.2. We start by assuming we have concurrent objects 𝜈 ′

fai
: †FAI,

𝜈 ′
counter

: †Counter and 𝜈 ′
yield

: †Yield assembling into linearizable objects

(𝜈 ′
fai

: †FAI, 𝜈fai : †FAI) (𝜈 ′counter : †Counter, 𝜈counter : †Counter) (𝜈 ′yield : †Yield, 𝜈yield : †Yield)

where 𝜈fai is the atomic FAI object specification, 𝜈counter is the semi-racy counter specification, and

𝜈yield is the less concurrent Yield specification, all as described in §2.2. Using the locality property,

we can combine these linearizable objects into a composed linearizable object, written as (𝜈 ′
𝐸
, 𝜈𝐸):

(𝜈 ′𝐸, 𝜈𝐸) := (𝜈 ′fai ⊗ 𝜈
′
counter

⊗ 𝜈 ′
yield

, 𝜈fai ⊗ 𝜈counter ⊗ 𝜈yield)

Observe that the code for 𝑀lock appearing in Fig. 1 can be encoded in the programming lan-

guage of §7.1. We wish therefore to show that 𝑀lock correctly implements a linearizable object

(𝜈 ′
lock

: †F, 𝜈lock : †F) as described in §2.2 except for one extra assumption: that locally in 𝜈 ′
lock

, each

agent alternates between invoking acq and rel. This extra assumption becomes available in our

program logic. Because of the interaction refinement property, we need only consider linearized

traces, those in 𝜈𝐸 , for the source component. Because of that, it does not really matter what the

actual concurrent object 𝜈 ′
𝐸
is! It only matters that it linearizes to 𝜈𝐸 . For example, 𝜈 ′

counter
could

very well be an atomic Counter provided by hardware somehow, or a Counter implementation

that misbehaves when two increments occur at the same time. Even then, it still linearizes to the

semi-racy counter specification, so the proof of correctness of𝑀lock will remain valid.

Verification with the program logic is straight-forward. The main invariant maintains that the

possibility 𝜌 satisfies 𝜌 = 𝑝 ·𝜌𝑂 where 𝑝 ∈ 𝜈lock is an atomic trace representing the already linearized

operations, while 𝜌𝑂 is a sequence of pending invocations yet to be linearized. When an agent

leaves the while loop in the code of acq, or executes the inc command in the body of rel we add the
corresponding return ok and linearize the operation to the end of 𝑝 , like so:

𝜌 = 𝑝 · 𝜌1 ·𝛼𝛼𝛼:::acq · 𝜌2 𝑝 ·𝛼𝛼𝛼:::acq ·𝛼𝛼𝛼:::ok · 𝜌1 · 𝜌2 = 𝜌′

𝜌 = 𝑝 · 𝜌1 ·𝛼𝛼𝛼:::rel · 𝜌2 𝑝 ·𝛼𝛼𝛼:::rel ·𝛼𝛼𝛼:::ok · 𝜌1 · 𝜌2 = 𝜌′

assert(cur_tick = my_tick)

inc()

Please check Appendix G for details. We denote the fact that𝑀lock is correct as:

⟦𝑀lock⟧ : (𝜈 ′𝐸, 𝜈𝐸) −→ (𝜈 ′lock, 𝜈lock)

Along the same lines, we can verify that

⟦𝑀squeue⟧ : (𝜈 ′lock ⊗ 𝜈
′
queue

, 𝜈lock ⊗ 𝜈 ′queue) −→ (𝜈 ′squeue, 𝜈squeue)

At this point, the two implementations can be composed together by using the tensor product
of concurrent games, the locality property and strategy composition. First, we use ccopy†Queue :

†Queue→ †Queue to “pass-through” the queue object to𝑀lock, obtaining therefore an implemen-

tation𝑀lock ⊗ ccopy by using the code for ccopy− shown in §4.1. This implementation satisfies that

⟦𝑀lock ⊗ ccopy⟧ = ⟦𝑀lock⟧ ⊗ ccopy†Queue and therefore that

⟦𝑀lock ⊗ ccopy⟧ : (𝜈 ′𝐸 ⊗ 𝜈 ′queue, 𝜈𝐸 ⊗ 𝜈 ′queue) −→ (𝜈 ′lock ⊗ 𝜈
′
queue

, 𝜈lock ⊗ 𝜈 ′queue)

By composing the two implementations together, we obtain that

⟦𝑀lock ⊗ ccopy⟧; ⟦𝑀squeue⟧ : (𝜈 ′𝐸 ⊗ 𝜈 ′queue, 𝜈𝐸 ⊗ 𝜈 ′queue) −→ (𝜈 ′squeue, 𝜈squeue)

immediately from the fact that each of the two implementations is known to be correct.
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8 RELATEDWORK AND CONCLUSION
Herlihy and Wing [1990]. We revisit many, if not all, of the major points of their now classical

paper. In particular we generalize their definition and provide a new proof of locality. Overall, we

present new foundations to their original definition of linearizability.

Ghica [2019]; Ghica and Murawski [2004]; Murawski and Tzevelekos [2019]. Our concurrent game

model is heavily inspired by the model appearing in Ghica and Murawski [2004] and Ghica [2019],

and the genesis of our key result lies in the observation we outlined in §2.1.2. Despite that, our

game model both simplifies and modifies the one appearing there. It simplifies it in that they use

arena-based games, relying on justification pointers. They also have more structure on their plays

around a second classification of moves into questions or answers, in order to model Idealized

Concurrent Algol precisely. We believe that our formulation of linearizability readily extends to

other, more sophisticated formulations of concurrent games, including theirs. Our choice of this

simple game semantics is justified in §1.2. We also make a significant modification to their game

model in that we change the strategy composition operation. Theirs always applies a non-linear

self-interleaving operation on the left strategy so to obtain a Cartesian category. We instead use a

linear composition operation that leaves the left strategy as is, and fits our purposes better. Another

difference is that theirs is single-threaded (a single opening 𝑂 move) while ours is multi-threaded.

They do use a multi-threaded model to explain the categorical structure of their model, but they do

not use the multi-threaded model as extensively as we do.

The fact that the category defined in Ghica and Murawski [2004] is a Karoubi envelope was

observed in a manuscript by Ghica [2019], but was not explored in detail. In particular, none of the

material in §6 appears in their work. Neither of these works deal with linearizability in any way,

nor observe the relationship between their rewrite relation and happens-before preservation.

The authors likely did notice that the rewrite relation in Ghica [2019]; Ghica and Murawski

[2004] is related to linearizability, as a variation of it appears in Murawski and Tzevelekos [2019].

In this paper, they revisit a higher-order variation of linearizability originally introduced in Cerone

et al. [2014] and strengthen the results from there. Meanwhile, we only address the more traditional

first-order linearizability, though we believe it could be generalized to a higher-order setting.

Despite that, they use a trace semantics, which, though inspired by game semantics, still relies

on syntactic linking operations and lacks a notion of composition beyond syntactic linking at the

single layer level. The approach fits into the typical approach we outline in §1. None of these works

observe the relationship between ccopy− and the Karoubi envelope with linearizability.

Goubault et al. [2018]. As we described in §2.1.2, Goubault et al. [2018] is another major reference

for our work. Many of our results are significant generalizations of theirs. They focus just on

concurrent object specifications, and use untyped specifications. We go beyond that by considering

a compositional model, featuring linear logic types, and strategy composition. Given the definition

of concurrent specification they use, and the background of the authors, they were likely inspired

by game semantics, and leave for future work a compositional variant of their results, which our

work addresses. Moreover, they only model non-blocking total objects, while we assume neither

restriction on our objects. Some of our results are generalizations of their results along several lines,

as our model is compositional, typed and does not assume totality (this last one is explicitly used to

simplify several of their proofs). In particular, while they prove a Galois connection, we prove a

weak biadjunction. Several of these generalizations are established using our novel techniques, such

as the algebraic characterization in terms of the Karoubi envelope, as opposed to proofs involving

the rewrite system. They also do not discuss horizontal composition and locality.
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Other Works. There are other approaches to concurrent game semantics such as Abramsky and

Mellies [1999] and Melliès and Mimram [2007] (this later one also involving a rewrite system),

and to concurrent models of computation [Castellan et al. 2017; Rideau and Winskel 2011]. An

important reference on the game semantics side, though we do not use the methods from there

explicitly, is Mellies [2019]. Our treatment of concurrent objects, appearing in §2.2, in §7.3 and in

Appendix E traces back to Reddy [1993, 1996], which has been recently brought back to attention

by Oliveira Vale et al. [2022]. More broadly, our motivations seem to fit into a program started by

Koenig and Shao [2020]. Game semantics has been used to analyze concurrent program logics in

Melliès and Stefanesco [2020] to a much larger extent than what we endeavor in §7 and Appendix

F.

Semicategories have been studied extensively in the context of theory of computation in order to

provide category theoretical formulations for models of the 𝜆-calculus, notably in Hayashi [1985];

Hyland et al. [2006]. Our notions of semi-biadjunction and enriched semicategories trace back to

Hayashi [1985] and Moens et al. [2002] respectively. Semifunctors have been thoroughly studied in

Hoofman and Moerdijk [1995]. The Karoubi envelope often appears in the context of concurrent

models of computation beyond the already mentioned Ghica and Murawski [2004]; for instance in

Ghica [2013] to model delay insensitive circuits, in Gaucher [2020] on the flow model of concurrent

computation, in Piedeleu [2019] to give a graphical language to distributed systems, or in Castellan

et al. [2017]; Rideau and Winskel [2011] (though not explicitly mentioned).

As we noted in §2.2 there are manyworks that discuss variations of linearizability [Castañeda et al.

2015; Haas et al. 2016; Hemed et al. 2015; Neiger 1994]. Crucially, our methodology and formulation

differ widely from previous works. In particular, we do not propose a notion of linearizability.

Instead, we define a model of concurrent computation and derive the appropriate definition of

linearizability intrinsic to the model. As far as we are aware, the only work that has noticed a

relationship between the copycat and linearizability is Lesani et al. [2022], which likely happened

concurrently with our own discovery. Despite that, they only discuss atomic linearizability, and

do not explore the theory surrounding their definition of linearizability. In particular, they do

not prove the equivalence of their definition to original Herlihy-Wing linearizability, which we

address in depth in Appendix B. In this way, our work generalizes their development around

linearizability and, moreover, formally explains why their definition of linearizability is appropriate.

In terms of methodology, our work still differs widely and subsumes their model of computation,

especially when considering the object-based semantics model appearing in Appendix E. The main

contribution of their paper is in showing how linearizability can elegantly model transactional

objects, a matter which is orthogonal to our development and readily adaptable to our setting. All the

works cited supra are strictly less expressive than the notion of linearizability we derive. Our notion

of linearizability corresponds to a generalization of interval-sequential linearizability [Castañeda

et al. 2015] (the most expressive notion of linearizability prior to our work) to potentially blocking

concurrent objects (while they only model non-blocking objects, as is typical in the linearizability

literature). See Appendix D for a detailed comparison.

For our results on proof methods for proving linearizability we must mention Herlihy and

Wing [1990]; Khyzha et al. [2017]; Schellhorn et al. [2014]. In particular, our program logic and

programming language are adapted from Khyzha et al. [2017, 2016], but with some substantial

modifications: instead of interval partial orders, we use just a concurrent trace as our notion of

possibility; we follow the object-based semantics paradigm and therefore encapsulate all state in

objects instead of having programming language constructs that directly modify the shared state;

while they maintain as an invariant that every linearization of their possibility is valid, we only

maintain that there exists at least one valid linearization. We speculate that this last modification

should make our program logic complete, while theirs is not (see Appendix F for a counterexample).
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Since our program logic strictly generalizes theirs, we can translate to our program logic any proof

using Khyzha et al. [2017]. Although we use the particular program logic in §7, we do not see our

program logic as a major contribution of our work. Rather, it serves the purpose of illustrating the

interaction of the theory with a concrete verification methodology and that objects linearizable

under our notion of linearizability are verifiable. We believe that other program logics, and other

proof methodologies can be connected with our framework.

There has been much work in building program logics for reasoning about concurrent programs

[da Rocha Pinto et al. 2014; Dinsdale-Young et al. 2010; Feng et al. 2007; Fu et al. 2010; Jung et al. 2018;

Nanevski et al. 2014; Svendsen and Birkedal 2014; Turon et al. 2013; Vafeiadis et al. 2006; Vafeiadis

and Parkinson 2007]. Most of these works only prove soundness with respect to the particular

combination of Rely/Guarantee, Separation Logic and/or Concurrent Separation Logic involved,

but not against linearizability. This sometimes happens even when a proof method for establishing

linearizability is presented, what they justify by citing Filipovic et al. [2010] and by claiming that

they can show observational refinement. This is despite the fact that their programming language,

and hence, notion of refinement differs from that in Filipovic et al. [2010]. Notable exceptions in

this matter are Birkedal et al. [2021]; Khyzha et al. [2017]; Liang and Feng [2016].

A close relative to linearizability is logical atomicity [da Rocha Pinto et al. 2014; Jung et al. 2019,

2015]. Logical atomicity does address some of the biases delineated in §1, and Jung et al. [2015]’s

framework, Iris, is compositional, although only within the confines of Iris. In fact, logical atomicity

is intimately tied to a program logic. Strictly speaking, it only characterizes objects realizable in a

particular operational semantics, and expressible in a particular program logic. It was invented to

make it easier to prove linearizability in Hoare logics. Until recently, there was no formal account

of the relationship between the two. It has been recently shown [Birkedal et al. 2021] that logical

atomicity implies Herlihy-Wing linearizability. There is no reason to believe the reverse implication

is provable. It is, moreover, tied to atomicity. Meanwhile, linearizability (both in our treatment and

in the original Herlihy-Wing paper) is not tied to a particular logical framework, or to realizability

under a programming language. In the original Herlihy-Wing paper, it characterizes any non-

blocking sequentially consistent concurrent object that behaves as if their operations happened

atomically. The concrete part of our paper characterizes sequentially consistent concurrent objects

whose operations behave as if they had linearization intervals.

Conclusion. We believe that linearizability beyond atomicity is currently underdeveloped in

the theory, and hope that our analysis contributes to divorcing linearizability from atomicity,

as it presents a strong argument that preservation of happens-before order is the core insight of

linearizability. Along these lines, there are both practical (relaxed memory models and architectures)

and theoretical (strengthening some results appearing in the appendices) reasons to consider models

that are not sequentially consistent. We believe the framework presented here readily generalizes

to many contexts, what we intend to explore in the future. Finally, one of the main intended

applications of this work is to provide a fertile ground for developing compositional verification

methods for concurrent systems, and for proving theoretical properties of such systems.
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SUMMARY OF THE APPENDICES
A contains an extended development on the Karoubi envelope appering in §6 and other associ-

ated constructions that we use.

B develops the restriction of the theory of linearizability we developed in the core paper to the

case where the linearized strategy is atomic, and then specialize the results appearing in §5

to Herlihy-Wing linearizability.

C gives a detailed account of the symmetric monoidal closed structure on concurrent games,

and provides the proof of the key results (Prop. 5.10 and bi-semifunctoriality) required to

show the generalized locality property.

D briefly compares our definition of linearizability with interval-sequential linearizability.

E defines an object-based semantics on concurrent games and gives a formal definition of

linearizable concurrent objects.

F defines a program logic for showing that layered concurrent object implementations are lin-

earizable to their specifications, which is sound for generalized linearizability, and potentially

complete.

G gives detailed proofs of the examples on §2 using the program logic presented in §7.

H collects proofs omitted elsewhere in the text.

A KAROUBI ENVELOPE
In this section, we establish the main abstract tools we use to construct models of concurrent

computation, and sometimes compare them with each other. Most of it requires only basic category

theory, as well as knowing the definition of a semicategory, although basic knowledge about

enriched category theory and weak notions of functoriality and adjointness is necessary for later

parts. The most important points of this section are the definitions of C𝑒 , 𝐾𝑒 , and Emb𝑒 , which we

wrote concretely as GameConc, 𝐾Conc and EmbConc in the main development.

A.1 The Karoubi Envelope
Typically, given a semicategory C we can construct its Karoubi envelope as the category Kar C
which has as objects pairs:

(𝐶 ∈ C, 𝑒 : 𝐶 → 𝐶)
of an object 𝐶 and an idempotent 𝑒 of 𝐶 . Recall that an idempotent of an object is simply an

idempotent endomorphism of that object, in the sense that:

𝑒 ◦ 𝑒 = 𝑒
A morphism

𝑓 : (𝐶, 𝑒) → (𝐶 ′, 𝑒 ′)
in Kar C is a morphism 𝑓 : 𝐶 → 𝐶 ′ of the underlying semicategory C that is invariant upon the

idempotents involved in the sense that:

𝑓 ◦ 𝑒 = 𝑓 = 𝑒 ′ ◦ 𝑓
or equivalently:

𝑒 ′ ◦ 𝑓 ◦ 𝑒 = 𝑓
which we call a saturated morphism of C. Observe that by construction the Karoubi envelope Kar C
is indeed a category by defining the neutral elements by the equation id(𝐶,𝑒) = 𝑒 .

The following is folklore in the theory of semicategories. There is a forgetful functor

Semi : Cat→ SemiCat

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.
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which given a category C assigns a semicategory Semi C by forgetting the data about the neutral

elements in C, which also determines its action of transforming functors into semifunctors by

similarly forgetting the fact that it maps neutral elements to neutral elements. Interestingly Semi
admits a right adjoint

Kar : SemiCat→ Cat

which maps a semicategory C to its Karoubi envelope Kar C. Its action on a semifunctor

𝐹 : C→ D
Kar↦−−−−−−−−−−−−→ Kar 𝐹 : Kar C→ Kar D

is defined by

(𝐶, 𝑒) Kar 𝐹↦−−−−−−−−−→ (𝐹 𝐶, 𝐹 𝑒) 𝑓 : (𝐶, 𝑒𝐶 ) → (𝐶 ′, 𝑒 ′)
Kar 𝐹↦−−−−−−−−−→ 𝐹 𝑓 : (𝐹 𝐶, 𝐹 𝑒) → (𝐹 𝐶 ′, 𝐹 𝑒 ′)

Typically in the literature, one studies the Karoubi envelope from the perspective of categories by

considering the monad associated to the adjunction. Instead, we put special focus on the comonad

associated to the adjunction, so that we may study the Karoubi envelope from the perspective of

semicategories:

SemiKar : SemiCat→ SemiCat

Note that this comonad assigns to a semicategory C the semicategory Semi Kar C, and acts as the

identity on semifunctors.

When C has neutral elements, so that it actually assembles into a category, one obtains a fully

faithful functor (of categories) into the Karoubi envelope by:

C −−−−−→ Kar C 𝐶 ↦−−−−−→ (𝐶, id𝐶 )

which immediately makes any morphism 𝑓 : 𝐶 → 𝐶 ′ into a morphism 𝑓 : (𝐶, id𝐶 ) → (𝐶 ′, id𝐶′)
due to the unital laws. Note that this functor corresponds to selecting a family (𝑒𝐶 : 𝐶 → 𝐶)𝐶∈C of

idempotents 𝑒𝐶 for each object 𝐶 ∈ C, in this case 𝑒𝐶 = id𝐶 . The mapping of morphisms should

saturate any morphism 𝑓 : 𝐶 → 𝐷 . Hence, it must be given by

𝑓 ↦−−−−−→ 𝑒𝐷 ◦ 𝑓 ◦ 𝑒𝐶

Unfortunately, for lack of neutral elements in the semicategory case there is no obvious choice of

idempotents to construct such a functor. Worse yet, this mapping assembles into a functor if and

only if for any 𝑓 : 𝐶 → 𝐷 and 𝑔 : 𝐷 → 𝐸 we have:

𝑒𝐸 ◦ 𝑔 ◦ 𝑒𝐷 ◦ 𝑓 ◦ 𝑒𝐶 = 𝑒𝐸 ◦ 𝑔 ◦ 𝑓 ◦ 𝑒𝐶

While this condition is trivial when C is a category and we take 𝑒𝐶 = id𝐶 , in the semicategory case,

given a family of idempotents (𝑒𝐶 : 𝐶 → 𝐶)𝐶∈C there is no canonical such semifunctor. Despite

that there is always a forgetful semifunctor:

Emb : SemiKar C→ C

given by the mapping

(𝐶, 𝑒) Emb↦−−−−−−−−→ 𝐶 𝑓 : (𝐶, 𝑒) → (𝐷, 𝑒 ′) Emb↦−−−−−−−−→ 𝑓 : 𝐶 → 𝐷
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A.2 Embeddable Subcategories of the Karoubi Envelope
We just saw that the canonical functor embedding a category inside its Karoubi envelope amounts

to a choice of an idempotent for each object of the category and that with semicategories there

is no canonical family we can choose. Intuitively, the Karoubi envelope “splits” an object 𝐶 ∈ C
into many versions of itself: one for each idempotent 𝑒 of 𝐶 . Meanwhile morphisms 𝑓 : 𝐶 → 𝐷 are

“classified” as morphisms 𝑓 : (𝐶, 𝑒) → (𝐶 ′, 𝑒 ′) when they tolerate 𝑒 and 𝑒 ′ as neutral elements. So

choosing an idempotent for each object of C really amounts to choosing a version of each object

𝐶 ∈ C to obtain a category. We take the intuition we get from this remarks to define the following

construction.

Let C be a semicategory enriched over Cat and let

𝑒− = {𝑒𝐶 : 𝐶 → 𝐶}𝐶∈C

be a family of idempotents. Any such family defines a full subcategory C𝑒 of the Karoubi envelope
Kar C of C, obtained by restricting the objects to precisely the idempotents in 𝑒−. We call such

a subcategory of Kar C an embeddable subcategory. This naming is justified by the fact that the

restriction

Emb𝑒 : Semi C𝑒 → C

of the forgetful functor Emb defines an embedding.

There is also a candidate for a semifunctor in the reverse direction:

𝐾𝑒 : C→ Semi C𝑒

given by

𝐶
𝐾𝑒↦−−−−−−−→ (𝐶, 𝑒𝐶 ) 𝑓 : 𝐶 → 𝐷

𝐾𝑒↦−−−−−−−→ 𝑒𝐷 ◦ 𝑓 ◦ 𝑒𝐶
𝐾𝑒 often fails to be a semifunctor as we noted. Despite that, semifunctoriality, even weakly, is not

required for our purposes.

We are now ready to define abstract linearizability. For this, we will assume that C is enriched

semicategory.

Definition A.1. Let C be an enriched semicategory equipped with a bi-semifunctor

− ⊗ − : C × C→ C

and an object 1 such that (C𝑒 , ⊗, 1) is a symmetric monoidal category.

We say a morphism 𝑓 : 1→ 𝐶 ∈ C𝑒 is linearizable to a morphism 𝑔 : 1→ 𝐶 ∈ C when

𝑓 ⇒ 𝐾𝑒 𝑔

Since our proofs of locality and interaction refinement on GameConc were abstract, relying on

Prop. 5.3, we can collect the necessary assumptions to obtain those results.

Proposition A.2. In the following let C and C𝑒 satisfy the conditions of 6.1.

Interaction Refinement Suppose for all 𝐶 ∈ C and 𝑓 : 1→ 𝐶 ∈ C it holds that

𝑓 ◦ 𝑒1 = 𝑓

Then 𝑓 : 1→ 𝐶 is linearizable to 𝑔 : 1→ 𝐶 iff and only if for all 𝐷 ∈ C and ℎ : 𝐶 → 𝐷 ∈ C𝑒 it
holds that

ℎ ◦ 𝑓 ⇒ ℎ ◦ 𝑔
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Locality 𝐾𝑒 distributes over − ⊗ − in the sense that for all 𝑓 : 𝐶 → 𝐶 ′ and 𝑔 : 𝐷 → 𝐷 ′

𝐾𝑒 (𝑓 ⊗ 𝑔) = 𝐾𝑒 𝑓 ⊗ 𝐾𝑒 𝑔

and if moreover, for all 𝐶,𝐶 ′, 𝐷, 𝐷 ′ ∈ C

C𝑒 (𝐶,𝐶 ′) ⊗ C𝑒 (𝐷, 𝐷 ′) � C𝑒 (𝐶,𝐶 ′) × C𝑒 (𝐷, 𝐷 ′)

then 𝑓 ′
𝐶
: 1→ 𝐶 and 𝑓 ′

𝐷
: 1→ 𝐷 are linearizable to 𝑓𝐶 : 1→ 𝐶 and 𝑓𝐷 : 1→ 𝐷 if and only if

𝑓 ′
𝐶
⊗ 𝑓 ′

𝐷
is linearizable to 𝑓𝐶 ⊗ 𝑓𝐷 .

Proof. Essentially the same proofs as the corresponding proofs we presented in §5.4 and §5.5.

Interaction Refinement

ℎ ◦ 𝑓 ⇒ ℎ ◦ 𝐾𝑒 𝑔 = ℎ ◦ (𝑒𝐶 ◦ 𝑔 ◦ 𝑒1) = (ℎ ◦ 𝑒𝐶 ) ◦ (𝑔 ◦ 𝑒1) = ℎ ◦ 𝑔

For the reverse direction simply observe that:

𝑓 = 𝑒𝐶 ◦ 𝑓 ⇒ 𝑒𝐶 ◦ 𝑔 = 𝑒𝐶 ◦ 𝑔 ◦ 𝑒1 = 𝐾𝑒 𝑔

Locality For the first claim:

𝐾𝑒 (𝑓 ⊗ 𝑔) = 𝑒𝐶′⊗𝐷′ ◦ (𝑓 ⊗ 𝑔) ◦ 𝑒𝐶⊗𝐷 (Def.)

= (𝑒𝐶′ ⊗ 𝑒𝐷′) ◦ (𝑓 ⊗ 𝑔) ◦ (𝑒𝐶 ⊗ 𝑒𝐷 ) (− ⊗ − is a bifunctor in C𝑒 )
= (𝑒𝐶′ ◦ 𝑓 ◦ 𝑒𝐶 ) ⊗ (𝑒𝐷′ ◦ 𝑔 ◦ 𝑒𝐷 ) (bi-semifunctoriality of − ⊗ −)
= 𝐾𝑒 𝑓 ⊗ 𝐾𝑒 𝑔 (Def.)

For the second claim observe first that

𝑓 ′𝐶 ⊗ 𝑓 ′𝐷 ⇒ 𝐾𝑒 𝑓𝐶 ⊗ 𝐾𝑒 𝑓𝐷 = 𝐾𝑒 (𝑓𝐶 ⊗ 𝑓𝐷 )

for the reverse direction, observe that

𝑓 ′𝐶 ⊗ 𝑓 ′𝐷 ⇒ 𝐾𝑒 (𝑓𝐶 ⊗ 𝑓𝐷 ) = 𝐾𝑒 𝑓𝐶 ⊗ 𝐾𝑒 𝑓𝐷

by assumption we have that

C𝑒 (1,𝐶) ⊗ C𝑒 (1, 𝐷) � C𝑒 (1,𝐶) × C𝑒 (1, 𝐷)

and hence we obtain that

𝑓 ′𝐶 ⇒ 𝐾𝑒 𝑓𝐶 𝑓 ′𝐷 ⇒ 𝐾𝑒 𝑓𝐷

□

Note that Prop. 6.2 does not require that 𝐾𝑒 functorial in any way. In practice, 𝐾𝑒 is often an

(op)lax semifunctor in that there is either a 2-morphism:

𝐾𝑒 𝑔 ◦ 𝐾𝑒 𝑓 ⇒ 𝐾𝑒 (𝑔 ◦ 𝑓 )

in which case 𝐾𝑒 is called lax, or a 2-morphism:

𝐾𝑒 (𝑔 ◦ 𝑓 ) ⇒ 𝐾𝑒 𝑔 ◦ 𝐾𝑒 𝑓

in which case 𝐾𝑒 is oplax.
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A.3 Comparing Embeddable Categories
We are interested in comparing two embeddable subcategories C𝑒 and C𝑒′ , such as when C𝑒
corresponds to concurrent games and C𝑒′ corresponds to atomic games. For this we assume that

the enrichment of C is then over a category, so that we may see it as a semibicategory. For the sake

of brevity, we will call these two categories K = C𝑒 and K′ = C𝑒′ and the corresponding mappings

Emb, 𝐾 and Emb′, 𝐾 ′. Note that we can readily consider the square:

K′

C C

K

Emb′𝐾 ′

𝐾Emb

This suggests that we may define a pair of an oplax semifunctor 𝐿 and a lax semifunctor 𝑅 defined

as:

𝐿 : K→ K′ := 𝐾 ′ ◦ Emb 𝑅 : K′→ K := 𝐾 ◦ Emb′

As the families 𝑒− and 𝑒 ′− define the identities on 𝐾 and 𝐾 ′ respectively, we wish to be as close as

possible from producing functors between them, so we wish there to be 2-morphisms:

𝐿 𝑒𝐴 ⇒ 𝑒 ′𝐴 𝑒𝐴 ⇒ 𝑅 𝑒 ′𝐴

which make 𝐿 and 𝑅 into oplax and lax functors respectively. Interestingly, this implies that 𝐿 and

𝑅 satisfy

𝑓 ⇒ 𝑅 𝐿 𝑓 𝐿 𝑅 𝑓 ′⇒ 𝑓 ′

for any 𝑓 : 𝐴 → 𝐵 ∈ K and 𝑓 ′ : 𝐴 → 𝐵 ∈ K′. This will be the key property to establish the

following simple but important result:

Proposition A.3. Let
𝑒− = {𝑒𝐶 }𝐶∈C 𝑒 ′− = {𝑒 ′𝐶 }𝐶∈C

be families of idempotents such that the mappings 𝐿 and 𝑅 defined by

𝐿 : C𝑒 → C𝑒′ := 𝐾 ′ ◦ Emb 𝑅 : C𝑒′ → C𝑒 := 𝐾 ◦ Emb′

define an oplax functor and a lax functor respectively. Then 𝐿 and 𝑅 assemble into an oplax-lax
biadjunction of oplax and lax functors:

C𝑒′ C𝑒

𝑅

𝐿

⊢

Proof. See §A.4 □

Note that in the above proposition we do not require 𝐾 and 𝐾 ′ to be even (op)lax semifunctors.

