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Abstract The CompCert C compiler guarantees that the target program behaves
as the source program. Yet, source programs without a defined semantics do not
benefit from this guarantee and could therefore be miscompiled. To reduce the
possibility of a miscompilation, we propose a novel memory model for CompCert
which gives a defined semantics to challenging features such as bitwise pointer
arithmetics and access to uninitialised data.

We evaluate our memory model both theoretically and experimentally. In
our experiments, we identify pervasive low-level C idioms that require the ad-
ditional expressiveness provided by our memory model. We also show that our
memory model provably subsumes the existing CompCert memory model thus
cross-validating both semantics.

Our memory model relies on the core concepts of symbolic value and normalisa-

tion. A symbolic value models a delayed computation and the normalisation turns,
when possible, a symbolic value into a genuine value. We show how to tame the
expressive power of the normalisation so that the memory model fits the proof
framework of CompCert. We also adapt the proofs of correctness of the compiler
passes performed by CompCert’s front-end, thus demonstrating that our model is
well-suited for proving compiler transformations.
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Université Rennes 1 – IRISA, Campus de Beaulieu, Rennes, France
E-mail: Sandrine.Blazy@irisa.fr

P.Wilke
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1 Introduction

Formal verification of programs is usually performed at source level. Yet, a theo-
rem about the source code of a safety critical software is not sufficient. Eventually,
what we really value is a guarantee about the run-time behaviour of the compiled
program running on a physical machine. The CompCert compiler [24] fills this
verification gap: its semantics preservation theorem ensures that when the source
program has a defined semantics, program invariants proved at source level still
hold for the compiled code. For the C language the rules governing so-called un-

defined behaviours are subtle and the absence of undefined behaviours is in general
undecidable. As a corollary, for a given C program, it is undecidable whether the
semantic preservation applies or not.

To alleviate the problem, the formal semantics of CompCert C is executable
and it is therefore possible to check that a given program execution has a de-
fined semantics. Jourdan et al. [18] propose a more comprehensive and ambitious
approach: they formalise and verify a precise C static analyser for CompCert
capable of ruling out undefined behaviours for a wide range of programs. Yet,
these approaches are, by essence, limited by the formal semantics of CompCert
C: programs exhibiting undefined behaviours cannot benefit from any semantic
preservation guarantee. This is unfortunate as real programs do have behaviours
that are undefined according to the formal semantics of CompCert C1. This can be
a programming mistake but sometimes this is a design feature. In the past, serious
security flaws have been introduced by optimising compilers aggressively exploit-
ing the latitude provided by undefined behaviours [32,9]. The existing workaround
is not satisfactory and consists in disabling optimisations known to be triggered
by undefined behaviours.

Another approach consists in increasing the expressiveness of the semantics and
ruling out undefined behaviours. For a language like C, ruling out any undefined
behaviour is not realistic and would incur a slow down that is considered not
acceptable. Yet, to be compiled faithfully, certain low-level C idioms that are used
in practice require more semantics guarantees than those offered by the existing
CompCert C semantics. In the present work, we extend the memory model of
CompCert to capture C idioms that exploit the concrete encoding of pointers (e.g.
alignment constraints) or access partially uninitialised data structures (e.g. bit-
fields). Such properties cannot be reasoned about using the existing CompCert
memory model [27,26]. One of the key insights of our novel memory model is to
delay the evaluation of C operations for which no defined semantics can currently
be determined. For this purpose, the semantics constructs symbolic values that
are stored in and loaded from memory. One key operation is the normalisation

primitive which turns, when needed, a symbolic value into a genuine value.

The memory model of CompCert is shared by all the languages of the compiler.
It consists of memory operations (e.g. alloc, free, store, load) that are equipped
with properties to reason about them. The memory model is a cornerstone of the
semantics of all the languages involved in the compilation chain and its properties
are central to the proof of the semantic preservation theorems. The memory model
also defines memory injections, a generic notion of memory transformation that
is performed during compilation passes and expresses different ways of merging

1 The official C standard is in general even stricter.
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distinct memory blocks into a single one. For example, local variables at the C
level are allocated each in a different block of memory. Later, these are merged
into a single stack frame. Reasoning on memory injections is a non-trivial task.
Moreover, the properties of injections crucially depend on the memory model.

In this paper, we extend the memory model of CompCert with symbolic val-
ues and tackle the challenge of porting memory transformations and CompCert’s
proofs to our memory model with symbolic values. The complete Coq develop-
ment is available on-line [4]. At certain points in this article, theorems are linked

to the online development with a clickable Coq logo
 
 . Among others, a difficulty

is that pointers are mapped to concrete 32-bit integers, thus we drop the implicit
assumption of an infinite memory. This has the consequence that allocation can
fail. Hence, the compiler has to ensure that the compiled program is using less
memory than the source program.

This paper describes our work towards a CompCert compiler giving seman-
tics to more programs, hence giving guarantees about the compilation of more
programs. In particular, it makes the following contributions:

– We define symbolic values that can be stored in memory, and explain how to
normalise them into genuine values that may be used in the semantics.

– We present a formal verification of our memory model within CompCert: we
reprove important lemmas about memory operations.

– We prove that the existing memory model of CompCert is an abstraction of
our model thus validating the soundness of the existing semantics.

– We extend the notion of memory injection, the main generic notion of memory
transformation, and we reprove that its properties still hold in our generalized
setting.

– We adapt the proof of CompCert’s front-end passes, from CompCert C to
Cminor, thus demonstrating the feasibility of our endeavour.

The paper is organised as follows. First, Section 2 introduces relevant examples
of programs having undefined or unspecified behaviours. Then, Section 3 recalls the
main features of CompCert, with a special focus on its memory model. Section 4
defines symbolic values, which is the very core of our proposed extension, and
explains how to normalise such symbolic values. Section 5 explains how we use these
symbolic values in our new memory model and presents the updated semantics
of Clight, an intermediate language simpler than CompCert C. Section 6 reports
on the experimentations we have performed, in particular the low-level idioms
we have identified when executing programs with our semantics. In Section 7,
we reprove the properties of the memory model that are needed to prove the
correctness of the compiler passes. We also show that our new semantics subsumes
the existing CompCert semantics. Section 8 presents our re-design of the notion
of memory injection that is the cornerstone of compiler passes that modify the
memory layout. Section 9 details the modifications in the correctness proofs of the
compiler’s front-end passes. Related work is presented in Section 10; Section 11
concludes.

2 Motivation for an Enhanced Memory Model

The C standard leaves many behaviours unspecified, implementation-defined or
undefined [16, §3.4]. Unsafe programming languages like C have undefined be-

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/index.html
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haviours by nature and there is no way to give a meaningful semantics to an
out-of-bound array access.2 Yet, certain undefined behaviours of C were intro-
duced on purpose to ease either the portability of the language across platforms
or the development of efficient compilers.

Unspecified behaviours are behaviours where the standard leaves a choice
between two or more alternatives (e.g. the order in which the arguments to a
function are evaluated). The choice may vary from one function call to another.
Implementation-defined behaviours are unspecified behaviours where the choice
has to be documented by the compiler. For instance, the relative size of nu-
meric types is defined but the precise number of bits is implementation-defined.
A cast between pointers and integers is also implementation defined. Undefined
behaviours are behaviours for which the standard imposes no requirements. For in-
stance, the access of an array outside its bounds and the access of an uninitialised
value3 are undefined behaviours.

Undefined behaviours have a dramatic impact on the human understanding
of what a program is supposed to do. Consider the simple program in Fig. 1. It
performs a naive overflow check, that assumes that signed overflow is defined so
that it wraps around modulo. Compiled with gcc (version 4.9.2) at optimisation
levels -O0 and -O1, it behaves as expected, i.e. the overflow check succeeds. How-
ever, at higher levels, the condition i + 1 > i is optimised and transformed into
true. This optimisation is sound from the compiler’s perspective because a) if
the computation does not overflow, it is obvious that i + 1 > i, b) if it overflows,
this is undefined behaviour and therefore the compiler is allowed to remove the
else branch.

int main ( ){
int i = INT MAX;
i f ( i + 1 > i ) p r i n t f ( ” Overflow check f a i l e d ” ) ;
else p r i n t f ( ” Overflow check succeeded ” ) ;
return 0 ;

}

Fig. 1: A simple program triggering undefined behaviour

This counter-intuitive optimisation is not correct for CompCert, because its
developers have made the choice to define signed overflow as a wrap-around be-
haviour. We believe that defining the semantics of real-life C idioms is the way to
go to reconcile the programmer’s intentions with the actual program’s behaviour.
We go further in that direction and give semantics to low-level idioms such as
low-level pointer arithmetic and manipulation of uninitialised data.

2.1 Low-level Pointer Arithmetic

The C standard does not specify the bit-width or the alignment of pointers: those
are implementation-defined. In CompCert, pointers are assumed to be 4-byte-

2 Typed languages detect illegal accesses and typically throw an exception.
3 Except if the value is an unsigned char.
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wide. We consider, for the sake of the following examples, that malloc returns
pointers that are 16-byte aligned (i.e. the 4 least significant bits are zeros). Pointer
arithmetic is very limited. Valid operations involving pointers are the addition (or
subtraction) of an integer offset to (or from) a pointer, and the subtraction of two
pointers pointing to the same object. Certain comparisons are valid: two pointers
can be compared for equality (==) and disequality (!=). Other comparisons (<,
<=, > or >= operator) are only defined when the pointer arguments point to the
same object. In order to perform arbitrary operations over a pointer, it is possible
to cast it to an unsigned integer of type uintptr_t for which the ISO C standard
provides the following specification [16, Section 7.18.1.4].

[The type uintptr_t] designates an unsigned integer type with the property
that any valid pointer to void can be converted to this type, then converted
back to pointer to void, and the result will compare equal to the original
pointer.

We also know from [16, Section 6.3.2.3] that any pointer can be converted to a
pointer to void.

A pointer to void may be converted to or from a pointer to any incomplete
or object type. A pointer to any incomplete or object type may be converted
to a pointer to void and back again; the result shall compare equal to the
original pointer.

Note that this specification is very weak and does not ensure anything if a pointer,
cast to uintptr_t, is modified before being cast back.

