Compositional Virtual Timeline:

Verityi
with A

ng Dyna

gorithmr

Mic-Pri

Ic Terr

ority Partitions
poral Isolation

Mengqi Liu!, Zhong Shao, Hao Chen, Man-Ki Yoon?, Jung-Eun Kim?

Yale University

ngqi Liu is now at Alibaba
an-Ki Yoon and Jung-Eun Kim are now at North Carolina State University

I Real-Time Systems and Temporal Isolation

Real-time systems power our world today

(¢ E]] ’))

Real-Time Systems and Temporal Isolation

Modern systems may integrate components from various vendors

Flight Controller In-House

Visual Recognition Vendor A
| Navigation _—

Payload Handling Vendor C

Real-Time Systems and Temporal Isolation

Integration opens the door to security vulnerability f :
through real-time scheduling T

Flight Controller

In-House

/]

Vendor A /f&

—_)) T/:)
Navigation Vendor B

SECRET

Visual Recognition (Mal)

——_]
SECRET

Payload Handling Vendor C

Our Contributions

* Braided virtual timeline: a novel language-based abstraction for the formal
reasoning of dynamic-priority schedulers

A fully verified real-time OS kernel with budget-enforcing EDF partitions

* A mechanized proof of temporal isolation between partitions (no
information leakage through real-time scheduling)

e Artifact available: https://flint.cs.yale.edu/publications/compvtl.html

https://flint.cs.yale.edu/publications/compvtl.html

Real-Time Systems and Temporal Isolation

Isolation is key in ensuring the security of modern real-time systems

* Memory resource: isolation through virtual memory

» Time resource: isolation through real-time scheduling

e Real-time task: requires budget (e) amount of time within every period (p)

e Real-time partition: hosts a group of tasks within the partition budget (C) and period (T)

Background 1: Task-Level Scheduling

Real-time periodic scheduling
* CPU time divided into units of time slots
* Period p: a task repeats its execution during each period

* Budget e: a task executes for (at most) e time slots during each period

A valid schedule of task
T=(e:= 3,p = 5)

Background 1: Hierarchical Scheduling

* CPU time is divided among partitions
* A partition’s time slots are further divided among tasks

T = (1 6)
I, = (2,5) I; = (2,4)
71 = (2,15)
.. > B R
o1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 10
Partition-level scheduling: Task-level scheduling in I

earliest-deadline-first (EDF)

Challenge 1: Information Flow Vulnerability

Though access to global time is prohibited, I, (from Vendor A) learns
about II; (from Vendor B) by observing II;’s own tasks.

Tog = (1, 6)
[, =(2,5) {

Flipped!
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

I1, is turned on [1, is turned off

Background 2: Static Virtual Timeline [Liu et al PopL20]

* Characterized byatimemapm:Z = 72

* 11;(t) means the amount of “available” time to II; within global time
duration [0, t)

e Can be “statically” computed from highest-priority to lowest-priority

(a). FP schedule & Virtual Timeline (b). Virtual Time Map

virtual time
A '

I, = (20,50) [preempted | | | | l

I = (10,40) | | | | | |

Iy = (10, 30) available time |

|
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
global time global time

EDF Scheduling is Compositional

Fixed-priority scheduling (e.g., RMS)
is NOT compositional.
N partitions are schedulable iff.

N partitions are schedulable
under EDF iff.

. Vi, k,rf < T,
L1
2 T; where

1—1 k
=Gt Y20
=

i
0 _ .
ry = § :CJ
Jj=1

Earliest Deadline First (EDF) scheduling

scheduled Arrival Deadline
preempted l l
l—IO — (Zr 5)

3 4 5 6 7 8 9 1011 12 13 14 15

Deadline

|

Arrival

1, = (4,9)

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Earliest Deadline First (EDF) scheduling

scheduled Arrival Deadline
preempted l l
l—IO — (2' 5)

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Deadline

|

1, = (4,9)

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Earliest Deadline First (EDF) scheduling

scheduled

Arrival Deadline
preempted l l
HOZ(Z'S)
3 4 5 6 7 8 9 10 11 12 13 14 15
Arrival Deadline
H1=(4'9)

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Earliest Deadline First (EDF) scheduling

scheduled

Arrival Deadline
preempted l l
HOZ(Z'S)
3 4 5 6 7 8 9 10 11 12 13 14 15
Arrival Deadline
H1=(4'9)