Indeed, although in all of our models they will be, this is not required to show Proposition A.3.

Moreover, the following simple condition is sufficient to establish the assumptions of Proposition

A.3.

Proposition A.4. If
𝑒− = {𝑒𝐴}𝐴∈C 𝑒 ′− = {𝑒 ′𝐴}𝐴∈C

are families of idempotents such that there are 2-morphisms:

𝑒A ⇒ 𝑒 ′A
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for every 𝐴 ∈ 𝑆 , then the mappings 𝐿 and 𝑅 defined by

𝐿 : C𝑒 → C𝑒′ := 𝐾 ′ ◦ Emb 𝑅 : C𝑒′ → C𝑒 := 𝐾 ◦ Emb′

define an oplax functor and a lax functor respectively.

Proof. See §A.4. □

A.4 Proof of Prop. A.3 and Prop. A.4
Proposition A.5. Let

𝑒− = {𝑒𝐴}𝐴∈C 𝑒 ′− = {𝑒 ′𝐴}𝐴∈C
be families of idempotents such that the mappings 𝐿 and 𝑅 defined by

𝐿 : C𝑒 → C𝑒′ := 𝐾 ′ ◦ Emb 𝑅 : C𝑒′ → C𝑒 := 𝐾 ◦ Emb′

define an oplax functor and a lax functor respectively. Then 𝐿 and 𝑅 assemble into an oplax-lax
biadjunction of oplax and lax functors:

C𝑒′ C𝑒

𝑅

𝐿

⊢

Proof. For convenience we let

K = C𝑒 K′ = C𝑒′

and

𝐾 = 𝐾𝑒 Emb = Emb𝑒 𝐾 ′ = 𝐾𝑒′ Emb′ = Emb𝑒′

We also find that it causes no confusion to refer to the objects

𝑒𝐴 ∈ K 𝑒 ′𝐴 ∈ K′

as simply 𝐴, since there is a single object of K and K′ that corresponds to an idempotent of 𝐴 ∈ C.
The key idea is to use as unit of the biadjunction

𝜂− : 1⇒ 𝑅 ◦ 𝐿

the family 𝑒− itself:

𝜂𝐴 : 𝐴⇒ 𝑅 𝐿 𝐴 := 𝑒𝐴

which is well-typed as

𝑅 𝐿 𝐴 = 𝐾 Emb′ 𝐾 ′ Emb 𝐴 = 𝐴

Similarly, we let

𝜖− : 𝐿 ◦ 𝑅 ⇒ 1

be defined as the family 𝑒 ′−:

𝜖𝐴 : 𝐿 𝑅 𝐴⇒ 𝐴 := 𝑒 ′𝐴

We first show that 𝜂− and 𝜖− are lax natural transformations. We start by showing that for any

𝑓 : 𝐴→ 𝐵 ∈ 𝐾 and any 𝑓 ′ : 𝐴→ 𝐵 ∈ 𝐾 ′ we have:

𝑓 ⇒ 𝑅 𝐿 𝑓 𝐿 𝑅 𝑓 ′⇒ 𝑓 ′
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Indeed,

𝑓 = 𝑒𝐵 ◦ 𝑓 ◦ 𝑒𝐴 (K def.)
⇒ 𝑅 𝑒 ′𝐵 ◦ 𝑓 ◦ 𝑅 𝑒 ′𝐴 (lax functoriality)
= 𝑒𝐵 ◦ 𝑒 ′𝐵 ◦ 𝑒𝐵 ◦ 𝑓 ◦ 𝑒𝐴 ◦ 𝑒 ′𝐴 ◦ 𝑒𝐴 (𝑅 def.)
= 𝑒𝐵 ◦ 𝑒 ′𝐵 ◦ 𝑓 ◦ 𝑒 ′𝐴 ◦ 𝑒𝐴 (K def.)
= 𝑅 𝐿 𝑓 (def.)

and

𝐿 𝑅 𝑓 ′ = 𝑒 ′𝐵 ◦ 𝑒𝐵 ◦ 𝑓 ′ ◦ 𝑒𝐴 ◦ 𝑒 ′𝐴 (def.)

= 𝑒 ′𝐵 ◦ 𝑒𝐵 ◦ 𝑒 ′𝐵 ◦ 𝑓 ′ ◦ 𝑒 ′𝐴 ◦ 𝑒𝐴 ◦ 𝑒 ′𝐴 (K′ def.)

= 𝐿 𝑒𝐵 ◦ 𝑓 ′ ◦ 𝐿 𝑒𝐴 (𝐿 def.)

⇒ 𝑒 ′𝐵 ◦ 𝑓 ′ ◦ 𝑒 ′𝐴 (Oplax functoriality)

= 𝑓 ′ (K′ def.)

For 𝜂− this means that the following square holds:

𝐴 𝑅 𝐿 𝐴

𝐵 𝑅 𝐿 𝐵

𝑓

𝜂𝐴

𝑅 𝐿 𝑓

𝜂𝐵

⇒

To see that it does hold, notice first that:

(𝑅 𝐿 𝑓 ) ◦ 𝜂𝐴 = 𝑅 𝐿 𝑓

as 𝜂𝐴 = 𝑒𝐴 is the identity in K. By the same reasoning:

𝜂𝐵 ◦ 𝑓 = 𝑓

and then the 2-morphism:

𝑓 ⇒ 𝑅 𝐿 𝑓

is proved above.

Similarly, for the 𝜖− we must have the following square:

𝐿 𝑅 𝐴 𝐴

𝐿 𝑅 𝐵 𝐵

𝐿 𝑅 𝑔

𝜖𝐴

𝑔

𝜖𝐵

⇒

as in the unit case we have

𝜖𝐵 ◦ 𝐿 𝑅 𝑔 = 𝐿 𝑅 𝑔

because 𝜖𝐵 = 𝑒𝐵 is the identity in K′. For the same reason:

𝑔 ◦ 𝜖𝐴 = 𝑔

and then the 2-morphism:

𝐿 𝑅 𝑔⇒ 𝑔

is proved above.

In addition, 𝜂− and 𝜖− satisfy the following lax triangle identities:
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𝐿 𝐴 𝐿 𝑅 𝐿 𝐴

𝐿 𝐴

𝑒′
𝐴

𝐿 𝜂𝐴

𝜖𝐿 𝐴⇐
𝑅 𝐴 𝑅 𝐿 𝑅 𝐴

𝑅 𝐴

𝑒𝐴

𝜂𝑅 𝐴

𝑅 𝜖𝐴
⇒

First note that

𝜖 ′𝐿 𝐴 ◦ 𝐿 𝜂𝐴 ⇒ 𝜖 ′𝐿 𝐴 ◦ 𝑒 ′𝐴 = 𝑒 ′𝐴

𝑒𝐴 = 𝑒𝐴 ◦ 𝜂𝑅 𝐴 ⇒ 𝑅 𝜖𝐴 ◦ 𝜂𝑅 𝐴
by oplax and lax functoriality as well as idempotency.

The remainder of the proof is just careful verification that the usual conversion of unit and

counits do assemble into adjunct (lax) natural transformations. Indeed, this allows us to define two

notions of adjuncts of a morphism, given by the usual formula. Explicitly, given a morphism

𝑓 ′ : 𝐿 𝐴→ 𝐵 ∈ K′

we define its right adjunct in the usual way as

(𝑓 ′)∨ : 𝐴→ 𝑅 𝐵 := 𝐴
𝜂𝐴−−−−−−−→ 𝑅 𝐿 𝐴

𝑅 𝑓 ′

−−−−−−−−→ 𝑅 𝐵

while the left adjunct of

𝑓 : 𝐴→ 𝑅 𝐵 ∈ K

is given by

𝑓 ∧ : 𝐿 𝐴→ 𝐵 := 𝐿 𝐴
𝐿 𝑓

−−−−−−−→ 𝐿 𝑅 𝐵
𝜖𝐵−−−−−−→ 𝐵

which are lax natural transformations in that:

K′(𝐿 𝐴, 𝐵) K(𝐴, 𝑅 𝐵)

K′(𝐿 𝐴′, 𝐵′) K(𝐴′, 𝑅 𝐵′)

(−)∨

K′ (𝐿 𝑔,ℎ) K(𝑔,𝑅 ℎ)

(−)∨

⇐

K′(𝐿 𝐴, 𝐵) K(𝐴, 𝑅 𝐵)

K′(𝐿 𝐴′, 𝐵′) K(𝐴′, 𝑅 𝐵′)

K′ (𝐿 𝑔,ℎ)

(−)∧

K(𝑔,𝑅 ℎ)

(−)∧

⇐

and laxly satisfy the adjunction equations:

K′(𝐿 𝐴, 𝐵) K(𝐴, 𝑅 𝐵)

K′(𝐿 𝐴′, 𝐵′) K(𝐴′, 𝑅 𝐵′)

(−)∨

K′ (𝐿 𝑔,ℎ) K(𝑔,𝑅 ℎ)

(−)∧
⇒
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K′(𝐿 𝐴, 𝐵) K(𝐴, 𝑅 𝐵)

K′(𝐿 𝐴′, 𝐵′) K(𝐴′, 𝑅 𝐵′)

K′ (𝐿 𝑔,ℎ)

(−)∧

K(𝑔,𝑅 ℎ)

(−)∨

⇐

The naturality of the right adjunct mapping −∨ follows from:

𝐴′ 𝑅 𝐿 𝐴′

𝐴 𝑅 𝐿 𝐴 𝑅 𝐵 𝑅 𝐵′

𝑔

𝜂𝐴′

𝑅 𝐿 𝑔
𝑅 (𝑓 ′◦𝐿 𝑔)

𝑅 (ℎ◦𝑓 ′◦𝐿 𝑔)

𝜂𝐴

⇒

𝑅 𝑓 ′
⇒

𝑅 ℎ

⇒

where the leftmost 2-morphism comes from lax naturality, and the other two from lax functoriality.

Similarly, for the left adjunct mapping −∧:

𝐿 𝐴′ 𝐿 𝐴 𝐿 𝑅 𝐵 𝐵

𝐿 𝑅 𝐵′ 𝐵′

𝐿 𝑔

𝐿 (𝑅 ℎ◦𝑓 ◦𝑔)

⇒

𝐿 𝑓

𝐿 (𝑅 ℎ◦𝑓 ) 𝐿 𝑅 ℎ

𝜖𝐵

ℎ
⇒

𝜖𝐵′

⇒

where the rightmost 2-morphism comees from lax naturality, and the other two from oplax functo-

riality.

Now, for the lax adjunction equations we note that:

(𝑅 ℎ ◦ (𝑓 ′)∨ ◦ 𝑔)∧ = 𝜖𝐵′ ◦ 𝐿 (𝑅 ℎ ◦ (𝑓 ′)∨ ◦ 𝑔) (def.)
⇒ 𝜖𝐵′ ◦ 𝐿 𝑅 ℎ ◦ 𝐿 (𝑓 ′)∨ ◦ 𝐿 𝑔 (oplax functoriality)
= 𝜖𝐵′ ◦ 𝐿 𝑅 ℎ ◦ 𝐿 (𝑅 (𝑓 ′) ◦ 𝜂𝐴) ◦ 𝐿 𝑔 (def.)
⇒ 𝜖𝐵′ ◦ 𝐿 𝑅 ℎ ◦ 𝐿 𝑅 (𝑓 ′) ◦ 𝐿 𝜂𝐴 ◦ 𝐿 𝑔 (oplax functoriality)
⇒ ℎ ◦ 𝜖𝐵 ◦ 𝐿 𝑅 (𝑓 ′) ◦ 𝐿 𝜂𝐴 ◦ 𝐿 𝑔 (lax naturality)
⇒ ℎ ◦ (𝑓 ′) ◦ 𝜖𝐴 ◦ 𝐿 𝜂𝐴 ◦ 𝐿 𝑔 (lax naturality)
⇒ ℎ ◦ (𝑓 ′) ◦ 𝑒 ′𝐴 ◦ 𝐿 𝑔 (lax triangle identity)
= ℎ ◦ (𝑓 ′) ◦ 𝐿 𝑔 (identity in C′)
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Similarly,

𝑅 ℎ ◦ 𝑓 ◦ 𝑔 = 𝑅 ℎ ◦ 𝑒𝐵 ◦ 𝑓 ◦ 𝑔 (identity in K)
⇒ 𝑅 ℎ ◦ 𝑅 𝜖𝐵 ◦ 𝜂𝑅 𝐵 ◦ 𝑓 ◦ 𝑔 (lax triangle identity)
⇒ 𝑅 ℎ ◦ 𝑅 𝜖𝐵 ◦ 𝑅 𝐿 𝑓 ◦ 𝜂𝐴 ◦ 𝑔 (lax naturality)
⇒ 𝑅 ℎ ◦ 𝑅 𝜖𝐵 ◦ 𝑅 𝐿 𝑓 ◦ 𝑅 𝐿 𝑔 ◦ 𝜂𝐴′ (lax naturality)
⇒ 𝑅 ℎ ◦ 𝑅 (𝜖𝐵 ◦ 𝐿 𝑓 ) ◦ 𝑅 𝐿 𝑔 ◦ 𝜂𝐴′ (lax functoriality)
= 𝑅 ℎ ◦ 𝑅 𝑓 ∧ ◦ 𝑅 𝐿 𝑔 ◦ 𝜂𝐴′ (def.)
⇒ 𝑅 (ℎ ◦ 𝑓 ∧ ◦ 𝐿 𝑔) ◦ 𝜂𝐴′ (lax functoriality)
⇒ (ℎ ◦ 𝑓 ∧ ◦ 𝐿 𝑔)∨ (def.)

□

Proposition A.6. If

𝑒− = {𝑒𝐴}𝐴∈𝑆 𝑒 ′− = {𝑒 ′𝐴}𝐴∈𝑆

are families of idempotents such that there are 2-morphisms:

𝑒A ⇒ 𝑒 ′A

for every 𝐴 ∈ 𝑆 , then the mappings 𝐿 and 𝑅 defined by

𝐿 : C𝑒 → C𝑒′ := 𝐾 ′ ◦ Emb 𝑅 : C𝑒′ → C𝑒 := 𝐾 ◦ Emb′

define an oplax functor and a lax functor respectively.

Proof. We start with 𝐿. Note first that

𝐿 𝑒 = 𝑒 ′ ◦ 𝑒 ◦ 𝑒 ′⇒ 𝑒 ′ ◦ 𝑒 ′ ◦ 𝑒 ′ = 𝑒 ′

moreover

𝐿 (𝑔 ◦ 𝑓 ) = 𝑒 ′ ◦𝑔 ◦ 𝑓 ◦ 𝑒 ′ = 𝑒 ′ ◦𝑔 ◦ 𝑒 ◦ 𝑓 ◦ 𝑒 ′⇒ 𝑒 ′ ◦𝑔 ◦ 𝑒 ′ ◦ 𝑓 ◦ 𝑒 ′ = 𝑒 ′ ◦𝑔 ◦ 𝑒 ′ ◦ 𝑒 ′ ◦ 𝑓 ◦ 𝑒 ′ = 𝐿 𝑔 ◦ 𝐿 𝑓

For 𝑅, we have

𝑒 = 𝑒 ◦ 𝑒 ◦ 𝑒 ⇒ 𝑒 ◦ 𝑒 ′ ◦ 𝑒 = 𝑅 𝑒 ′

moreover

𝑅 𝑔 ◦ 𝑅 𝑓 = 𝑒 ◦ 𝑔 ◦ 𝑒 ◦ 𝑒 ◦ 𝑓 ◦ 𝑒 = 𝑒 ◦ 𝑔 ◦ 𝑒 ◦ 𝑓 ◦ 𝑒 ⇒ 𝑒 ◦ 𝑔 ◦ 𝑒 ′ ◦ 𝑓 ◦ 𝑒 = 𝑒 ◦ 𝑔 ◦ 𝑓 ◦ 𝑒 = 𝑅 (𝑔 ◦ 𝑓 )

The enrichment of 𝑅 and 𝐿 follows from the fact that they are defined as formulas involving only

composition. □

B ATOMICITY
In this section, we address Herlihy-Wing linearizability, which always assumes the linearized

specification is atomic. We do this by specializing the theory of linearizability developed in §5 to

Herlihy-Wing linearizability. Proofs for this section can be found in H.5.
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B.1 Sequential Atomic Games
To set the stage for atomicity we start by defining a notion of atomic game.

Definition B.1. Let 𝐴 = (𝑀𝐴, 𝑃𝐴) ∈ GameSeq be a sequential game. We define its associated

atomic game !𝐴 = (𝑀!𝐴, 𝑃!𝐴) as follows:

𝑀𝑂
!𝐴 :=

∑
𝛼 ∈Υ

𝑀𝑂
𝐴 𝑀𝑃

!𝐴 :=
∑
𝛼 ∈Υ

𝑀𝑃
𝐴 𝑃!𝐴 := {𝑠 ∈ Alt(𝑀𝑂

!𝐴, 𝑀
𝑃
!𝐴) | ∀𝛼 ∈ Υ.𝜋𝛼 (𝑠) ∈ 𝑃𝐴}

These games are atomic in that an 𝑂 move by 𝛼 is always followed by a 𝑃 move by the same

agent 𝛼 , so that a typical play looks like:

𝛼1𝛼1𝛼1:::𝑚1 𝛼1𝛼1𝛼1:::𝑛1 𝛼2𝛼2𝛼2:::𝑚2 𝛼2𝛼2𝛼2:::𝑛2 𝛼3𝛼3𝛼3:::𝑚3 𝛼3𝛼3𝛼3:::𝑛3 . . . 𝛼𝑘𝛼𝑘𝛼𝑘:::𝑚𝑘 𝛼𝑘𝛼𝑘𝛼𝑘:::𝑛𝑘

where the𝑚𝑖 are 𝑂 moves and the 𝑛𝑖 are 𝑃 moves. We may take !𝐴 as an alternating version of A,

as any play of !𝐴 may be seen as an alternating play of A, a fact we frequently make use of. Note

that a strategy 𝜎 : !𝐴 ⊸ !𝐵 does not need to respect the names of the agents. For instance, the

following play is a valid play of !Σ ⊸ !Σ

𝛼𝛼𝛼:::𝑞

𝛼 ′𝛼 ′𝛼 ′:::𝑞

even when 𝛼 ≠ 𝛼 ′. This disagrees with our agent naming discipline on the concurrent games

setting, as there the names of the agents must be preserved across components. Because of this,

we must restrict the strategies 𝜎 : !𝐴 ⊸ !𝐵 so that they only allow agents to play moves that are

labeled by their names in both components. We call such a strategy an atomic strategy and write

the condition succinctly as:

𝜎 ∩ 𝑃!(𝐴⊸𝐵) = 𝜎
by identifying plays of !(𝐴 ⊸ 𝐵) with plays of !𝐴 ⊸ !𝐵 in the obvious way. In a play of an atomic

strategy 𝜎 : !𝐴 ⊸ !𝐵, if an 𝛼 calls an 𝑂 move in 𝐵 then it cannot be preempted by another agent

until it responds to that 𝑂 move. That is to say, the typical play of an atomic strategy looks like:

𝛼1𝛼1𝛼1:::𝑚1 𝛼1𝛼1𝛼1:::𝑛1 𝛼2𝛼2𝛼2:::𝑚2 𝛼2𝛼2𝛼2:::𝑛2 . . .

𝛼1𝛼1𝛼1:::𝑚
1

1
. . . 𝛼1𝛼1𝛼1:::𝑛

1

𝑘
𝛼2𝛼2𝛼2:::𝑚

2

1
. . . 𝛼2𝛼2𝛼2:::𝑛

2

𝑘

It is important to note that the copycat strategy

copy
!𝐴 : !𝐴 ⊸ !𝐴

is atomic. Furthermore, it is easy to see that composition of atomic strategies is well-defined.

Definition B.2. The category GameAtomic has atomic games !𝐴, !𝐵 as objects and atomic strategies

as morphisms. Composition is given by usual sequential strategy composition and the identity is

the sequential copycat copy
!𝐴.

By identifying atomic strategies 𝜎 : !𝐴 ⊸ !𝐵 with concurrent strategies in GameConc as discussed

above we may define an oplax semifunctor

LinAtom : Semi GameAtomic → GameConc

by the usual formula

LinAtom 𝜏 := ccopyA;𝜏 ; ccopyB
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B.2 Atomic Linearizability
We now endeavor in showing that our definition of linearizability is equivalent to Herlihy-Wing

linearizability. Parts of our proof of this equivalence are adapted from Ghica and Murawski [2004];

Goubault et al. [2018]. In order to define Herlihy-Wing linearizability we must exhibit the happens-

before ordering in our setting. We follow the approach of Goubault et al. [2018], which readily

generalizes to our stronger setting. The key idea is that local sequentiality allows us to pair every

Opponent move with a corresponding Proponent move by the same agent.

Definition B.3. Indeed, we define an operation of a play 𝑠 = 𝑚1 · . . . ·𝑚𝑘 ∈ 𝑃A as a pair (𝑝, 𝑞?)
such that𝑚𝑝 is an 𝑂 move, and, moreover, either 𝑞? = 𝑞, 𝛼 (𝑚𝑞) = 𝛼 (𝑚𝑝 ) and

𝜋𝛼 (𝑚𝑝 ) (𝑠) = 𝑠1 ·𝑚𝑝 ·𝑚𝑞 · 𝑠2
or 𝑞? = ∞ and

𝜋𝛼 (𝑚𝑝 ) (𝑠) = 𝑠1 ·𝑚𝑝

In particular, 𝑞? is an element of the total order (N + ∞, ≤) ordered in the obvious way. We say an

operation (𝑝, 𝑞?) is by 𝛼 ∈ Υ when 𝛼 (𝑚𝑝 ) = 𝛼 . We denote the set of operations of a play 𝑠 by op(𝑠).

With a notion of operation defined, we note that wemay define a partial order, the happens-before

order, associated to a play.

Definition B.4. We define the happens-before order assoaciated to a play 𝑠 as the pair (op(𝑠), ≺𝑠 )
where

(𝑝, 𝑞) ≺𝑠 (𝑝 ′, 𝑞′) ⇐⇒ 𝑞 < 𝑝 ′

Definition B.5. We say two plays 𝑠, 𝑠 ′ ∈ 𝑃A are compatible when

∀𝛼 ∈ Υ.𝜋𝛼 (𝑠) = 𝜋𝛼 (𝑠 ′)

Any two compatible plays have an associated bijection associating the 𝑖-th operation by𝛼 in 𝑠 with

the 𝑖-th operation by 𝛼 in 𝑠 ′, so we may implicitly apply it whenever needed and therefore assume

that op(𝑠) = op(𝑠 ′) when convenient. We are now able to define Herlihy-Wing linearizability.

Definition B.6. For a play 𝑠 ∈ 𝑃A we call complete(𝑠) the largest subsequence of 𝑠 such that

∀𝛼 ∈ Υ.𝜋𝛼 (complete(𝑠)) = 𝑝 ·𝑚 ⇒ 𝜆A (𝑚) = 𝑃

that is, the largest subsequence of 𝑠 with no pending Opponent moves.

We say a play 𝑠 ∈ 𝑃A is Herlihy-Wing linearizable to a play 𝑡 ∈ 𝑃!𝐴 if there exists a sequence of

Proponent moves 𝑠𝑃 such that 𝑠 ′ = complete(𝑠 · 𝑠𝑃 ) is compatible with 𝑡 and moreover

≺𝑠′ ⊆ ≺𝑡
Now, we define an equivalence relation on plays based on −⇝ −.

Definition B.7. The relation − ≡A − on plays 𝑃A is the smallest relation satisfying:

𝑠 ≡A 𝑡 ⇐⇒ 𝑠 ⇝A 𝑡 using only 𝑂𝑂 and 𝑃𝑃 swaps

This relation will appear again in our development on linearizability. Observe that by Prop. 4.7 if

𝜎 : A is saturated and 𝑠 ∈ 𝜎 then [𝑠]≡A ⊆ 𝜎 , where [𝑠]≡A is the equivalence class of 𝑠 under ≡A.

The equivalence of our definition with their definition is predicated on the following two useful

facts.

Proposition B.8. If 𝑠, 𝑡 ∈ 𝑃A then 𝑠 ≡A 𝑡 if and only if 𝑠 and 𝑡 are compatible and ≺𝑠 = ≺𝑡 .
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Proposition B.9. For plays 𝑠, 𝑡 ∈ 𝑃A, there is a derivation

𝑠 ⇝A 𝑡

if and only if 𝑠 is compatible with 𝑡 and
≺𝑠′ ⊆ ≺𝑡

These give the following important corollary.

Corollary B.10. A play 𝑠 ∈ 𝑃A is linearizable to an atomic play 𝑡 ∈ 𝑃!𝐴 if and only if 𝑠 is
Herlihy-Wing linearizable to 𝑡 .

Moreover, our characterization of𝐾Conc in terms of general linearizability yields a characterization

of the functor LinAtom.

Corollary B.11. For any atomic strategy 𝜏 : !𝐴

LinAtom 𝜏 = {𝑠 ∈ 𝑃A | 𝑠 is Herlihy-Wing linearizable with respect to 𝜏}

Note that we arrived at the functor LinAtom through the abstract construction of the Karoubi

envelope, which can be understood as closing a computational model, represented by the semicate-

gory GameConc, by a synchronization pattern, represented by the choice of ccopy− or atocopy−
as the unit. In this way, formally, Herlihy-Wing presents a solution to the problem of finding a

concurrent strategy in GameConc matching a certain atomic strategy in GameAtomic.

Proposition B.11 also gives an alternative definition for Herlihy-Wing Linearizability in terms of

the image of the functor LinAtom.

Corollary B.12. A strategy 𝜎 : A is linearizable to an atomic strategy 𝜏 : !𝐴 if and only if

𝜎 ⊆ LinAtom 𝜏

B.3 Interaction Refinement and Locality
Herlihy-Wing linearizability admits its own computational intepretation of linearizability proofs,

as a corollary of §5.3. Prop. 5.5 suggests defining a strategy

intcopyA : A ⊸ A := {𝑠 ∈ ccopyA | 𝑠↾A0
∈ ⇓ 𝑃A}

That is, intcopyA is the substrategy of ccopyA that plays atomically in the source component of

A ⊸ A. By Prop. 5.5 and Prop. B.11 the plays of intcopyA correspond to proofs of Herlihy-Wing

linearizability. Interestingly, intcopy− is idempotent, so that it admits its own theory along the lines

of A.

Corollary B.13 (Computational Interpretation of Herlihy-Wing Linearizability). 𝑠1 ∈
𝑃A is Herlihy-Wing linearizable to 𝑠0 ∈ 𝑃A if and only if there exists a play 𝑠 ∈ intcopyA such that

𝑠↾A0
= 𝑠0 𝑠↾A1

= 𝑠1

It is easy to see that the conditions of Prop. 6.2 are met by GameAtomic. In particular, we have

that

Proposition B.14. (GameAtomic, 𝐾Atom◦(−⊗−), 1) assembles into a symmetric monoidal category.

which we discuss in §C. We take the freedom of overloading − ⊗ − for the atomic tensor product

as well, (in particular omitting the use of 𝐾Atom). It should be obvious which tensor we mean from

context, as it will always be clear that the strategies involved are atomic. This readily gives that

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



38:46 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

Proposition B.15 (Interaction Refinement). 𝜈 ′
𝐴
: A ∈ GameConc is Herlihy-Wing linearizable

to 𝜈𝐴 : A ∈ GameAtomic if and only if for all concurrent games B and 𝜎 : A ⊸ B ∈ GameConc it holds
that

𝜈 ′𝐴;𝜎 ⊆ 𝜈𝐴;𝜎

Locality is also obtained by the same method as in §5.5, except that the source category is now

GameAtomic and the oplax functor LinAtom plays the role of 𝐾Conc.

Proposition B.16 (Locality). Let 𝜈 ′
𝐴
: A, 𝜈 ′

𝐵
: B in GameConc and 𝜈𝐴 : A, 𝜈𝐵 : B in GameAtomic.

Then
𝜈 ′ = 𝜈 ′

𝐴
⊗ 𝜈 ′

𝐵
is linearizable w.r.t. 𝜈 = 𝜈𝐴 ⊗ 𝜈𝐵

if and only if
𝜈 ′
𝐴
is linearizable w.r.t. 𝜈𝐴 and 𝜈 ′

𝐵
is linearizable w.r.t. 𝜈𝐵

C TENSOR PRODUCTS
In §5.5 we briefly discussed a notion of tensor product on GameConc. We noted there that this

notion of tensor product lifts to a symmetric monoidal closed structure in GameConc, what we

develop in detail here. Moreover, we gave most, but omitted the proof of Prop. 5.10.

Proposition C.1.

ccopyA⊗B = ccopyA ⊗ ccopyB

Proof. Observe first that

ccopyA⊗B = copyΦ𝐴⊗𝐵 = (copy𝐴 ⊗ copy𝐵)Φ

Now, assuming that 𝑠 is sequentially consistent, observe that

𝑠 ∈ ccopyA⊗B = (copy𝐴 ⊗ copy𝐵)Φ

if and only if for every 𝛼 ∈ Υ:
𝜋𝛼 (𝑠↾A) ∈ copyA 𝜋𝛼 (𝑠↾B) ∈ copyB

which is the case if and only if

𝑠↾A ∈ ccopyA 𝑠↾B ∈ ccopyB

if and only if (as we have assumed sequential consistency):

𝑠 ∈ ccopyA ⊗ ccopyB

Now, if 𝑠 ∈ ccopyA⊗B then 𝑠 is sequentially consistent, and if 𝑠 ∈ ccopyA ⊗ ccopyB the same

holds. □

Proposition C.2.