In the rest of the paper, we consider a 32-bit architecture. A pointer fits into 32-
bits and we implement uintptr_t as a 4-bytes unsigned integer. More importantly,
we ensure that casts between pointers and uintptr_t integers preserve the binary
representation of both pointers and integers. In other words, casts between pointers
and a uintptr_t integers is a no-op. In the following, we illustrate how existing low-
level C idioms can exploit this specification.

2.1.1 Storing information in spare bits

With the previous specification of pointer casts, consider the expected behaviour
of the code snippet of Fig. 2. The pointer p is a 16-byte aligned pointer to a
heap-allocated integer obtained by malloc. Therefore, the 4 trailing bits of its bi-
nary representation are zeros. We can think of the binary representation of p as
0xPQRSTUV0 where letters P to V are hexadecimal indeterminate values. The last
digit of the representation of p is 0, modelling the 16-byte alignment.

Next, pointer q is obtained from the pointer p by filling its 4 trailing bits with a
hash of the pointer p (the hash is masked with 0xF to ensure that it uses only 4 bits).
We note H the abstract digit corresponding to the hash of p. The representation of q
is exactly that of p with the last digit changed to H. This pattern is commonly used
as a hardening technique (e.g. in an implementation of malloc). 4 Then, pointer r

is obtained by clearing (using left and right shifts) the 4 least significant bits of q,
resulting in the binary representation of r being equal to that of p.

Our model provides semantics to this program, which CompCert does not
because of the undefined operations on pointers (hash, shifts, bitwise OR/AND).

4 See ”free list utilities” in http://www.opensource.apple.com/source/Libc/Libc-594.1.
4/gen/magazine_malloc.c

http://www.opensource.apple.com/source/Libc/Libc-594.1.4/gen/magazine_malloc.c
http://www.opensource.apple.com/source/Libc/Libc-594.1.4/gen/magazine_malloc.c
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char hash (void ∗ptr ) ;

int main ( ){
int ∗p = ( int ∗) mal loc ( s izeof ( int ) ) ;
// p = 0xPQRSTUV0
∗p = 0 ;
int ∗q = ( int ∗) ( ( uintptr t ) p | ( hash (p) & 0xF ) ) ;
// q = 0xPQRSTUVH
int ∗ r = ( int ∗) ( ( ( uintptr t ) q >> 4) << 4 ) ;
// r = 0xPQRSTUV0 = p
return ∗ r ;

}

Fig. 2: Unspecified behaviour: low-level pointer arithmetic

2.1.2 System call return value

It is common for system calls (e.g. mmap or sbrk) to return either the pointer
(void ∗)−1 to indicate a failure, e.g. because no memory is available, or a pointer
aligned on a page boundary. In two’s complement arithmetics −1 is encoded by
the bit-pattern 0xFFFFFFFF and a page aligned pointer is of the form 0xPRSTU000,
assuming that the page size is 4kB. Consider the code of Fig. 3 which calls mmap to
allocate a single character and gets as exit code whether the allocation succeeds.
In this particular case, the first argument is NULL meaning that mmap allocates a
fresh memory chunk. The second argument is the size in bytes, here 1, of the
allocated region. The other arguments set various properties of the region. They
have no impact on the semantics of this particular program and can therefore be
ignored. Suppose that the call to mmap fails and returns −1. In that case, the condi-

int main ( ){
char ∗p = (char∗)mmap(NULL, 1 ,

PROT READ|PROT WRITE,
MAP PRIVATE |MAPANONYMOUS, −1, 0 ) ;

return (p == (void ∗) −1);
}

Fig. 3: Undefined behaviour: mmap usage

tion (void ∗) −1 == (void ∗) −1 holds and the program returns 1. Otherwise, if mmap
succeeds, the condition 0xPRSTU000 == 0xFFFFFFFF does not hold and the program
returns 0. Again, because we model alignment constraints, we give a meaning to
this program.

2.2 Manipulation of Uninitialised Data

The C standard states that any read access to uninitialised memory triggers unde-
fined behaviours [16, section 6.7.8, §10]: “If an object that has automatic storage
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unsigned int s e t (unsigned int p , unsigned int f l a g ) {
return p | (1 � f l a g ) ;

}

int i s s e t (unsigned int p , unsigned int f l a g ) {
return (p & (1 � f l a g ) ) != 0 ;

}

int main ( ) {
unsigned int s t a t u s = s e t ( s tatus , 0 ) ;
return i s s e t ( s tatus , 0 ) ;

}

Fig. 4: Undefined behaviour: reading the uninitialised variable status

duration is not initialised explicitly, its value is indeterminate.” Here, indetermi-
nate means that the value is either unspecified or a trap representation. In case
the object may have a trap representation5, reading a variable’s value before it
has been initialised is an undefined behaviour. Our semantics is more permissive
and never produces trap representations – this is consistent with the behaviour
of all standard hardware. In our model, uninitialised memory has a indeterminate
arbitrary but stable value. To be more precise, we ensure that reading twice from
the same uninitialised memory returns the same result. We show below two idioms
that benefit from this more defined semantics.

2.2.1 Flag setting in an integer variable

Consider the code snippet of Fig. 4 that is representative of a C pattern found in an
implementation of a libC (see Section 6.3). The program declares a status variable
and sets its least significant bit using the set function. It then tests whether the
least significant bit is set using the isset function. According to the C standard,
this program may have undefined behaviour because the set function reads the
value of the status variable before it is ever written.

However, we argue that this program should have a well-defined semantics and
should always return the value 1. The argument goes has follows: whatever the
initial value of the variable status, the least significant bit of status is known to
be 1 after the call set(status ,0). Moreover, the value of the other bits is irrelevant
for the return value of the call isset (status ,0), which returns 1 if and only if the
least significant bit of the variable status is 1. More formally, the program should
return the value of the expression (status|(1�0))&(1�0) != 0 which simplifies to
(status|1)&1 != 0, which evaluates to 1 no matter what the value of status is.

2.2.2 Bit-Fields in CompCert

Another motivation is illustrated by the current handling of bit-fields in CompCert:
they are emulated in terms of bit-level operations by an elaboration pass preceding
the formally verified front-end. Fig. 5 gives an example of such a transformation.
The program defines a bit-field bf with two fields a0 and a1; both fields are 1-bit-

5 All types expect unsigned char may have trap representations.
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int main ( ) {
struct {

unsigned int a0 : 1 ;
unsigned int a1 : 1 ;

} bf ;
bf . a1 = 1 ;
return bf . a1 ;

}

(a) Bit-fields in C

1 struct b f s {
2 unsigned char b f 1 ;
3 } bf ;
4
5 int main ( ){
6 struct { unsigned char b f 1 ;} bf ;
7 bf . b f 1 = ( bf . b f 1 & ˜2U) | ( (unsigned int ) 1 << 1U & 2U) ;
8 return ( int ) ( (unsigned int ) ( bf . b f 1 << 30) >> 3 1 ) ;
9 }

(b) Bit-fields in CompCert C

Fig. 5: Emulation of bit-fields in CompCert

wide. The main function sets the field a1 of bf to 1 and then returns this value.
The expected semantics is therefore that the program returns 1.

The transformed code (Fig. 5b) is not very readable but the gist of it is that field
accesses are encoded using bitwise and shift operators. After evaluation of compile
time constants, Line 7 can be read as bf . bf1 = (bf. bf1 & 0xFFFFFFFD) | 0x2.
The mask with 0xFFFFFFFD clears the second least significant bit of bf . bf1
and keeps all the other bits unchanged. The bitwise OR with 0x2 sets the second
least significant bit. Line 8, the value of the field is extracted by first moving the
field bit towards the most significant bit (bf . bf1 << 30) and then moving this
bit towards the least significant bit (>> 31). The transformation is correct and
the target code generated by CompCert correctly returns 1. However, using the
existing memory model, the semantics is undefined. Indeed, the program starts
by reading the field __bf1 of the uninitialised structure bf. This triggers undefined
behaviour according to the C standard. Even though this case could be easily
solved by modifying the pre-processing step, C programmers might themselves
write such low-level code with reads of undefined memory and expect it to behave
correctly. With our model of uninitialised memory, this program has a perfectly
defined semantics.

3 CompCert’s Memory Model

Our work builds on top of CompCert, a formally verified C compiler. In this section,
we give an overview of the design of CompCert. In particular, we provide the
necessary background to understand the existing memory model and its properties.
Readers familiar with CompCert can freely skip this section. In later sections,
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we propose a novel memory model which fits the framework of CompCert and
therefore provide a similar interface.

3.1 The CompCert Compiler

CompCert [25,27] is a full-fledged industrialised C compiler that is programmed
and formally verified using the Coq proof-assistant. It transforms CompCert C, a
very large subset of C (detailed in section 3.2) into assembly code for x86, PowerPC
and ARM architectures. The compilation is performed through 10 languages, from
CompCert C to assembly. Every language is equipped with a formal semantics in
small-step style, formally describing the meaning of each statement and expression
construct. The semantics also observes behaviours B. We note P ⇓ B to indicate
that program P exhibits behaviour B. Possible behaviours are normal termination
with a finite trace of events τ , divergence (i.e. infinite execution) with an infinite
trace of events τ∞ and going-wrong behaviours with a finite trace of events τ . A
program goes wrong if it is in a stuck and non-final state: this is the representation
of undefined behaviour. We write Wrong for the set of going-wrong behaviours. A
behaviour B2 is said to be an improvement of a behaviour B1 (written B1 4 B2)
either if B2 is equal to B1 or if B1 is a going-wrong behaviour with trace τ and
τ is a prefix of B2’s trace. A program is safe if it does not exhibit going-wrong
behaviours:

Safe(P ) ≡ ∀B,P ⇓ B ⇒ B /∈ Wrong

The semantics of CompCert C is not deterministic (as C permits different
evaluation orders for expressions) and may observe several behaviours for a given
program input. CompCert’s first transformation on C programs reduces this non-
determinism, by choosing an evaluation order. Moreover, CompCert can optimise
away run-time errors present in the source program, replacing them by any be-
haviour of its choice, provided that the behaviour observed before the original
program went wrong is preserved.6 For these reasons, a compiler pass is said to be
correct (or semantics preserving) when every behaviour of the compiled program
is an improvement of an allowed behaviour of the source program. This allows
the compiler to replace undefined behaviours with more defined behaviours. This
property is called backward simulation and can be stated as follows:

∀B,C ⇓ B ⇒ ∃B′, S ⇓ B′ ∧B′ 4 B

If we restrict ourselves to safe behaviours, the behaviours are exactly preserved:
this property is called safe backward simulation and can be formally stated as fol-
lows:

∀B,B /∈ Wrong⇒ C ⇓ B ⇒ S ⇓ B

However, reasoning by induction on the source language is easier than reasoning
on the target language, because a single step in the source program corresponds
in general to multiple steps in the compiled program. Thus, it is easier to prove
a safe forward simulation instead of a safe backward simulation. A safe forward
simulation states that every safe behaviour of the source program still exists in

6 Note that this preservation is not a requirement of C, but an additional guarantee from
CompCert.
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the compiled program. Formally, ∀B,B /∈ Wrong⇒ S ⇓ B ⇒ C ⇓ B. Provided that
the target language is deterministic, a safe forward simulation argument (easy to
prove) is equivalent to a safe backward simulation argument (which we need).