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Earliest Deadline First (EDF) scheduling

scheduled

Arrival Deadline
preempted l l
l—IO — (2' 5) ..
i >
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Arrival Deadline
Hl — (4" 9)

4 5 6 7 8 9 10 11 12 13 14 15

Earliest Deadline First (EDF) scheduling

scheduled

Arrival Deadline
preempted l l
i i : >
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Arrival Deadline
[, =(4,9
1= (4,9) ,

4 5 6 7 8 9 10 11 12 13 14 15

Earliest Deadline First (EDF) scheduling

scheduled Arrival Deadline

preempted l l

[, =(2,5)

3 4 5 6 7 8 9 10 11 12 13 14 15

Arrival Deadline

1, = (4,9)

Challenge 2: Limitations of Static Virtual Timeline

* EDF is compositional and fully utilizes CPU time
* Virtual timeline for EDF scheduling can only be calculated dynamically

_(a). Round-Robin (b). Fixed-Priority (c). EDF
(T : deadline)

»n
>
»
>
»
>

Time Available
to a Componen

|
‘ \
| | | //T |
| | |
- 1,‘! w!‘ii. > < 1‘1‘1 —~ >
Blue —— | O f | 1
Green — | ‘_‘_,_‘ /f 1
'_ [— | | r—'/]—
Red | 4 | ' ‘Preemptlon\ | ‘\/—
A — S L S IS

Global Time Priori ity shift Global Time

Our Approach: EDF Partitions w/ Bound Tasks

* EDF partitions: only considers the utilization () when

adding/removing a partition. Can schedule partltlons that are not
schedulable under fixed-priority policy.

* Bound tasks: for each task in I1;, the task period is a multiple of T;

* This is sufficient for ensuring temporal isolation of partitions. BUT we
still have to formally prove it.

Verification Overview

Vs

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

M1

Abstract Scheduler
with PriQ

(t’ Qpartition’ PriQ’ Qtask)

Isched

int_psched

I

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, = PriQ, Q,,q)

Isched

abs_psched

M1

Temporal Isolation of
Partitions

N

Abstract Scheduler
with Oblivious
Isched

(t, 7 PriQ, It, Q,,q)

obliv_Isched

abs_psched

Ve

Concrete Scheduler

(t’ Qpartition’ C‘)task)

Isched

psched

I

Abstract Scheduler
with PriQ

(t’ Qpartition’ PI’iQ, Qtask)

Isched

int_psched

M1

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, = PriQ, Q)

~N

Isched

abs_psched

11

Temporal Isolation of
Partitions

(2\

Abstract Scheduler
with Oblivious
Isched

(t, @ PriQ, It, Q)

obliv_Isched

abs_psched

int psched(){

t++;
// refill partition budgets
for(int i = 0; i < N; i++){
if (t % Ty == 0){
Opartition[i] = ci;

¥

// scheduling
int pid = N;
int min_ddl = INT_MAX;
for(int 1 = 0; i < N; i++){
if ((-)partition[j-:I = 0){
int ddl =t / T; * T; + Ty,
if (pid == N || ddl < min_dd1){
pid = 1i;
min_ddl = ddl;
¥
¥
¥
if (pid < N){
Qpartition [pld] -

return pid;

Partition-Level EDF Scheduler

t The current global time

N The number of partitions

T, Pre-specified period of partition II;
G Pre-specified budget of partition II;
Qpartitionli] The remaining budget of partition II;

Ve

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

1

Abstract Scheduler
with PriQ

(t’ Qpartition’ Pl‘iQ, Qtask)

Isched

int_psched

1M

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, T, PriQ, Qtask)

Isched

abs_psched

1M

Temporal Isolation of
Partitions

(" 2\

Abstract Scheduler
with Oblivious
Isched

(t, = PriQ, It, Qo)

obliv_Isched

abs_psched

int int_psched(){ Abstraction: Intermediate

t++;
// refill partition budgets
for(int 1 = 0; 1 < N; i++){ SCthUler
if (t % T; == 0)4{
Qpartition[i] = Gy

}

} PriQ; (p) Mapping from priority level p to
partition ID at time instant t

// scheduling
int pid = N;
for(dint p = 0; p < N; p++){
int i = PriQ:(p);
if (Qpartition[i] > 0){
pid = i;
break;
¥
I3
if (pid < N)A{
Qpartition [pid] "

return pid;

Ve

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

1

Abstract Scheduler
with PriQ

(t’ Qpartition’ PriQ’ Qtask)

N

Isched

int_psched

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, T, PI’IQ, Qtask)