− ⊗ − : GameConc ⊗ GameConc → GameConc
is a bi-semifunctor.

Proof. Let

𝜎 : A1 ⊸ A2 𝜎 ′ : A2 ⊸ A3

𝜏 : B1 ⊸ B2 𝜏 ′ : B2 ⊸ B3

Suppose first that

𝑠 ∈ ((𝜎 ;𝜎 ′) ∥ (𝜏 ;𝜏 ′)) ∩ 𝑃 (A1⊸A3) ⊗(B1⊸B3)
then

𝑠𝐴 = 𝑠↾A1⊸A3
∈ 𝜎 ;𝜎 ′ 𝑠𝐵 = 𝑠↾B1⊸B3

∈ 𝜏 ;𝜏 ′

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



A Compositional Theory of Linearizability 38:47

Hence, there are 𝑡𝐴 ∈ int(𝜎, 𝜎 ′) and 𝑡𝐵 ∈ int(𝜏, 𝜏 ′) such that

𝑡𝐴↾A1,A3
= 𝑠𝐴 𝑡𝐵↾B1,B3

= 𝑠𝐵

But then, notice that

𝑠 ∈ 𝑠𝐴 ∥ 𝑠𝐵
it is straight-forward to check that we can construct an interleaving

𝑡 ∈ 𝑡𝐴 ∥ 𝑡𝐵
such that

𝑡↾A1⊗B1,A3⊗B3
= 𝑠

and moreover

𝑡↾A1,A2,A3
= 𝑡𝐴 𝑡↾B1,B2,B3

= 𝑡𝐵

so that

𝑠 ∈ (𝜎 ∥ 𝜏); (𝜎 ′ ∥ 𝜏 ′)
Now, suppose

𝑠 = 𝑡↾A1⊗B1,A3⊗B3
∈ (𝜎 ∥ 𝜏); (𝜎 ′ ∥ 𝜏 ′)

Then,

𝑡↾A1⊗B1,A2⊗B2
∈ 𝜎 ∥ 𝜏 𝑡↾A2⊗B2,A3⊗B3

∈ 𝜎 ′ ∥ 𝜏 ′

hence,

𝑡↾A1,A2
∈ 𝜎 𝑡↾A2,A3

∈ 𝜎 ′

and

𝑡↾B1,B2
∈ 𝜏 𝑡↾B2,B3

∈ 𝜏 ′

Hence,

𝑡↾A1,A2,A3
∈ 𝜎 ;𝜎 ′ 𝑡↾B1,B2,B3

∈ 𝜏 ;𝜏 ′

therefore

𝑡 ∈ (𝜎 ;𝜎 ′) ∥ (𝜏 ;𝜏 ′)
The enrichment is obvious. First, if 𝜎 ⊆ 𝜎 ′ and 𝜏 ⊆ 𝜏 ′ it follows immediately from the definition

that

𝜎 ∥ 𝜏 ⊆ 𝜎 ′ ∥ 𝜏 ′

Unions are handled in the same way. □

Proposition C.3. (GameConc, ⊗, 1) defines a symmetric monoidal closed category.

Proof. We’ve already proven bi-semifunctoriality in Prop. C.2, and that neutral elements are

preserved in C.1.

We now move to the monoidal structure.

Lemma C.4. (GameConc, 𝐾Conc ◦ − ⊗ −, 1) defines a symmetric monoidal category.

Proof. We start by showing that the structural morphisms assemble into natural isomorphisms:

A ⊗ (B ⊗ C) (A ⊗ B) ⊗ C

A′ ⊗ (B′ ⊗ C′) (A′ ⊗ B′) ⊗ C′
𝜎𝐴⊗(𝜎𝐵 ⊗𝜎𝐶 )

𝛼A,B,C

(𝜎𝐴⊗𝜎𝐵 ) ⊗𝜎𝐶

𝛼A′,B′,C′

�

1 ⊗ A A

1 ⊗ B B

1⊗𝜎

𝜆A

𝜎

𝜆B

�

A ⊗ 1 A

B ⊗ 1 B

𝜎⊗1

𝜌A

𝜎

𝜌B

�
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The left and right unital are straight-forward. Indeed, they are simply the identity on the

corresponding sequential games so that:

𝜆A = 𝜆Φ𝐴 = copyΦ𝐴 = ccopyA

𝜌A = 𝜌Φ𝐴 = copyΦ𝐴 = ccopyA

Meanwhile,

1 ⊗ 𝜎 = {𝜖} ∥ 𝜎 = 𝜎

Therefore, we easily check that:

(1 ⊗ 𝜎); 𝜆B = 𝜎 ; ccopyB = 𝜎 = ccopyA;𝜎 = 𝜆A;𝜎

(𝜎 ⊗ 1); 𝜌B = 𝜎 ; ccopyB = 𝜎 = ccopyA;𝜎 = 𝜌A;𝜎

Now, for the associator, the equation essentially follows from the fact that:

𝜋𝛼 (𝜎𝐴 ⊗ (𝜎𝐵 ⊗ 𝜎𝐶 ));𝛼𝐴′,𝐵′,𝐶′ = (𝜋𝛼 (𝜎𝐴) ⊗ (𝜋𝛼 (𝜎𝐵) ⊗ 𝜋𝛼 (𝜎𝐶 )));𝛼𝐴′,𝐵′,𝐶′
= 𝛼𝐴,𝐵,𝐶 ; ((𝜋𝛼 (𝜎𝐴) ⊗ 𝜋𝛼 (𝜎𝐵)) ⊗ 𝜋𝛼 (𝜎𝐶 ))
= 𝛼𝐴,𝐵,𝐶 ;𝜋𝛼 ((𝜎𝐴 ⊗ 𝜎𝐵) ⊗ 𝜎𝐶 )

this is the key step to establish that the naturality square commutes. The reverse direction follows

similarly.

The coherence diagrams follow from functoriality of Conc, the fact that the structural morphisms

are defined by lifting the sequential ones through Conc. Moreover,

Conc 𝜎 ⊗ Conc 𝜏 = Conc (𝜎 ⊗ 𝜏)

as is easily checked.

The same argument shows that the braiding morphism is a natural transformation, that it is

invertible and the functoriality of Conc implies that the hexagonal diagram commutes. □

Finally, we establish that GameConc is closed.

Lemma C.5. The symmetric monoidal category (GameConc, ⊗, 1) is closed.

Proof. We start by noting that there is an isomorphism:

A ⊗ B ⊸ C � A ⊸ (B ⊸ C)

Indeed, it immediately follows from the fact that the underlying sequential arenas are

𝐴 ⊗ 𝐵 ⊸ 𝐶 � 𝐴 ⊸ (𝐵 ⊸ 𝐶)

which induces the necessary natural isomorphism of hom-sets. □

□

The argument for (GameAtomic, 𝐾Atom ◦− ⊗ −, 1) is analogous except that we construct an atomic

interleaving functor

Atom : GameSeq −−−−−→ GameAtomic

that plays the same role as Conc plays in the proof of C.3.
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D INTERVAL-SEQUENTIAL LINEARIZABILITY
Goubault et al. [2018] noted, without proof, that their definition of linearizability is equivalent

to interval-sequential linearizability (although it is actually the restriction of interval-sequential

linearizability to total objects). Here, we show that our definition of linearizability in the context of

our model of sequentially consistent concurrent computation corresponds to a generalization of

interval-sequential linearization to handle blocking objects, which the original definition cannot

[Castañeda et al. 2015].

In Castañeda et al. [2015] a trace is called interval-sequential if it is of the form

⟨𝐼1, 𝑅1, . . . , 𝐼𝑛, 𝑅𝑛⟩

where the 𝐼𝑖 are non-empty sets of invocations and the 𝑅𝑖 are non-empty sets of responses such

that

• Any two invocations in 𝐼𝑖 are by different agents;

• Any two responses in 𝑅𝑖 are by different agents;

• If 𝑟 ∈ 𝑅 𝑗 is a response by agent 𝛼 , then there is 𝑐 ∈ 𝐼𝑖 by the same agent for some 𝑖 ≤ 𝑗 such
that for all 𝑘 such that 𝑖 < 𝑘 < 𝑗 , 𝐼𝑘 has no invocations by 𝛼 and 𝑅𝑘 has no responses by 𝛼 .

Interpreting 𝑂 moves as invocations and 𝑃 moves as responses we immediately see that the

equivalence classes of plays 𝑠 ∈ 𝑃A under − ≡A − correspond precisely to plays of the form

⟨𝑂1, 𝑃1, . . . ,𝑂𝑛, 𝑃𝑛⟩

where similarly to before the𝑂𝑖 are sets of Opponent moves and the 𝑃𝑖 are sets of proponent moves.

Otherwise, the same kind of happens-before order preservation is used to define linearizability to

an interval-sequential trace.

Definition D.1. A play 𝑠 ∈ 𝑃A is interval-sequential linearizable to an equivalence class [𝑡]≡ of
− ≡A − if for every 𝑡 ′ ∈ [𝑡]≡, 𝑠 is linearizable to 𝑡 ′.

We find it convenient to instead define a general notion of linearizability between concurrent

strategies.

Definition D.2. We say a strategy 𝜎 : A is linearizable to a strategy 𝜏 : A if every play of 𝜎 is

linearizable to a play of 𝜏 .

The discussion above promptly let’s us prove that.

Proposition D.3. 𝑠 ∈ 𝑃A is linearizable to 𝑡 ∈ 𝑃A if and only if 𝑠 is interval-sequential linearizable
to [𝑡]≡, the equivalence class of 𝑡 under ≡A.

Proof. Suppose first that 𝑠 is linearizable with respect to 𝑡 . Then, there is 𝑠𝑃 a sequence of

Proponent moves and 𝑠𝑂 a sequence of Opponent moves such that.

𝑠 · 𝑠𝑃 ⇝A 𝑡 · 𝑠𝑂
So let 𝑡 ′ ∈ [𝑡]≡. Then, note that in particular

𝑡 ⇝A 𝑡
′

and therefore

𝑠 · 𝑠𝑃 ⇝A 𝑡 · 𝑠𝑂 ⇝A 𝑡
′ · 𝑠𝑂

Now, suppose 𝑠 is interval-sequential linearizable to [𝑡]≡. Then, 𝑠 is linearizable to every 𝑡 ′ ∈ [𝑡]≡
and in particular to 𝑡 . □
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Observe that we already showed the equivalence with happens-before order formulations of

linearizability in Appendix B.2. The key difference between our formulation of interval-sequential

linearizability and the original one is that we do not require that the linearization remove all

uncompleted pending invocations. This essentially means that our definition of linearizability can

handle blocking objects, while typical linearizability only handles non-blocking objects. This is

vital. Consider our yield example. The trace

𝛼𝛼𝛼:::yield · 𝛼 ′𝛼 ′𝛼 ′:::yield · 𝛼𝛼𝛼:::ok

linearizes to itself in our example. Now, suppose we were forced to either complete the pending

invocation 𝛼 ′𝛼 ′𝛼 ′:::yield or remove it to linearize the trace. Then we have to use one of the following

traces as the linearization:

(1) 𝛼𝛼𝛼:::yield · 𝛼 ′𝛼 ′𝛼 ′:::yield · 𝛼𝛼𝛼:::ok · 𝛼 ′𝛼 ′𝛼 ′:::ok or any equivalent trace under ≡†Yield;
(2) 𝛼𝛼𝛼:::yield · 𝛼𝛼𝛼:::ok;
(3) 𝛼𝛼𝛼:::yield · 𝛼𝛼𝛼:::ok · 𝛼 ′𝛼 ′𝛼 ′:::yield · 𝛼 ′𝛼 ′𝛼 ′:::ok or 𝛼 ′𝛼 ′𝛼 ′:::yield · 𝛼 ′𝛼 ′𝛼 ′:::ok · 𝛼𝛼𝛼:::yield · 𝛼𝛼𝛼:::ok
Trace (1) does not make sense. Assume, without loss of generality, that 𝛼 is the one that yielded

first. Then, 𝛼 is able to return because 𝛼 ′ yielded after. But now there is no call to yield that justifies

the return by 𝛼 ′. Traces in (2) and (3) do not make sense because no one yielded to 𝛼 (or 𝛼 ′ in (3)).

To state it more broadly, when all pending invocations are required to be removed the only way

to signal that an invocation has already taken effect is by adding a return. Meanwhile, with our

formulation an invocation may be effectful by itself, even when it is impossible to choose a return

value for it.

E CONCURRENT OBJECT-BASED SEMANTICS AND LINEARIZABLE CONCURRENT
OBJECTS

E.1 The Replay Modality and Concurrent Object Specifications
We start by recalling the definition of the replay modality on sequential games, which originally

appears in Oliveira Vale et al. [2022].

Definition E.1. Let 𝐴 be a game. We define the replay of the game 𝐴, the game †𝐴 as †𝐴 =

(𝑀†𝐴, 𝑃†𝐴) where
𝑀𝑂
†𝐴 :=

∑
𝑖∈N

𝑀𝑂
𝐴 𝑀𝑃

†𝐴 :=
∑
𝑖∈N

𝑀𝑃
𝐴

𝑃†𝐴 := {𝑠1 · . . . · 𝑠𝑛 ∈ Alt(𝑀𝑂
†𝐴, 𝑀

𝑃
†𝐴) | ∀𝑖 .𝑠𝑖 ∈ 𝜄𝑖 𝑃𝐴}

where, for a play 𝑠 , 𝜄𝑖 𝑠 labels all the moves𝑚 ∈ 𝑠 as 𝜄𝑖 𝑚, and for a set of plays 𝑆 the set of plays

𝜄𝑖 𝑆 is obtained by applying 𝜄𝑖 𝑠 to every play 𝑠 ∈ 𝑆 .

A key property of the sequential †− modality is that it is a comonad over GameSeq.

Proposition E.2.

†− : GameSeq → GameSeq

defines a comonad.

Similarly to our approach to other operators on concurrent games, we define the concurrent †−
as the lifting of the sequential one.

Definition E.3. For a concurrent game A = (𝑀𝐴, 𝑃𝐴) we define the concurrent game †A as

†A := (𝑀†𝐴, 𝑃†𝐴).
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Proposition E.4.

†− : GameConc → GameConc

defines a comonad.

Now, following the framework started by Reddy [1993, 1996], we define a concurrent object as

follows:

Definition E.5. An object of type A is a strategy 𝜈𝐴 : 1 ⊸ †A.

We are particularly interested in concurrent objects with types described by effect signatures,

per the approach to modeling layered components in Oliveira Vale et al. [2022].

Definition E.6. An effect signature is given by a collection of operations, or effects, 𝐸 = (𝑒𝑖 )𝑖∈𝐼
together with an assignment ar(−) : 𝐸 → Set of a set for each operation in 𝐸. This is conveniently

described by the following notation:

𝐸 = {𝑒𝑖 : ar(𝑒𝑖 ) | 𝑖 ∈ 𝐼 }

Every effect signature defines a very simple sequential game GameSeq (𝐸) with moves given by

𝑀𝑂
𝐸 := 𝐸 𝑀𝑃

𝐸 := ∪𝑒∈𝐸ar(𝑒)

and plays

𝑃𝐸 := ↓{𝑒 · 𝑣 | 𝑒 ∈ 𝐸 ∧ 𝑣 ∈ ar(𝑒)}

We will often denote GameSeq (𝐸) simply as 𝐸.

We can then define the associated concurrent game GameConc (𝐸) = (𝑀𝐸, 𝑃𝐸) which we often

will denote simply by E.

Let’s mull over what a layer game entails. In the sequential case, the game 𝐸 has plays of the

form:

𝑒 𝑣

consisting of an invocation of an effect 𝑒 ∈ 𝐸 followed by a response 𝑣 ∈ ar(𝑒). Its replay †E merely

allows for several such interactions to be performed in sequence, like so

𝑒1 𝑣1 𝑒2 𝑣2 . . . 𝑒𝑛 𝑣𝑛

where each 𝑒𝑖 ∈ 𝐸 and each 𝑣𝑖 ∈ ar(𝑒𝐼 ). Its concurrent version simply allows each thread to play †E
locally. Most objects appearing in concrete systems can be modeled by an effect signature, and we

have already provided many such examples in §2.2.

Then, we define a linearizable object simply as

Definition E.7. A linearizable concurrent object of type A consists of a pair of objects

(𝜈 ′𝐴 : †A ∈ GameConc, 𝜈𝐴 : †A ∈ GameConc) such that 𝜈 ′𝐴 ⊆ 𝐾Conc 𝜈𝐴

It is called a strongly linearizable concurrent object if moreover

𝜈𝐴 ⊆ 𝜈 ′𝐴
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E.2 Concurrent Object Implementations
Typically, in the sequential case, we would use as object implementations strategies

𝑀 : †𝐴 ⊸ †𝐵
which are moreover regular in the sense that they are †-coalgebra morphisms between the free

†-coalgebras associated to 𝐴 and 𝐵:

𝑀 : (†𝐴, 𝛿𝐴) → (†𝐵, 𝛿𝐵)
We emphasize the −̂ on 𝑀 because as 𝑀 lives in the co-Kleisli category of †− it may instead be

described as a strategy

𝑀 : †𝐴 ⊸ 𝐵

and composition is as in the co-Kleisli category. This gives a minimal description of the associated

coalgebra morphism 𝑀 and simplifies the process of specifying implementations. See any of

Oliveira Vale et al. [2022]; Reddy [1993, 1996] for more details on the framework.

We extend that formulation to model concurrent object implementations as morphisms of the

form

∥𝛼 ∈Υ 𝜄𝛼 (�𝑀 [𝛼]) : †A ⊸ †B
or, equivalently, ⊗

𝛼 ∈Υ
strat

(
𝜄𝛼 (�𝑀 [𝛼])) : †A ⊸ †B

where each 𝑀 [𝛼] is a sequential strategy of type †𝐴 ⊸ 𝐵. Alternatively, we may characterize

concurrent implementations as collections

(𝑀 [𝛼] : †𝐴 ⊸ 𝐵)𝛼 ∈Υ
Which define a concurrent implementation by the formula above. The intuition here is that each

agent 𝛼 ∈ Υ locally runs a sequential object implementation. In practice, it is often the case that all

agents run the same sequential implementation𝑀 in which case we can simply use

Conc𝑀 : †A ⊸ †B
We note that

Proposition E.8. Concurrent object implementations are co-algebra morphisms.

We now observe that for effect signatures 𝐸 and 𝐹 , any sequential object implementation:

𝑀 : †𝐸 ⊸ 𝐹

decomposes as a collection of implementations (𝑀 𝑓
: †𝐸 ⊸ {𝑓 : ar(𝑓 )})𝑓 ∈𝐹 where

𝑀 𝑓
:= 𝜖 ∪ {𝑓 · 𝑠 ∈ 𝑀 | 𝑓 ∈ 𝐹 }

that is,𝑀 𝑓
is the set of plays of𝑀 starting with the operation 𝑓 . Then

𝑀 =
⋃
𝑓 ∈𝐹

𝑀 𝑓

Moreover, any collection of strategies (𝑀 𝑓
: †𝐸 ⊸ {𝑓 : ar(𝑓 )})𝑓 ∈𝐹 defines an implementation

𝑀 : †𝐸 ⊸ 𝐹 by the formula above.

The computational interpretation is quite simple here. Along the lines of Oliveira Vale et al.

[2022], every implementation𝑀 [𝛼] 𝑓 corresponds to some code implementing the effect 𝑓 using

the effects in 𝐸. A full sequential implementation 𝑀 [𝛼] corresponds to all of the implementations

for each 𝑓 ∈ 𝐹 bundled together, such as in a file containing the code for all of those methods. The
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concurrent object implementation then is analogous to the usual syntactic linking appearing in the

syntactic approaches to concurrent computation. It is worth noting that:

Definition E.9. Concurrent games and concurrent object implementations assemble into a cate-

gory ConcObj, with composition inherited from the underlying category and the identity given by

ccopy−.
The full subcategory obtained by restricting the objects of ConcObj to concurrent games coming

from effect signatures, E, F, is the category of layered concurrent objects ConcLayer.

Again, let’s consider what an implementation for a layer object consists of. Locally, the imple-

mentation 𝑀 [𝛼] 𝑓 : 𝐸 ⊸ {𝑓 : ar(𝑓 )} of an effect 𝑓 ∈ 𝐹 using events in 𝐸 by 𝛼 ∈ Υ is a strategy

consisting of plays of the following shape:

𝑓 𝑣

𝑒1 𝑣1 𝑒2 𝑣2 . . . 𝑒𝑛 𝑣𝑛

the implementation𝑀 [𝛼] : †𝐸 ⊸ 𝐹 of 𝐹 using 𝐸 by𝛼 is simply the collection of the implementations

𝑀 [𝛼] 𝑓 for each 𝑓 ∈ 𝐹 by 𝛼 , so that it is able to issue the right implementation on an environment

request for any effect from 𝐹 . Its regular extension �𝑀 [𝛼] replays the implementation𝑀 [𝛼] in order

to be able to handle several requests for effects in 𝐹 by the environment. In this way, its plays are

of the following shape:

𝑓1 𝑣1 𝑓2 𝑣2 . . . 𝑓𝑛 𝑣𝑛
𝑀 [𝛼 ] 𝑀 [𝛼 ] 𝑀 [𝛼 ]

𝑠1 𝑠2 𝑠𝑛

where each sequence 𝑓𝑖 · 𝑠𝑖 · 𝑣𝑖 is a play of𝑀 [𝛼], and in particular a play of𝑀 [𝛼] 𝑓𝑖 . The concurrent
implementation𝑀 : E ⊸ F is simply the result of having each 𝛼 ∈ Υ playing their corresponding

implementations 𝑀 [𝛼] in parallel. All the implementations discussed in §2.2 can be encoded as

layer implementations.

It remains to give an account of when an implementation correctly implements an object. This is

captured by the following definition.

Definition E.10. A certified linearizable object implementation 𝑀 : (𝜈 ′
𝐴
, 𝜈𝐴) → (𝜈 ′

𝐵
, 𝜈𝐵) is an

implementation𝑀 : †A ⊸ †B which moreover satisfies:

𝜈 ′𝐵 ⊆ 𝜈 ′𝐴;𝑀 𝜈 ′𝐵 ⊆ 𝐾Conc 𝜈𝐵

Its immediate to see that linearizable concurrent objects together with certified linearizable

object implementations assemble into a category, which may again be layered by restricting to

games corresponding to effect signatures. This definition is readily adapted to strong linearizability.

F A PROGRAM LOGIC FOR LINEARIZABLE CONCURRENT OBJECTS
In this section we define a simple programming language for specifying concurrent object imple-

mentations, as well as a program logic for proving that they implement linearizable concurrent

objects. We start by defining its syntax and semantics, and then move to the program logic. We

then give an example to showcase one of the key differences between our program logic and that

of Khyzha et al. [2017]. We finish by providing an outline of the proofs of the main results in this

section. In Appendix G we treat the example of §2.2 using our program logic.
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F.1 Programming Language
F.1.1 Syntax. For our language we find it useful to slightly generalize effect signatures to be of the

form:

𝐸 = {𝑒 : par(𝑒) → ar(𝑒) | 𝑒 ∈ 𝐸}

here, par(𝑒) ∈ Set∗ stands as the parameter set of 𝑒 , and ar(𝑒) ∈ Set is its arity, as usual. These are
interpreted as standard effect signatures of the form:

𝐸 = {𝑒 (𝑝) : ar(𝑒) | 𝑒 ∈ 𝐸 ∧ 𝑝 ∈ par(𝑒)}

namely, 𝑒 : par(𝑒) → ar(𝑒) stands for a par(𝑒)-indexed family of effects all with arity ar(𝑒).
The key idea then is to define a language of commands

Com := Prim | Com;Com | Com + Com | Com∗ | skip

Where Prim is a collection of programming language primitives (to be defined soon) which serve

as the base commands.

An implementation𝑀 [𝛼] of type 𝐸 → 𝐹 , where 𝐸 and 𝐹 are effect signatures, is then given by a

collection 𝑀 [𝛼] = (𝑀 [𝛼] 𝑓 )𝑓 ∈𝐹 indexed by 𝐹 , so that for each 𝑓 ∈ 𝐹 we have 𝑀 [𝛼] 𝑓 ∈ Com; we

denote the set of implementations by Mod.
Meanwhile, a concurrent module 𝑀 [𝐴] is given by a collection of implementations 𝑀 [𝐴] =
(𝑀 [𝛼])𝛼 ∈𝐴 indexed by a set 𝐴 ⊆ Υ of active agents, so that𝑀 [𝛼] ∈ Mod is an implementation for

each active agent 𝛼 ∈ 𝐴; we denote the set of concurrent modules by CMod.

F.1.2 Semantics. We start with the operational semantics of sequential commands. We define our

state space as

UndState = Env × 𝑃†E

so that a state (Δ, 𝑠) ∈ UndState contains a local environment Δ ∈ Env (a partial map from a set of

variable names Var to the set of possible values) and a state represented canonically as a play of

𝑠 ∈ †E. Concretely, 𝑠 is the history of operations on the underlying object.

Every language primitive 𝐵 ∈ Prim receives an interpretation as a function

⟦𝐵⟧𝛼 : UndState→ P(UndState)

satisfying moreover that for all (Δ, 𝑠) ∈ UndState if (Δ′, 𝑠 ′) ∈ ⟦𝐵⟧𝛼 (Δ, 𝑠) then:

• Δ ⊆ Δ′

• ∃𝑡 .𝑠 ′ = 𝑠 · 𝑡 ∧ 𝜋Υ\𝛼 (𝑡) = 𝜖

That is to say, the local environment cannot decrease in size by a language primitive; and a language

primitive may only advance the state further, and only by adding events for the corresponding

agent. Notice that we can split ⟦𝐵⟧𝛼 into two maps ⟦𝐵⟧𝑂𝛼 and ⟦𝐵⟧𝑃𝛼 , the first only defined on

𝑂-positions for 𝛼 and the later only defined on 𝑃-positions for 𝛼 .

The local semantics is then given by
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↣ ⊆ Com × Prim × {𝑂, 𝑃} × Com

𝐵↣𝑂
𝐵 𝐵 𝐵↣𝑃

𝐵 skip

𝐶1↣
𝑋
𝐵 𝐶

′
1

𝐶1;𝐶2↣
𝑋
𝐵 𝐶

′
1
;𝐶2 skip;𝐶 ↣𝑋

id 𝐶 𝐶∗↣𝑋
id 𝐶;𝐶

∗

𝐶∗↣𝑋
id skip 𝐶1 +𝐶2↣

𝑋
id 𝐶1 𝐶1 +𝐶2↣

𝑋
id 𝐶2

−→ ⊆ (Com × UndState) × Υ × (Com × UndState)

(Δ′, 𝑠 ′) ∈ ⟦𝐵⟧𝑋𝛼 (Δ, 𝑠) 𝐶 ↣𝑋
𝐵 𝐶

′

⟨𝐶,Δ, 𝑠⟩ −→𝛼 ⟨𝐶 ′,Δ′, 𝑠 ′⟩

There, id stands for a primitive command that behaves just like skip but is used exclusively

to define the operational semantics. A key difference from traditional operational semantics is

that language primitives take two steps to reduce. First, they execute their 𝑂-position effect,

corresponding to an invocation, and then, separately, their 𝑃-position effect, corresponding to a

return.

To move to the concurrent semantics, states are lifted as

ModState = (Υ→ Env) × 𝑃†E⊸†F

There is an obvious lifting of ⟦−⟧𝛼 to ModState modifying only the local environment for 𝛼

according to ⟦−⟧𝛼 and advancing the play state further only by moves by 𝛼 .

−↠ ⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

𝑓 ∈ 𝐹 𝑎 ∈ par(𝑓 ) ∆′ = ∆[𝛼 : [arg : 𝑎]]
⟨𝑐 [𝛼 : idle],∆, 𝑠⟩ −↠𝑀 ⟨𝑐 [𝛼 : 𝑀 [𝛼] 𝑓 ],∆′, 𝑠 · 𝛼𝛼𝛼:::𝑓 ⟩

⟨𝐶,∆, 𝑠↾E⟩ −→𝛼 ⟨𝐶 ′,∆′, 𝑠 ′↾E⟩
⟨𝑐 [𝛼 : 𝐶],∆, 𝑠⟩ −↠𝑀 ⟨𝑐 [𝛼 : 𝐶 ′],∆′, 𝑠 ′⟩

𝜋𝛼 (𝑠↾F) = 𝑝 · 𝑓 ∆(𝛼) (res) = 𝑣 ∈ ar(𝑓 ) ∆′ = ∆[𝛼 : ∅]
⟨𝑐 [𝛼 : skip],∆, 𝑠⟩ −↠𝑀 ⟨𝑐 [𝛼 : idle],∆′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

Here a continuation 𝑐 ∈ Cont consists of a mapping 𝑐 : Υ→ {idle} + {skip} + Com. The initial

continuation 𝑐0 is the mapping such that 𝑐0 (𝛼) = idle for all 𝛼 ∈ Υ. The initial environment Δ0 is

defined as the empty mapping Δ𝛼 = ∅ for every agent 𝛼 ∈ Υ. The concurrent semantics simply

models all the agents running their local implementations concurrently in an interleaved fashion.

The three rules correspond, in order to, to a target component invocation, a step in the source

component, and a return in the target component.