At the level of program states, a safe forward simulation between a source
program P1 written in language L1 and a compiled program P2 written in language
L2 can be formally stated as follows: whenever program P1 and P2 are respectively
in states S1 and S2 that match (according to the relation ∼), and P1 can step from
S1 to a state S′1 with trace τ , then there exists a state S′2 such that P2 can step
from S2 to S′2 with the same trace τ such that S′1 and S′2 match. This is depicted
in Fig. 6, where hypotheses are plain lines and conclusions are dashed lines. Notice
here that the traces are the same in both steps because we assume that the source
program is not stuck (by hypothesis), therefore it does not exhibit a going-wrong
behaviour, and the traces have to match exactly.

S1 S2
∼

S′
1

τ

S′
2∼

τ

∀ S1 S2, S1 ∼ S2 ⇒
∀ S′

1 τ, S1
τ−→ S′

1 ⇒
∃ S′

2, S2
τ−→ S′

2 ∧ S′
1 ∼ S′

2

Fig. 6: Forward simulation diagram

Each of the 15 compiler passes (9 transformations between the 10 intermediate
languages plus 6 optimisations) of CompCert is proved correct independently.
Then, the simulation theorems are composed together, establishing correctness for
the whole compiler.

3.2 CompCert’s Front-End

CompCert is split into a front-end and a back-end. The front-end is architecture-
independent, while the back-end is architecture-dependent, i.e. it may use special-
ized operators only present on some targeted hardware. This section introduces
the different languages and passes of the front-end of CompCert (see Fig. 7).

CompCert C

Cstrategy Clight C]minor Cminor

Determinisation

Side-effect

removal

Type

elimination

Stack frame

allocation

Fig. 7: Architecture of CompCert’s front-end

The input language of CompCert’s front-end is a large subset of C, called
CompCert C, which includes all of MISRA-C 2004 [28] and almost all of ISO
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C99 [16], with the exceptions of variable-length arrays and unstructured, non-
MISRA switch statements (e.g. Duff’s device). As discussed in the previous sec-
tion, CompCert C features non-determinism, in particular the order in which the
arguments to a function call are evaluated is non-deterministic.

CompCert ships with an interpreter for CompCert C, which allows to test
whether a given C program has defined semantics, and therefore whether the
semantics preservation theorem applies for this program.

The very first transformation on CompCert C is its determinisation, effectively
choosing an evaluation order (or evaluation strategy), resulting in the language
Cstrategy. Note that the proof of this first pass is necessarily performed as a
backward simulation proof, since the forward simulation property does not hold:
there are some behaviours in source programs that have no counterpart in the
corresponding compiled programs.

Cstrategy programs are then translated into Clight. Clight is a subset of C
(i.e. any valid Clight program is a valid C program), where side-effects have been
pulled out of expressions and made explicit. In Section 5.4, we will show differences
between our work and CompCert using the semantics of Clight as an example.

Clight is then transformed into C]minor, where all type-information is erased
and operations are transformed accordingly. For example, the Clight expression
p+2 where p is a pointer to int is transformed into the following C]minor expression:
p+2∗sizeof(int). The semantics of addition is then simpler in C]minor because it
does not need to reason about the type of its operands, it simply adds an offset
to a pointer.

Finally, C]minor programs are transformed into Cminor programs, where a
stack frame is built for every function, and accesses to variables are translated
into accesses in the stack frame. This transformation and its proof of correctness
are more involved because the memory layout of the program is heavily modified.
In Section 9, we adapt the proofs of all these passes for our memory model.

3.3 The Memory Model of CompCert

The memory model of CompCert defines the layout of the memory and the differ-
ent memory operations. It is shared by all the languages of the compiler CompCert.
CompCert uses an abstract block-based model where memory is an infinite collec-
tion of separated blocks [26]. Intuitively, a block is an array of bytes that represent
values. At the C level, each block corresponds to an allocated variable (e.g. a 32-
bit integer is stored in a 4-byte-wide block, an array of 10 characters is stored in
a 10-byte-wide block). In lower languages, this correspondence between variables
and memory blocks does not hold anymore.

The interface of CompCert’s memory model is given in Fig. 8. Abstract values
(of type val) used in the semantics of the CompCert languages (see [27]) are the
disjoint union of 32-bit integers (written int(i)), 64-bit integers (written long(l)),
32-bit floating-point numbers (written float(f)), 64-bit floating-point numbers
(written double(d)), pointers (written ptr(l)), and the special value undef repre-
senting the result of undefined operations or the value of an uninitialised variable.
Operations are strict in undef i.e. they yield undef when one of the operands is
undef.
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Memory locations: l ::= (b, i) (block, integer offset)

Values: val ::= int(i) | long(l)
| float(f) | double(d)
| ptr(l) | undef

Abstract bytes: memval ::= Byte(b)
| Pointer(b, i, n)
| Undef

Memory chunks: memory chunk ::= Mint8signed 8-bit integers
| Mint8unsigned
| Mint16signed 16-bit integers
| Mint16unsigned
| Mint32 32-bit integers or pointers
| Mfloat32 32-bit floats
| Mint64 64-bit integers
| Mfloat64 64-bit floats

Operations over memory states:
alloc m lo hi = (m′, b) Allocate a fresh block with bounds [lo, hi[.
free m b = bm′c Free (invalidate) the block b

load κ m b i = bvc
Read consecutive bytes (as determined by κ) at block
b, offset i of memory state m. If successful, return the
contents of these bytes as value v.

store κ m b i v = bm′c
Store the value v as one or several consecutive bytes
(as determined by κ) at offset i of block b. If successful,
return an updated memory state m′.

bound m b Return the bounds [lo, hi[ of block b.
size chunk κ Return the size (number of bytes) that κ holds.

Fig. 8: CompCert’s memory model

A location l is a pair (b, i) where b is a block identifier (i.e. an abstract address)
and i is an integer offset within this block. A location (b, i) is valid for a memory
m (written valid(m, b, i)) if the offset i lies within the bounds of the block b. It
is weakly valid (written weakly valid(m, b, i)) if it is either valid or just one byte
past the end of its block. This accounts for a subtlety of the C standard, stating
that pointers one-past-the-end of an object deserve a particular treatment, namely
that they can be compared to the other pointers to this object. This is intended to
make looping over an entire array easier, allowing to compare the current pointer
to the pointer just one-past-the-end.

Example 1 (Valid and weakly valid pointers): Consider a block b with bounds [0; 3[.
Then, pointers ptr(b, 0) and ptr(b, 3) are valid (and also weakly valid a fortiori).
Pointer ptr(b, 4) is not valid, however it is weakly valid. Pointer ptr(b, 5) is neither
valid nor weakly valid.

Pointer arithmetic is defined in Fig. 9. It reflects the restrictions we described
in section 2.1, that is, the only defined operations are the addition of an integer
offset to a pointer, the subtraction of an integer offset from a pointer, and the
subtraction of two pointers that point to the same object. Comparisons are also
defined between pointers to the same object. All operations not described are
undefined (they return undef). Note that, starting from pointer ptr(b, i) it is not
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ptr(b, o)± int(i) = ptr(b, o± i)
ptr(b, o)− ptr(b, o′) = int(o− o′)
ptr(b, o) ? ptr(b, o′) = o ? o′ when ? ∈ {<,≤,==,≥, >, ! =}

and both pointers are weakly valid
ptr(b, o) == ptr(b′, o′) = false when b 6= b′ ∧ valid(m, b, o) ∧ valid(m, b′, o′)
ptr(b, o)! = ptr(b′, o′) = true when b 6= b′ ∧ valid(m, b, o) ∧ valid(m, b′, o′)
ptr(b, o) ? ptr(b′, o′) = undef when b 6= b′ and ? ∈ {<,≤,≥, >}
ptr(b, o)! = int(0) = true when weakly valid(m, b, o)
ptr(b, o) == int(0) = false when weakly valid(m, b, o)

Fig. 9: Pointer arithmetic rules in CompCert

possible to reach a pointer to a different block via pointer arithmetic, as blocks
are separated by construction.

The memory model defines four main memory operations: load, store, free

and alloc. The load and store operations are parameterised by a memory chunk
κ which concisely describes the number of bytes to be fetched or written, and
the signedness of the value. An access at location (b, o) with chunk κ is aligned
if size chunk κ divides o7. For instance, the size of the chunk Mint32 is 4 bytes,
hence an integer could be accessed with this chunk at offsets that are multiples
of 4. These operations are partial, i.e. they may fail e.g. when the access is out
of bounds, misaligned, or when the value and the chunk are inconsistent. This is
modelled by the option type: we write ∅ for failure and bxc for a successful return
of value x. The free operation frees a given block. It fails when the given block is
not freeable. The alloc operation allocates a new block of the requested size. It
never fails, thus modelling an infinite memory.

The memory itself is not a direct mapping from locations to values; instead it
is a mapping from locations to abstract bytes called memvals. This allows to reason
about byte-level accesses to the memory. A memval is a byte-sized quantity that can
be one of the following: Undef represents uninitialised bytes, Byte (b) represents
the concrete byte (8-bit integer) b and Pointer (b, i, n) represents the n-th byte of
the binary representation of the pointer ptr(b, i).

3.4 Memory Injections in CompCert

For the front-end, the most difficult proof concerns compiler the pass that modifies
the memory layout (e.g. the generation of Cminor from C]minor). At the C]minor
level, every local variable of a given function is stored in its own block. At the
Cminor level, all local variables of a given function are stored in a single stack block,
representing its activation record. Memory blocks from the C]minor program are
mapped to offsets in the memory block of the Cminor program. This is shown in
Fig. 10, where three blocks are merged into a single one.

