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I Real-Time Systems and Temporal Isolation

Real-time systems power our world today
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Real-Time Systems and Temporal Isolation

Modern systems may integrate components from various vendors
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Real-Time Systems and Temporal Isolation

Integration opens the door to security vulnerability f :
through real-time scheduling T
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Our Contributions

* Braided virtual timeline: a novel language-based abstraction for the formal
reasoning of dynamic-priority schedulers

A fully verified real-time OS kernel with budget-enforcing EDF partitions

* A mechanized proof of temporal isolation between partitions (no
information leakage through real-time scheduling)

e Artifact available: https://flint.cs.yale.edu/publications/compvtl.html



https://flint.cs.yale.edu/publications/compvtl.html

Real-Time Systems and Temporal Isolation

Isolation is key in ensuring the security of modern real-time systems

* Memory resource: isolation through virtual memory

» Time resource: isolation through real-time scheduling

e Real-time task: requires budget (e) amount of time within every period (p)

e Real-time partition: hosts a group of tasks within the partition budget (C) and period (T)



Background 1: Task-Level Scheduling

Real-time periodic scheduling
* CPU time divided into units of time slots
* Period p: a task repeats its execution during each period

* Budget e: a task executes for (at most) e time slots during each period

A valid schedule of task
T=(e:= 3,p = 5)




Background 1: Hierarchical Scheduling

* CPU time is divided among partitions
* A partition’s time slots are further divided among tasks

T = (1 6)
I, = (2,5) I; = (2,4)
71 = (2,15)
.......................................................... > B R
o1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 10
Partition-level scheduling: Task-level scheduling in I

earliest-deadline-first (EDF)



Challenge 1: Information Flow Vulnerability

Though access to global time is prohibited, I, (from Vendor A) learns
about II; (from Vendor B) by observing II;’s own tasks.

Tog = (1, 6)
[, =(2,5) {

Flipped!
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

I1, is turned on [1, is turned off



Background 2: Static Virtual Timeline [Liu et al PopL20]

* Characterized byatimemapm:Z = 72

* 11;(t) means the amount of “available” time to II; within global time
duration [0, t)

e Can be “statically” computed from highest-priority to lowest-priority

(a). FP schedule & Virtual Timeline (b). Virtual Time Map

virtual time
A '

I, = (20,50) [ preempted | | | | l

I = (10,40) | | | | | |

Iy = (10, 30) available time |

|
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
global time global time



EDF Scheduling is Compositional

Fixed-priority scheduling (e.g., RMS)
is NOT compositional.
N partitions are schedulable iff.

N partitions are schedulable
under EDF iff.

. Vi, k,rf < T,
L1
2 T; where

1—1 k
=Gt Y20
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i
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ry = § :CJ
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Earliest Deadline First (EDF) scheduling

scheduled Arrival Deadline
preempted l l
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Earliest Deadline First (EDF) scheduling
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Earliest Deadline First (EDF) scheduling
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Arrival Deadline
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Earliest Deadline First (EDF) scheduling
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Earliest Deadline First (EDF) scheduling
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Earliest Deadline First (EDF) scheduling
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Earliest Deadline First (EDF) scheduling
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Challenge 2: Limitations of Static Virtual Timeline

* EDF is compositional and fully utilizes CPU time
* Virtual timeline for EDF scheduling can only be calculated dynamically

_(a). Round-Robin (b). Fixed-Priority (c). EDF
(T : deadline)
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Our Approach: EDF Partitions w/ Bound Tasks

* EDF partitions: only considers the utilization ( ) when

adding/removing a partition. Can schedule partltlons that are not
schedulable under fixed-priority policy.

* Bound tasks: for each task in I1;, the task period is a multiple of T;

* This is sufficient for ensuring temporal isolation of partitions. BUT we
still have to formally prove it.



Verification Overview
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int psched(){

t++;
// refill partition budgets
for(int i = 0; i < N; i++){
if (t % Ty == 0){
Opartition[i] = ci;

¥

// scheduling
int pid = N;
int min_ddl = INT_MAX;
for(int 1 = 0; i < N; i++){
if ((-)partition[j-:I = 0){
int ddl =t / T; * T; + Ty,
if (pid == N || ddl < min_dd1){
pid = 1i;
min_ddl = ddl;
¥
¥
¥
if (pid < N){
Qpartition [pld] -

return pid;

Partition-Level EDF Scheduler

t The current global time

N The number of partitions

T, Pre-specified period of partition II;
G Pre-specified budget of partition II;
Qpartitionli] The remaining budget of partition II;
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int int_psched(){ Abstraction: Intermediate

t++;
// refill partition budgets
for(int 1 = 0; 1 < N; i++){ SCthUler
if (t % T; == 0)4{
Qpartition[i] = Gy

}

} PriQ; (p) Mapping from priority level p to
partition ID at time instant t

// scheduling
int pid = N;
for(dint p = 0; p < N; p++){
int i = PriQ:(p);
if (Qpartition[i] > 0){
pid = i;
break;
¥
I3
if (pid < N)A{
Qpartition [pid] "

return pid;
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int abs_psched(){

}

t++;
int pid = N;
for (p = 0; p < N; p++) {
int i = PriQ:(p);
if (pid == N){
m; = Ax. (X > t)?T[i(t — 1) + 1Z7Ti(X);
if (my(t) —m; ([Tij T;) < Ci)A
pid = i;
}
}else{