We obtain a concurrent object implementation ⟦𝑀⟧ : †E ⊸ †F from a concurrent module

𝑀 ∈ CMod by:

⟦𝑀⟧ = {𝑠 | ∃𝑐 ∈ Cont.∃∆ ∈ (Υ→ Env).⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀 ⟨𝑐,Δ, 𝑠⟩}

A program𝑀 can be linked with a specification 𝜈𝐸 for its source component given by a strategy

𝜈𝐸 : †E, what we denote by Link 𝜈𝐸 ;𝑀 . The operational semantics of Link 𝜈𝐸 ;𝑀 is given by:
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−↠ ⊆ (Cont × UndStateConc) × (GameConc (1, E) × CMod) × (Cont ×ModState)

𝑓 ∈ 𝐹 𝑎 ∈ par(𝑓 ) ∆′ = ∆[𝛼 : [arg : 𝑎]]
⟨𝑐 [𝛼 : idle],∆, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 [𝛼 : 𝑀 [𝛼] 𝑓 ],∆′, 𝑠 · 𝛼𝛼𝛼:::𝑓 ⟩

⟨𝐶,∆, 𝑠⟩ −→𝛼 ⟨𝐶 ′,∆′, 𝑠 ′⟩ 𝑠 ′ ∈ 𝜈𝐸
⟨𝑐 [𝛼 : 𝐶],∆, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 [𝛼 : 𝐶 ′],∆′, 𝑠 ′⟩

𝜋𝛼 (𝑠↾F) = 𝑝 · 𝑓 ∆(𝛼) (res) = 𝑣 ∈ ar(𝑓 ) ∆[𝛼 : ∅]
⟨𝑐 [𝛼 : skip],∆, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 [𝛼 : idle],∆′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

Observe that

− −↠𝑀 − = − −↠𝑀
𝑃†E
−

From a linked program Link 𝜈𝐸 ;𝑀 we can obtain a corresponding strategy ⟦Link 𝜈𝐸 ;𝑀⟧ : †F
similarly to before:

⟦Link 𝜈𝐸 ;𝑀⟧ = {𝑠 | ∃𝑐 ∈ Cont.∃∆ ∈ (Υ→ Env).⟨𝑐0,∆0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,∆, 𝑠⟩}

The following result allows us to connect the program language back with the theory we have

developed so far.

Proposition F.1. For any𝑀 ∈ CMod, ⟦𝑀⟧ is a concurrent object implementation of type †E ⊸ †F
and given 𝜈𝐸 : †E,

⟦Link 𝜈𝐸 ;𝑀⟧ = 𝜈𝐸 ; ⟦𝑀⟧

F.1.3 Language Primitives. We now introduce the language primitives we will use for our purposes.

First, we have a command id with interpretation given by:

⟦id⟧𝛼 (Δ, 𝑠) = {(Δ, 𝑠)}

which behaves exactly like skip.
A command ret − with interpretation:

⟦ret 𝑣⟧𝛼 (Δ, 𝑠) =
{
(Δ[ret : 𝑣], 𝑠), Δ(ret) = ⊥
∅, Δ(ret) ≠ ⊥

ret − reserves a location for returns to be written to. Observe that a return may only be called once

in any execution.

A more interesting primitive is a primitive of the form 𝑥 ← 𝑒 (𝑎) where 𝑒 ∈ 𝐸 and 𝑎 ∈ Var+par(𝑒)
and 𝑥 ∈ Var with interpretation ⟦𝑥 ← 𝑒 (𝑎)⟧𝛼 (Δ, 𝑠) given by:

• If even(𝜋𝛼 (𝑠)) then ⟦𝑥 ← 𝑒 (𝑎)⟧𝛼 (Δ, 𝑠) :=


{(Δ, 𝑠 · 𝛼𝛼𝛼:::𝑒 (𝑎))}, 𝑎 ∈ par(𝑒)
{(Δ, 𝑠 · 𝛼𝛼𝛼:::𝑒 (Δ(𝑎)))}, 𝑎 ∈ Var ∧ Δ(𝑎) ∈ par(𝑒)
∅, otherwise

• If 𝜋𝛼 (𝑠) = 𝑝 · 𝑒 (𝑎′) where either 𝑎′ = 𝑎 or 𝑎′ = Δ(𝑎) then

⟦𝑥 ← 𝑒 (𝑎)⟧𝛼 (Δ, 𝑠) := {(Δ[𝑥 : 𝑣], 𝑠 · 𝛼𝛼𝛼:::𝑣) | 𝑣 ∈ ar(𝑒)}

• Otherwise, ⟦𝑥 ← 𝑒 (𝑎)⟧𝛼 (Δ, 𝑠) := ∅.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



A Compositional Theory of Linearizability 38:57

This models the fact that the implementationmay call effects from its source component 𝐸. 𝑥 ← 𝑒 (𝑎)
executes the effect 𝑒 ∈ 𝐸 with argument 𝑎, which might contain variables defined in a local

environment Δ ∈ Env.
Finally, to implement branching we have a command assert(𝜙) where 𝜙 : Env → Bool is

interpreted by

⟦assert(𝜙)⟧𝛼 (Δ, 𝑠) :=
{
{(Δ, 𝑠)}, 𝜙 (Δ) = True
∅, Otherwise

assert(−) can be used to implement a while loop and if conditionals in the usual way.

F.2 Program Logic
Throughout, we assume the following situation. We have a linearizable concurrent object

(𝜈 ′
𝐸
: †E, 𝜈𝐸 : †E) and would like to show that an implementation𝑀 : 𝐸 → 𝐹 is correct in that when

it runs on top of 𝜈 ′
𝐸
it linearizes to a specification 𝜈𝐹 : †F. When reasoning about Link 𝜈 ′

𝐸
;𝑀 it will

be useful to restrict it with some invariants about its client. For example, usually when using a lock,

one assumes that every lock user strictly alternates between calling acq and rel. So if all clients to

the lock politely follow the lock policy, it is enough to verify only those traces. This policy of strict

alternation is encoded in this strategy 𝜈 ′
𝐹
: †F in our approach.

We define a configuration as a triple

Config := ModState × Poss

where

Poss := 𝐾Conc 𝜈𝐹

A possibility is a play of †F that moreover is linearizable to 𝜈𝐹 , by definition. As we will see, in the

process of verification, 𝜈𝐹 may be rewritten using −⇝†F −. This means that throughout, if (∆, 𝑠, 𝜌)
is a configuration, we will always maintain as an invariant that 𝑠↾F is linearizable to 𝜌 and that 𝜌 is

linearizable to 𝜈𝐹 . Pre-conditions 𝑃 are given by sets of configurations, while post-conditions 𝑄 ,

rely conditions R, guarantee conditions G are specified as relations over the configurations.

Pre-Conditions, Post-Conditions, Rely and Guarantees are given by relational predicates:

𝑃 ⊆ Config 𝑄 ⊆ Config × Config R,G ⊆ Config × Config

As usual, we define stability requirements on pre-conditions 𝑃 and post-conditions 𝑄 :

stable(R, 𝑃) = R ◦ 𝑃 ⊆ 𝑃 stable(R, 𝑄) = R ◦𝑄 ⊆ 𝑄 ∧𝑄 ◦ R ⊆ 𝑄

The key logical judgment is:

G ⊢𝛼 {𝑃} 𝐵 {𝑄} ⇐⇒ ∀(∆, 𝑠, 𝜌) .𝑠↾F ∈ 𝜈 ′𝐹 ∧ (∆, 𝑠, 𝜌) ∈ 𝑃 ∧ 𝑠↾E ∈ 𝜈𝐸 ∧ (∆′, 𝑠 ′) ∈ ⟦𝐵⟧𝛼 (∆, 𝑠) ⇒

𝑠 ′↾F ∈ 𝜈 ′𝐹 ∧ ∃𝜌 ′.(∆, 𝑠, 𝜌) 𝑄 (∆′, 𝑠 ′, 𝜌 ′) ∧ (∆, 𝑠, 𝜌) G (∆′, 𝑠 ′, 𝜌 ′) ∧ 𝜌 d 𝜌 ′

𝜌 d 𝜌 ′ ⇐⇒ ∃𝑡𝑃 ∈ (𝑀𝑃
F )∗ .𝜌 · 𝑡𝑃 ⇝†F 𝜌 ′

Comparing this judgment with the possible edges of a punctual extension, we see that this rule

closely models a commit𝛼 (−) edge. The remaining rules for commands are the usual Hoare-style

rules.
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stable(R, 𝑃) stable(R, 𝑄) 𝑄 ◦ 𝑃𝑂 ⊆ 𝑃 G ⊢𝛼 {𝑃} 𝐵 {𝑄}
R,G |=𝛼 {𝑃} 𝐵 {𝑄}

Prim

R,G |=𝛼 {𝑃} 𝐶 {𝑄} R,G |=𝛼 {𝑄 ◦ 𝑃} 𝐶 ′ {𝑄 ′}
R,G |=𝛼 {𝑃} 𝐶;𝐶 ′ {𝑄 ′}

Seq

⊤, ID |=𝛼 {⊤} 𝜖 {ID}
Skip

R,G |=𝛼 {𝑃} 𝐶 {𝑄} 𝑄 ◦ 𝑃 ⊆ 𝑃
R,G |=𝛼 {𝑃} 𝐶∗ {𝑄}

Iter

R,G |=𝛼 {𝑃} 𝐶1 {𝑄} R,G |=𝛼 {𝑃} 𝐶2 {𝑄}
R,G |=𝛼 {𝑃} 𝐶1 +𝐶2 {𝑄}

Choice

stable(R ′, 𝑃 ′)
𝑃 ′ ⊆ 𝑃 R ′ ⊆ R R,G |=𝛼 {𝑃} 𝐶 {𝑄} G ⊆ G′ 𝑄 ⊆ 𝑄 ′ stable(R ′, 𝑄 ′)

R ′,G′ |=𝛼 {𝑃 ′} 𝐶 {𝑄 ′}
Weaken

Now, for a local implementation𝑀 [𝛼] = (𝑀 [𝛼] 𝑓 )𝑓 ∈𝐹 we start by defining:

(∆, 𝑠, 𝜌) ∈ idle𝛼 ⇐⇒ ∆𝛼 = ∅ ∧ even(𝜋𝛼 (𝑠↾F)) ∧ even(𝜋𝛼 (𝜌))
(∆, 𝑠, 𝜌) invoke𝛼 (𝑓 (𝑎)) (∆′, 𝑠′, 𝜌′) ⇐⇒

(∆, 𝑠, 𝜌) ∈ idle𝛼 ∧ 𝑠′↾F ∈ 𝜈′𝐹 ∧ (∆
′ (𝛼) = [arg : 𝑎] ∧ ∀𝛼′ ≠ 𝛼.∆′ (𝛼′) = ∆(𝛼′) ∧ 𝑠′ = 𝑠 ·𝛼𝛼𝛼:::𝑓 ∧ 𝜌′ = 𝜌 ·𝛼𝛼𝛼:::𝑓

(∆, 𝑠, 𝜌) returned𝛼 (𝑓 ) (∆′, 𝑠′, 𝜌′) ⇐⇒
𝑠′↾F ∈ 𝜈′𝐹 ∧ (∆

′, 𝑠′, 𝜌′) = (∆, 𝑠, 𝜌) ∧ (∃𝑣 ∈ ar(𝑓 ) .∆(𝛼) (ret) = 𝑣 ∧ (∃𝑝.𝜋𝛼 (𝜌′) = 𝑝 · 𝑣))
(∆, 𝑠, 𝜌) return𝛼 (𝑓 ) (∆′, 𝑠′, 𝜌′) ⇐⇒

∆′ = ∅ ∧ 𝜌′ = 𝜌 ∧ ∃𝑣 ∈ ar(𝑓 ) .∃𝑝.𝜋𝛼 (𝜌) = 𝑝 · 𝑣 ∧ 𝑠′ = 𝑠 ·𝛼𝛼𝛼:::𝑣

invoke and return receive their names due to their relationship with the corresponding edges

of a punctual extension. invoke𝛼 (𝑓 ) allows 𝛼 to invoke 𝑓 as long as that is possible, returned𝛼 (𝑓 )
checks if 𝑓 has received an appropriate return in the possibility, while return𝛼 (𝑓 ) triggers the return
and empties the local environment. Then the rule for a local implementation𝑀 [𝛼] = (𝑀 [𝛼] 𝑓 )𝑓 ∈𝐹
is:

∀𝑓 ∈ 𝐹 .(∆0, 𝜖, 𝜖) ∈ 𝑃 [𝛼] 𝑓
∀𝑓 ∈ 𝐹 .𝑃 [𝛼] 𝑓 ⊆ idle𝛼 stable(R[𝛼], 𝑃 [𝛼] 𝑓 ) stable(R[𝛼], 𝑄 [𝛼] 𝑓 )
R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 } 𝑀 [𝛼] 𝑓 {returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 }

∀𝑓 , 𝑓 ′ ∈ 𝐹 .return𝛼 (𝑓 ′) ◦ returned𝛼 (𝑓 ′) ◦𝑄 [𝛼] 𝑓
′
◦ invoke𝛼 (𝑓 ′) ◦ 𝑃 [𝛼] 𝑓

′
⊆ 𝑃 [𝛼] 𝑓

R[𝛼],G[𝛼] |=𝛼 {∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓 } 𝑀 [𝛼] {∪𝑓 ∈𝐹𝑄 [𝛼] 𝑓 }
Local Impl

and for a concurrent implementation𝑀 = (𝑀 [𝛼])𝛼 ∈𝐴:

∀𝛼 ∈ 𝐴.R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼]} 𝑀 [𝛼] {𝑄 [𝛼]}
∀𝛼, 𝛼 ′ ∈ 𝐴.𝛼 ≠ 𝛼 ′ ⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼 ′]

R[𝐴],G[𝐴] |=𝐴 {∩𝛼 ∈𝐴𝑃 [𝛼]} 𝑀 [𝐴] {∪𝛼 ∈𝐴𝑄 [𝛼]}
Conc Impl

where

invoke𝛼 (−) :=
⋃
𝑓 ∈𝐹

invoke𝛼 (𝑓 ) return𝛼 (−) :=
⋃
𝑓 ∈𝐹

return𝛼 (𝑓 )
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and given relies R[𝛼] and guarantees G[𝛼] for every 𝛼 ∈ 𝐴, we define:

R[𝐴] :=
⋂
𝛼 ∈𝐴
R[𝛼] G[𝐴] :=

⋃
𝛼 ∈𝐴
G[𝛼]

we also write

𝑃 [𝐴] :=
⋂
𝛼 ∈𝐴

𝑃 [𝛼] 𝑄 [𝐴] :=
⋃
𝛼 ∈𝐴

𝑄 [𝛼]

for per-conditions 𝑃 [𝛼] and postconditions 𝑄 [𝛼] for every 𝛼 ∈ 𝐴.
Let’s briefly explain each of the premises of these two rules.

We start with Local Impl. That the initial state is in the pre-condition 𝑃 [𝛼] 𝑓 of every agent

ensures that every method may be called to start with. Now, for a method to be called, the 𝛼 must

be idle, which justifies the second condition. Stability requirements are standard in rely-guarantee

reasoning. The fourth premise checks that the body of each method’s 𝑓 ∈ 𝐹 implementation

satisfies the corresponding pre (𝑃 [𝛼] 𝑓 ) and post-conditions (𝑄 [𝛼] 𝑓 ), after invoking the method,

by means of invoke𝛼 (𝑓 ), from the pre-condition; moreover, at the end of the body, we check that

the value stored in ret makes sense and that it appears in the possibility by means of returned𝛼 (𝑓 ).
The final condition ensures that if method 𝑓 ′ is invoked (invoke𝛼 (𝑓 ′)) from a state satisfying the

pre-condition 𝑃 [𝛼] 𝑓 ′ , then it takes its effect (𝑄 [𝛼] 𝑓 ′) and then we both check it returned accordingly
(returned𝛼 (𝑓 ′)) and then we actually return in the target component (return𝛼 (𝑓 ′)) then we obtain

a state in which any other operation of 𝐹 may be called. Now, Conc Impl merely checks that every

𝛼 ’s local implementation satisfies their specifications, and that their relies and guarantees agree

with each other, and moreover that their relies take into account the possibility of other Υ invoking

and returning.

This supports the parallel composition rule that follows:

𝐴 ∩ 𝐵 = ∅ R[𝐴],G[𝐴] |=𝐴 {𝑃 [𝐴]} 𝑀 [𝐴] {𝑄 [𝐴]} G[𝐴] ∪ invoke𝐴 (−) ∪ return𝐴 (−) ⊆ R[𝐵]
R[𝐵],G[𝐵] |=𝐵 {𝑃 [𝐵]} 𝑀 [𝐵] {𝑄 [𝐵]} G[𝐵] ∪ invoke𝐵 (−) ∪ return𝐵 (−) ⊆ R[𝐴]
R[𝐴] ∩ R[𝐵],G[𝐴] ∪ G[𝐵] |=𝐴⊎𝐵 {𝑃 [𝐴] ∩ 𝑃 [𝐵]} 𝑀 [𝐴 ⊎ 𝐵] {𝑄 [𝐴] ∪𝑄 [𝐵]}

PComp

The rules are justified by the following soundness theorem:

Proposition F.2 (Soundness). If R[𝐴],G[𝐴] |=𝐴 {𝑃 [𝐴]} 𝑀 [𝐴] {𝑄 [𝐴]} and (𝜈 ′𝐸 : †E, 𝜈𝐸 : †E)
is a linearizable concurrent object then

𝜈 ′𝐸 ; ⟦𝑀 [𝐴]⟧ ∩ 𝜈 ′𝐹 ⊆ 𝐾Conc 𝜈𝐹

Although we present the simplest version of our program logic, it can be extended without much

trouble. A straight-forward, but useful extension is to keep track of a set of possibilities instead.

While we believe that this program logic is complete as is, keeping track of a set of possibilities

affords the user extra flexibility in verification. For instance, they may choose to simply keep track

of every linearized trace that is valid at each point, instead of keeping track of a single concurrent

trace representing them.

F.3 The MiddleQueue Concurrent Object
Consider a concurrent object with signature

MidQueue := {middeq : N, enq : N→ 1}
Its semantics is similar to a regular queue. An enq(𝑛) adds 𝑛 to the end of the queue, like the usual

enq in a queue object. middeq(), on the other hand, instead of dequeuing the front element of the

queue, dequeues the center element of the queue (if the queue is even-length, it returns the nearest

of the two elements to front of the queue).
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We argue now that Khyzha et al. [2017]’s methodology cannot prove the middle queue object

is linearizable. The issue is in that they keep as invariant that every linearization of their possi-

bility, represented as an interval partial order, is valid (in the sense that it satisfies the linearized

specification). Consider the trace:

𝑠 = 𝛼1𝛼1𝛼1:::enq(1) · 𝛼2𝛼2𝛼2:::enq(2) · 𝛼3𝛼3𝛼3:::enq(3) · 𝛼1𝛼1𝛼1:::ok · 𝛼2𝛼2𝛼2:::ok · 𝛼3𝛼3𝛼3:::ok · 𝛼4𝛼4𝛼4:::middeq · 𝛼4𝛼4𝛼4:::2
We will write:

𝑡𝑥,𝑦,𝑧 = 𝛼𝑥𝛼𝑥𝛼𝑥 :::enq(𝑥) · 𝛼𝑥𝛼𝑥𝛼𝑥 :::ok · 𝛼𝑦𝛼𝑦𝛼𝑦:::enq(𝑦) · 𝛼𝑦𝛼𝑦𝛼𝑦:::ok · 𝛼𝑧𝛼𝑧𝛼𝑧:::enq(𝑧) · 𝛼𝑧𝛼𝑧𝛼𝑧:::ok · 𝛼4𝛼4𝛼4:::middeq · 𝛼4𝛼4𝛼4:::2
The only two valid linearizations of 𝑠 are 𝑡1,2,3 and 𝑡3,2,1. Because of happens before ordering, the

least ordered interval partial order that can be kept at this point is

𝛼1𝛼1𝛼1:::enq(1) 𝛼1𝛼1𝛼1:::ok

𝛼2𝛼2𝛼2:::enq(2) 𝛼2𝛼2𝛼2:::ok 𝛼4𝛼4𝛼4:::middeq 𝛼4𝛼4𝛼4:::2

𝛼3𝛼3𝛼3:::enq(3) 𝛼3𝛼3𝛼3:::ok

This partial order does not satisfy their invariant as 𝑡2,1,3, 𝑡2,3,1, 𝑡1,3,2, 𝑡3,1,2 are not valid linearization

but are a linearization of this partial order. We must therefore use a more ordered partial order that

orders the enq(2) between the enq(1) and the enq(3) to rule out these linearizations. So we must

choose between

𝛼1𝛼1𝛼1:::enq(1) 𝛼1𝛼1𝛼1:::ok 𝛼2𝛼2𝛼2:::enq(2) 𝛼2𝛼2𝛼2:::ok 𝛼3𝛼3𝛼3:::enq(3) 𝛼3𝛼3𝛼3:::ok 𝛼4𝛼4𝛼4:::middeq 𝛼4𝛼4𝛼4:::2

and

𝛼3𝛼3𝛼3:::enq(3) 𝛼3𝛼3𝛼3:::ok 𝛼2𝛼2𝛼2:::enq(2) 𝛼2𝛼2𝛼2:::ok 𝛼1𝛼1𝛼1:::enq(1) 𝛼1𝛼1𝛼1:::ok 𝛼4𝛼4𝛼4:::middeq 𝛼4𝛼4𝛼4:::2

But no choice is sound at this point, as we can invalidate each choice by extending the trace with

𝛼4𝛼4𝛼4:::middeq ·𝛼4𝛼4𝛼4:::2 or 𝛼4𝛼4𝛼4:::middeq ·𝛼4𝛼4𝛼4:::1, respectively. As our invariant merely requires us to guarantee

that there exists a valid linearization for our possibility, we are able to keep the least ordered interval

partial order we showed without harm.

F.4 Soundness
We briefly outline the key reasons why the operational semantics agrees with the denotation.

Proposition F.3. For any𝑀 ∈ CMod, ⟦𝑀⟧ is a strategy of type †E ⊸ †F and given 𝜈𝐸 : †E,
⟦Link 𝜈𝐸 ;𝑀⟧ = 𝜈𝐸 ; ⟦𝑀⟧

Proof. The proof for this is straight-forward, but tedious, and therefore we merely give the

outline. ⟦𝑀⟧ is well-defined, as by definition of ModState, the play in the state is a play of 𝑃†E⊸†F.
Moreover, it is prefix-closed and receptive by definition. Now, that

⟦𝑀⟧ =∥𝛼 ∈Υ 𝜄𝛼 (𝜋𝛼⟦𝑀⟧)
follows from the fact that in the concurrent semantics, in any state, any agent can take a step.

Moreover, a step either does not modify the underlying state 𝑠 (in the case of id, ret − or assert(−)),
or, in the case of 𝑥 ← 𝑒 (𝑎) it either adds the move 𝛼𝛼𝛼:::𝑒 (𝑂-position case) or some response 𝛼𝛼𝛼:::𝑣 (𝑃-

position case). Hence, any (sequentially consistent) interleaving of the projections can be produced.

So it remains to prove that 𝜋𝛼 (⟦𝑀⟧) is always a sequential implementation. Was it not for the local

environment, this would be immediate, as between an 𝑂-move 𝑓 ∈ F and its response the executed

code is generated from the same command𝑀 [𝛼] 𝑓 . Now, the local environment is emptied on every
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response in F, hence on every 𝑂 move in F it is empty prior to the invocation. Hence, under the

same arguments, the same traces are produced by𝑀 [𝛼] 𝑓 every time, which implies regularity. That

⟦Link 𝜈𝐸 ;𝑀⟧ = 𝜈𝐸 ; ⟦𝑀⟧
can be observed from the fact that the operational semantics merely restricts steps to those that

play as 𝜈𝐸 in the source component, which is the same as composing with 𝜈𝐸 . □

Our proof of soundness is adapted from that from Khyzha et al. [2017]. Define rely(R, 𝑃) of a
pre-condition 𝑃 by a rely R:

rely(R, 𝑃) = 𝑃 ∪ R ◦ 𝑃
Then, we define the judgment

safe𝛼 (R,G, 𝑃, 𝑠,𝑄)
inductively as follows:

rely(R, 𝑃) ⊆ 𝑄 ◦ 𝑃0
safe𝛼 (R,G, 𝑃0, 𝑃, skip, 𝑄)

Done

∀𝐶 ′.𝐶 ↣𝑋
𝐵 𝐶

′⇒ ∃𝑃 ′.R,G |=𝛼 {rely(R, 𝑃)} 𝐵 {𝑃 ′} Prim
safe𝛼 (R,G, 𝑃0, 𝑃 ′ ◦ rely(R, 𝑃),𝐶 ′, 𝑄)

safe𝛼 (R,G, 𝑃0, 𝑃,𝐶,𝑄)
Step

A straight-forward proof by induction shows that.

Lemma F.4. If
R,G |=𝛼 {𝑃} 𝑠 {𝑄}

then
safe𝛼 (R,G, 𝑃, 𝑃, 𝑠,𝑄)

Proposition F.5 (Soundness). If R[𝐴],G[𝐴] |=𝐴 {𝑃 [𝐴]} 𝑀 [𝐴] {𝑄 [𝐴]} and (𝜈 ′𝐸 : †E, 𝜈𝐸 : †E)
is a linearizable concurrent object then

𝜈 ′𝐸 ; ⟦𝑀 [𝐴]⟧ ∩ 𝜈 ′𝐹 ⊆ 𝐾Conc 𝜈𝐹

Proof. Start by noting that by assumption and Prop. 5.6 it follows that if

𝜈𝐸 ; ⟦𝑀 [𝐴]⟧ ∩ 𝜈 ′𝐹 ⊆ 𝐾Conc 𝜈𝐹

then

𝜈 ′𝐸 ; ⟦𝑀 [𝐴]⟧ ∩ 𝜈 ′𝐹 ⊆ 𝜈𝐸 ; ⟦𝑀 [𝐴]⟧ ∩ 𝜈 ′𝐹 ⊆ 𝐾Conc 𝜈𝐹

so it is enough to show

𝜈𝐸 ; ⟦𝑀 [𝐴]⟧ ∩ 𝜈 ′𝐹 ⊆ 𝐾Conc 𝜈𝐹

By definition

𝑃 [𝐴] =
⋂
𝛼 ∈𝐴

𝑃 [𝛼] 𝑄 =
⋃
𝛼 ∈𝐴

𝑄 [𝛼]

where for each 𝛼 ∈ 𝐴
𝑃 [𝛼] =

⋂
𝑓 ∈𝐹

𝑃 [𝛼] 𝑓 𝑄 [𝛼] =
⋃
𝑓 ∈𝐹

𝑄 [𝛼] 𝑓

moreover, for every 𝛼 ∈ 𝐴 such that

R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼]} 𝑀 [𝛼] {𝑄 [𝛼]}
and hence for every 𝑓 ∈ 𝐹 :

R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼] 𝑓 } 𝑀 [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }
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We prove the result by induction on the length of

⟨𝑐0,∆0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,∆, 𝑠⟩

for which we maintain the invariant that

𝑠↾F ∈ 𝜈 ′𝐹
and that there is a position 𝜌𝐹 such that

𝑠↾F d 𝜌𝐹

and that there are pre-conditions 𝑃𝛼 for every 𝛼 ∈ 𝐴 such that

(∆, 𝑠, 𝜌𝐹 ) ∈ 𝑃𝛼 stable(R[𝛼], 𝑃𝛼 )
and moreover:

𝑐 (𝛼) = idle⇒ 𝑃𝛼 ⊆ idle𝛼 ∧ 𝑃𝛼 ⊆ 𝑃 [𝛼]

𝑐 (𝛼) ≠ idle⇒ ∃𝑓 ∈ 𝐹 .safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑃𝛼 , 𝑐 (𝛼), returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )
We note at this point that if this invariant holds about 𝑝 = 𝑠 then in particular

𝑠↾F d 𝜌𝐹

and by the definition of possibility and Prop. 5.3 it follows that

𝑠↾F ∈ 𝐾Conc 𝜈𝐹

We now start the proof proper. We will not bother with the invariant 𝑠↾F ∈ 𝜈 ′𝐹 from the definitions

of invoke, return and Prim. In the case where

⟨𝑐,∆, 𝑠⟩ = ⟨𝑐0,∆0, 𝜖⟩
we set 𝑃𝛼 = 𝑃 [𝛼] and 𝜌𝐹 = 𝜖 . Most of the invariants are easily established. We stress the invariants

around 𝑃𝛼 . Note that in this case 𝑐 (𝛼) = idle. Now note that (∆, 𝑝, 𝜌𝐹 ) ∈ idle𝛼 for every 𝛼 ∈ 𝐴 by

definition. Moreover

𝑃𝛼 = 𝑃 [𝛼] = ∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓 ⊆ idle𝛼
by assumption that ConcImpl holds. By definition:

𝑃𝛼 = 𝑃 [𝛼] ⊆ 𝑃 [𝛼]
Furthermore,

(∆, 𝑝, 𝜌𝐹 ) ∈ 𝑃𝛼 stable(R[𝛼], 𝑃𝛼 )
by ConcImpl, and 𝑃 [𝛼] is stable by ConcImpl.

For the inductive step we have that

⟨𝑐0,∆0, 𝜖⟩ −↠𝑀
𝜈𝐸
⟨𝑐,∆, 𝑠⟩ −↠𝑀

𝜈𝐸
⟨𝑐 ′,∆′, 𝑠 ′⟩

Moreover, we have

𝑠↾F d 𝜌𝐹

and a pre-condition 𝑃𝛼 for each agent 𝛼 ∈ 𝐴 such that

(∆, 𝑠, 𝜌𝐹 ) ∈ 𝑃𝛼 stable(R[𝛼], 𝑃𝛼 )
and moreover:

𝑐 (𝛼) = idle⇒ 𝑃𝛼 ⊆ idle𝛼 ∧ 𝑃𝛼 ⊆ 𝑃 [𝛼]

𝑐 (𝛼) ≠ idle⇒ ∃𝑓 ∈ 𝐹 .safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑃𝛼 , 𝑐 (𝛼), returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



A Compositional Theory of Linearizability 38:63

We split the proof into cases depending on the continuation for the agent 𝛼 that modifies the

state in the last step.