The process of merging blocks together is defined in CompCert as a so-called
memory injection. A memory injection defines a mapping between memories; it is
a versatile tool to explain how passes reorganise the memory.

A memory injection is a relation between two memories m1 and m2 parame-
terised by an injection function f : block → option location mapping blocks in

7 It is slightly too strong a condition: a 64-bit float variable only needs to be accessed at
addresses that are multiple of 4, not 8.
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int(i)

float(f)

undef

int(i)

float(f)

undef

δ1

δ2

Fig. 10: Injecting local variables into a stack block

m1 to locations in m2. The injection relation is defined over values (and called
val inject) and then lifted to memories (and called mem inject). The val inject

relation is defined inductively in Fig. 11.

Rule (1) captures the intuitive semantics of injected that is depicted in Fig. 10.
It states that a pointer ptr(b1, i) is in injection with a pointer ptr(b2, i + δ) if
f(b1) = b(b2, δ)c. Rule (2) states that undef is in relation with any value. Finally,
rule (3) states that for non-pointer values, the injection is reflexive. The purpose
of the injection of values is twofold: it establishes a relation between pointers using
the function f but it can also specialise undef by any defined value.

f(b1) = b(b2, δ)c
val inject f ptr(b1, i) ptr(b2, i+ δ)

(1)

val inject f undef v
(2)

v 6= ptr(b, i)
val inject f v v

(3)

Fig. 11: val inject in CompCert

The relation memval inject lifts val inject to memvals and is defined as follows.

1. Concrete bytes are in injection with themselves only.
2. Pointer (b, i, n) is in injection with Pointer (b′, i+ δ, n) when f(b) = b(b′, δ)c.
3. Undef is in injection with any memval.

The mem inject relation is built on top of memval inject, but it also includes
well-formedness properties. Consider a block b1 of m1 injected to a location (b2, δ)
of m2; the following properties must hold to establish a memory injection between
m1 and m2.

– For every valid offset o of b1, o+ δ must be a valid offset of b2.
– δ must be properly aligned with respect to the size of b1.
– For every valid offset o of b1, the memvals at locations (b1, o) in m1 and (b2, o+δ)

in m2 must be related by memval inject.

The alignment constraint ensures that all aligned accesses remain aligned after
the injection, therefore that loads and stores are preserved by the injection. To
build a valid memory injection, the injection f must also be an injective function,
i.e. for every pair of disjoint blocks (b1, b2), the locations they are injected to do
not overlap. The corresponding formal definition is the following:
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Definition 1 (meminj no overlap
 
 ):

meminj no overlap f m : P := ∀b1 b′1 δ1 b2 b′2 δ2 ofs1 ofs2,

b1 6= b2 → f(b1) = b(b′1, δ)c → f(b2) = b(b′2, δ2)c →
valid(m, b1, ofs1)→ valid(m, b2, ofs2)→ (b′1 6= b′2 ∨ ofs1 + δ1 6= ofs2 + δ2).

The memory model provides theorems about the behaviour of memory opera-
tions with respect to injections. For example, Theorem 1 states that, starting from
two memory states m1 and m2 in injection, if a store of a given value v1 can be
performed in m1 at a location (b1, o), resulting in a memory state m′1, and if b1 is
injected into location b2 at offset δ, then a store of a value v2 (in injection with
v1) can be performed on m2, resulting in a memory state m′2 such that m′1 and
m′2 are in injection.

Theorem 1 (store mapped inject
 
 ):

∀ f m1 m2 b1 b2 o δ v1 v2,

mem inject f m1 m2 → store κ m1 b1 o v1 = bm′1c →
f(b1) = b(b2, δ)c → val inject f v1 v2 →
∃ m′2, store κ m2 b2 (o+ δ) v2 = bm′2c ∧ mem inject f m′1 m

′
2.

Similar theorems are proved for the load, alloc and free operations.

4 Symbolic Values and Normalisation

To give a semantics to the C idioms given in Section 2, a direct approach is to
have a fully concrete memory model where a pointer is a genuine integer and the
memory is an array of bytes. This model is not satisfactory because it prevents
abstract reasoning and disables a number of optimisations. Indeed, as Kang et al.

[19] notice, if addresses are mere integers, any function can forge an address and
we cannot rely on any isolation property.

Our approach to improve the semantics coverage of CompCert consists in de-
laying the evaluation of expressions which, for the time being, do not have an inter-
pretation in terms of values. Instead of values, our semantics domain is therefore
made of symbolic values defined in Fig. 12. A symbolic value can be a CompCert
value val . However, our semantics does not evaluate operators but instead con-
struct symbolic values which represent delayed computations. The exhaustive list
of unary operators (op1) and binary operators (op2) is given in Fig. 12. These are
all the operators that are defined on CompCert values and needed to evaluate C
programs. A symbolic value can also be an indeterminate value indet(l) labelled
by a location l. As we shall see in Section 5.3, indeterminate values will be used
to model uninitialised memory. In the paper, we use a concise and concrete C-like
syntax for symbolic values. For instance, we will write (ptr(b, i) | int(3))&int(3)
for OpAnd(OpOr(ptr(b, i), int(3)), int(3)).

There are certain semantic operations which cannot operate on symbolic val-
ues. For instance, the load (resp. store) operation reads from (resp. writes to) a
particular location. Similarly, for conditional statements, the condition needs to be
evaluated to a boolean, i.e. int(0) or int(1) in order to execute to desired branch.
We call normalisation the function which maps symbolic values to genuine values.
Intuitively, a symbolic value sv normalises to a value v if sv always evaluates to v.
In the following, we formalise these notions.

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.meminj_no_overlap
http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.store_mapped_inject
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Operators: op1 ::= OpBoolval | OpNotbool | OpNeg | OpNot | OpAbs
| OpZeroext | OpSignext | OpRolm | OpLoword | OpHiword
| OpSingleofbits | OpDoubleofbits
| OpBitsofsingle | OpBitsofdouble
| OpConvert(tfrom, tto)

op2 ::= OpAnd | OpOr | OpXor | OpAdd | OpSub | OpMul
| OpDiv | OpMod | OpShr | OpShl | OpCmp(cmp)
| OpFloatofwords | OpLongofwords

Symbolic values: sv ::= val value
| indet(l) indeterminate content of location
| op1 sv unary operation
| sv1 op2 sv2 binary operation

Evaluation of symbolic
values:

Jptr(b, i)Kimcm = cm(b) + i
JvKimcm = v
Jindet(l)Kimcm = im(l)
Jop1 svKimcm = eval unop(op1, JsvKimcm )
Jsv1 op2 sv2Kimcm = eval binop(op2, Jsv1Kimcm , Jsv2Kimcm )

Fig. 12: Semantics of symbolic values

4.1 Evaluation of Symbolic Values

The rationale for introducing symbolic values is to overcome the limitations of the
existing semantics of CompCert. As a result, evaluating a symbolic value using the
existing semantics of pointers given in Fig. 9 would not increase the expressiveness.
Another approach would be to axiomatise further the semantics of pointers. For
instance, we could state that the exclusive or (∧) is idempotent and that 0 is a
neutral element for bitwise or (|):

ptr(b, o)∧ptr(b, o) = int(0)
ptr(b, o) | int(0) = ptr(b, o)

We rule out this approach that is by essence partial.
As we intend to reason about the bit-level encoding of pointers, our evaluation

of symbolic values returns a bit-precise value v that is any value that is not pointer.
The evaluation of a symbolic value is therefore parameterised by:

– a mapping cm : block → int that associates to each block a concrete address
i.e. a 32-bit integer;

– and a mapping im : location → byte that associates to each indeterminate
location a concrete byte value i.e. a 8-bit integer.

In the rest of the paper, we call cm a concrete memory and im an indeterminate
memory. Both cm and im bridge the gap between the high-level concepts of blocks
and locations and a low-level memory represented as an array of bytes.

The evaluation is defined recursively (see Fig. 12) on the structure of symbolic
values. Evaluating a pointer value ptr(b, i) results in the concrete address of this
pointer in the concrete memory cm, that is cm(b) + i. Every other value evaluates
to itself. Evaluating an indeterminate value indet(l) results in the byte value that
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is stored at location l i.e. im(l). The evaluation of unary and binary operators
consists in first evaluating recursively their operands, and then applying the ap-
propriate operations (represented by the eval unop and eval binop functions, that
map syntactic constructors to their semantics).

4.2 Well-formedness Condition for Concrete Memories

As stated earlier, a concrete memory cm maps blocks to a concrete address, rep-
resenting the base pointer of this block. Definition 4 states the invariants that
constrain this mapping for a given CompCert memory. To comply with the C
standard and the Application Binary Interface, blocks cannot be allocated at ar-
bitrary addresses but must satisfy alignment constraints. The alignment constraint
depends on the number of bytes of the data-structure and is given by the function
alignment_of_size:

Definition 2 (alignment of size):

alignment_of_size size :=
match size with
|0|1 ⇒ 0
|2|3 ⇒ 1
|4|5|6|7 ⇒ 2
| _ ⇒ 3
end.

In particular, a byte has no alignment constraint; a 16-bits integer is 21-byte
aligned; a 32-bit integer is 22-byte aligned and a 64-bit integer is 23-byte aligned.
It follows that the alignment of a block is obtained by the function alignment which
retrieves the size of a block and returns the number of trailing bits that are 0s in
the concrete representation of the block.

Definition 3 alignment(m,b) := let (lo,hi) := bound(m,b) in alignment_of_size(hi−lo).

Definition 4 (Valid concrete memory): A concrete memory cm is valid for a
memory m (written cm ` m), if and only if the three following properties are
satisfied.

1. Valid locations lie in the range ]0; 232 − 1[.
∀b o, valid(m, b, o)→ 0 < cm(b) + o < Int.max unsigned

2. Valid locations from distinct blocks do not overlap.
∀b b′o o′, b 6= b′ → valid(m, b, o)→ valid(m, b′, o′)→ cm(b) + o 6= cm(b′) + o′

3. Blocks are mapped to suitably aligned addresses.
∀b, cm(b) mod 2alignment(m,b) = 0

The first condition excludes 0 from the address space because it denotes the
NULL pointer. It also excludes Int.max_unsigned = 232 − 1 but for a more subtle
reason that is due to pointers one-past-the-end. The C standard stipulates that,
given an array of n elements, a[n], the addresses of successive elements (including
n) are strictly increasing. Formally, we have: a+0 < a+1 . . . a+(n−1)< a+n. Note
that a+n is a pointer one-past-the-end of the array. We exclude 232 − 1 from the
address space to prevent a possible wrap-around of a+n that would invalidate the
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inequality expected by the C standard. The second condition states the implicit
property of a block-based memory model: valid addresses from distinct blocks do
not overlap. The third condition makes sure that blocks are aligned according to
their size.