N

1M

Isched

abs_psched

Temporal Isolation of
Partitions

~N

Abstract Scheduler
with Oblivious
Isched

(t, 7 PriQ, It, Q)

obliv_Isched

abs_psched

int abs_psched(){

}

t++;
int pid = N;
for (p = 0; p < N; p++) {
int i = PriQ:(p);
if (pid == N){
m; = Ax. (X > t)?T[i(t — 1) + 1Z7Ti(X);
if (my(t) —m; ([Tij T;) < Ci)A
pid = i;
}
}else{

IL(T%J) ++
+
}

return pid;

Further Abstraction:
Braided Virtual Timeline

1; (k)

Virtual Timeline for partition II;:
mapping from global time to
accumulative available time

The amount of temporal interference
incurred on II; in the k-th period

Contextual Refinement Proof

S1 = (t, Q) S9 = (t,ﬂ')
O , Q
R(Sl, 82) = V1, Q[Z] =C; — min(oiaﬂi(t) - WZ(LEJTl))
int_psched E abs_psched
O Sy N / __O/ /
s = (', Q) R(s7y,585)7? sy = (t',7)

Contextual Refinement Proof

[y = (2,5)
t=7
[, =(2,4) i=0
S1 = (ta Q) S2 = (taﬂ-)
O t O
Rls1, 82) = Vi, Qli] = Ci = min(Cy, mi(t) = mil | 7 |Ti)) Q[0] = 2 — min(2,m(7) — m(5))

int_psched — abs_psched | \

O _________________/__7 ______________ / __O/ /
sy = (',Q") R(sy,55)? sy = (t',7)
ret pid, ret pid, Partition-level scheduling:

earliest-deadline-first (EDF)

Ve

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

1

Abstract Scheduler
with PriQ

(t’ Qpartition’ PriQ’ Qtask)

Isched

int_psched

M1

. 5

Abstract Scheduler
with Braided Virtual
Timeline

(t, T, PI’IQ, Qtask)

Isched

abs_psched

M1

Temporal Isolation of
Partitions

4 2\

Abstract Scheduler
with Oblivious
Isched

(t, 7 PriQ, It, Q)

obliv_Isched

abs_psched

Schedulability Proof of EDF

Proof goal: for each partition I1;, the amount of available time within
each period is greater than or equal to its budget.

* Abstract enough to facilitate the proof
* Proof carries down to the scheduler implementation

Schedulability Proof of EDF

Break down the proof obligation into smaller steps
[Wilding, CAV’98]

Lift each (C, T;) by LCM / T,

Partition Budget Period Util
Then enlarge a partition by T; / GCD one at a time
I1, 10 40 25% : : :
Then shrink all by LCM/GCD in a single step
I1; 10 30 33%
{(150, 600), (200, 600), (240, 600)} is schedulable
I1, 20 50 40%
=> {(150, 600), (600, 1800), (240, 600)} is schedulable
LCM(40, 30, 50) = 600 => {(600, 2400), (600, 1800), (240, 600)} is schedulable
GCD(40, 30, 50) = 10 => {(600, 2400), (600, 1800), (1200, 3000)} is schedulable

LCM / GCD = 60 => {(10, 40), (10, 30), (20, 50)} is schedulable

Schedulability Proof: Enlarging One Partition

= s T o Tom
S Rk

ts. Le
T k Ti "

* The total interference from other partitions does not increase
* Thus, I1; is still schedulable after enlarged by k

Schedulability Proof: Shrinking All Partitions
IR EEN RN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

@ shrink by k

0 1 2 3 4 5 6

t

e If {(kC, kT), ...} is schedulable, {(C, T), ...} is also schedulable

Ve

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

1

Abstract Scheduler
with PriQ

(t’ Qpartition’ Pl‘iQ, Qtask)

Isched

int_psched

M

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, T, PriQ, Qtask)

Isched

abs_psched

M

Temporal Isolation of
Partitions

(" 2\

Abstract Scheduler
with Oblivious
Isched

(t, = PriQ, It, Q)

obliv_Isched

abs_psched

int loched ()4 Local Scheduler for Tasks

for(dnt § = 0; § < M; j++){
if (t % P; == @){

\ Qrask 3] = €53 t The current global time
b M The number of tasks
int tid = M; | p; Pre-specified period of task t;
for(dnt § = 0; § < M; j++){
if(Qask[j] = 0)1 3 Pre-specified budget of task t;
tid = j;
Qtask[j]1—; Qiasklj] The remaining budget of task t;
break;
I3
¥

return tid;