𝑐 (𝛼) = idle Note that in this case, 𝑐 ′ = 𝑐 [𝛼 : 𝑀 [𝛼] 𝑓 ] for some 𝑓 ∈ 𝐹 , 𝑠 ′ = 𝑠 · 𝛼𝛼𝛼:::𝑓 . By the

invariant, 𝑃𝛼 ⊆ idle𝛼 , and in particular (∆, 𝑠, 𝜌𝐹 ) ∈ idle𝛼 . Let (∆′, 𝑠 ′, 𝜌 ′𝐹 ) be such that 𝜌 ′
𝐹
is

any 𝜌 ′
𝐹
such that

(𝑠, 𝜌𝐹 ) invoke𝛼 (𝑓 ) (𝑝 ′, 𝜌 ′𝐹 )
Note that as (∆, 𝑠, 𝜌𝐹 ) ∈ idle𝛼 it immediately follows that there is exactly one such 𝜌 ′

𝐹
(given

by just appending 𝛼𝛼𝛼:::𝑓 to 𝜌𝐹 ). We argue that:

{𝑠 ′↾F} d 𝜌 ′𝐹

By definition,

𝜌 ′𝐹 = 𝜌𝐹 · 𝛼𝛼𝛼:::𝑓
Now, by induction there is 𝑡𝑃 such that

𝑠↾F · 𝑡𝑃 ⇝†F 𝜌𝐹
but then

𝑠↾F · 𝛼𝛼𝛼:::𝑓 · 𝑡𝑃 ⇝†F 𝑠↾F · 𝑡𝑃 · 𝛼𝛼𝛼:::𝑓 ⇝†F 𝜌𝐹 · 𝛼𝛼𝛼:::𝑓 = 𝜌𝐹

it follows that

{𝑠 ′↾F} d 𝜌 ′𝐹
Note moreover that as (∆, 𝑠, 𝜌𝐹 ) ∈ 𝑃𝛼 , by induction

(∆, 𝑝, 𝜌𝐹 ) ∈ 𝑃𝛼 ⊆ 𝑃 [𝛼] ⊆ 𝑃 [𝛼] 𝑓

and by construction

(∆, 𝑝, 𝜌𝐹 ) invoke𝛼 (𝑓 ) (∆′, 𝑝 ′, 𝜌 ′𝐹 )
so that

(∆′, 𝑝 ′, 𝜌 ′𝐹 ) ∈ invoke𝛼′ (𝑓 ) ◦ 𝑃 [𝛼 ′] 𝑓

In addition, by assumption

R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 } 𝑀 [𝛼] 𝑓 {returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 }
By Lemma F.4 it follows that

safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑀 [𝛼] 𝑓 , returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )

and

stable(R[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 )
so if we let

𝑃 ′𝛼 = rely(R, invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 )
Then it is almost immediate from the definition of safe that

safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑃 ′𝛼 , 𝑀 [𝛼] 𝑓 , returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )
Moreover, by definition 𝑃 ′𝛼 is stable. Hence, 𝑃 ′𝛼 satisfies all the necessary invariants.

Now, for 𝛼 ′ ∈ 𝐴 such that 𝛼 ≠ 𝛼 ′ we set 𝑃 ′
𝛼′ = 𝑃𝛼′ . We must show that (∆′, 𝑠 ′, 𝜌 ′

𝐹
) ∈ 𝑃𝛼′ . For

that, note that by induction 𝑃𝛼′ is stable and by assumption R[𝛼 ′] contains invoke𝛼 (𝑓 ) ⊆
invoke𝛼 (−) so that 𝑃𝛼′ is stable under invoke𝛼 (𝑓 ). Now, (∆′, 𝑠 ′, 𝜌 ′𝐹 ) ∈ idle𝛼 ⇐⇒ (∆, 𝑠, 𝜌𝐹 ) ∈
idle𝛼 by definition. It is obvious that if (∆′, 𝑠 ′, 𝜌 ′

𝐹
) ∈ idle𝛼 then all the conditions are still

satisfied by induction. Finally, if (∆′, 𝑠 ′, 𝜌 ′
𝐹
) ∉ idle𝛼 then there is an operation 𝑓 ′ for which it

holds that

safe𝛼′ (R[𝛼 ′],G[𝛼 ′], invoke𝛼′ (𝑓 ′) ◦ 𝑃 [𝛼 ′] 𝑓
′
, 𝑃𝛼′, 𝑐 (𝛼 ′), returned𝛼′ (𝑓 ′) ◦𝑄 [𝛼 ′] 𝑓

′)
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But then, it is immediate that 𝑐 ′(𝛼 ′) = 𝑐 (𝛼 ′) so that

safe𝛼′ (R[𝛼 ′],G[𝛼 ′], invoke𝛼′ (𝑓 ′) ◦ 𝑃 [𝛼 ′] 𝑓
′
, 𝑃𝛼′, 𝑐

′(𝛼 ′), returned𝛼′ (𝑓 ′) ◦𝑄 [𝛼 ′] 𝑓
′)

𝑐 (𝛼) = skip In this case it must be that 𝑐 ′ = 𝑐 [𝛼 : idle], 𝑠 ′ = 𝑠 · 𝛼𝛼𝛼:::𝑣 for some 𝑣 ∈ ar(𝑓 ) and
Δ′ = Δ[𝛼 : ∅]. By induction there exists 𝑓 ∈ 𝐹 such that (note that the 𝑓 may be taken to be

the same because of the definition of safe and the fact that 𝑠 ′ = 𝑠 · 𝛼𝛼𝛼:::𝑣 is a valid play)

safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑃𝛼 , 𝑐 (𝛼), returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )
In this case safe𝛼 consists of a Done rule, and therefore:

rely(R, 𝑃𝛼 ) ⊆ return𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓

In particular

(∆, 𝑠, 𝜌𝐹 ) ∈ 𝑃𝛼 ⊆ rely(R, 𝑃𝛼 ) ⊆ returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓

Therefore, 𝜌𝐹 already has the return 𝑣 to 𝑓 for 𝛼 . Then, we have that if we let 𝜌 ′
𝐹
= 𝜌𝐹 then:

(∆, 𝑠, 𝜌𝐹 ) return𝛼 (𝑓 ) (∆′, 𝑠 ′, 𝜌 ′𝐹 )
Moreover, by induction

𝑠↾F d 𝜌𝐹

and therefore there is 𝑡𝑃 proving the above derivation. Now,

𝑠 ′↾F = 𝑠↾F · 𝛼𝛼𝛼:::𝑣
Hence

𝑠 ′↾F d𝜈𝐹 𝜌
′
𝐹 = 𝜌𝐹

by choosing 𝑡 ′
𝑃
= 𝑡𝑃 \𝛼𝛼𝛼:::𝑣 . So, we set

𝑃 ′𝛼 = 𝑃 [𝛼]
Then, by construction and by LocalImpl:

(∆′, 𝑝 ′, 𝜌 ′𝐹 ) ∈ return𝛼 (𝑓 ) ◦ returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 ◦ invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 ⊆ 𝑃 ′𝛼
stable(R[𝛼], 𝑃 ′𝛼 )

Moreover,

𝑃 ′𝛼 = 𝑃 [𝛼] ⊆ idle𝛼
and

𝑃 ′𝛼 = 𝑃 [𝛼] ⊆ 𝑃 [𝛼]
For the other agents 𝛼 ′ ∈ 𝐴 the invariants all hold by induction by setting 𝑃 ′

𝛼′ = 𝑃𝛼′ . Indeed,

the point of pressure is showing that (∆′, 𝑠 ′, 𝜌 ′
𝐹
) ∈ 𝑃 ′

𝛼′ but 𝑃
′
𝛼′ is stable under return𝛼′ (−) by

assumption (∆, 𝑝, 𝜌𝐹 ) ∈ 𝑃𝛼′ so that (∆′, 𝑝 ′, 𝜌 ′
𝐹
) ∈ 𝑃 ′

𝛼′ .

𝑐 (𝛼) = 𝐶 and 𝐶 ≠ skip In this case, we have that 𝐶 ↣𝑋
𝐵
𝐶 ′ and (∆′, 𝑠 ′) ∈ ⟦𝐵⟧𝛼 (∆, 𝑠). The

interesting case is when 𝐵 is an command issuing an effect from 𝐸, so we assume 𝑠 ′ = 𝑠 ·𝛼𝛼𝛼:::𝑚
where𝑚 is the move resulting from 𝐵. Moreover, there is some 𝑓 ∈ 𝐹

safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑃𝛼 ,𝐶, returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )
Now, notice that it follows by safe𝛼 that

∃𝑃 ′.R,G |=𝛼 {rely(R[𝛼], 𝑃𝛼 )} 𝐵 {𝑃 ′}
and

safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑃 ′ ◦ rely(R, 𝑃𝛼 ),𝐶 ′, returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )
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Now, by assumption (∆, 𝑝, 𝜌𝐹 ) ∈ 𝑃𝛼 and 𝑠↾E · 𝛼𝛼𝛼:::𝑚 ∈ 𝜈𝐸 . Therefore, by
R[𝛼],G[𝛼] |=𝛼 {rely(R[𝛼], 𝑃𝛼 )} 𝐵 {𝑃 ′}

it follows that there is some 𝜌 ′
𝐹
such that

(∆, 𝑝, 𝜌𝐹 ) 𝑃 ′ (∆′, 𝑠 · 𝛼𝛼𝛼:::𝑚, 𝜌 ′𝐹 ) (∆, 𝑠, 𝜌𝐹 ) G (∆′, 𝑠 · 𝛼𝛼𝛼:::𝑚, 𝜌 ′𝐹 ) 𝜌𝐹 d 𝜌 ′𝐹

by assumption

𝑠↾F d 𝜌𝐹

so that

𝑠 ′↾F = 𝑠↾F d 𝜌𝐹 d 𝜌 ′𝐹
Moreover, if we set 𝑃 ′𝛼 = 𝑃 ′ ◦ rely(R[𝛼], 𝑃𝛼 ) then

safe𝛼 (R[𝛼],G[𝛼], invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 , 𝑃 ′𝛼 ,𝐶 ′, returned𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 )
and moreover

(∆′, 𝑠 ′, 𝜌 ′𝐹 ) ∈ 𝑃 ′𝛼
which meets all of the necessary invariants.

For agents 𝛼 ′ ∈ 𝐴 such that 𝛼 ≠ 𝛼 ′, the invariants all still hold by induction, except for

perhaps (∆′, 𝑝 ′, 𝜌 ′
𝐹
) ∈ 𝑃𝛼′ . But as

(∆, 𝑝, 𝜌𝐹 ) G[𝛼 ′] (∆′, 𝑝 ′, 𝜌 ′𝐹 )
and

(∆, 𝑝, 𝜌𝐹 ) ∈ 𝑃𝛼′
it follows from assumption that

G[𝛼] ⊆ R[𝛼 ′]
and by stability that

(∆′, 𝑝 ′, 𝜌 ′𝐹 ) ∈ 𝑃𝛼′
as desired.

□

G VERIFICATION OF A TICKET LOCK AND SHARED QUEUE IMPLEMENTATIONS
In this section we give detailed proofs, using the program logic from §F, that the components in §2

assemble into certified linearizable object implementations. In G.1 we show the proof for the ticket

lock implementation𝑀lock, and in G.2 for𝑀squeue.

For practical purposes it is often useful to assume 𝜈 ′
𝐹
is not receptive. This does not affect the

result as if 𝜈 ′
𝐹
⊆ 𝐾Conc 𝜈𝐹 then strat

(
𝜈 ′
𝐹

)
⊆ 𝐾Conc 𝜈𝐹 , and similarly for 𝜈𝐸 ; ⟦𝑀⟧.

G.1 Ticket Lock
Here, we assume that

(𝜈 ′
fai

: †FAI, 𝜈fai : †FAI) (𝜈 ′counter : †Counter, 𝜈counter : †Counter) (𝜈 ′yield : †Yield, 𝜈yield : †Yield)

are linearizable objects. Therefore, by locality

(𝜈 ′𝐸, 𝜈𝐸) := (𝜈 ′fai ⊗ 𝜈
′
counter

⊗ 𝜈 ′
yield

, 𝜈fai ⊗ 𝜈counter ⊗ 𝜈yield)

is a linearizable object. We therefore seek to show that

⟦𝑀lock⟧ : (𝜈 ′𝐸, 𝜈𝐸) −→ (strat
(
𝜈 ′
lock

)
, 𝜈lock)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



38:66 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

by using our program logic. By the remarks at the beginning of this section, here 𝜈 ′
lock

is the set of

plays 𝑠 ∈ 𝑃†Lock such that

∀𝛼 ∈ Υ.∃𝑡 ∈ (acq · ok · rel · ok)∗ .𝜋𝛼 (𝑠) ⊑ 𝑡
we are allowed to take this 𝜈 ′

lock
, which is not receptive, because of the remarks in the beginning of

this section. With the proof setup explained, we proceed to the proof proper.

We apply the program logic developed in §F on the ticket lock implementation discussed in

§2.2.2. In particular, we concern ourselves to the adapted implementation in Figure 7, written in

the language introduced in §F.1, and already de-sugared.

1 acq() {

2 my_tick <- fai();

3 ( assert (cur_tick ≠ my_tick );

4 yield ();

5 cur_tick <- get() )* ;

6 assert (cur_tick = my_tick );

7 ret ok

8 }

1 rel() {

2 inc();

3 ret ok

4 }

Fig. 7. Ticket Lock Implementation in language developed in §F.1

Before go into details, we briefly describe the intuition behind ticket locks. Each agent tries to

acquire a lock first by atomically fetching a ticket number and incrementing its value, making sure

the next agent will get a greater ticket number. Afterwards, each agent waits for the “now serving”

counter to become its ticket number, at which point they are granted access to the shared resource

protected by the lock. When the lock holder tries to release the lock, it simply (non-atomically)

increments the counter value. Part of the correctness proof is to establish that write-write will

never happen on the counter, otherwise it would lead to undefined behavior.

Formally, we need to prove the following judgment,

R[Υ],G[Υ] |=Υ {𝑃 [𝐴]} 𝑀Lock [Υ] {𝑄 [𝐴]}
according to the Conc Impl and Local Impl rule and symmetry, in addition to other obligations,

we need to find a definition of 𝑃 [𝛼] 𝑓 and𝑄 [𝛼] 𝑓 for 𝑓 ∈ {acq, rel}, R[𝛼], and G[𝛼] (same for every

𝛼 ∈ Υ) such that the following three judgments holds,

R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼]acq} 𝑀Lock [𝛼]acq {𝑄 [𝛼]acq}
R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼]rel} 𝑀Lock [𝛼]rel {𝑄 [𝛼]rel}

∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ =⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−,−) ⊆ R[𝛼 ′]
To define preconditions and postconditions of acquire and release and rely/guarantee conditions,

it would be helpful to have access to the current counter value, ticket value, lock owner, etc., in

addition to the history. To this end, we define a set of functions that take different types of plays to

calculate these state values.

We first define three functions over lock events,

linowner : 𝑃!Lock → Υ + {∅} + {⊥} lin : 𝑃†Lock → 𝑃!Lock owner : 𝑃†Lock → Υ + {∅} + {⊥}

linowner(𝑝) :=


∅ 𝑝 = 𝜖

𝛼 𝑝 = 𝑝 ′ · 𝛼𝛼𝛼:::acq · 𝛼𝛼𝛼:::ok ∧ linowner(𝑝 ′) = ∅
∅ 𝑝 = 𝑝 ′ · 𝛼𝛼𝛼:::acq · 𝛼𝛼𝛼:::ok · 𝛼𝛼𝛼:::rel · 𝛼𝛼𝛼:::ok ∧ linowner(𝑝 ′) = ∅
⊥ otherwise
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lin(𝑝) := 𝑝 ′ s.t. 𝑝 ′ ∈ 𝑃
!Lock ∧ 𝑝 ′ ⊑ 𝑝 ∧ linowner(𝑝 ′) ≠ ⊥ ∧ (∀𝑝 ′′.𝑝 ′′ ⊑ 𝑝 ∧ linowner(𝑝 ′′) ≠ ⊥ =⇒ 𝑝 ′′ ⊑ 𝑝 ′)

owner(𝑝) := linowner(lin(𝑝))

linowner takes an atomic play of Lock as input. It checks for the lock invariant (acquire is always

followed by release of the same thread) and returns the current owner agent. The function lin takes

a concurrent play of Lock and returns the longest prefix of it that is atomic and satisfies the lock

invariant. Finally, the function owner takes any concurrent play of Lock and returns the owner

calculated by linowner ◦ lin.
We then define three functions over underlay events ctrval : 𝑃†Counter⊗†FAI⊗†Yield → N + {⊥},

mytkt : 𝑃†Counter⊗†FAI⊗†Yield → N + {∅}, and newtkt : 𝑃†Counter⊗†FAI⊗†Yield → N.

ctrval(𝑝) :=
{⌈ | (𝑝↾Counter)↾{inc:1} |

2

⌉
(𝑝↾Counter)↾{inc:1} ∈ 𝑃!{inc:1}

⊥ otherwise

ctrval accepts any trace that contains only atomic {inc : 1} sequences for the Counter object. It
returns the number of inc calls in the trace, which is also the return value of get if invoked at the

time, according to 𝜈Counter.

mytkt𝛼 (𝑝) :=
{
𝑛 ∃𝑝 ′, 𝑝 ′′.𝜋𝛼 (𝑝) = 𝑝 ′ · fai · 𝑛 · 𝑝 ′′ ∧ 𝑝 ′′ ⊑ (yield · ok · get · 𝑛′)∗ · inc
∅ otherwise

newtkt(𝑝) :=
⌈ ��(𝑝↾FAI)↾{fai:N}��

2

⌉
mytkt𝛼 returns the current ticket for a particular agent. It will only return if the ticket is still active,

i.e., the agent has already acquired a ticket in acq but haven’t reached the linearization point in the

matching rel. On the other hand, newtkt always returns the next ticket to be issued.

With the helper functions defined, we can now state the preconditions and postconditions as

follows,

acqed[𝛼] (∆, 𝑠, 𝜌) ⇐⇒ 𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝜌) ≠ 𝛼
reled[𝛼] (∆, 𝑠, 𝜌) ⇐⇒ 𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝜌) = 𝛼

𝑃 [𝛼]acq := reled[𝛼] ∩ idle𝛼
(∆, 𝑠, 𝜌) 𝑄 [𝛼]acq (∆′, 𝑠 ′, 𝜌 ′) ⇐⇒ acqed[𝛼] (∆′, 𝑠 ′, 𝜌 ′)

𝑃 [𝛼]rel := acqed[𝛼] ∩ idle𝛼
(∆, 𝑠, 𝜌) 𝑄 [𝛼]rel (∆′, 𝑠 ′, 𝜌 ′) ⇐⇒ reled[𝛼] (∆′, 𝑠 ′, 𝜌 ′)

One may notice that postconditions, while being an relation, is only predicated over the post-

state. This is true for most of the reasoning except for the linearization point as we shall see later.

All predicates (relations) are composed of a shared invariant 𝐼 and an ownership assertion. The
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definition of 𝐼 is given below,

mytick[𝛼] (∆, 𝑠) ⇐⇒ ∆(𝛼) (my_tick) ≠ ⊥ =⇒ ∆(𝛼) (my_tick) = mytkt𝛼 (𝑠)
curtick[𝛼] (∆, 𝑠) ⇐⇒ ∆(𝛼) (cur_tick) ≠ ⊥ =⇒ ∃𝑠 ′.𝑠 ′ ⊑ 𝑠 ∧ ctrval(𝑠 ′) = ∆(𝛼) (cur_tick)

𝐼 [𝛼] (∆, 𝑠, 𝜌) ⇐⇒

©­­­­­­­­­­­­«

owner(𝜌) ≠ ⊥ ∧ ctrval(𝑠) ≠ ⊥ ∧
mytkt𝛼 (𝑠) ≠ ∅ =⇒ ctrval(𝑠) ≤ mytkt𝛼 (𝑠) ∧

ctrval(𝑠) ≤ newtkt(𝑠) ∧
mytkt𝛼 (𝑠) = ctrval(𝑠) =⇒ owner(𝜌) ∈ {∅, 𝛼} ∧
newtkt(𝑠) = ctrval(𝑠) =⇒ owner(𝜌) = ∅ ∧
owner(𝜌) = 𝛼 =⇒ mytkt𝛼 (𝑠) = ctrval(𝑠) ∧

mytick[𝛼] (Δ, 𝑠) ∧ curtick[𝛼] (Δ, 𝑠)

ª®®®®®®®®®®®®¬
The invariant 𝐼 not only relates the local environment to the shared objects, it also specify the

expected behavior of shared objects, such as the current value of the counter object is never greater

than the next ticket to be dispensed. As we shall describe later, we also maintain 𝐼 during execution

inside the functions.

To prove R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼] 𝑓 } 𝑀Lock [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }, we need such a R[𝛼] that both

stable(R, 𝑃 [𝛼] 𝑓 ) and stable(R, 𝑄 [𝛼] 𝑓 ) holds. We define R[𝛼] in such a way that the stability

is trivial to prove,

(∆, 𝑠, 𝜌) R[𝛼] (∆, 𝑠 ′, 𝜌 ′) ⇐⇒

©­­­­­­­­­­­­­­­­­­­­­­­­«

(∆, 𝑠, 𝜌) invoke𝐴\𝛼 (−) (∆, 𝑠 ′, 𝜌 ′)∨
(∆, 𝑠, 𝜌) return𝐴\𝛼 (−) (∆, 𝑠 ′, 𝜌 ′)∨©­­­­­­­­­­­­­­­­­­­«

owner(𝜌 ′) ≠ ⊥ ∧ ctrval(𝑠 ′) ≠ ⊥ ∧((
mytkt𝛼 (𝑠) ≠ ∅ =⇒ ctrval(𝑠) ≤ mytkt𝛼 (𝑠)

)
=⇒(

mytkt𝛼 (𝑠 ′) ≠ ∅ =⇒ ctrval(𝑠 ′) ≤ mytkt𝛼 (𝑠 ′)
)) ∧

ctrval(𝑠 ′) ≤ newtkt(𝑠 ′) ∧((
mytkt𝛼 (𝑠) = ctrval(𝑠) =⇒ owner(𝜌) ∈ {∅, 𝛼}

)
=⇒(

mytkt𝛼 (𝑠 ′) = ctrval(𝑠 ′) =⇒ owner(𝜌 ′) ∈ {∅, 𝛼}
)) ∧

newtkt(𝑠 ′) = ctrval(𝑠 ′) =⇒ owner(𝜌 ′) = ∅ ∧
owner(𝜌) = 𝛼 =⇒ (lin(𝜌) = lin(𝜌 ′) ∧ ctrval(𝑠) = ctrval(𝑠 ′)) ∧

owner(𝜌) ≠ 𝛼 =⇒ owner(𝜌 ′) ≠ 𝛼

ª®®®®®®®®®®®®®®®®®®®¬

ª®®®®®®®®®®®®®®®®®®®®®®®®¬
while the stability of the invariant 𝐼 is mostly self-evident, we will present the stability argument

for the ownership assertions below,

• If owner(𝜌) = 𝛼 , we can rely on that lin(𝜌) = lin(𝜌 ′), through the definition of owner we
can deduce that owner(𝜌 ′) = owner(𝜌) = 𝛼 . With a similar argument we can also deduce

that mytkt𝛼 (𝑠 ′) = ctrval(𝑠 ′) assuming ownership of the lock,

• If owner(𝜌) ≠ 𝛼 , the last conjunct of R[𝛼] enforces that we won’t become the owner by any

other agent’s action.

In addition to R[𝛼], we also need to define G[𝛼] such that G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−,−) ⊆
R[𝛼] holds. Similar to the design of R[𝛼], we define G[𝛼] in such a way that the subset relation is
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trivial,

(∆, 𝑠, 𝜌) G[𝛼] (∆, 𝑠 ′, 𝜌 ′) ⇐⇒

©­­­­­­­­­­­­­­­­­­­­­«

owner(𝜌 ′) ≠ ⊥ ∧ ctrval(𝑠 ′) ≠ ⊥ ∧

∀𝛼 ′.
((
mytkt𝛼′ (𝑠) ≠ ∅ =⇒ ctrval(𝑠) ≤ mytkt𝛼′ (𝑠)

)
=⇒(

mytkt𝛼′ (𝑠 ′) ≠ ∅ =⇒ ctrval(𝑠 ′) ≤ mytkt𝛼′ (𝑠 ′)
)) ∧

ctrval(𝑠 ′) ≤ newtkt(𝑠 ′) ∧

∀𝛼 ′.
((
mytkt𝛼′ (𝑠) = ctrval(𝑠) =⇒ owner(𝜌) ∈ {∅, 𝛼 ′}

)
=⇒(

mytkt𝛼′ (𝑠 ′) = ctrval(𝑠 ′) =⇒ owner(𝜌 ′) ∈ {∅, 𝛼 ′}
)) ∧

newtkt(𝑠 ′) = ctrval(𝑠 ′) =⇒ owner(𝜌 ′) = ∅ ∧
owner(𝜌) ∉ {∅, 𝛼} =⇒ lin(𝜌) = lin(𝜌 ′) ∧
owner(𝜌) ≠ 𝛼 =⇒ ctrval(𝑠) = ctrval(𝑠 ′) ∧

owner(𝜌 ′) ∈ {∅, 𝛼, owner(𝜌)}}

ª®®®®®®®®®®®®®®®®®®®®®¬
Most conjuncts in R have direct correspondence in G, and we will present a short argument for

those doesn’t. Assuming 𝛼 is the rely agent and 𝛼 ′ is the actor (guarantee) agent,

• if owner(𝜌) = 𝛼 and therefore owner(𝜌) ≠ 𝛼 ′, by the second and third last conjuncts in

G[𝛼 ′], we know that lin(𝜌) = lin(𝜌 ′) and ctrval(𝑠) = ctrval(𝑠 ′),
• if owner(𝜌) ≠ 𝛼 , we know from the last conjunct that owner(𝜌) can only be ∅, 𝛼 ′, or
owner(𝜌), none of which is 𝛼 .

Even though the R[𝛼] and G[𝛼] are defined in such a way that the stability and subset relation

are easy to verify, it remains to be proven that G[𝛼] is correct with respect to the implementation,

though G[𝛼] is held trivially at steps that don’t update 𝑠 or 𝜌 .

Now that we have all the proof obligations defined, we will prove that

R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼] 𝑓 } 𝑀Lock [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }

using the primitive rule and structure rules. The general idea is to prove that, in the case for acquire

and symmetric for release, reled[𝛼] 𝑓 is maintained at every step, in the form of

{reled[𝛼] (∆, 𝑠, 𝜌)} 𝐵 {reled[𝛼] (∆′, 𝑠 ′, 𝜌 ′)}

before linearization. While acqed[𝛼] is maintained at every step after linearization in the form of

{acqed[𝛼] (∆, 𝑠, 𝜌)} 𝐵 {acqed[𝛼] (∆′, 𝑠 ′, 𝜌 ′)}

At linearization points (line 6 for acq and line 2 for rel), the precondition is transformed into

corresponding postcondition while updating the possibility 𝜌 according to the commit functions

defined below,

commit[𝛼] (𝜌)acq :=
{
lin(𝜌) · 𝛼𝛼𝛼:::acq · 𝛼𝛼𝛼:::ok · 𝑝1 · 𝑝2 𝜌 = lin(𝜌) · 𝑝1 · 𝛼𝛼𝛼:::acq · 𝑝2
⊥ otherwise

G ⊢𝛼 {reled[𝛼] (∆, 𝑠, 𝜌)} assert(cur_tick = my_tick) {acqed[𝛼] (∆′, 𝑠 ′, 𝜌 ′) ∧ commit[𝛼]acq (𝜌) ⊑ 𝜌 ′}

commit[𝛼]rel (𝜌) :=
{
lin(𝜌) · 𝛼𝛼𝛼:::rel · 𝛼𝛼𝛼:::ok · 𝑝1 · 𝑝2 𝜌 = lin(𝜌) · 𝑝1 · 𝛼𝛼𝛼:::rel · 𝑝2
⊥ otherwise

G ⊢𝛼 {acqed[𝛼] (∆, 𝑠, 𝜌)} inc() {reled(∆′, 𝑠 ′, 𝜌 ′) ∧ commit[𝛼]rel (𝜌) ⊑ 𝜌 ′}
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notice we can only obtain a prefix relation in the postcondition, this is due to stability requirement

as other agents might changes 𝜌 ′ after linearization, but at least the linearized prefix is kept the

same. while the commit functions may return ⊥, the invariant 𝐼 and concurrent specification 𝜈 ′Lock
makes sure that this won’t happen during execution.

Figure 8 provides a more detailed proof sketch of acq. The green component in each assertions

are already complete for the reasoning, we highlight the crucial conjuncts inside the invariant in

the blue component to better illustrate the reasoning. We also discuss in details the crucial steps

below,

(1) on line 2, the local variable my_tick is updated to be the value of newtkt(𝑠) while simultane-

ously increasing the value of newtkt(𝑠 ′) by 1. In case of newtkt(𝑠) = ctrval(𝑠), the invariant
in the precondition implies empty ownership of the lock maintaining itself. This operation

also increment newtkt, but all guarantee conditions and invariants are justified after the

update,

(2) on line 5, the local variable cur_tick is updated to be the value of ctrval(𝑠). While the trace

𝑠 will grow in the future, we have the knowledge that there exists a prefix 𝑠 ′ of 𝑠 such that

ctrval(𝑠 ′) = Δ(cur_tick). On the other hand, since ctrval(𝑠) is non-decreasing w.r.t. 𝑠 , we
know a lower bound of the value for the future ctrval(𝑠),

(3) on line 6, we compare the value of my_tick and cur_tick, which is equal to the current

value of mytkt𝛼 (𝑠) and a lower bound of the current value ctrval(𝑠) respectively. If the
values coincides, we can deduce that mytkt𝛼 (𝑠) = ctrval(𝑠). According to the invariant in

the precondition, it implies the lock is either owned by 𝛼 or nobody. On the other hand,

we know that 𝛼 is not the owner at the beginning of the function, and it is maintained by

R[𝛼]. Therefore we know the lock is free. We then linearize the acq event at this point

by updating 𝜌 with commit[𝛼]acq. G[𝛼] is justified at this step since the only change is

owner(𝜌 ′) becoming 𝛼 , which doesn’t fit in any premises of G[𝛼].