4.3 Normalisation of Symbolic Values

To get an executable semantics, we require the normalisation primitive to be a
function. The function, called normalise : mem → sval → val , takes as input a
symbolic value sv and a memory m, and returns a value v. Ideally, we would like
v to be such that sv evaluates to v for any indeterminate memory im and any
concrete memory cm valid for m. Unfortunately, Example 2 shows that such a v

does not always exist.

Example 2 Consider the symbolic values sv = indet(b, o) and sv ′ = ptr(b, 0) −
ptr(b′, 0). For sv , there does not exist a value v such that JsvKimcm = v for every im.
That would imply that ∀im, im ′.im(b, o) = im ′(b, o), which is a contradiction. For
sv ′, the difference of pointers evaluates to cm(b) − cm(b′) for every cm ` m. For
different concrete memories, the evaluation returns different values.

When it is not possible to identify a unique value v, the normalisation returns
the value undef. Definition 6 formalises the soundness criteria for a normalisation
function. To capture the fact that it is always sound for a normalisation to return
undef, it uses the relation ≤ (read less defined than) such that undef is less defined
than any value. It is formally defined as these two rules:

Definition 5 (≤): ∀v, undef ≤ v ∀v, v ≤ v

Definition 6 (Sound normalisation): Consider a memory m, a symbolic value
sv . A value v is a sound normalisation of sv (written is norm m sv v) if the value
v is less defined than the evaluation of sv for any valid concrete memory cm and
any indeterminate memory im.

∀cm ` m, ∀im, JvKimcm ≤ JsvKimcm

A normalisation function norm is sound if for any memory m and symbolic value
sv we have that norm m sv is a sound normalisation of sv .

For proving properties of the normalisation, for instance in Section 8.3, we use the
more convenient formulation provided by Lemma 1 which is equivalent when the
normalisation is not undef.

Lemma 1 (is norm not undef spec
 
 ): For any memory m, symbolic value sv and

value v 6= undef,

is norm m sv v iff ∀cm ` m,∀im, JvKimcm = JsvKimcm .

Proof By definition of ≤. ut

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.is_norm_not_undef_spec
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Example 3 Consider the code of Fig. 5b. Unlike the existing semantics, operators
are not strict in undef but construct symbolic values. Hence, in line 7, we store
in bf.__bf1 the symbolic value sv defined by (indet(l)& 0̃x2)|(1�1&0x2). Let us
show that sv normalises to int(1), as expected (see Section 2.2.2).

We need to show that for any concrete memory cm and any indeterminate
memory im, we have Jint(1)Kimcm ≤ JsvKimcm or equivalently, since int(1) 6= undef,
that JsvKimcm = int(1).

JsvKimcm = J(indet(l)& 0̃x2) | (1�1&0x2)Kimcm
= Jindet(l)& 0̃x2Kimcm | J1�1&0x2Kimcm
= (Jindet(l)Kimcm&0xFFFFFFFD) | int(2)
= (im(l)&0xFFFFFFFD) | 0x00000002

Then, we can prove that this last expression is equal to 1 for any value of im(l),
hence int(1) is a sound normalisation of sv .

According to Definition 6, undef is always a sound normalisation. However,
this normalisation is of little interest. What we aim at is a normalisation that is
as defined as possible. This property is formalised by Definition 7.

Definition 7 (Complete normalisation): A normalisation function norm is com-
plete if for all sound normalisations norm′, we have:

norm
′(m, sv) ≤ norm(m, sv)

It is straightforward to prove by contradiction that all the normalisation functions
that are complete according to Definition 7 are equal. Yet, the uniqueness of the
normalisation function does not ensure its existence. As shown by Example 4
there are corner cases for which the same symbolic value may have several equally
defined sound normalisations.

Example 4 Suppose a memory m with a single block b of size 232− 9. Because it is
8-bytes aligned and the last address (232−1) is not in the range of valid addresses.
The unique possible valid concrete memory cm for m is such that cm(b) = 8. As
a result, both the value int(8) and ptr(b, 0) are a sound normalisation for the
degenerate symbolic value ptr(b, 0).

In our previous work [5], we propose a more complex definition of the normalisa-
tion. To avoid the situation described in Example 4, the normalisation function
is typed and explicitly requires as a normalisation result either an integer or a
pointer. Moreover, when a pointer is expected, a sound normalisation can only
be a valid pointer. These alternative definitions are more intricate and have the
counter-intuitive side-effect that the normalisation of a defined value v can be
undef. In particular, the only sound normalisation for a pointer ptr(b, o) that is
not valid is undef.

Intuitively, near out-of-memory situations are responsible for the fact that a
single symbolic value could have several sound defined normalisation. For instance,
the situation of Example 4 would not be possible if there were several concrete
memory where the block b would be allocated at different addresses. To ensure the
existence of a complete normalisation function, we generalise this idea and ensure
that all the block-based memories m that we construct have Property 1.



20 Frédéric Besson · Sandrine Blazy · Pierre Wilke

Property 1 (Sliding Blocks): A memory m is such that for any block b, there exist at
least two valid concrete memories cm and cm ′ that allocate b at different concrete
addresses while allocating all the other blocks at the same address. Formally,

∀ b, ∃cm, cm ′,
∧


cm ` m
cm ′ ` m
cm(b) 6= cm ′(b)
∀b′ 6= b, cm(b′) = cm ′(b′)

In Section 5.1, we prove that all the memories constructed by the allocation oper-
ation of the memory model satisfy Property 1. Theorem 2 states that, assuming
Property 1, a complete normalisation exists.

Theorem 2 (Existence of a complete normalisation): There exists a complete

normalisation function.

Proof Consider a given memory m and a given symbolic value sv . The proof
amounts to showing that a defined sound normalisation for sv is necessarily unique.
In other words, given v and v′ sound normalisations of sv such that v 6= undef and
v′ 6= undef, we have to prove that v = v′.

By Lemma 1, because v and v′ are sound normalisations, we get:

∀im cm ` m, JvKimcm = JsvKimcm ∧ Jv′Kimcm = JsvKimcm

By transitivity, we get Hypothesis 1:

∀im cm ` m, JvKimcm = Jv′Kimcm (1)

The proof is by case analysis over v and v′.

– Case v 6= ptr(b, o) and v′ 6= ptr(b′, o′). By Property 1, there exists cm `
m. Moreover, because v and v′ do not contain pointers, their evaluation is
independent from cm and we get from Hypothesis 1: v = JvKimcm = Jv′Kimcm = v′.
Hence, the property holds.

– Case v = ptr(b, o). By Property 1, we exhibit cm ` m and cm ′ ` m such that
Hypotheses 2 and 3 hold:

cm(b) 6= cm ′(b) (2)

∀ b′ 6= b, cm(b′) = cm ′(b′) (3)

– Case v′ = int(i). From Hypothesis 1 using cm and cm ′, we get:

cm(b) + o = JvKimcm = Jv′Kimcm = i = Jv′Kimcm′ = JvKimcm′ = cm′(b) + o

As a result, cm(b) = cm(b′). This contradicts Hypothesis 2 and the property
holds.

– Case v′ = ptr(b′, o′).
• Case b = b′. By Hypothesis 1, we get:

cm(b) + o = JvKimcm = Jv′Kimcm = cm(b) + o′

As a result, we deduce that o = o′ and the property holds.
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• Case b 6= b′. By Hypothesis 1, we get:

cm(b) + o = JvKimcm = Jv′Kimcm = cm(b′) + o′

cm′(b) + o = JvKimcm′ = Jv′Kimcm′ = cm′(b′) + o′

Because cm(b′) = cm′(b′) (from Hypothesis 3), we get by transitiv-
ity that cm(b) + o = cm′(b) + o and therefore cm(b) = cm′(b). This
contradicts Hypothesis 2 and the property holds.

– Other cases are symmetric and therefore the property holds. ut

In the following, we write normalise for the unique sound and complete normali-
sation function. A first property of the normalise function is given by Lemma 2.
It states that a pointer ptr(b, i) can only be the result of the normalisation of a
symbolic value sv if b appears syntactically in sv . This is a consequence of Prop-
erty 1 that we exploit for the implementation of the normalisation but also to
relate injection and normalisation (see Theorem 7).

Definition 8 (Syntactic appearance of blocks
 
 ):

block_appears sv b :=
match sv with
| ptr(b′, i) ⇒ b = b′

| op1 sv1 ⇒ block_appears sv1 b
| sv1 op2 sv2 ⇒ block_appears sv1 b ∨ block_appears sv2 b
| _ ⇒ ⊥
end.

Lemma 2 (norm block appears
 
 ): For any memory m, for any symbolic value sv,

if normalise m sv = ptr(b, i), then the block b appears syntactically in sv.

Proof The proof is by contradiction. Assume b does not appear in sv . Prop-
erty 1 applied on block b provides two concrete memories cm and cm ′ such that

cm ` m
cm ′ ` m
cm(b) 6= cm ′(b)
∀b′ 6= b, cm(b′) = cm ′(b′)
For any indeterminate memory im, we can derive the two following contradic-

tory facts:

– Since b does not appear in sv , and cm and cm ′ agree on all blocks but b, we
have JsvKimcm = JsvKimcm′ .

– By Lemma 1, we have that JsvKimcm = cm(b) + i and JsvKimcm′ = cm ′(b) + i. Since
cm(b) 6= cm ′(b), we have that JsvKimcm 6= JsvKimcm′ . ut

4.4 Implementation of Normalisation using an SMT Solver

As we mentioned in section 3.2, CompCert ships with an executable interpreter
for CompCert C, which is a valuable tool to test whether a given C program has
defined semantics or not. In the previous section, we explained that the semantics
of all the languages include normalisations in various places of the semantics, hence
we need to provide an implementation for the normalisation, in order to get an

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memdata.html#block_appears
http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.norm_block_appears
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executable interpreter. Given a memory m, there are finitely many valid concrete
memories cm. It is thus decidable to compute a sound and complete normalisation
and the naive algorithm consists in enumerating over the valid concrete memories
and checking that the symbolic values always evaluate to the same values. Yet,
this is not tractable.