IL(T%J) ++
+
}

return pid;

Further Abstraction:
Braided Virtual Timeline

1; (k)

Virtual Timeline for partition II;:
mapping from global time to
accumulative available time

The amount of temporal interference
incurred on II; in the k-th period




Contextual Refinement Proof

S1 = (t, Q) S9 = (t,ﬂ')
O , Q
R(Sl, 82) = V1, Q[Z] =C; — min(oiaﬂi(t) - WZ(LEJTl))
int_psched E abs_psched
O Sy N / __O/ /
s = (', Q) R(s7y,585)7? sy = (t',7)



Contextual Refinement Proof

[y = (2,5)
t=7
[, =(2,4) i=0
S1 = (ta Q) S2 = (taﬂ-)
O t O
Rls1, 82) = Vi, Qli] = Ci = min(Cy, mi(t) = mil | 7 |Ti)) Q[0] = 2 — min(2,m(7) — m(5))

int_psched — abs_psched | \

O _________________/__7 ______________ / __O/ /
sy = (',Q") R(sy,55)? sy = (t',7)
ret pid, ret pid, Partition-level scheduling:

earliest-deadline-first (EDF)
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Schedulability Proof of EDF

Proof goal: for each partition I1;, the amount of available time within
each period is greater than or equal to its budget.

* Abstract enough to facilitate the proof
* Proof carries down to the scheduler implementation



Schedulability Proof of EDF

Break down the proof obligation into smaller steps
[Wilding, CAV’98]

Lift each (C, T;) by LCM / T,

Partition Budget Period Util
Then enlarge a partition by T; / GCD one at a time
I1, 10 40 25% : : :
Then shrink all by LCM/GCD in a single step
I1; 10 30 33%
{(150, 600), (200, 600), (240, 600)} is schedulable
I1, 20 50 40%
=> {(150, 600), (600, 1800), (240, 600)} is schedulable
LCM(40, 30, 50) = 600 => {(600, 2400), (600, 1800), (240, 600)} is schedulable
GCD(40, 30, 50) = 10 => {(600, 2400), (600, 1800), (1200, 3000)} is schedulable

LCM / GCD = 60 => {(10, 40), (10, 30), (20, 50)} is schedulable



Schedulability Proof: Enlarging One Partition

= s T o Tom
S Rk

ts. Le
T k Ti "

* The total interference from other partitions does not increase
* Thus, I1; is still schedulable after enlarged by k



Schedulability Proof: Shrinking All Partitions
IR EEN RN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

@ shrink by k

0 1 2 3 4 5 6

t

e If {(kC, kT), ...} is schedulable, {(C, T), ...} is also schedulable
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int loched ()4 Local Scheduler for Tasks

for(dnt § = 0; § < M; j++){
if (t % P; == @){

\ Qrask 3] = €53 t The current global time
b M The number of tasks
int tid = M; | p; Pre-specified period of task t;
for(dnt § = 0; § < M; j++){
if(Qask[j] = 0)1 3 Pre-specified budget of task t;
tid = j;
Qtask[j]1—; Qiasklj] The remaining budget of task t;
break;
I3
¥

return tid;
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int obliv lsched(){
for(int j = 0; j < M; j++){
if (-l.t % -Lp] == Q){
Qrask[J]1 = €5;
}
}

int tid = M;
for(int j = 0; j < M; j++){
if(Qtask[j] > 0)A1
tid = j;
Qtask[j]__;
break;
}
}

return tid;

}

Abstraction:
Oblivious Local Scheduler

It The local time experienced by the
enclosing partition
Ip; Equals p; multiplied by the enclosing

partition’s utilization (budget / period)

A

M= (2,5),7 = (2,15)

The portion of p that is visible to I1
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Contextual Refinement Proof

s1 = (t,index, Q)
O

so = (It,index, Q)
O

Isched

It = L%JC + min(C,w(t) — W(L%JT))

obliv_Isc

ned

so = (It',index’, Q")

ret pid,
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Challenge 1: Information Flow Vulnerability

Though access to global time is prohibited, I, (from Vendor A) learns
about II; (from Vendor B) by observing II;’s own tasks.

T = (1, 6)
[, =(2,5) {

Flipped!
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

I1, is turned on [1, is turned off



Evaluation: Temporal Isolation

T4.47 i = =
e 3 I H G-
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(a) solo partition

Scheduling traces of partition {7, 4, ..., T4 4} are equivalent when run with different other partitions



Proof Efforts
wm | ecinces

Formalization of the dynamic virtual time map and related lemmas 2,102
The schedulability proof on top of the braided virtual timelines 16,170
Functional correctness proof for the partition-level EDF scheduler's C code 2,876
Connecting the schedulability proof with the partition-level EDF scheduler 4,876
Functional correctness proof for the local task scheduler's C code 2,963
Contextual refinement proof between the local task scheduler and its oblivious 7,594

abstraction
Grand Total 36,581



Conclusions

* Braided virtual timeline: a novel language-based abstraction for the formal
reasoning of dynamic-priority schedulers

A fully verified real-time OS kernel with budget-enforcing EDF partitions

* A mechanized proof of temporal isolation between partitions (no
information leakage through real-time scheduling)

e Artifact available: https://flint.cs.yale.edu/publications/compvtl.html



https://flint.cs.yale.edu/publications/compvtl.html

Thank youl!