Similarly, Figure 9 provides a proof sketch of rel and we highlight the crucial steps below,

(1) on line 2, we know that we currently holds the lock, and that currently ctrval(𝑠) =

mytkt𝛼 (𝑠) < newtkt(𝑠) from the invariant, which also implies the invariant between

newtkt(𝑠 ′) and ctrval(𝑠 ′) will be maintained after incrementing the counter. Furthermore,

we can linearize the rel event by updating 𝜌 with commit[𝛼]rel. G[𝛼] may be easily verified

except for the second conjunct, whose proof would benefit from the following lemma,

∀𝛼, 𝛼 ′ ∈ Υ.mytkt𝛼 (𝑠) ≠ ∅ ∧mytkt𝛼′ (𝑠) ≠ ∅ =⇒ mytkt𝛼 (𝑠) ≠ mytkt𝛼′ (𝑠)

in other words, no two agents share the same ticket. This is provable by the underlay spec.

𝜈FAI. Combined with the fact that ctrval(𝑠) = mytkt𝛼 (𝑠), we know ctrval(𝑠) ≠ mytkt𝛼′ (𝑠)
for all other agent 𝛼 ′ in the system. Assuming the premise of the second conjunct, we can

derive that for any other agent 𝛼 ′ such that mytkt𝛼′ (𝑠) ≠ ∅, it must be that ctrval(𝑠) <
mytkt𝛼′ (𝑠) = mytkt𝛼′ (𝑠 ′). After the increment, we would still have ctrval(𝑠 ′) ≤ mytkt𝛼′ (𝑠 ′),
therefore maintaining the same assertion.
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{invoke𝛼 (acq) ◦ 𝑃 [𝛼 ]acq }
acq() {

my_tick← fai() ;{
reled[𝛼 ] (∆, 𝑠, 𝜌) ∧ ∆(my_tick) = mytkt𝛼 (𝑠)

}
{reled[𝛼 ] (∆, 𝑠, 𝜌) ∧mytick[𝛼 ] (∆, 𝑠) }
(
{reled[𝛼 ] (∆, 𝑠, 𝜌) ∧ curtick(∆, 𝑠) }
assert(cur_tick ≠ my_tick) ;
{reled[𝛼 ] (∆, 𝑠, 𝜌) }
yield() ;
{reled[𝛼 ] (∆, 𝑠, 𝜌) }
cur_tick← get() ;
{reled[𝛼 ] (∆, 𝑠, 𝜌) ∧ ∆(cur_tick) = ctrval(𝑠) }
{reled[𝛼 ] (∆, 𝑠, 𝜌) ∧ curtick(∆, 𝑠) }

)∗;reled[𝛼 ] (∆, 𝑠, 𝜌) ∧
©­­«

ctrval(𝑠) ≤ mytkt𝛼 (𝑠)∧
mytkt𝛼 (𝑠) = ctrval(𝑠) =⇒ owner(𝜌) ∈ {∅, 𝛼 }∧

∆(cur_tick) ≤ ctrval(𝑠) ∧ ∆(my_tick) = mytkt𝛼 (𝑠)

ª®®¬
{

reled[𝛼 ] (∆, 𝑠, 𝜌) ∧ (∆(cur_tick) = ∆(my_tick) =⇒ owner(𝜌) = ∅ ∧ ctrval(𝑠) = mytkt𝛼 (𝑠))
}

assert(cur_tick = my_tick) ;{
reled[𝛼 ] (∆, 𝑠, 𝜌) ∧ commit[𝛼 ]acq (𝜌) ⊑ 𝜌′ ∧

(
owner(𝜌) = ∅ ∧ owner(𝜌′) = 𝛼∧

ctrval(𝑠′) = mytkt𝛼 (𝑠′) ∧ (∆, 𝑠) = (∆, 𝑠′)

)}
{
acqed[𝛼 ] (∆′, 𝑠′, 𝜌′) ∧ commit[𝛼 ]acq (𝜌) ⊑ 𝜌′

}
ret ok

}
{returned𝛼 (acq) ◦𝑄 [𝛼 ]acq }

Fig. 8. Proof for acq.

{
invoke𝛼 (rel) ◦ 𝑃 [𝛼 ]rel

}
rel() {{

acqed(∆, 𝑠, 𝜌) ∧ owner(𝜌) = 𝛼 ∧mytkt𝛼 (𝑠) = ctrval(𝑠) < newtkt(𝑠)
}

inc() ;acqed(∆, 𝑠, 𝜌) ∧ commitrel (𝜌) ⊑ 𝜌′ ∧
©­­«
mytkt𝛼 (𝑠′) < ctrval(𝑠′) ≤ newtkt(𝑠′)∧

owner(𝜌) = 𝛼∧
∆ = ∆′ ∧ 𝑠↾FAI,Yield = 𝑠′↾FAI,Yield

ª®®¬
{

reled(∆′, 𝑠′, 𝜌′) ∧ commitrel (𝜌) ⊑ 𝜌′
}

ret ok
}{
returned𝛼 (rel) ◦𝑄 [𝛼 ]rel

}
Fig. 9. Proof for rel.

Gathering together all the resources we have collected so far, we have proven,

• (∆0, 𝜖, 𝜖) ∈ 𝑃 [𝛼] 𝑓 for 𝑓 ∈ {acq, rel}, since ctrval(𝜖) = newtkt(𝜖) = 0, mytkt𝛼 (𝜖) = ∅, and
owner(𝜌) = ∅,
• stable(R[𝛼], 𝑃 [𝛼] 𝑓 ) ∧ stable(R[𝛼], 𝑄 [𝛼] 𝑓 ) for 𝑓 ∈ {acq, rel} by construction,

• R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 } 𝑀Lock [𝛼] 𝑓 {return𝛼 (𝑓 ) ◦ 𝑄 [𝛼] 𝑓 } verified using the

logic,
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• ∀𝑓 , 𝑓 ′ ∈ 𝐹 .return𝛼 (𝑓 ′) ◦ returned𝛼 (𝑓 ′) ◦𝑄 [𝛼] 𝑓
′ ◦ invoke𝛼 (𝑓 ′) ◦ 𝑃 [𝛼] 𝑓

′ ⊆ 𝑃 [𝛼] 𝑓 for 𝑓 , 𝑓 ′ ∈
{acq, rel}, since the only traces that doesn’t satisfy the subset relation will be rejected by the

𝜈 ′Lock.

With the Local Impl rule, we can derive the following judgement

𝐹 = {acq, rel} ∀𝑓 ∈ 𝐹 .(∆0, 𝜖, 𝜖) ∈ 𝑃 [𝛼] 𝑓
∀𝑓 ∈ 𝐹 .𝑃 [𝛼] 𝑓 ⊆ idle𝛼 stable(R[𝛼], 𝑃 [𝛼] 𝑓 ) stable(R[𝛼], 𝑄 [𝛼] 𝑓 )
R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (𝑓 ) ◦ 𝑃 [𝛼] 𝑓 } 𝑀Lock [𝛼] 𝑓 {return𝛼 (𝑓 ) ◦𝑄 [𝛼] 𝑓 }

∀𝑓 , 𝑓 ′ ∈ 𝐹 .return𝛼 (𝑓 ′) ◦ returned𝛼 (𝑓 ′) ◦𝑄 [𝛼] 𝑓
′ ◦ invoke𝛼 (𝑓 ′) ◦ 𝑃 [𝛼] 𝑓

′ ⊆ 𝑃 [𝛼] 𝑓

R[𝛼],G[𝛼] |=𝛼 {∩𝑓 ∈𝐹𝑃 [𝛼] 𝑓 } 𝑀Lock [𝛼] {∪𝑓 ∈𝐹𝑄 [𝛼] 𝑓 }

We furthermore have G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼 ′] for 𝛼, 𝛼 ′ ∈ Υ and 𝛼 ≠ 𝛼 ′ by
construction. We then can obtain the top level theorem by invoking Conc Impl rule,

∀𝛼 ∈ Υ.R[𝛼],G[𝛼] |=𝛼 {𝑃 [𝛼]} 𝑀Lock [𝛼] {𝑄 [𝛼]}
∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′⇒ G[𝛼] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼 ′]

R[Υ],G[Υ] |=Υ {∩𝛼 ∈Υ𝑃 [𝛼]} 𝑀Lock [Υ] {∪𝛼 ∈Υ𝑄 [𝛼]}

In other words, we have proven that 𝑀Lock is a linearizable lock object w.r.t. 𝜈Lock for the entire

system.

G.2 ConcurrentQueue
In this subsection, we present a short proof that the concurrent queue implementation is correct

using the same program logic. The intuition behind the correctness is that the sequential queue is

protected by the lock. Formally, we will relate the history of the sequential queue to the ownership

of the lock. The set up is as follows. We have linearizable concurrent objects

(𝜈 ′
lock

: †Lock, 𝜈lock : †Lock) (𝜈 ′
queue

: †Queue, 𝜈 ′
queue

: †Queue)

by locality we can construct the linearizable object

(𝜈 ′
lock
⊗ 𝜈 ′

queue
, 𝜈lock ⊗ 𝜈 ′queue)

We therefore seek to show that

⟦𝑀squeue⟧ : (𝜈 ′lock ⊗ 𝜈
′
queue

, 𝜈lock ⊗ 𝜈 ′queue) → (𝜈 ′squeue, 𝜈squeue)

is a linearizable object implementation. Similar to verification of the lock, we will define several

helper functions.

We first define a function

owner : 𝑃†Lock⊗†Queue → Υ + {⊥} + {∅}

to denote the ownership of the lock object, defined as follows

owner(𝑝) :=


∅ 𝑝↾Lock = 𝜖 · 𝛼𝛼𝛼:::acq?
𝛼 𝑝↾Lock = 𝑝

′ · 𝛼𝛼𝛼:::acq · 𝛼𝛼𝛼:::ok · 𝛼𝛼𝛼:::rel? ∧ owner(𝑝 ′) = ∅
∅ 𝑝↾Lock = 𝑝

′ · 𝛼𝛼𝛼:::acq · 𝛼𝛼𝛼:::ok · 𝛼𝛼𝛼:::rel · 𝛼𝛼𝛼:::ok · 𝛼 ′𝛼 ′𝛼 ′:::acq? ∧ owner(𝑝 ′) = ∅
⊥ otherwise

while this owner function looks similar to the other owner function defined in the proof for the

lock, there is a major differences between them: we can now assume Lock is linearized to an atomic

specification, we no longer need to reason about interleaving between acquires and releases.
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We also define a function lin : 𝑃†Queue → 𝑃!Queue to denote the longest linearized prefix of 𝜌 ,

lin(𝑝) = 𝑝0 ⇐⇒ 𝑝0 ∈ 𝑃!Queue ∧ 𝑝0 ⊑ 𝑝 ∧ ∀𝑝 ′ ∈ 𝑃!Queue .𝑝
′ ⊑ 𝑝 =⇒ 𝑝 ′ ⊑ 𝑝0

Finally, we define a function queue : 𝑃!Queue → list N + {⊥} + {∅}, which is the functional

specification for both the sequential queue and shared queue.

queue(𝑝) :=



[ ] 𝑝 = 𝜖 · 𝑒?
𝑞 ++ [𝑛] 𝑝 = 𝑝 ′ · enq(𝑛) · ok · 𝑒? ∧ queue(𝑝 ′) = 𝑞
𝑞 𝑝 = 𝑝 ′ · deq · 𝑛 · 𝑒? ∧ queue(𝑝 ′) = 𝑛 :: 𝑞

[ ] 𝑝 = 𝑝 ′ · deq · ∅ · 𝑒? ∧ queue(𝑝 ′) = []
⊥ otherwise

We can now prove the correctness using the program logic. We start by defining the shared

invariant 𝐼 , rely condition R[𝛼], and guarantee condition G[𝛼],

𝐼 (∆, 𝑠, 𝜌) ⇐⇒
(
owner(𝑠) ≠ ⊥ ∧ queue(lin(𝜌)) ≠ ⊥ ∧(
owner(𝑠) = ∅ =⇒ (lin(𝜌) = 𝑠↾Queue

0
)
))

(∆, 𝑠, 𝜌) R[𝛼] (∆′, 𝑠 ′, 𝜌 ′) ⇐⇒
©­­«

invoke𝐴\𝛼 (−) ∨ return𝐴\𝛼 (−) ∨(
owner(𝑠 ′) ≠ ⊥ ∧ queue(lin(𝜌 ′)) ≠ ⊥ ∧

owner(𝑠) = 𝛼 =⇒
(
𝑠↾Queue0 = 𝑠

′↾Queue
0
∧ lin(𝜌) = lin(𝜌 ′)

))ª®®¬
(∆, 𝑠, 𝜌) G[𝛼] (∆′, 𝑠 ′, 𝜌 ′) ⇐⇒

(
owner(𝑠 ′) ≠ ⊥ ∧ queue(lin(𝜌 ′)) ≠ ⊥ ∧

owner(𝑠) ≠ 𝛼 =⇒
(
𝑠↾Queue0 = 𝑠

′↾Queue0 ∧ lin(𝜌) = lin(𝜌 ′)
))

We can then give the same precondition and postcondition to enq and deq,

𝑃 [𝛼] 𝑓 (∆, 𝑠, 𝜌) ⇐⇒ idle𝛼 ∧ 𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝑠) ≠ 𝛼
(∆, 𝑠, 𝜌) 𝑄 [𝛼] 𝑓 (∆′, 𝑠 ′, 𝜌 ′) ⇐⇒ 𝐼 (∆′, 𝑠 ′, 𝜌 ′) ∧ owner(𝑠 ′) ≠ 𝛼

Finally, we can define the commit functions to linearize the enq and deq events,

commit[𝛼]enq (𝜌) :=
{
lin(𝜌) · enq(𝑛) · ok · 𝑝1 · 𝑝2 ∃𝑝1, 𝑝2.𝜌 = lin(𝜌) · 𝑝1 · 𝛼𝛼𝛼:::enq(𝑛) · 𝑝2
⊥ otherwise

commit[𝛼]deq (𝜌, 𝑛) :=
{
lin(𝜌) · deq · 𝑛 · 𝑝1 · 𝑝2 ∃𝑝1, 𝑝2.𝜌 = lin(𝜌) · 𝑝1 · 𝛼𝛼𝛼:::deq · 𝑝2
⊥ otherwise

The proof for deq is sketched in Figure 10. The proof for enq is ommited as it’s symmetric to

deq. We highlight the curcial steps below,

(1) when the agent successfully acquires the lock, we know from 𝜈Lock that the pre-state of

L.acq() must satisfy that owner(𝑠) = 0, which allows us to open the invariant and infer that

lin(𝜌) = 𝑠↾Queue
0
. We also know that owner(𝑠 ′) = 𝛼 , which allows us to temporarily break

the lock invariant while holding the lock,

(2) while holding the lock, we can safely access the sequential queue. This is justified by R[𝛼],
specifically owner(𝑠) = 𝛼 =⇒

(
𝑠↾Queue

0
= 𝑠 ′↾Queue

0
∧ lin(𝜌) = lin(𝜌 ′)

)
,

(3) when it’s time to release the lock, we linearize the lock with commit[𝛼]deq. This is justified
because commit[𝛼]deq (𝜌,∆(𝛼) (r)) = s↾Queue0 , and we also know that queue(𝑠↾Queue

0
) ≠ ⊥

by 𝜈 ′
queue

and the fact that 𝑠↾Queue
0
= 𝜌 · deq · ∆(𝛼) (r) ∈ 𝑃!Queue,
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(4) G[𝛼] is easily justified since the agent only modifies the sequential queue or the linearized

shared queue while holding the lock.

{
invoke𝛼 (rel) ◦ 𝑃 [𝛼 ]rel

}
deq() {

{𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝑠) ≠ 𝛼 }
acq() ;{
𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝑠) = ∅ ∧ owner(𝑠′) = 𝛼 ∧ (∆(𝛼), 𝑠↾Queue

0
, 𝜌) = (∆′ (𝛼), 𝑠′↾Queue

0
, 𝜌′)

}{
𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝑠) = 𝛼 ∧ lin(𝜌) = 𝑠↾Queue

0

}
r← deq() ;{
𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝑠) = 𝛼 ∧ lin(𝜌) · deq · ∆(𝛼) (r) = 𝑠↾Queue

0

}
rel() ;{
𝐼 (∆, 𝑠, 𝜌) ∧ owner(𝑠′) ≠ 𝛼 ∧ commit[𝛼 ]deq (𝜌,∆(𝛼) (r)) ⊑ 𝜌′ ∧ ∆(𝛼) = ∆′ (𝛼)

}
ret r

}{
returned𝛼 (rel) ◦𝑄 [𝛼 ]rel

}
Fig. 10. Proof for deq.

H PROOF COMPENDIUM
H.1 Proof of 3.5

Proposition H.1. Strategy composition is well-defined and associative.

Proof. Well-Defined Indeed, suppose 𝜎 : A ⊸ B and 𝜏 : B ⊸ C. Since 𝜖 ∈ 𝜎 and 𝜖 ∈ 𝜏 it
follows that taking

𝜖 ∈ int(A,B,C)
we have that

𝜖↾A,B = 𝜖 𝜖↾B,C = 𝜖

And therefore

𝜖↾A,C = 𝜖 ∈ 𝜎 ;𝜏
from which it follows that 𝜎 ;𝜏 is non-empty.

Now, suppose 𝑠 ∈ 𝜎 ;𝜏 and that 𝑝 ⊑ 𝑠 . Then, there exists 𝑠 ′ ∈ int(𝜎, 𝜏) such that 𝑠 ′↾A,C = 𝑠 .

In particular 𝑝 ⊑ 𝑠 ′↾A,C. Hence, there is prefix 𝑝 ′ ⊑ 𝑠 ′ such that 𝑝 ′↾A,C = 𝑝 . Now, consider

𝑝 ′. Since 𝑠 ′↾A,B ∈ 𝜎 and 𝜎 is prefix-closed it follows that because 𝑝 ′↾A,B ⊑ 𝑠 ′↾A,B ∈ 𝜎 we

have that 𝑝 ′↾A,B ∈ 𝜎 . Similarly, 𝑝 ′↾B,C ∈ 𝜏 . Hence, it follows that 𝑝 ′ ∈ int(𝜎, 𝜏) and therefore

𝑝 ∈ 𝜎 ;𝜏 .
Suppose 𝑠 ∈ 𝜎 ;𝜏 and that 𝑠 ·𝑜 ∈ 𝑃A⊸C and 𝑜 is an Opponent move. Then, there is 𝑠 ′ ∈ int(𝜎, 𝜏)
such that 𝑠 ′↾A,C = 𝑠 . If 𝑜 is a move in A then note that since 𝑠 ′ ∈ int(A,B,C) it is such that

𝑠 ′↾A,B ∈ 𝜎 ⊆ 𝑃A⊸B. Now, suppose 𝑜 is a move by agent 𝛼 ∈ Υ and consider 𝑠𝛼 = 𝜋𝛼 (𝑠 ′↾A,B). By
the switching condition of the sequential game𝐴 = (𝑀𝐴, 𝑃𝐴) and the fact that 𝑠𝛼↾𝐴 ·𝑜 ∈ 𝜄𝛼 (𝑃𝐴)
it follows that 𝑠𝛼 had its last move in 𝐴. But then, 𝑠 ′↾A,B · 𝑜 ∈ 𝑃A⊸B and hence, since 𝜎 is

receptive and 𝑠 ′↾A,B ∈ 𝜎 it follows that 𝑠 ′↾A,B · 𝑜 ∈ 𝜎 . Again, by switching, 𝜋𝛼 (𝑠 ′) must have

had its last move in 𝐴. Hence, 𝑠 ′ · 𝑜 ∈ int(A,B,C) from which it follows that 𝑠 ′ · 𝑜 ∈ int(𝜎, 𝜏)
and therefore 𝑠 · 𝑜 ∈ 𝜎 ;𝜏 as desired. The argument for 𝑜 a move in C is dual appealing to the

receptivity of 𝜏 .
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Associative Indeed, suppose 𝜎 : A ⊸ B, 𝜏 : B ⊸ C, and 𝜈 : C ⊸ D. Let 𝑠↾A,D ∈ (𝜎 ;𝜏);𝜈
where 𝑠 ∈ int((𝜎 ;𝜏), 𝜈). Then, there is 𝑡 ∈ int(𝜎, 𝜏) such that 𝑠↾A,C = 𝑡↾A,C ∈ 𝜎 ;𝜏 .
Then, because 𝑠↾A,C = 𝑡↾A,C we can define 𝑣 a sequence of moves such that 𝑣↾A,C,D = 𝑠 and

𝑣↾A,B,C = 𝑡 . Finally, since 𝑣↾B,C = 𝑡↾B,C it follows that 𝑣↾B,C ∈ 𝜏 . Similarly, 𝑣↾C,D = 𝑠↾C,D
implies 𝑣↾C,D ∈ 𝜈 . Hence, 𝑣↾B,C,D ∈ int(𝜏, 𝜈) and 𝑣↾B,D ∈ 𝜏 ;𝜈 . Now, 𝑣↾A,B = 𝑡↾A,B ∈ 𝜎 , it
follows then that 𝑣↾A,B,D ∈ int(𝜎, (𝜏 ;𝜈)) and hence

𝑠↾A,D = 𝑣↾A,D ∈ 𝜎 ; (𝜏 ;𝜈)
The other inclusion is symmetric.

□

H.2 Order Enrichment
Lemma H.2. Let A = (𝑀𝐴, 𝑃𝐴), B = (𝑀𝐵, 𝑃𝐵) and C = (𝑀𝐶 , 𝑃𝐶 ) be concurrent games and 𝜎 : A ⊸

B and 𝜏 : B ⊸ C be concurrent strategies. Then, for every 𝛼 ∈ Υ:
𝜋𝛼 (𝜎 ;𝜏) ⊆ 𝜋𝛼 (𝜎);𝜋𝛼 (𝜏)

Proof. Suppose 𝑠↾A,C ∈ 𝜎 ;𝜏 where 𝑠 ∈ int(𝜎, 𝜏). Then:
𝜋𝛼 (𝑠)↾A,B = 𝜋𝛼 (𝑠↾A,B) ∈ 𝜋𝛼 (𝜎)

and similarly:

𝜋𝛼 (𝑠)↾B,C = 𝜋𝛼 (𝑠↾B,C) ∈ 𝜋𝛼 (𝜏)
and hence:

𝜋𝛼 (𝑠) ∈ int(𝜋𝛼 (𝜎), 𝜋𝛼 (𝜏))
so that

𝜋𝛼 (𝑠)↾A,C ∈ 𝜋𝛼 (𝜎);𝜋𝛼 (𝜏)
□

Proposition H.3.

Conc : Semi GameSeq → GameConc

defines a semifunctor.

Proof. Let 𝜎 : 𝐴 ⊸ 𝐵. It is straight-forward to see that Conc 𝜎 is well-defined. Indeed, as 𝜖 ∈ 𝜎
it follows that 𝜖 ∈ Conc 𝜎 . Now, suppose 𝑠 ∈ Conc 𝜎 and 𝑝 ⊑ 𝑠 . Then, 𝑝 is still an interleaving of

plays of 𝜎 as 𝜎 is prefix-closed. For receptivity note that if 𝑠 ∈ Conc 𝜎 and 𝑠 · 𝑜 ∈ 𝑃A⊸B where 𝑜 is

an Opponent move then 𝜋𝛼 (𝑜) (𝑠) · 𝑜 ∈ 𝑃𝐴⊸𝐵 by definition and by receptivity of 𝜎 it follows that

𝜋𝛼 (𝑜) (𝑠) · 𝑜 ∈ 𝜎 and therefore 𝑠 · 𝑜 is still an interleaving of 𝜎 plays. Therefore, Conc 𝜎 is indeed a

concurrent strategy of the appropriate type.

It remains to show that Conc (𝜎 ;𝜏) = Conc 𝜎 ;Conc 𝜏 . By definition and Lemma H.2

∀𝛼 ∈ Υ.𝜋𝛼 (Conc 𝜎 ;Conc 𝜏) ⊆ 𝜋𝛼 (Conc 𝜎);𝜋𝛼 (Conc 𝜏) = 𝜎 ;𝜏
and hence

Conc 𝜎 ;Conc 𝜏 ⊆ Conc (𝜎 ;𝜏)
Now suppose 𝑠 ∈ Conc (𝜎 ;𝜏). This means that:

∀𝛼 ∈ Υ.𝜋𝛼 (𝑠) ∈ 𝜎 ;𝜏
In particular, for all 𝛼 ∈ Υ there is a a play 𝑠𝛼 ∈ int(𝜎, 𝜏) such that

𝑠𝛼↾𝐴,𝐶 = 𝜋𝛼 (𝑠)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 38. Publication date: January 2023.



38:76 Arthur Oliveira Vale, Zhong Shao, and Yixuan Chen

while

𝑠𝛼↾𝐴,𝐵 ∈ 𝜎 𝑠𝛼↾𝐵,𝐶 ∈ 𝜏
It is straight-forward to show that one can construct a sequence 𝑠 ′ ∈ int(Conc 𝜎,Conc 𝜏) by
interleaving the 𝑠𝛼 such that

𝑠 ′↾A,C = 𝑠

□

Proposition H.4. ccopyA is idempotent for every A.

Proof. By Prop. H.3

ccopyA; ccopyA = Conc copy𝐴;Conc copy𝐴 = Conc (copy𝐴; copy𝐴) = Conc copy𝐴 = ccopyA

□

H.3 Proposition 4.4
Proposition H.5. For strategies

𝜎 : A ⊸ B 𝜏 : B ⊸ C

the following all hold:
(1) If

𝜎 ⊆ 𝜎 ′ : A ⊸ B 𝜏 ⊆ 𝜏 ′ : B ⊸ C
then

𝜎 ;𝜏 ⊆ 𝜎 ′;𝜏 ′

(2) Given a family
𝜎𝑖 : A ⊸ B

it holds that (⋃
𝑖∈𝐼

𝜎𝑖

)
;𝜏 =

⋃
𝑖∈𝐼
(𝜎𝑖 ;𝜏)

(3) Given a family
𝜏𝑖 : B ⊸ C

it holds that
𝜎 ;

⋃
𝑖∈𝐼

𝜏𝑖 =
⋃
𝑖∈𝐼
(𝜎 ;𝜏𝑖 )

Proof. (1) Supose 𝑠↾A,C ∈ 𝜎 ;𝜏 . Then:
𝑠↾A,B ∈ 𝜎 ⇒ 𝑠↾A,B ∈ 𝜎 ′

𝑠↾B,C ∈ 𝜏 ⇒ 𝑠↾B,C ∈ 𝜏 ′

hence

𝑠 ∈ int(𝜎 ′, 𝜏 ′) ⇒ 𝑠↾A,C ∈ 𝜎 ′;𝜏 ′

(2) One direction is simple as we have that

𝜎𝑖 ⊆
⋃
𝑖∈𝐼

𝜎𝑖

so that

𝜎𝑖 ;𝜏 ⊆
(⋃
𝑖∈𝐼

𝜎𝑖

)
;𝜏
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by monotonicity and hence ⋃
𝑖∈𝐼
(𝜎𝑖 ;𝜏) ⊆

(⋃
𝑖∈𝐼

𝜎

)
;𝜏

For the other direction, suppose

𝑠↾A,C ∈
(⋃
𝑖∈𝐼

𝜎

)
;𝜏

then

𝑠↾A,B ∈
⋃
𝑖∈𝐼

𝜎 𝑠↾B,C ∈ 𝜏

so there is 𝑗 ∈ 𝐼 such that:

𝑠↾A,B ∈ 𝜎 𝑗
and therefore

𝑠↾A,C ∈ 𝜎 𝑗 ;𝜏
so that

𝑠↾A,B ∈
⋃
𝑖∈𝐼
(𝜎 𝑗 ;𝜏)

(3) One direction is simple as we have that

𝜏𝑖 ⊆
⋃
𝑖∈𝐼

𝜏𝑖

so that

𝜎 ;𝜏𝑖 ⊆ 𝜎 ;
⋃
𝑖∈𝐼

𝜏𝑖

by monotonicity and hence ⋃
𝑖∈𝐼
(𝜎 ;𝜏𝑖 ) ⊆ 𝜎 ;

⋃
𝑖∈𝐼

𝜏𝑖

For the other direction, suppose

𝑠↾A,C ∈ 𝜎 ;
⋃
𝑖∈𝐼

𝜏𝑖

then

𝑠↾A,B ∈ 𝜎 𝑠↾B,C ∈
⋃
𝑖∈𝐼

𝜏𝑖

so there is 𝑗 ∈ 𝐼 such that:

𝑠↾B,C ∈ 𝜏 𝑗
and therefore

𝑠↾A,C ∈ 𝜎 ;𝜏 𝑗
so that

𝑠↾A,C ∈
⋃
𝑖∈𝐼
(𝜎 ;𝜏𝑖 )

□
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H.4 Proofs for Appendix B
Proposition H.6. Composition of atomic strategies is well-defined.