We show that the normalisation can be thought of as a decision problem in the
logic of bitvectors. A bitvector of size n is the logic counterpart of a machine integer
with n bits. This logic is therefore a perfect match for reasoning over machine
integers. This decision problem will then be solved by a SMT (Satisfiability Modulo

Theory) solver (e.g. Z3 [29], CVC4 [1]). A SMT solver takes as input a set of
variables (bitvectors in our case) and constraints over these variables. Its purpose
is to find a model. A model is a valuation, i.e. an assignment of actual values to
variables, such that all the constraints are satisfied. Its output is either unsat

(for unsatisfiable), meaning that there exists no valuation that satisfies the given
problem, or sat(M), meaning that M is a model of the input problem.

We first axiomatise the memory and the notion of valid concrete memory.
Then, we explain the SMT queries we generate and how to interpret the response
from the solver.

4.4.1 Axiomatising the memory

To encode a memory m in our logical framework, we define one logical variable
for each block in m. We then define a logical function size mapping each block
to its size and a logical function alignment mapping each block to its alignment,
i.e. the number of trailing bits that must be zero. Next, we axiomatise the valid
concrete memory relation by directly translating Definition 4 into first-order logic
formulae.

Example 5 Consider a memory m restricted to two blocks b1 and b2, with b1 of
bounds [0, 4[ (therefore its 2 trailing bits are zeros) and b2 of bounds [0, 8[ (therefore
its 3 trailing bits are zeros). The axiomatisation of m is given by the following
formulae.

Block sizes: size(b) =


4 if b = b1
8 if b = b2
0 otherwise

Block alignments: alignment(b) =


2 if b = b1
3 if b = b2
0 otherwise

No overlap: ∀b, b′, o, o′.
∧

b 6= b′

o < size(b)
o′ < size(b′)

⇒ cm(b) + o 6= cm(b′) + o′

Address space: ∀b, o.o < size(b)⇒ 0 < cm(b) + o < Int.max unsigned− 1

Alignment : ∀b, cm(b) mod 2alignment(b) = 0

4.4.2 Translating symbolic values into logical expressions

We process the symbolic value sv to be normalised into a logical symbolic value
sv∗. We replace pointers ptr(b, i) by the bitvector addition of the variable associ-
ated with block b and the bitvector representing the integer i. We replace different
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occurrences of undef by distinct fresh logical variables thus modelling that undef

may take any value. Indeterminate values indet(l) are modelled by fresh variables,
though the same variable is used for every occurence of the same label, modelling
the intuition of an arbitrary fixed value. Other values are mapped to their rep-
resentation as bit-vectors. Unary and binary operations on symbolic values are
mapped to their equivalent operations in terms of bitvectors.

4.4.3 Normalisation as SMT queries

We now show how a SMT solver can be used to compute normalisations. As
we will see, the queries are quite different depending on whether we expect the
normalisation to result in a pointer or an integer value. However, we have seen
(see Theorem 2) that it can result in one or the other but never both. Hence, the
implementation of the normalisation will take as a parameter whether we expect
a pointer or an integer normalisation, and both will be tried.

Normalising into an integer. To normalise sv∗ into an integer, we generate the SMT
query: sv∗ = i, where i is a fresh logical variable. Suppose the formula is satisfiable
for a value v for logical variable i. This means that there exists a valid concrete
memory such that sv is evaluated into the value v. However, this value v is a
sound normalisation only when it is the evaluation for every possible valid concrete
memory. To ensure this, we generate a second SMT query: sv∗ = i ∧ i 6= v. This
query is expected to be unsatisfiable. It searches for an alternate valid concrete
memory that would yield a different concrete value. If it is indeed unsatisfiable,
then we return v as the normalisation of sv , because it means that every valid
concrete memory yields this value v. On the other hand, if it is satisfiable, then
there exists a different result with a different valid concrete memory, meaning that
the result depends non-deterministically on the concrete memory. In this case the
normalised value is undef.

Example 6 Consider the memory m introduced in Example 5. Consider the sym-
bolic value sv = ptr(b2, 0)&0x00000007. This symbolic value clear all bits but the
three least significant from pointer ptr(b2, 0). It is expected to normalise to int(0)
because the last three bits must be 0, because of alignment constraints.

We generate the SMT query varb2&0x00000007 = i. The SMT solver answers
i = 0 because it has found a concrete memory cm where e.g. cm(b2) = 8 and it
has computed that 8&7 = 0. We now check that there is no other integer solution
by submitting the following query: varb2&0x00000007 = i∧ i 6= 0. The SMT solver
answers unsat, indicating that no valid concrete memory yields an integer different
from 0. Hence sv normalises into int(0).

Consider now the symbolic value sv = ptr(b1, 0) < ptr(b2, 0). The first SMT
query sv∗ = i can be satisfied with e.g. i = 0, meaning that there is a valid concrete
memory cm where b1 is allocated after b2, e.g. cm(b1) = 16 and cm(b2) = 8. We
then submit the second SMT query: sv∗ = i ∧ i 6= 0. It is satisfied with i = 1 by
a concrete memory where e.g. cm(b1) = 4 and cm(b2) = 8. Hence, sv normalises
into undef, since it is its only sound normalisation.
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Normalising into a pointer. Getting the normalisation of a pointer value is more
complicated because there are several ways of decomposing an integer into a loca-
tion made of a base and an offset. However, by Lemma 2 we know that a symbolic
value sv can only have ptr(b, o) as normalisation if b appears syntactically in sv. As
a result, given fresh logic variables b and o, we assert the constraint

∨
bi∈sv b = bi

and generate the SMT query sv∗ = cm(b) + o. Suppose we get a model such
that b = b′ and o = o′. The following query checks whether there can be another
pointer denoted by the same symbolic value in another valid concrete memory:
sv∗ 6= cm(b′) + o′. If the query is unsatisfiable, then the normalisation returns
ptr(b′, o′). Otherwise, if the query is still satisfiable, we know that, whatever the
value of o, ptr(b′, o) is not a normalisation for sv. As a result, we add the con-
straint b 6= b′ and iterate the search for a normalisation. This process eventually
terminates because there are finitely many blocks b that appears syntactically in
sv .

Example 7 Consider again the memory m of Example 5 and the symbolic value
sv = ptr(b1, 1) − ptr(b2, 2) + ptr(b2, 4) + indet(b3, 4)& int(0x0). We process sv

into a logical expression sv∗ by replacing indet(b3, 4) by the fresh variable x3,4:

sv∗ = cm(b1) + 1− cm(b2)− 2 + cm(b2) + 4 + x3,4 & 0x0

Notice that the two occurrences of cm(b2) cancel each other out, and that we have
∀x, x& 0x0 = 0. As a result, we can simplify this expression sv∗ into cm(b1) + 3.

The SMT query we need to solve is: cm(b1)+3 = cm(b)+o. Although it seems
silly, the SMT solver may generate a valid concrete memory cm where cm(b1) = 4
and cm(b2) = 8 and propose the solution b∗ = b2 and o∗ = −1, which satisfies
the equation we gave as input. However, the query sv∗ 6= cm(b∗) + o∗ is indeed
satisfiable, for example with a concrete memory cm ′ identical to cm except that
cm(b2) = 16.

We begin the whole process again, with the extra constraint that b 6= b2. A
more natural solution is b∗ = b1 and o∗ = 3. It turns out this is the only solution
to this equation, as we can see by submitting this second query to the SMT solver,
cm(b1) + 3 6= cm(b1) + 3, which is obviously unsatisfiable. Therefore the symbolic
value sv is normalised into the location ptr(b1, 3).

4.4.4 Relaxation and Optimisation of the SMT Encoding

The previous encoding of the memory is linear in the number of allocated blocks,
as there is one definition for the size function and one for the alignment function for
every block. Thus, as the memory gets bigger, the normalisation would get slower.
In practice, we observe that the size of the memory has a dramatic (negative)
impact on SMT solvers. To tackle the problem, we propose a relaxation of the SMT
query that is independent of the number of allocated blocks and only depends
on the size of the symbolic value to be normalised. A key observation is that
a symbolic value can only be normalised if the corresponding SMT query has
a unique solution. As a result, it is always sound to relax the SMT query and
generate a weaker one (i.e. with potentially more solutions) provided the initial
formula is satisfiable. Indeed, if there are more solutions, the normalisation will
fail – this is always sound.
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b1

b1

b1

b1

0 231 232

Fig. 13: Large blocks prevent some addresses from being allocated to others.

In our relaxation, we do not fully axiomatise the memory but only specify
the bounds and alignments of the memory blocks B that appear syntactically in
the symbolic value to be normalised. When normalising into a pointer, we also
state explicitly in the SMT query that the normalisation, if it exists, should be a
location (b, i) such that b ∈ B.

This relaxation is always sound, as we discussed before, for two reasons: 1) there
always exists a valid concrete memory, thanks to our allocation algorithm; 2) we
generate a weaker SMT query, with potentially more solutions. This relaxation is
however not complete. It might miss a normalisation in pathological cases where
blocks b ∈ B are constrained not to appear at certain locations, because of other
blocks b′ /∈ B. This is illustrated by Example 8.

Example 8 Consider a memory with 2 blocks b1 of size 8 and b2 of size 231. Fig. 13
shows the possible addresses of block b2. Because of size constraints, the concrete
address 231 will always be part of block b2. Notice that block b1 can be mapped
in any of these concrete memories either before or after block b2. However b1 will
never be at address 231. The symbolic value sv = ptr(b1, 0) == int(231) therefore
normalises into false.

Now if we relax the validity to only account for blocks syntactically appearing in
sv , then we will have some concrete memories where b1 is at address 231. There will
be different evaluations in different concrete memories, therefore the normalisation
will fail.