Ve

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

1M1

Abstract Scheduler
with PriQ

(t’ Qpartition’ PriQ’ Qtas:k)

Isched

int_psched

1M1

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, = PriQ, Q,,q)

Isched

abs_psched

1M1

Temporal Isolation of
Partitions

(" 2\

Abstract Scheduler
with Oblivious
Isched

(t, 7 PriQ, It, Q,,q)

obliv_Isched

abs_psched

int obliv lsched(){
for(int j = 0; j < M; j++){
if (-l.t % -Lp] == Q){
Qrask[J]1 = €5;
}
}

int tid = M;
for(int j = 0; j < M; j++){
if(Qtask[j] > 0)A1
tid = j;
Qtask[j]__;
break;
}
}

return tid;

}

Abstraction:
Oblivious Local Scheduler

It The local time experienced by the
enclosing partition
Ip; Equals p; multiplied by the enclosing

partition’s utilization (budget / period)

A

M= (2,5),7 = (2,15)

The portion of p that is visible to I1

Ve

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

1

Abstract Scheduler
with PriQ

(t’ Qpartition’ PriQ’ Qtask)

Isched

int_psched

M1

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, T, P“Q, Qtask)

~N

Isched

. =

Abstract Scheduler
with Oblivious
Isched

(t, 7 PriQ, It, Q)

abs_psched

obliv_Isched

abs_psched

Contextual Refinement Proof

s1 = (t,index, Q)
O

so = (It,index, Q)
O

Isched

It = L%JC + min(C,w(t) — W(L%JT))

obliv_Isc

ned

so = (It',index’, Q")

ret pid,

Verification Overview

Vs

Concrete Scheduler

(t’ Qpartition’ Qtask)

Isched

psched

M1

Abstract Scheduler
with PriQ

(t’ Qpartition’ PriQ’ Qtask)

Isched

int_psched

I

Schedulability proof of
an EDF scheduler

Abstract Scheduler
with Braided Virtual
Timeline

(t, = PriQ, Q,,q)

Isched

abs_psched

M1

Temporal Isolation of
Partitions

N

Abstract Scheduler
with Oblivious
Isched

(t, 7 PriQ, It, Q,,q)

obliv_Isched

abs_psched

Challenge 1: Information Flow Vulnerability

Though access to global time is prohibited, I, (from Vendor A) learns
about II; (from Vendor B) by observing II;’s own tasks.

T = (1, 6)
[, =(2,5) {

Flipped!
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

I1, is turned on [1, is turned off

Evaluation: Temporal Isolation

T4.47 i = =
e 3 I H G-
Tio i | [| $ L1 I | $ [
,2 ¥ | | |) | } | I | }] [] } [|
raf ; ; ; ;
H4_ T - T — ']* - - T — j\] --. T —).F 'J\ -— T —
0 50 100 150 200 250 300 350 400 450
(c) w/3 other partitions
|) u -
T4] |
L | |] i
T4,2 7 Ti- = s = ? = ?
R 1] 1 ¢ 1
114 - = = = = = - = = =
0 50 100 150 200 250 300 350 400 450
(b) w/1 other partition
l i) n -
T4,4 | | ||
131 L i = g 1
i IR = t . ? t y ?
T4,1 7 (] = = = =
I14 - = = = = = = = = -
0 50 100 150 200 250 300 350 400 450

(a) solo partition

Scheduling traces of partition {7, 4, ..., T4 4} are equivalent when run with different other partitions

Proof Efforts
wm | ecinces

Formalization of the dynamic virtual time map and related lemmas 2,102
The schedulability proof on top of the braided virtual timelines 16,170
Functional correctness proof for the partition-level EDF scheduler's C code 2,876
Connecting the schedulability proof with the partition-level EDF scheduler 4,876
Functional correctness proof for the local task scheduler's C code 2,963
Contextual refinement proof between the local task scheduler and its oblivious 7,594

abstraction
Grand Total 36,581

Conclusions

* Braided virtual timeline: a novel language-based abstraction for the formal
reasoning of dynamic-priority schedulers

A fully verified real-time OS kernel with budget-enforcing EDF partitions

* A mechanized proof of temporal isolation between partitions (no
information leakage through real-time scheduling)

e Artifact available: https://flint.cs.yale.edu/publications/compvtl.html

https://flint.cs.yale.edu/publications/compvtl.html

Thank youl!