Proof. Suppose 𝜎 : !𝐴 ⊸ !𝐵 and 𝜏 : !𝐵 ⊸ !𝐶 are atomic. It follows from sequential composition

that 𝜎 ;𝜏 : !𝐴 ⊸ !𝐶 . It remains to show that it is atomic. So let 𝑠↾A,C ∈ int(𝜎, 𝜏). First, let 𝑠↾C =

𝑝1 ·𝑚 ·𝑚′ ·𝑝2 where 𝛼 (𝑚) = 𝛼 (𝑚′) and 𝜆C (𝑚) = 𝑂 . Then, since 𝜏 is atomic, 𝑠↾B,C = 𝑝 ′
1
·𝑚 ·𝑠 ′ ·𝑚′ ·𝑝 ′

2

is such that every move in 𝑠 ′ is by 𝛼 (𝑚). By the same reasoning, every move between two moves in

𝑠 ′ is by 𝛼 (𝑚). Hence, if 𝑠↾A,C = 𝑝 ′′
1
·𝑚 · 𝑠 ′′ ·𝑚′ · 𝑝 ′′

2
then every move in 𝑠 ′′ is by 𝛼 (𝑚). The argument

is analogous for 𝑠↾C = 𝑝 ·𝑚 with 𝜆C (𝑚) = 𝑂 . □

Lemma H.7. Let 𝑠 ∈ 𝑃A⊸B. Then if 𝑠↾B ∈ 𝑃!𝐵 then 𝑠 ∈ 𝑃!𝐴⊸!𝐵 .

Proof. We argue by induction by keeping track of a prefix 𝑝 ⊑even 𝑠 such that 𝑝 ∈ 𝑃!𝐴⊸!𝐵 and

such that every agents last move was in B. For the base case we note that if 𝑠 = 𝜖 then we are done

(we also consider this case as a case where every agents last move is B). Otherwise, let 𝑝 ⊑even 𝑠 be
such that 𝑝 ∈ 𝑃!𝐴⊸!𝐵 . If 𝑝 = 𝑠 we are also done. Otherwise, there is𝑚 a move in B (by the switching

condition and the inductive hypothesis) such that 𝑝 ·𝑚 ⊑ 𝑠 . Suppose first that
𝑝 ·𝑚 · 𝑠 ′ = 𝑠

is such that every move in 𝑠 ′ happens in A. As at 𝑝 every agent had its last move in B at 𝑝 ·𝑚 only

𝛼 (𝑚) can move in A, and since 𝛼 (𝑚) plays as in 𝐴 ⊸ 𝐵 it follows then that 𝑠 = 𝑝 ·𝑚 · 𝑠 ′ ∈ 𝑃!𝐴⊸!𝐵

as desired. Otherwise, there are 𝑠 ′ a sequence of moves in A and a move𝑚′ in B such that

𝑝 ·𝑚 · 𝑠 ′ ·𝑚′ ⊑ 𝑠
By alternation in B it follows that𝑚′ is a move by 𝛼 (𝑚). By the same reasoning as above, it follows

that 𝑠 ′ only involves moves by 𝛼 (𝑚) and since every agent behaves sequentially it follows that

𝑝 ·𝑚 · 𝑠 ′ ·𝑚′ ∈ 𝑃!𝐴⊸!𝐵 . It is easy to check that all the other invariants still hold. □

H.5 Proofs of B.2
Proposition H.8. If 𝑠, 𝑡 ∈ 𝑃A then 𝑠 ≡A 𝑡 if and only if 𝑠 and 𝑡 are compatible and ≺𝑠 = ≺𝑡 .

Proof. (⇒) Since all the swaps allowed by⇝A are between agents, it immediately follows that

𝑠 and 𝑡 are compatible. Moreover, no swap 𝑂𝑂 ⇝ 𝑂𝑂 or 𝑃𝑃 ⇝ 𝑃𝑃 swap modifies the happens

before order as the happens before order is defined by comparing the position of a 𝑃 move with the

position of an 𝑂 move.

(⇐) For the reverse direction, suppose 𝑠 and 𝑡 are compatible but 𝑠 .A 𝑡 . Then, there must be

moves𝑚, and Opponent move, and 𝑛 a Proponent move such that

𝑠 = 𝑠1 ·𝑚 · 𝑠2 · 𝑛 · 𝑠3
but

𝑡 = 𝑡1 · 𝑛 · 𝑡2 ·𝑚 · 𝑡3
or

𝑡 = 𝑡1 ·𝑚 · 𝑡2 · 𝑛 · 𝑡3
and

𝑠 = 𝑠1 · 𝑛 · 𝑠2 ·𝑚 · 𝑠3
Without loss of generality, we assume the first situation (otherwise, reverse the roles of 𝑠 and 𝑡 ).

Let 𝑜 be the operation corresponding to𝑚 and 𝑜 ′ the operation corresponding to 𝑛. Then,

𝑜 ′ ≺𝑡 𝑜
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by definition. Meanwhile, in 𝑠 either 𝑒 and 𝑒 ′ are not comparable, or 𝑜 ≺𝑠 𝑜 ′, which contradicts that

≺𝑡=≺𝑠 . □

Proposition H.9. For plays 𝑠, 𝑡 ∈ 𝑃A, there is a derivation

𝑠 ⇝A 𝑡

if and only if 𝑠 is compatible with 𝑡 and
≺𝑠′ ⊆ ≺𝑡

Proof. (⇒) Note that if
𝑠 ⇝1

A 𝑡

then either ≺𝑠=≺𝑡 by Prop. B.8 or the derivation is a 𝑂𝑃 ⇝ 𝑃𝑂 swap. We argue that

≺𝑠⊆≺𝑡
in that case. Indeed, suppose

𝑠 = 𝑠1 ·𝑚 · 𝑛 · 𝑠2 ⇝1

A 𝑠1 · 𝑛 ·𝑚 · 𝑠2 = 𝑡
Let 𝑜 be the operation associated to𝑚 and 𝑜 ′ the operation associated to 𝑛. Note first that for any

𝑜1, 𝑜2 where at least one of 𝑜1 and 𝑜2 are distinct from 𝑜 and 𝑜 ′ it is the case that

𝑜1 ≺𝑠 𝑜2 ⇐⇒ 𝜌 (𝑜1) ≺𝑡 𝜌 (𝑜2)
where 𝜌 is the associated bijection. Indeed, if they are both distinct from 𝑜 and 𝑜 ′ then in fact

𝜌 (𝑜1) = 𝑜1 𝜌 (𝑜2) = 𝑜2
and the equivalence holds. Otherwise, consider the four possible cases:

𝑜1 = 𝑜 Then, we have that

𝑜1 = (𝑝, 𝑞) 𝑜2 = (𝑝 ′, 𝑞′)
moreover

𝜌 (𝑜1) = (𝑝 + 1, 𝑞) 𝜌 (𝑜2) = (𝑝 ′, 𝑞′)
hence

𝑜1 ≺𝑠 𝑜2 ⇐⇒ 𝑞 < 𝑝 ′ ⇐⇒ 𝜌 (𝑜1) ≺𝑡 𝜌 (𝑜2)
𝑜1 = 𝑜

′
Then, we have that

𝑜1 = (𝑝, 𝑞) 𝑜2 = (𝑝 ′, 𝑞′)
moreover

𝜌 (𝑜1) = (𝑝, 𝑞 − 1) 𝜌 (𝑜2) = (𝑝 ′, 𝑞′)
hence

𝑜1 ≺𝑠 𝑜2 ⇐⇒ 𝑞 < 𝑝 ′ ⇐⇒ 𝑞 − 1 < 𝑞 < 𝑝 ′ ⇐⇒ 𝜌 (𝑜1) ≺𝑡 𝜌 (𝑜2)
where the middle equivalence holds because 𝑜2 is not 𝑜 .

𝑜2 = 𝑜 Then, we have that

𝑜1 = (𝑝, 𝑞) 𝑜2 = (𝑝 ′, 𝑞′)
moreover

𝜌 (𝑜1) = (𝑝, 𝑞) 𝜌 (𝑜2) = (𝑝 ′ + 1, 𝑞′)
hence

𝑜1 ≺𝑠 𝑜2 ⇐⇒ 𝑞 < 𝑝 ′ ⇐⇒ 𝑞 < 𝑝 ′ < 𝑝 ′ + 1 ⇐⇒ 𝜌 (𝑜1) ≺𝑡 𝜌 (𝑜2)
where the second equivalence holds because 𝑜1 is not 𝑜

′
.
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𝑜2 = 𝑜
′
Then, we have that

𝑜1 = (𝑝, 𝑞) 𝑜2 = (𝑝 ′, 𝑞′)
moreover

𝜌 (𝑜1) = (𝑝, 𝑞) 𝜌 (𝑜2) = (𝑝 ′, 𝑞′ − 1)
hence

𝑜1 ≺𝑠 𝑜2 ⇐⇒ 𝑞 < 𝑝 ′ ⇐⇒ 𝜌 (𝑜1) ≺𝑡 𝜌 (𝑜2)
Finally, note that 𝑜 and 𝑜 ′ are not comparable in ≺𝑠 . Meanwhile, in ≺𝑡 we have 𝑜 ′ ≺𝑡 𝑜 .
(⇐) By Prop. B.8, if ≺𝑠=≺𝑡 we are done, so suppose ≺𝑠≠≺𝑡 . We construct a play 𝑠 ′ such that

≺𝑠⊂≺𝑠′⊆≺𝑡 and 𝑠 ⇝A 𝑠
′
. Because ≺𝑠 is strictly contained in ≺𝑡 there is a pair 𝑜 ≺𝑡 𝑜 ′ but 𝑜 and 𝑜 ′

are incomparable in 𝑠 . Hence, if

𝑜 = (𝑝, 𝑞) 𝑜 ′ = (𝑝 ′, 𝑞′)
in 𝑠 , we may choose the pair of 𝑜 and 𝑜 ′ incomparable in 𝑠 such that 𝑞 − 𝑝 ′ is minimal. Let𝑚 be the

𝑂 move associated to 𝑜 ′ and 𝑛 the 𝑃 move associated to 𝑜 . Then:

𝑠 = 𝑠1 ·𝑚 · 𝑠2 · 𝑛 · 𝑠3
Note that by minimality, 𝑠2 decomposes as

𝑠2 = 𝑠𝑂 · 𝑠𝑃
where 𝑠𝑃 is a sequence of 𝑃 moves and 𝑠𝑂 a sequence of 𝑂 moves. Indeed, otherwise we have:

𝑠2 = 𝑠
′
1
· 𝑛′ · 𝑠 ′

2
·𝑚′ · 𝑠 ′

3

where𝑛′ is a 𝑃 move and𝑚′ an𝑂 move. Let 𝑜1 be the operation associated to𝑚
′
and 𝑜2 the operation

associated to 𝑛′. Then note that

𝑠 = 𝑠1 ·𝑚 · 𝑠 ′1 · 𝑛′ · 𝑠 ′2 ·𝑚′ · 𝑠 ′3 · 𝑛 · 𝑠3
Note that if

𝑜1 = (𝑝1, 𝑞1) 𝑜2 = (𝑝2, 𝑞2)
then,

𝑝 ′ < 𝑞2 < 𝑝1 < 𝑞

Note then that

𝑞 − 𝑝1, 𝑞2 − 𝑝 ′ < 𝑞 − 𝑝 ′

So as long as either the pair 𝑜, 𝑜1 is incomparable or 𝑜2, 𝑜
′
is incomparable then it breaks minimality.

Hence,

𝑞1 < 𝑝 and 𝑞′ < 𝑝2

But then

𝑞′ < 𝑝2 < 𝑞2 < 𝑝1 < 𝑞1 < 𝑝

and therefore

𝑜 ′ ≺𝑠 𝑜
a contradiction. Hence, it must be that

𝑠 = 𝑠1 ·𝑚 · 𝑠𝑂 · 𝑠𝑃 · 𝑛 · 𝑠3
and therefore:

𝑠 = 𝑠1 ·𝑚 · 𝑠𝑂 · 𝑠𝑃 · 𝑛 · 𝑠3 ≡A 𝑠1 · 𝑠𝑂 ·𝑚 · 𝑠𝑃 · 𝑛 · 𝑠3 ≡A 𝑠1 · 𝑠𝑂 ·𝑚 · 𝑛 · 𝑠𝑃 · 𝑠3 ⇝A ·𝑠𝑂 · 𝑛 ·𝑚 · 𝑠𝑃 · 𝑠3
So we let

𝑠 ′ = 𝑠𝑂 · 𝑛 ·𝑚 · 𝑠𝑃 · 𝑠3
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By the argument from the forward direction we have that

≺𝑠⊂≺𝑠′
Moreover, by our choice of 𝑜 and 𝑜 ′

≺𝑠′⊆≺𝑡
We may continue this procedure until 𝑠 ′ = 𝑡 , which must happen as there are finitely many

partial orders over the finite set op(𝑠). □

The following couple of lemmas are straight-forward.

Lemma H.10. If
𝑠 ·𝑚 · 𝑡 ⇝A 𝑠

′ ·𝑚
then

𝑠 · 𝑡 ⇝A 𝑠
′

Lemma H.11. Let 𝑠, 𝑠 ′ ∈ 𝑃A, 𝑠𝑃 a sequence of Proponent moves and 𝑠𝑂 a sequence of Opponent
moves. If

𝑠 · 𝑠𝑃 ⇝A 𝑠
′ · 𝑠𝑂

then let (𝑠 \ 𝑠𝑂 ) ∈ 𝑃A be the subsequence of 𝑠 obtained by removing the pending Opponent moves that
appear in 𝑠𝑂 , then

𝑠 · 𝑠𝑃 ⇝A (𝑠 \ 𝑠𝑂 ) · 𝑠𝑃 · 𝑠𝑂 ⇝A 𝑠
′ · 𝑠𝑂

Proposition H.12. A play 𝑠 ∈ 𝑃A is linearizable to an atomic play 𝑡 ∈ 𝑃!𝐴 if and only if 𝑠 is
Herlihy-Wing linearizable to 𝑡 .

Proof. (⇒) By assumption there is a sequence of Opponent moves 𝑠𝑂 and a sequence of Propo-

nent moves 𝑠𝑃 such that

𝑠 · 𝑠𝑃 ⇝A 𝑡 · 𝑠𝑂
If there are no pending𝑂 moves in 𝑡 then, 𝑠𝑂 contains all pending moves in 𝑠 · 𝑠𝑃 so that by Lemma

H.11

𝑠 · 𝑠𝑃 ⇝A complete(𝑠 · 𝑠𝑃 ) · 𝑠𝑂 ⇝ 𝑡 · 𝑠𝑂
and then by Lemma H.10 we have that

complete(𝑠 · 𝑠𝑃 ) ⇝ 𝑡

so that by Prop. B.9 the result follows. Now, suppose there is a pending Opponent move 𝑜 in 𝑡 .

Then, 𝑜 must be the last move of 𝑡 . Indeed, suppose otherwise. Then, 𝑡 = 𝑢 · 𝑜 · 𝑣 for non-empty 𝑣 .

Since 𝑜 is pending, no move in 𝑣 is by the same agent as that of 𝑜 . But since 𝑡 is sequential, the first

move of 𝑣 must be a Proponent move by the same agent as 𝑜 , a contradiction. Hence, 𝑡 = 𝑡 ′ · 𝑜 for
some pending Opponent move 𝑜 . We argue that complete(𝑠 · 𝑠𝑃 ) ⇝ 𝑡 ′. By Lemma H.11 we have

that there is 𝑠 ′ such that

𝑠 · 𝑠𝑃 ⇝A 𝑠
′ · 𝑠𝑃 · 𝑠𝑂 ⇝A 𝑡 · 𝑠𝑂

but then, by the reasoning above, there is at most one pending Opponent move in 𝑠 ′ so that

𝑠 ′ · 𝑠𝑂 · 𝑠𝑃 ⇝A 𝑠
′ · 𝑠𝑃 · 𝑠𝑂 ⇝A 𝑡 · 𝑠𝑂 = 𝑡 ′ · (𝑜 · 𝑠𝑂 )

implies by H.11 that there is 𝑠 ′′ ∈ 𝑃A such that

𝑠 ′ · 𝑠𝑂 · 𝑠𝑃 ⇝A 𝑠
′′ · 𝑠𝑃 · (𝑜 · 𝑠𝑂 ) ⇝A 𝑡

′ · (𝑜 · 𝑠𝑂 )
But, 𝑠 ′′ is 𝑠 ′ with 𝑜 removed, and 𝑠 ′ is 𝑠 with all moves in 𝑠𝑂 removed. Moreover, 𝑠 ′′ has no pending
Opponent moves, as 𝑡 ′ does not. Therefore, 𝑠 ′′ · 𝑠𝑃 = complete(𝑠 · 𝑠𝑃 ). By the previous reasoning,

the result follows.
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(⇐) By Proposition B.9 it follows that there is a reduction complete(𝑠 · 𝑠𝑃 ) ⇝A 𝑡 . Now, let 𝑠𝑂
be a sequence containing all the Opponent moves removed by complete(−). Note that there is at
most one move per agent in 𝑠𝑂 , and, moreover, that any agent that appears in 𝑠𝑂 does not appear

in 𝑠𝑃 . Then:

𝑠 · 𝑠𝑃 ⇝A complete(𝑠 · 𝑠𝑃 ) · 𝑠𝑂 ⇝A 𝑡 · 𝑠𝑂
proving that 𝑠 is linearizable to 𝑡 . □

H.6 𝐾Conc is an oplax semifunctor
Proposition H.13. For any 𝜎 : A ⊸ B and 𝜏 : B ⊸ C:

𝐾Conc (𝜎 ;𝜏) ⊆ 𝐾Conc (𝜎);𝐾Conc (𝜏)

Proof. The argument is quite simple, we just verify the following sequence of equalities and

inclusions taking note of the use of Lemma H.19, Proposition 4.4, Proposition 4.2 and associativity

of interaction:

𝐾Conc (𝜎 ;𝜏) = ccopyA;𝜎 ;𝜏 ; ccopyC

⊆ ccopyA;𝜎 ; ccopyB;𝜏 ; ccopyC

= ccopyA;𝜎 ; ccopyB; ccopyB;𝜏 ; ccopyC

= 𝐾Conc (𝜎);𝐾Conc (𝜏)
□

Proposition H.14. 𝐾Conc is monotonic and join-preserving.

Proof. Suppose 𝜎 ⊆ 𝜎 ′. Then:
𝐾Conc 𝜎 = ccopyA;𝜎 ; ccopyB ⊆ ccopyA;𝜎

′
; ccopyB = 𝐾Conc 𝜎

′

by Proposition 4.4.

Similarly, if we have a collection

{𝜎𝑖 }𝑖∈𝐼
we have

𝐾Conc

(⋃
𝑖∈𝐼

𝜎𝑖

)
= ccopyA;

(⋃
𝑖∈𝐼

𝜎𝑖

)
; ccopyB =

⋃
𝑖∈𝐼

ccopyA;𝜎𝑖 ; ccopyB =
⋃
𝑖∈𝐼

𝐾Conc 𝜎𝑖

by Proposition 4.4. □

Corollary H.15.

𝐾Conc : GameConc → Semi GameConc

defines an oplax semifunctor.

Lemma H.16. If
𝑒− = {𝑒𝐴}𝐴∈𝑆 𝑒 ′− = {𝑒 ′𝐴}𝐴∈𝑆

are families of idempotents such that there are 2-morphisms:

𝑒A ⇒ 𝑒 ′A

for every 𝐴 ∈ 𝑆 , then the mappings 𝐿 and 𝑅 defined by

𝐿 : C̃𝑒 → C̃𝑒′ := 𝐾 ′ ◦ Emb 𝑅 : C̃𝑒′ → C̃𝑒 := 𝐾 ◦ Emb′

define an oplax functor and a lax functor respectively.
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H.7 Proofs for §4.5
Proposition H.17 (Synchronization Lemma). Let 𝑠 = 𝑝 · 𝛼𝛼𝛼:::𝑚 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝑝 ′ be a play of A ⊸ B.

Let 𝜎 = strat (𝑝 ·𝑚 ·𝑚′ · 𝑝 ′). Then,
𝑝 ·𝑚′ ·𝑚 · 𝑝 ′ ∈ ccopyA;𝜎 ; ccopyB ⇐⇒ 𝑚′ ·𝑚⇝A⊸B 𝑚 ·𝑚′

Proof. We need to consider all possibilities for the polarity and components of the moves𝑚

and𝑚′, between 𝑂 and 𝑃 and 𝐴 or 𝐵 respectively. A lot of cases are very similar to each other, so

we will reference previous cases when that happens.

Just so we take another component of variation out of the way, note that if 𝛼 (𝑚) = 𝛼 (𝑚′) then
it is immediate that 𝑝 ·𝑚′ ·𝑚 · 𝑝 ′ cannot be in ccopyA;𝜎 ; ccopyB as 𝑝 ·𝑚′ ·𝑚 · 𝑝 ′ is not locally
alternating and hence is not in 𝑃A⊸B. On the other hand, in that case no rewrite rule applies, as all of

them assume the agents are distinct. Therefore, assume in the remaining cases that 𝛼 (𝑚) ≠ 𝛼 (𝑚′).
The key idea is to consider how the copying is happening in ccopyA : A0 ⊸ A1 and ccopyB :

B0 ⊸ B1. If 𝑚 is a move in 𝐴 then it appears in a play of ccopyA;𝜎 ; ccopyB as a result of the

projection to 𝐴0. It has a corresponding copy in A1 which is the move that actually appeared in

some play of 𝜎 . The key point is that the fact that 𝛼 (𝑚) is locally alternating and running the

sequential copycat strategy means that if 𝜆A (𝑚) = 𝑂 then its copy appeared earlier in A1, while if

it was a 𝑃 move then its copy will appear later in A1. Meanwhile, if𝑚 is a move in 𝐵 then it appears

as a result of the projection to B1. Hence, if 𝜆B (𝑚) = 𝑂 its copy will appear later in B0, while if it is

a 𝑃 move then its copy has already appeared earlier in B0.

𝑚,𝑚′ ∈ 𝑀𝐵

𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑂 Note that in this case we have that

𝜆B0⊸B1
(𝑚) = 𝜆B0⊸B1

(𝑚′) = 𝑃
so that by the reasoning above their copy appeared earlier in B0 as 𝑂 moves. Since ccopyB
allows for both orderings. In particular,

𝑝 ·𝑚′ ·𝑚 · 𝑝 ′ ∈ ccopyA;𝜎 ; ccopyB

𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑃 The reasoning here is analogous to the previous case, ex-

cept that in this case the corresponding moves appear later in ccopyB but both orderings

are still allowed.

𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑃 In this case 𝜆B0⊸B1
(𝑚) = 𝑃 and 𝜆B0⊸B1

(𝑚′) = 𝑂 . Hence,
𝑚 is the copy of an earlier move in ccopyB and𝑚′ is copied later in ccopyB. But𝑚 already

occurs before𝑚′ so that so will their copies in B1. Hence, the only order possible is𝑚 before

𝑚′, giving the only negative case. But notice that it does not hold that𝑚′ ·𝑚⇝A⊸B 𝑚 ·𝑚′
in this case either.

𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑂 In this case, 𝜆B0⊸B1
(𝑚) = 𝑂 and 𝜆B0⊸B1

(𝑚′) = 𝑃 . So that

the copy of𝑚 in B1 appears later while the copy of𝑚′ appears earlier. In particular, there

is a play of ccopyB where the copy of𝑚′ appears earlier then the copy of𝑚 and therefore

𝑝 ·𝑚′ ·𝑚 · 𝑝 ′ ∈ ccopyA;𝜎 ; ccopyB

𝑚,𝑚′ ∈ 𝑀𝐴

𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑂 Similarly to before, the polarities are dualized once we

consider the move within the game A0 ⊸ A1 so that:

𝜆A0⊸A1
(𝑚) = 𝜆A0⊸A1

(𝑚′) = 𝑃
and their respective copies in A1 therefore appear earlier in the ccopyA play. Other than

that, ccopyA does not prescribe any particular ordering between them, so both are allowed.
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𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑃 As before the polarities switch so that:

𝜆A0⊸A1
(𝑚) = 𝜆A0⊸A1

(𝑚′) = 𝑂

and hence their copies in A0 appear later with no particular order required.

𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑃 In this case:

𝜆A0⊸A1
(𝑚) = 𝑃 and 𝜆A0⊸A1

(𝑚′) = 𝑂

in this case the copy of𝑚 in A0 appears earlier in ccopyA while the copy of𝑚′ appears
later. Hence their order cannot be changed, and this is precisely the only case in this group

where it does not hold that𝑚′ ·𝑚⇝A⊸B 𝑚 ·𝑚′.
𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑂 In this case we have:

𝜆A0⊸A1
(𝑚) = 𝑂 and 𝜆A0⊸A1

(𝑚′) = 𝑃

So that the copy of𝑚 in A0 appears later than𝑚 in ccopy𝐴 while the copy of𝑚′ appears
earlier. In particular, both orders are allowed.

𝑚 ∈ 𝑀𝐵 and𝑚′ ∈ 𝑀𝐴

𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑂 In this case

𝜆B0⊸B1
(𝑚) = 𝑃 and 𝜆A0⊸A1

(𝑚′) = 𝑃

but as𝑚 occurs in B0 while𝑚
′
occurs in A1 the copy of𝑚 in B1 so that both copies appear

earlier in the respective plays of ccopyB and ccopyA so that both orderings are possible.

𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑃 The situation in this case is analogous to the previous case

except that the copies of𝑚 and𝑚′ appear later.
𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑃 In this case we are in a situation where

𝜆B0⊸B1
(𝑚) = 𝑃 and 𝜆A0⊸A1

(𝑚′) = 𝑂

so that𝑚’s copy appears earlier while𝑚′’s copy appears later. Hence, the ordering must

still be𝑚 preceded by𝑚′ in ccopyA;𝜎 ; ccopyB so that

𝑝 ·𝑚′ ·𝑚 · 𝑝 ′ ∉ ccopyA;𝜎 ; ccopyB

but this is the only case where it does not hold𝑚′ ·𝑚⇝A⊸B 𝑚 ·𝑚′.
𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑂 In this case: that means that the copy of𝑚 in B0 appears

later in ccopyB as well as the copy of𝑚′ in A1, and therefore no order is imposed on them.

𝑚 ∈ 𝑀𝐴 and𝑚′ ∈ 𝑀𝐵

𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑂 We have the polarities:

𝜆A0⊸A1
(𝑚) = 𝑃 and 𝜆B0⊸B1

(𝑚′) = 𝑃

so that the copy of𝑚 in A0 happens earlier as does the copy of𝑚
′
in B1. No order is required

between them and therefore both orderings is possible.

𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑃 This case works as before, except that the corresponding

copies into A0 and B1 happen later, but still no particular order is required.

𝜆A⊸B (𝑚) = 𝑂 and 𝜆A⊸B (𝑚′) = 𝑃 We have the polarities:

𝜆A0⊸A1
(𝑚) = 𝑃 and 𝜆B0⊸B1

(𝑚′) = 𝑂

which means that the copy of𝑚 in A0 happens earlier while the copy of𝑚′ in B1 happens

later. Hence, the only possible order allowed is for𝑚 to precede𝑚′. But this is the only
negative case, where𝑚′ ·𝑚⇝A⊸B 𝑚 ·𝑚′ does not hold.
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𝜆A⊸B (𝑚) = 𝑃 and 𝜆A⊸B (𝑚′) = 𝑂 In this case:

𝜆A0⊸A1
(𝑚) = 𝑂 and 𝜆B0⊸B1

(𝑚′) = 𝑃
so that𝑚’s copy in A0 happens later while𝑚

′
’s copy in B1 happens earlier. No order is

required between them.

□

Corollary H.18. Let 𝑠 ∈ 𝑃A⊸B and that 𝑡 is a play such that

∀𝛼 ∈ Υ.𝜋𝛼 (𝑡) = 𝜋𝛼 (𝑠)
and moreover

𝑡 ∈ ccopyA; strat (𝑠) ; ccopyB

then,
𝑡 ⇝A⊸B 𝑠

Proof. Note that as 𝑠 is the only play of strat (𝑠) satisfying the sequential consistency condition

on 𝑡 . By the Synchronization Lemma (Prop. 4.8) it follows that any play that can be obtained by

a single move swap from 𝑠 is in ccopyA; strat (𝑠) ; ccopyB if and only if that swap is allowed by

⇝A⊸B. So let

𝜎0 = strat (𝑠)
and

𝜎𝑖 = {𝑡 ′ ∈ 𝑃A⊸B | ∃𝑠 ′ ∈ 𝜎𝑖 .𝑡 ′⇝1

A⊸B 𝑠
′ ∨ 𝑡 ′ = 𝑠 ′}

Then, note that by the Synchronization Lemma (Prop. 4.8) 𝑡 ′ ∈ 𝜎𝑖 if and only if there is a derivation

of length at most 𝑖 such that

𝑡 ′⇝𝑖
A⊸B 𝑠

′

where 𝑠 ′ ∈ 𝜎0. Note moreover that if 𝑡 ′ is sequentially consistent with 𝑠 then

𝑡 ′⇝𝑖
A⊸B 𝑠

Now, we argue that there exists 𝑘 such that

𝜎𝑘+1 = 𝜎𝑘

Indeed, it is easy to observe that

𝜎𝑖 ⊆ 𝜎𝑖+1
As strategies form a complete partial order it follows that there is 𝜎 ′ such that

𝜎 ′ = ∪𝑖∈N𝜎𝑖
but note that there are finitely many plays 𝑡 ′ such that

∃𝑠 ′ ∈ strat (𝑠) .𝑡 ′⇝A⊸B 𝑠
′

as there are finitely many permutations for any play in strat (𝑠). Therefore, there must be a 𝑘 such

that

𝜎𝑘 = 𝜎 ′

but note that, by the Synchronization Lemma (Prop. 4.8), ccopyA; strat (𝑠) ; ccopyB is a fixed point

of the chain and therefore,

𝜎 ′ = ccopyA; strat (𝑠) ; ccopyB

from which the result follows. □

Lemma H.19. For every strategy 𝜎 : A ⊸ B:

𝜎 ⊆ ccopyA;𝜎 ; ccopyB
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Proof. Suppose 𝑠 ∈ 𝜎 . We inductively construct a play of 𝑡 ∈ int(A0,A1,B0,B1) such that

𝑡↾A0,A1
∈ ccopyA 𝑡↾A,B ∈ 𝜎 𝑡↾B0,B1

∈ ccopyB 𝑡↾A0,B1
= 𝑠

Indeed, if 𝑠 = 𝜖 we simply take 𝑡 = 𝜖 . Otherwise, let 𝑡 be the current play satisfying the invariants

above with the last one modified to

𝑡↾A0,B1
⊑ 𝑠

If 𝑡 = 𝑠 we are done. Otherwise there is a move𝑚 such that

𝑡↾A0,B1
·𝑚 ⊑ 𝑠

Suppose𝑚 is a move in A in 𝑠 . If it is an𝑂 move we simply append to 𝑡 a copy of𝑚 in A0 and𝑚 as

a move in A1 as in that case the last move by 𝛼 (𝑚) in 𝑡 was a 𝑃 move in component A0. If it is a 𝑃

move then the last move by 𝛼 (𝑚) was in B0. In that case we append the move𝑚 in A1 and its copy

in A0.