The normalisation of Example 8 requires a full axiomatisation of the memory and
cannot be obtained using our relaxation. In the implementation, we also make the
additional assumption that the result of normalisations are only valid pointers i.e.
their offset is within the bounds of the block. This simplification limits the search
space and is therefore sound but not complete: it will miss pointers out of their
bounds. In our experience, since normalisations of pointers are performed just
before memory accesses, the semantics will get stuck when trying to dereference a
out-of-bounds pointer. In practice, we have never encountered pathological cases
where the relaxation fails when there exists a normalisation. In particular, they
give a defined normalisation to all the example in this paper.
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Symbolic memvals: smemval ::= Symbolic(sv , n) n-th byte of symbolic value sv

Memory operations: palloc m lo hi = b(m′, b)c
Allocate a fresh block with bounds
[lo, hi[. Fails if no concrete memory can
be constructed.

free m b = bm′c Free (invalidate) the block b

load κ m b i = bsvc

Read consecutive bytes (as determined
by κ) at block b, offset i of memory
state m. If successful, return the con-
tents of these bytes as symbolic value
sv .

store κ m b i sv = bm′c

Store the symbolic value sv as one
or several consecutive bytes (as deter-
mined by κ) at offset i of block b. If
successful, return an updated memory
state m′.

Fig. 14: The symbolic memory model

5 Implementation of the Memory Model

We propose a memory model that extends the model of CompCert with symbolic
values capturing the result of otherwise undefined operations. In this section, we
explain how to replace CompCert values by symbolic values in the memory model.
Since concrete addresses are 32-bit machine integers, the address space is finite:
we adapt the allocation operation to cope with this. We detail how to update
the internal representation of symbolic values in memory. Next, we describe the
handling of uninitialised values. Finally, we explain the changes required to the
semantics of Clight. Fig. 14 sums up the new memory model and will be referred
to throughout this section.

5.1 Memory allocation

In CompCert, memory allocation always succeeds and returns a new block of the
requested size. This makes the implicit assumption that the memory is infinite.
In our model, the semantics of the normalisation is based on a finite memory as-
sumption where blocks are mapped to 32-bit addresses. As a result, our allocation
function, palloc, is partial and may fail when there is not enough available memory
(see Fig. 14). Actually, palloc not only ensures the existence of a concrete memory
but also provides a constructive proof that all the memories satisfy the stronger
Property 1.

5.1.1 Allocation algorithm

The implementation of palloc is shown in Fig. 15. Let us examine the code of the
different functions. Compared to the existing alloc function, palloc takes an addi-
tional argument al which specifies the alignment of the block. To decide whether
it is possible to allocate the block, palloc is guarded by the predicate can_alloc. If
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the predicate holds, the allocation succeeds and calls the existing CompCert allo-
cation operation alloc and records the alignment. Otherwise, the allocation fails.
The can_alloc predicate checks that the alignment is valid: it should be bigger than
the alignment computed from the size but smaller than a maximum alignment MA.
For programs which do not explicitly perform dynamic memory allocation, the
value of MA can be set to 3 where 3 is the maximum value of alignment_of_size.
For other programs, MA would typically be the alignment of a kernel page (i.e.
12 for pages of 4Ko). The can_alloc predicate also computes an address addr us-
ing the fresh_addr function. The concrete address addr is such that all the blocks
can be allocated below addr at addresses that are 2MA-bytes aligned. The predicate
can_alloc checks that there are still 2MA reserved bytes above addr. As we shall see,
this reserved space will be necessary to ensure Property 1. The fresh address is
recursively computed by alloc_blocks. It allocates each block at the next available
(MA-bit aligned) address and returns the next available address and the constructed
concrete memory. It takes as argument two accumulators: next_available and cur.
The accumulator next_available is the next available address and cur is the concrete
memory currently being constructed. The notation cur[b 7→ x] denotes a function
that returns the same value as cur except for input b which is mapped to value x.

Fixpoint alloc_blocks (bl : list (block ∗ Z)) (next_available: Z)
(cur : block → Z) : (Z ∗ (block → Z)) :=

match bl with
| nil ⇒ (next_available, cur)

| (b,sz):: l ⇒ alloc_blocks l (align next_available 2MA + sz)

cur[b 7→ align next_available 2MA]
end.

Definition fresh_addr (bl : list (block ∗ Z)) : Z :=
fst (alloc_blocks bl MA (λ b ⇒ 0))

Definition can_alloc (m: mem) (sz: Z) (al: Z) : bool :=
let b := fresh_block m in
let addr := fresh_addr ((b,sz)::blocks_of m) in

alignment_of_size sz ≤ al ≤ MA && addr < Int.max_unsigned − 2MA.

Definition palloc (m: mem) (sz: Z) (al: Z) : option (mem ∗ block) :=
if can_alloc m sz al then b set_alignment (alloc m 0 sz) al c else ∅.

Fig. 15: Definition of the new allocation operation

5.1.2 Allocation Properties

A complete normalisation only exists under the conditions of Property 1 (see
Section 4.3). It states that for any memory m, it is possible to rearrange the
blocks so that there always exist two concrete memories which only differ on a
single block. We show in Theorem 3 that this is a property of the allocation
algorithm presented above.

Theorem 3 (Sliding Blocks): A memory m is such that for any block b, there exist

at least two valid concrete memories cm and cm′ that allocate b at different concrete
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cmb

cm ′b

232 − 2MA

Fig. 16: Finding two different concrete memories for one block

addresses while allocating all the other blocks at the same address. Formally,

∀ b, ∃cm, cm′,
∧

cm ` m ∧ cm′ ` m
cm(b) 6= cm′(b)
∀b′ 6= b, cm(b′) = cm ′(b′)

Proof Any memory m is obtained from the initial memory m0 by allocating new
blocks using the allocation function palloc.

For the initial memory m0, as there are no allocated blocks, all the concrete
memories are valid. Given a block b, we can therefore construct cm and cm′ such
that cm = (λx.0)[b 7→ 1] and cm′ = (λx.0)[b 7→ 2]. Hence, the property holds.

Suppose that a memory m is obtained by the allocation function palloc. The
algorithm checks that all the blocks fits in memory by running the function
fresh_addr which constructs as witness a valid concrete memory cm and returns
the first fresh address addr. The key insight of the proof is that the order of the
blocks is not relevant for the success of palloc. Therefore, we can consider that,
without loss of generality, any block b can be allocated last. The argument goes
as follows. If the alloc_blocks function would follow a first fit allocation disci-
pline, the alignment constraints may have an impact on the fragmentation of the
witness concrete memory and therefore palloc may succeed or fail depending on
the order the blocks are allocated. To prevent this, all the addresses computed
by alloc_blocks are maximally aligned. Therefore, the success of the allocation in
independent from the allocation order.

Moreover, the test addr < Int.max_unsigned − 2MA ensures that the last block, say
b, can also be allocated at cm(b) + 2MA. This construction is depicted in Fig. 16
where grey rectangles are allocated blocks and the darker block is b. White spaces
in the figure represent free memory, i.e. memory that does not belong to any block.
Hence the property holds for any block b. ut

5.2 In-memory Data Representation

The memory content is no longer represented by the memvals that we described
in Section 3. Rather, we use a generalized form called smemval (see Fig. 14) with
a single constructor that subsumes all the existing ones and makes it possible
to encode symbolic values. A smemval is merely a pair composed of a symbolic
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value sv and a natural number n denoting the n-th byte of the symbolic value sv ,
following the same principles as the Pointer constructor of memval.

Symbolic values inside smemvals are converted to their binary representation
on 64 bits, so that it can encode a value of any type. We have functions to bits :
memory chunk → sval → sval and from bits : memory chunk → sval → sval that
convert symbolic values of a given type given by a chunk to bitvectors and back.
Encoding a symbolic value sv into a list of smemvals according to a chunk κ is
straightforward. It consists in building a list of n = size chunk κ elements of the
form Symbolic (to bits κ sv) i, i ∈ 0, . . . , n− 1. Decoding a list of smemvals into a
symbolic value is somewhat more complicated. First, we show how to decode one
smemval: Symbolic sv n. We define a function extr : sval → N → sval in Fig. 17.
It is defined recursively: the 0-th byte is obtained by masking the higher bits; the
(n + 1)-byte of sv is obtained by shifting sv 8 bits to the right, then taking the
n-th byte of the resulting symbolic value.

Fixpoint extr (sv : sval) (n: nat) : sval :=
match n with
| O ⇒ sv & 0xFF
| S m ⇒ extr (sv >> 8) m
end.

Definition smv_to_sval (smv: smemval) : sval :=
match smv with Symbolic sv n ⇒ extr sv n
end.

Fixpoint concat (l : list smemval) : sval :=
match l with
| nil ⇒ 0
| a:: r ⇒ (smv_to_sval a) + (concat r) << 8
end.

Definition decode (l: list smemval) (κ : memory_chunk) : sval :=
from_bits κ l.

Fig. 17: Decoding smemvals into symbolic values

Then we need to decode lists of such smemvals. This is done by converting each
smemval into a symbolic value, and then concatenating those symbolic values: the
concat function recovers the 64-bit bitvector that represents the original symbolic
value and the decode function applies the from_bits function to the result of concat

with the appropriate chunk.
The operation load now loads symbolic values from memory and store now

stores symbolic values into the memory, as Fig. 14 shows.

5.3 Precise Handling of Uninitialised Values

Thanks to the indet(b, i) construction offered by symbolic values, we are able
to perform operations on (partially) uninitialised data (e.g. see the examples in
Fig. 4). We initialise the contents of freshly allocated blocks with indet(b, i) with
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Judgements

G,E ` a,m⇐ ` (evaluation of an expression in l-value position)
G,E ` a,m⇒ sv (evaluation of an expression in r-value position)
G ` 〈f, S,E, k,m〉 → 〈f ′, S′, E′, k′,m′〉 (execution of a statement)

Dereference of a location:

access mode(ty) = By value κ
normalise(m, svptr ) = ptr(b, i)

load κ m b i = bsvc
deref loc ty m svptr sv

(4)
access mode(ty) 6= By value κ
deref loc ty m svptr svptr

(5)

Assignment to a location:

access mode(ty) = By value κ
normalise(m, svdst ) = ptr(b, i) store κ m b i sv = bm′c

assign loc ty m svdst sv m′
(6)

access mode(ty) = By copy
normalise(m, svsrc) = ptr(bsrc , isrc) loadbytes m bsrc isrc (sizeof(ty)) = bmvalsc

normalise(m, svdst ) = ptr(bdst , idst) storebytes m bdst idst mvals = bm′c
assign loc ty m svdst svsrc m′

(7)

Expressions in r-value position:

G,E ` a,m⇐ svptr deref loc (typeof(a)) m svptr sv
G,E ` a,m⇒ sv

(8)

Statements:

G,E ` a,m⇒ sv normalise(m, sv) = int(i) i 6= 0
〈f, if a then s1 else s2, E,m, . . . 〉 → 〈f, s1, E,m, . . . 〉

(9)

G,E ` a,m⇒ sv normalise(m, sv) = int(i) i = 0
〈f, if a then s1 else s2, E,m, . . . 〉 → 〈f, s2, E,m, . . . 〉

(10)

G,E ` a2,m⇒ sv sem cast(typeof(a2), typeof(a1), sv) = bsv ′c
G,E ` a1,m⇐ svptr assign loc (typeof(a1)) m svptr sv ′ m′

〈f, a1 = a2, E,m, . . . 〉 → 〈f, Skip, E,m′, . . . 〉
(11)

Fig. 18: Semantics of Clight with symbolic values (excerpt)

(b, i) denoting the location being initialised. This ensures the uniqueness of the
identifiers.