Otherwise,𝑚 is a move in B in 𝑠 . In that case if it is an 𝑂 move we add a B1 copy to it and the

move𝑚 in B0. If it is a 𝑃 move then we add the move𝑚 in B1 and a copy in B0.

It is straight-forward to check that this builds a play with all the desired conditions. □

Lemma H.20. For every strategy 𝜎 : A it holds that:

𝜎 =
⋃
𝑠∈𝜎

strat (𝑠)

Proof. Since strat (𝑠) contains {𝑠} by definition it follows that if 𝑠 ∈ 𝜎 then 𝑠 ∈ strat (𝑠) and
hence

𝑠 ∈
⋃
𝑠′∈𝜎

strat (𝑠 ′)

proving one containment.

For the other direction if

𝑠 ∈
⋃
𝑠′∈𝜎

strat (𝑠 ′)

then either 𝑠 is in strat (𝑡) for some 𝑡 ∈ 𝜎 . But then, either 𝑠 ⊑ 𝑡 or 𝑠 is obtained from some prefix

𝑝 ⊑ 𝑡 by appending Opponent moves. In the first case 𝑠 ∈ 𝜎 because 𝜎 is prefix-closed, and in the

later we simply apply prefix-closure and receptivity of 𝜎 to obtain that 𝑠 ∈ 𝜎 . □

Proposition H.21. A strategy 𝜎 : A ⊸ B is saturated if and only if

∀𝑠 ∈ 𝜎.∀𝑡 ∈ 𝑃A⊸B .𝑡 ⇝A⊸B 𝑠 ⇒ 𝑡 ∈ 𝜎

Proof. Suppose 𝜎 is saturated. It follows that if 𝑠 ∈ 𝜎 = ccopyA;𝜎 ; ccopyB and 𝑡 ⇝A⊸B 𝑠 then

there is a sequence of single steps:

𝑡 = 𝑡0 ⇝A⊸B 𝑡1 ⇝A⊸B . . .⇝A⊸B 𝑡𝑛 = 𝑠

then by applying the Sychronization Lemma (Prop. 4.8) starting with

𝑡𝑛−1 ⇝A⊸B 𝑠

to conclude that

𝑡𝑛−1 ∈ ccopyA; strat (𝑠) ; ccopyB ⊆ 𝜎
in a finite number of applications we obtain that

𝑡 = 𝑡0 ∈ ccopyA; strat (𝑡1) ; ccopyA ⊆ ccopyA; strat (𝑠) ; ccopyB ⊆ 𝜎
as desired.
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Note that for every strategy 𝜎 : A ⊸ B it holds that:

𝜎 =
⋃
𝑠∈𝜎

strat (𝑠)

by lemma H.20.

But

ccopyA;𝜎 ; ccopyB =
⋃
𝑠∈𝜎

ccopyA; strat (𝑠) ; ccopyB

by the fact that composition is join-preserving. Hence,

𝑡 ∈ ccopyA;𝜎 ; ccopyB ⇐⇒ ∃𝑠 ∈ 𝜎.𝑡 ∈ ccopyA; strat (𝑠) ; ccopyB

moreover, by the definition of ccopy−, 𝑠 can be chosen so that

∀𝛼 ∈ Υ.𝜋𝛼 (𝑡) = 𝜋𝛼 (𝑠)
by corollary to the Synchronization Lemma (Prop. 4.8) it follows that

𝑡 ∈ ccopyA; strat (𝑠) ; ccopyB ⇐⇒ 𝑡 ⇝A⊸B 𝑠

And hence

𝑡 ∈ ccopyA;𝜎 ; ccopyB ⇐⇒ ∃𝑠 ∈ 𝜎.𝑡 ⇝A⊸B 𝑠

So, suppose 𝑡 ∈ ccopyA;𝜎 ; ccopyB. Then, there is some 𝑠 ∈ 𝜎 such that 𝑡 ⇝A⊸B 𝑠 and hence by

assumption 𝑡 ∈ 𝜎 . Hence,
ccopyA;𝜎 ; ccopyB ⊆ 𝜎

the reverse containment is exactly lemma H.19 so that it follows that

ccopyA;𝜎 ; ccopyB = 𝜎

and hence 𝜎 is saturated. □

H.8 Computational Interpretation Proof
Lemma H.22. Let 𝑠 ∈ 𝑃A. Then, there exists 𝑡 an alternating play and 𝑠𝑂 a sequence of Opponent

moves such that
𝑠 ⇝A 𝑡 · 𝑠𝑂

Proof. We prove the result by induction. If 𝑠 = 𝜖 we let 𝑡 = 𝑠𝑂 = 𝜖 and the result follows.

Otherwise, let

𝑠 = 𝑝 ·𝑚
by induction there is an alternating play 𝑝 ′ and sequence of Opponent moves 𝑝𝑂 such that

𝑝 ⇝A 𝑝
′ · 𝑝𝑂

Hence,

𝑠 = 𝑝 ·𝑚⇝A 𝑝
′ · 𝑝𝑂 ·𝑚

Note that without loss of generality we may assume that the last move in 𝑝 ′ is a Proponent move, as

otherwise we can add that last 𝑂 move to 𝑝𝑂 without harm. We now split into cases depending on

whether𝑚 is an Opponent or Proponent move. If𝑚 is an Opponent move. thenwe let 𝑠𝑂 = 𝑝𝑂 ·𝑚 and

𝑡 = 𝑝 ′ and the result follows immediately. Otherwise,𝑚 is a Proponent move. By local sequentiality,

ti follows that the last move by 𝛼 (𝑚) is an Opponent move, and moreover, as 𝑝 ′ is alternating and

its last move is a 𝑃 move it follows that the last𝑂 move𝑚′ by 𝛼 (𝑚) is in 𝑝𝑂 . So we let 𝑡 = 𝑝 ′ ·𝑚′ ·𝑚,

and if 𝑝𝑂 = 𝑝1 ·𝑚′ · 𝑝2 then we let 𝑠𝑂 = 𝑝1 · 𝑝2, that is, the subsequence of 𝑝𝑂 obtained by removing
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the move𝑚′. Note that there is a single move by 𝛼 (𝑚) in 𝑝𝑂 because of local sequentiality. This,

together with the inductive hypothesis justifies the following derivation.

𝑠 = 𝑝 ·𝑚⇝A 𝑝
′ · 𝑝𝑂 ·𝑚 = 𝑝 ′ · 𝑝1 ·𝑚′ · 𝑝2 ·𝑚⇝A 𝑝

′ ·𝑚′ · 𝑝1 · 𝑝2 ·𝑚⇝A 𝑝
′ ·𝑚′ ·𝑚 · 𝑝1 · 𝑝2 = 𝑡 · 𝑠𝑂

□

Lemma H.23. Let 𝑠 ∈ 𝑃A⊸B. Then, for any 𝑠 ′𝐴 ∈ 𝑃A and 𝑠 ′
𝐵
∈ 𝑃B such that

𝑠 ′𝐵 ⇝B 𝑠↾B 𝑠↾A ⇝A 𝑠
′
𝐴

then there exists an
𝑠 ′ ∈ 𝑃A⊸B

such that
𝑠 ′⇝A⊸B 𝑠 𝑠 ′↾A = 𝑠 ′𝐴 𝑠 ′↾B = 𝑠 ′𝐵

Proof. We let 𝑠𝐴 = 𝑠↾A and 𝑠𝐵 = 𝑠↾B.
Suppose first that 𝑠𝐴 ⇝A 𝑠

′
𝐴
. We construct by induction on the length of the derivation 𝑠𝐴 ⇝A 𝑠

′
𝐴

an 𝑠 ′ such that 𝑠 ′↾A = 𝑠 ′
𝐴
and 𝑠 ′↾B = 𝑠𝐵 . If the length of the derivation is 0 then 𝑠𝐴 = 𝑠 ′

𝐴
and the

result is immediate by taking 𝑠 ′ = 𝑠 . Now, Suppose

𝑠𝐴 ⇝A 𝑠1 ·𝑚 · 𝑛 · 𝑠2 ⇝A 𝑠1 · 𝑛 ·𝑚 · 𝑠2 = 𝑠 ′𝐴
By induction we have 𝑠 ′⇝A⊸B 𝑠 such that 𝑠 ′↾A = 𝑠1 ·𝑚 · 𝑛 · 𝑠2 and 𝑠 ′↾B = 𝑠𝐵 . Then, we have that

𝑠 ′ = 𝑡1 ·𝑚 · 𝑡2 · 𝑛 · 𝑡3
where 𝑡2 only has moves in B and 𝑡1↾A = 𝑠1 and 𝑡3↾A = 𝑠2. We split into cases depending on the

polarity of𝑚,𝑛 in A. Note that since we can swap𝑚 and 𝑛 in A it follows that either 𝜆A (𝑚) = 𝜆A (𝑛)
or 𝜆A (𝑚) = 𝑂 and 𝜆A (𝑛) = 𝑃 .

𝑚 is 𝑂 and 𝑛 is 𝑃 Then, in A ⊸ B𝑚 is 𝑃 and 𝑛 is 𝑂 . Now, since𝑚 is 𝑃 the next move by its

agent is 𝑂 and therefore must also happen in A. Hence, there is no move by the same agent

as𝑚 in 𝑡2. Therefore:

𝑠 ′′ = 𝑡1 · 𝑡2 · 𝑛 ·𝑚 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑡2 ·𝑚 · 𝑛 · 𝑡3 ⇝A⊸B 𝑡1 ·𝑚 · 𝑡2 · 𝑛 · 𝑡3 = 𝑠 ′

𝑚 is 𝑂 and 𝑛 is 𝑂 Then, in A ⊸ B𝑚 is 𝑃 and 𝑛 is 𝑃 . Then, as before, there is no move by the

same agent as𝑚 in 𝑡2 justifying the sequence of derivations below

𝑠 ′′ = 𝑡1 · 𝑡2 · 𝑛 ·𝑚 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑡2 ·𝑚 · 𝑛 · 𝑡3 ⇝A⊸B 𝑡1 ·𝑚 · 𝑡2 · 𝑛 · 𝑡3 = 𝑠 ′

𝑚 is 𝑃 and 𝑛 is 𝑃 Then, in A ⊸ B 𝑚 is 𝑂 and 𝑛 is 𝑂 . Now, the previous move by the same

agent as 𝑛 must have been a 𝑃 move in the same component as 𝑛. But there is no A move

between𝑚 and 𝑛 so must be that there is no move in 𝑡2 by the same agent as 𝑛. Then:

𝑠 ′′ = 𝑡1 · 𝑛 ·𝑚 · 𝑡2 · 𝑡3 ⇝A⊸B 𝑡1 ·𝑚 · 𝑛 · 𝑡2 · 𝑡3 ⇝A⊸B 𝑡1 ·𝑚 · 𝑡2 · 𝑛 · 𝑡3 = 𝑠 ′

in all cases, since 𝑠 ′′⇝A⊸B 𝑠
′⇝ 𝑠 . Furthermore, in all cases

𝑠 ′′↾A = 𝑡1↾A · 𝑛 ·𝑚 · 𝑡3↾A = 𝑠1 · 𝑛 ·𝑚 · 𝑠2 = 𝑠 ′𝐴 𝑠 ′′↾B = 𝑠 ′↾B = 𝑠𝐵

as desired.

Now, suppose 𝑠 ′
𝐵
⇝B 𝑠𝐵 . We construct by induction on the length of the derivation 𝑠 ′

𝐵
⇝B 𝑠𝐵 an

𝑠 ′⇝A⊸B 𝑠 such that 𝑠 ′↾A = 𝑠𝐴 and 𝑠 ′↾B = 𝑠 ′
𝐵
. If the length of the derivation is 𝑜 then 𝑠𝐵 = 𝑠 ′

𝐵
and

the result is immediate by taking 𝑠 ′ = 𝑠 . Now, suppose

𝑠 ′𝐵 = 𝑠1 ·𝑚 · 𝑛 · 𝑠2 ⇝ 𝑠1 · 𝑛 ·𝑚 · 𝑠2 ⇝ 𝑠𝐵

By induction we have 𝑠 ′⇝A⊸B 𝑠 such that 𝑠 ′↾A = 𝑠𝐴 and 𝑠 ′↾B = 𝑠1 · 𝑛 ·𝑚 · 𝑠2. Then, we have that
𝑠 ′ = 𝑡1 · 𝑛 · 𝑡2 ·𝑚 · 𝑡3
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where 𝑡2 only has A moves and 𝑡1↾B = 𝑠1 and 𝑡3↾B = 𝑠2. We split into cases depending on the

polarity of𝑚,𝑛 in B. Note that since we can swap𝑚 and 𝑛 in B we have that 𝜆B (𝑚) = 𝜆B (𝑛) or
𝜆B (𝑚) = 𝑂 and 𝜆B (𝑛) = 𝑃 . In all cases the polarity is preserved as B is positive in A ⊸ B.

𝑚 is 𝑂 and 𝑛 is 𝑃 Since𝑚 is an 𝑂 move there can’t be any moves by the same agent as𝑚 in 𝑡2.

Hence:

𝑠 ′′ = 𝑡1 ·𝑚 · 𝑛 · 𝑡2 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑛 ·𝑚 · 𝑡2 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑛 · 𝑡2 ·𝑚 · 𝑡3 = 𝑠 ′

𝑚 is 𝑂 and 𝑛 is 𝑂 This goes the same as the previous case. Since𝑚 is an 𝑂 move there can’t

be any moves by the same agent as𝑚 in 𝑡2. Hence:

𝑠 ′′ = 𝑡1 ·𝑚 · 𝑛 · 𝑡2 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑛 ·𝑚 · 𝑡2 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑛 · 𝑡2 ·𝑚 · 𝑡3 = 𝑠 ′

𝑚 is 𝑃 and 𝑛 is 𝑃 In this case, as 𝑛 is a Proponent move there can’t be any moves by the same

agent as 𝑛 in 𝑡2. Hence, the following derivation is justified

𝑠 ′′ = 𝑡1 · 𝑡2 ·𝑚 · 𝑛 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑡2 · 𝑛 ·𝑚 · 𝑡3 ⇝A⊸B 𝑡1 · 𝑛 · 𝑡2 ·𝑚 · 𝑡3 = 𝑠 ′

In all cases, since 𝑠 ′⇝A⊸B 𝑠 it follows that 𝑠
′′⇝A⊸B 𝑠

′⇝A⊸B 𝑠 . Furthermore, in all cases

𝑠 ′′↾A = 𝑠 ′↾A = 𝑠𝐴 𝑠 ′′↾B = 𝑡1↾B ·𝑚 · 𝑛 · 𝑡3↾B = 𝑠1 ·𝑚 · 𝑛 · 𝑠2 = 𝑠 ′𝐵
as desired.

The claim follows from applying the two arguments above in sequence. □

Lemma H.24. If
𝑠 ⇝A⊸B 𝑡

then
𝑠↾B ⇝B 𝑡↾B 𝑡↾A ⇝A 𝑠↾A

Proof. We prove the result by induction on the length of the derivation

𝑠 ⇝A⊸B 𝑡

If the derivation has length 0 then 𝑠 = 𝑡 and hence

𝑠↾A = 𝑡↾A 𝑠↾B = 𝑡↾B

and in particular

𝑠↾B ⇝B 𝑡↾B 𝑡↾A ⇝A 𝑠↾A

Otherwise, suppose

𝑠 = 𝑠1 ·𝑚 · 𝑛 · 𝑠2 ⇝1

A⊸B 𝑠1 · 𝑛 ·𝑚 · 𝑠2 ⇝A⊸B 𝑡

By induction there are derivations

(𝑠1 · 𝑛 ·𝑚 · 𝑠2)↾B ⇝B 𝑡↾B 𝑡↾A ⇝A (𝑠1 · 𝑛 ·𝑚 · 𝑠2)↾A
We split into cases depending on the components in which𝑚 and 𝑛 are played:

𝑚 is a move in B and 𝑛 is a move in B In this case,

𝑠↾B = 𝑠1↾B ·𝑚 · 𝑛 · 𝑠2↾B ⇝B 𝑠1↾B · 𝑛 ·𝑚 · 𝑠2↾B = 𝑠1 · 𝑛 ·𝑚 · 𝑠2↾B ⇝B 𝑡↾B

and

𝑡↾A ⇝A (𝑠1 · 𝑛 ·𝑚 · 𝑠2)↾A = (𝑠1 · 𝑠2)↾A = 𝑠↾A

𝑚 is a move in B and 𝑛 is a move in A Note that in this case:

𝑠↾B = 𝑠1↾B ·𝑚 · 𝑠2↾B = (𝑠1 · 𝑛 ·𝑚 · 𝑠2)↾B ⇝B 𝑡↾B

𝑡↾A ⇝A (𝑠1 · 𝑛 ·𝑚 · 𝑠2)↾A = 𝑠1↾A · 𝑛 · 𝑠2↾A = 𝑠↾A
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𝑚 is a move in A and 𝑛 is a move in B

𝑠↾B = 𝑠1↾B · 𝑛 · 𝑠2↾B = (𝑠1 · 𝑛 ·𝑚 · 𝑠2)↾B ⇝B 𝑡↾B

𝑡↾A ⇝A (𝑠1 · 𝑛 ·𝑚 · 𝑠2)↾A = 𝑠1↾A ·𝑚 · 𝑠2↾A = 𝑠↾A

𝑚 is a move in A and 𝑛 is a move in A In this case we have that as𝑚 and𝑛 have the opposite

polarity in A ⊸ B than they have in A, so that

𝑛 ·𝑚⇝A 𝑚 · 𝑛
This justifies that:

𝑠↾B = 𝑠1↾B · 𝑠2↾B = 𝑠1 · 𝑛 ·𝑚 · 𝑠2↾B ⇝B 𝑡↾B

and

𝑡↾A ⇝A (𝑠1 ·𝑛 ·𝑚 ·𝑠2)↾A = 𝑠1↾A ·𝑛 ·𝑚 ·𝑠2↾A ⇝A 𝑠1↾A ·𝑚 ·𝑛 ·𝑠2↾A (𝑠1 ·𝑠2)↾A = (𝑠1 ·𝑚 ·𝑛 ·𝑠2)↾A = 𝑠↾A

In all cases we obtain derivations

𝑠↾B ⇝B 𝑡↾B 𝑡↾A ⇝A 𝑠↾A

□

Lemma H.25. For plays 𝑠0, 𝑠1 ∈ 𝑃A such that

∀𝛼 ∈ Υ.𝜋𝛼 (𝑠0) = 𝜋𝛼 (𝑠1)
there is a derivation

𝑠1 ⇝A 𝑠0

if and only if there is a play 𝑠 ∈ ccopyA such that

𝑠↾A1
= 𝑠1 𝑠↾A0

= 𝑠0

Proof. For the forward direction, note that by the definition of ccopyA there is at least one play

𝑠 ′ ∈ ccopyA such that

𝑠 ′↾A0
= 𝑠0 𝑠 ′↾A1

= 𝑠0

By Lemma H.23 it follows that there is a play 𝑠 such that

𝑠↾A0
= 𝑠0 𝑠↾A1

= 𝑠1 𝑠 ⇝A⊸A 𝑠
′

and then, by Proposition 4.7 it follows that

𝑠 ∈ ccopyA

For the reverse direction, we prove the result by induction. Let 𝑝 be the largest even-length prefix

of 𝑠 such that 𝑝 is alternating and

𝑝↾A0
= 𝑝↾A1

If 𝑝 = 𝑠 then, In particular,

𝑠0 = 𝑠↾A0
= 𝑠↾A1

= 𝑠1

Otherwise,

For the reverse direction, first note that if a play 𝑡 ∈ ccopyA is alternating then

𝑡↾A0
= 𝑡↾A1

Indeed, since the play is alternating it follows that if

𝑡 = 𝑡1 ·𝑚1 ·𝑚2 · 𝑡2
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and 𝜆A⊸A (𝑚1) = 𝑂 then 𝛼 (𝑚1) = 𝛼 (𝑚2). But as every agent plays according to copyA that it

follows that𝑚2 is the counterpart for𝑚1 in the other component. A simple argument by induction

on the even-length prefixes of 𝑡 shows that then

𝑡↾A0
= 𝑡↾A1

Now, note that by Lemma H.22 there exists 𝑡 an alternating play and 𝑠𝑂 a sequence of Opponent

moves such that

𝑠 ⇝A⊸A 𝑡 · 𝑠𝑂
We start by arguing that we can take 𝑠𝑂 = 𝜖 . Indeed, note that as⇝− never swaps moves by the

same agent we have that

𝜋𝛼 (𝑡 · 𝑠𝑂 ) = 𝜋𝛼 (𝑠) ∈ copyA

Note that in particular, 𝑡 can be taken to be an even-length play, as

∀𝛼 ∈ Υ.𝜋𝛼 (𝑠0) = 𝜋𝛼 (𝑠1)
But then, suppose 𝑠𝑂 =𝑚 · 𝑠 ′

𝑂
. As

∀𝛼 ∈ Υ.𝜋𝛼 (𝑠0) = 𝜋𝛼 (𝑠1)
it follows that𝑚 has a counterpart𝑚′ that appears after𝑚 in 𝑡 · 𝑠𝑂 . Hence,𝑚′ must appear in 𝑠 ′

𝑂
.

But 𝑠 ′
𝑂
only has Opponent moves, and𝑚′ is a Proponent move, a contradiction. Hence, 𝑠𝑂 = 𝜖 . But

now, note that we have that

𝑠 ⇝A⊸A 𝑡

In particular, by Lemma H.24,

𝑠↾A1
⇝A 𝑡↾A1

𝑡↾A0
⇝A 𝑠↾A0

but then:

𝑠1 = 𝑠↾A1
⇝A 𝑡↾A1

= 𝑡↾A0
⇝A 𝑠↾A0

= 𝑠0

as desired. □

Proposition H.26. 𝑠1 linearizes to 𝑠0 if and only if there exists a play 𝑠 ∈ ccopyA such that

𝑠↾A0
= 𝑠0 𝑠↾A1

= 𝑠1

Proof. If 𝑠1 linearizes to 𝑠0 then there are sequences of Opponent and Proponent moves, respec-

tively, 𝑠𝑂 and 𝑠𝑃 , such that

𝑠1 · 𝑠𝑃 ⇝A 𝑠0 · 𝑠𝑂
But then, note that

𝑠1/𝑠𝑂 · 𝑠𝑃 ⇝A 𝑠0

by Lemma H.11. Hence, there is a play 𝑠 of ccopyA such that

𝑠↾A0
= 𝑠1/𝑠𝑂 · 𝑠𝑃 𝑠↾A1

= 𝑠0

Now, notice that as 𝑠𝑃 only has Proponent moves, by the switching condition, if𝑚 is a move in 𝑠𝑃
then there are no moves by 𝛼 (𝑚) after𝑚 in 𝑠 . Hence,

𝑠/𝑠𝑃 · 𝑠𝑃 ⇝A⊸A 𝑠

so that 𝑠/𝑠𝑃 (the subsequence of 𝑠 where the moves in 𝑠𝑃 have been removed) is in ccopyA by Prop.

4.7 and prefix-closure. Note that

(𝑠/𝑠𝑃 )↾A1
= 𝑠1/𝑠𝑂 (𝑠/𝑠𝑃 )↾A0

= 𝑠0

Now, let𝑚 be a move in 𝑠𝑂 . Because,

𝑠1 · 𝑠𝑃 ⇝A 𝑠0 · 𝑠𝑂
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it follows that𝑚 does not appear in 𝑠0. Moreover, the last move by 𝛼 (𝑚) in 𝑠 must be a 𝑃 move

in A1, and therefore by the switching condition the last move by 𝛼 (𝑚) is that 𝑃 move. Therefore,

there must be 𝑠 ′ such that

𝑠 ′⇝A⊸A 𝑠/𝑠𝑃 · 𝑠𝑂
and moreover

𝑠 ′↾A0
= 𝑠1

constructed by reversing the swaps involving 𝑠𝑂 up to the swaps with A0 moves and the removal

of the swaps that involve 𝑠𝑃 , which is possible by the remarks above. By Prop. 4.7 𝑠 ′ ∈ ccopyA.

Moreover, as the derivation above does not involve swaps between two moves of A0 it follows that

𝑠 ′↾A0
= (𝑠/𝑠𝑃 )↾A0

= 𝑠0

And therefore 𝑠 ′ is the desired play.

Conversely, suppose there exists such a play 𝑠 ∈ ccopyA. Then, note that for any 𝛼 ∈ Υ,
𝜋𝛼 (𝑠) ∈ copyA

so that in particular there is a sequence of at most one Opponent move 𝑠𝛼 such that either

𝜋𝛼 (𝑠)↾A0
· 𝑠𝛼 = 𝜋𝛼 (𝑠)↾A1

or

𝜋𝛼 (𝑠)↾A0
= 𝜋𝛼 (𝑠)↾A1

· 𝑠𝛼
Let then

𝑠 ′𝑂 = ·𝛼 ∈Υ𝑠𝛼
that is, the concatenation of all the 𝑠𝛼 . Notice that this is a finite sequence as there are at most

finitely many 𝛼 ∈ Υ for which 𝑠𝛼 ≠ 𝜖 . Then, we note that the play 𝑠/𝑠 ′
𝑂
satisfies:

∀𝛼 ∈ Υ.𝜋𝛼 ((𝑠/𝑠𝑂 )↾A0
) = 𝜋𝛼 ((𝑠/𝑠 ′𝑂 )↾A1

)
so let 𝑝 = 𝑠/𝑠 ′

𝑂
and note that by Lemma H.25 it follows that

𝑝↾A1
⇝B 𝑝↾A0

Now, note that 𝑠 ′
𝑂
↾A0

is a sequence of 𝑃 moves in A while 𝑠 ′
𝑂
↾A1

is a sequence of𝑂 moves in A. We

claim that:

(𝑝 · 𝑠 ′𝑂 )↾A1
· 𝑠 ′𝑂↾A0

⇝A (𝑝 · 𝑠 ′𝑂 )↾A0
· 𝑠 ′𝑂↾A1

Indeed, note that

(𝑝 ·𝑠 ′𝑂 )↾A1
·𝑠 ′𝑂↾A0

= 𝑝↾A1
·𝑠 ′𝑂↾A1

·𝑠 ′𝑂↾A0
⇝A 𝑝↾A1

·𝑠 ′𝑂↾A0
·𝑠 ′𝑂↾A1

= 𝑝↾A0
·𝑠 ′𝑂↾A0

·𝑠 ′𝑂↾A1
= (𝑝 ·𝑠 ′𝑂 )↾A0

·𝑠 ′𝑂↾A1

is valid as long as

𝑠 ′𝑂↾A1
· 𝑠 ′𝑂↾A0

⇝A 𝑠
′
𝑂↾A0

· 𝑠 ′𝑂↾A1

As 𝑠 ′
𝑂
↾A1

only contains 𝑂 moves and 𝑠 ′
𝑂
↾A0

only contains 𝑃 moves the reduction is valid as long

as no agent that appears in 𝑠 ′
𝑂
↾A1

, appears in 𝑠 ′
𝑂
↾A0

. But note that in 𝑠 , all of the moves in 𝑠 ′
𝑂
are

Opponent, and as agents are locally sequential no two moves can be by the same agent. So the

derivation is indeed valid. Now, notice that

𝑠1 = 𝑠↾A1
⇝A (𝑠/𝑠 ′𝑂 )↾A1

· 𝑠 ′𝑂↾A1
= (𝑠/𝑠 ′𝑂 · 𝑠 ′𝑂 )↾A1

= (𝑝 · 𝑠 ′𝑂 )↾A1

and that

(𝑝 · 𝑠 ′𝑂 )↾A0
= (𝑠/𝑠 ′𝑂 · 𝑠 ′𝑂 )↾A0

= (𝑠/𝑠 ′𝑂 )↾A0
· 𝑠 ′𝑂↾A0

⇝A 𝑠↾A0
= 𝑠0

Hence, by finally taking

𝑠𝑃 = 𝑠 ′𝑂↾A0
𝑠𝑂 = 𝑠 ′𝑂↾A1

𝑠1 = 𝑠↾A1
· 𝑠𝑃 ⇝A (𝑝 · 𝑠 ′𝑂 )↾A1

· 𝑠 ′𝑂↾A0
⇝A (𝑝 · 𝑠 ′𝑂 )↾A0

· 𝑠 ′𝑂↾A1
= 𝑠↾A0

· 𝑠𝑂 ⇝A 𝑠0 · 𝑠𝑂
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so that 𝑠1 linearizes to 𝑠0. □
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