Example 9 (Evaluation of symbolic values with uninitialized values): Let b be a block
corresponding to a freshly allocated variable x of type char. The contents of the
cell at location (b, 0) is initialized with indet(b, 0). The C expression x − x is first
transformed into the symbolic value indet(b, 0)−indet(b, 0). This symbolic value
is later evaluated to int(0), because for any im:

Jindet(b, 0)− indet(b, 0)Kimcm = im(b, 0)− im(b, 0) = 0
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5.4 Semantics of Clight

The modified Clight semantics of expressions is given in Fig. 18. It is defined
by judgements, parameterised by a global environment G (holding global vari-
ables and functions), a local environment E (holding local variables) and an initial
memory state m. The evaluation of expressions is split between expressions in l-
value and r-value positions. Expressions in l-value position evaluate to locations,
whereas expressions in r-value position evaluate to symbolic values. The execution
of a statement is also parameterised by a global environment G. A state is a tuple
〈f, S,E, k,m〉 where f is the function that we are in, S is the statement to be
executed, E is a local environment (mapping local variables to their values), k is
a continuation and m is a memory state. In the judgements, a, a1, a2 range over
syntactic expressions and sv , sv1, sv2 range over symbolic values.

We only show the rules that introduce normalisations, and therefore differ from
CompCert’s Clight semantics. The evaluation of locations as r-values is described
by the deref loc predicate. It behaves differently depending on the type of the
location being accessed (given by the access mode function describing how a l-value
of a given type must be accessed). If the expression has scalar type, then its value
is loaded from memory at the location denoted by the expression. If the expression
has array, function, structure or union type, its value is the location itself.

The assign loc describes the behaviour of storing some symbolic value to a
given location. If the type of the location is scalar, a memory store is performed
and the resulting memory state is returned. However, if the type is a structure
or a union, then it must be copied byte-wise (see rule (7)). The load and store

operations expect a genuine location to read from or write to. Therefore, in the
semantics of deref loc and assign loc, the symbolic values are normalised into
genuine pointers before performing the memory operations.

Rules (9) and (10) deal with if-then-else statements. The condition is first eval-
uated to a symbolic value, which is then normalised into an integer i. Depending
on the value of i, the program will go in one branch or another. Rule (11) gives
semantics to assignments. The semantics of statement a1 = a2 is the following.
First, evaluate a2 into a symbolic value and cast it to the type of a1, resulting in
symbolic value sv ′. Then, evaluate a1 as a l-value, resulting in a symbolic value
svptr and then use the assign loc predicate. The rest of the semantic rules are
kept unmodified.

6 Experimental Evaluation

We have adapted the CompCert C interpreter so that we could test our semantics
on real programs. The changes are similar to that described on Clight in Sec-
tion 5.4. In order to be able to interpret real-world programs, we designed stubs to
model system calls such as mmap This system call is mapped to the alloc operation
of our memory model with appropriate parameters. Other system calls such as
open, read or write that operate on files are mapped to their OCaml equivalent.

We have tested our C semantics with symbolic values on the CompCert bench-
marks. Their size ranges between a few hundreds and a few thousands lines of code.
We checked the absence of regression: when the CompCert interpreter returns a
defined value, our interpreter returns exactly the same value.
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We have also run our interpreter over Doug Lea’s memory allocator [23] and
on parts of the NaCl cryptographic library [3], which are challenging programs be-
cause they perform low-level pointer arithmetic; their size is about a few thousands
lines of code. Our interpreter succeeds in giving semantics to memory management
functions, such as malloc, memalign or free, built on top of mmap. As there is no other
formal C semantics able to deal with low-level pointer arithmetic, we checked that
the result of our interpreter was matching the output of gcc. Programs reading
uninitialised variables have undefined semantics and gcc could exploit this to per-
form arbitrary computations. Yet, the output of gcc and our interpreter agree on
examples similar to Fig. 4. In the following, we detail some interesting patterns
found in the benchmarks.

6.1 Pointer Arithmetic Using Alignment and Bitwise Operations

The implementation of malloc uses the macro is_aligned to check wether a pointer
is aligned or not.

/∗ True i f a d d r e s s a has a c c e p t a b l e a l i g n m e n t ∗/

#define i s a l i g n e d (A) ( ( ( s i z e t ) (A) & ALIGN MASK) == 0)

For our experiments, pointers are allocated by mmap and are therefore known to be
at least 4Ko-bytes aligned. In the following example, we consider ALIGN_MASK to be
equal to 0xF, therefore the macro is_aligned checks whether a pointer is aligned on
24 bytes. For a pointer p=ptr(b,3), our SMT encoding models that the last 12 bits of
b are zeros and the code is_aligned(p) expands to ((( size_t)(p) & ALIGN_MASK) == 0)

and normalises into int(0), since the 4 last bits of p are 0011, i.e. 3 in decimal,
hence different from 0. In general, with the previous alignment constraints, we
have that the symbolic value ptr(b,o) & 0xF is equivalent to o & 0xF i.e. , o for o less
than 15.

A similar example is the function memalign(al,nb), where al must be a power of
two (i.e. al= 2n). The function dynamically allocates a nb-byte region, and ensures
that the address returned has the n last bits to zero. When called with al = 32,
the function computes checks such as p&0x1F == 0 to check that the 5 last bits
are zeros. The left-hand side of the comparison is evaluated in the same manner
as the example above, and the comparison is computed trivially.

6.2 Comparison Between Pointers and (void∗)(−1)

As discussed in Section 2.1, several system calls, such as mmap or sbrk, are expected
to return pointers but return (void∗)(−1) on error. Fig 3 shows an example of such
a call to mmap. Our normalisation gives a semantics to these comparisons between
pointers and -1 using the following reasoning.

We know that pointers returned by mmap are aligned on a page boundary (212

in our implementation, i.e. the 12 last bits of the pointer are zeros). When the
allocation succeeds, the pointer can therefore never be -1 (in binary 0xFFFFFFFF)
thus allowing to evaluate this comparison between the pointer and -1.
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6.3 Operations on Undefined Values

The example shown is Fig. 4 is a simplified version of a C expression that appears
in real-life programs. For example, the memalign function described in Section 6.1
features this kind of operations on undefined values.

The memory managed by the dynamic allocation functions is organised in
memory chunks, which consist of two 32-bit words of meta-data followed by the
memory chunk itself. The second word of meta-data stores the size of the chunk
and two bits of other information. Initialising the meta-data is done with the C
assignment ∗p = (∗p & 0b1)|size|0b10 (where the 0b prefix applies to constants
in binary format). When the memory pointed by p is uninitialised, we construct
the symbolic value (indet(l) & 0b1)|size|0b10 . This symbolic value itself does not
normalise, because its last bit is still indeterminate, however we are able to com-
pute on this symbolic value, e.g. retrieve its second least significant bit with this
symbolic value: ((indet( l ) & 0b1)|size |0b10) & 0b10. This normalises into 0b10.
This reasoning is made possible by the fact that size is a multiple of 4 (i.e. the
last two trailing bits of size are zeros).

6.4 Copying Bytes between Memory Areas with memmove

Our semantics requires the target of jump instructions to be unique. This is a
consequence of the fact that a symbolic value representing a conditional should
normalise to some fixed boolean value. In other words, a program whose control-
flow depends on the memory layout has an undefined behaviour. This dependance
on the memory layout (e.g. on the memory allocator) is a portability bug that is
detected by our semantics.

Indeed, in our experiments, we have encountered this situation for the memmove

function (see Fig. 19) which implements a memory copy even when the origin and
destination memory regions do overlap. To cope with this situation, the memmove

function performs the pointer comparison dest <= src. If the pointers dest and src

point to distinct memory blocks, this comparison depends on the concrete memory
and is therefore undefined for our memory model.

void ∗memmove( void ∗ s1 , const void ∗ s2 , s i z e t n ) {
char ∗ dest = (char ∗) s1 ;
const char ∗ s r c = ( const char ∗) s2 ;
i f ( des t <= s r c )

while ( n−− ) { ∗ dest++ = ∗ s r c++; }
else {

s r c += n ; dest += n ;
while ( n−− ) { ∗−−dest = ∗−−s r c ; }

}
return s1 ;

}

Fig. 19: memmove with an undefined semantics
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We have solved the issue by replacing the original condition dest <= src with
the more involved condition src <= dest & dest < src + n. This condition ex-
plicitly tests whether the memory regions overlap using the integer n which is the
number of bytes to be copied. Notice that we use the bitwise & operator on pur-
pose instead of the lazy boolean && operator. A && would force the evaluation of
src <= dest which cannot be normalised. The new condition with a & constructs
a symbolic value which is independent from the memory layout and has there-
fore always a defined normalisation. In particular, if the pointers are from distinct
blocks, the condition is always false because locations from distinct blocks cannot
overlap.

7 Properties of the Memory Model

The experiments show that our memory model gives a semantics to challenging
low-level idioms. In this section, we study the formal properties of the model.
We adapt and reprove the abstract interface of the CompCert memory model.
Eventually, we prove that our new semantics of Clight simulates the original Clight
semantics, thus cross-validating the models.

7.1 Good Variable Properties

CompCert’s memory model exports an interface summarising all the properties of
the memory operations necessary to prove the compiler passes. Those properties
are called good-variable properties [26], and describe the behaviour of combinations
of memory operations. For instance, the property load_store_same states that load-
ing at an address that has just been written with some value v results in the same
value v, converted to the appropriate chunk κ. The function load result does
this conversion. It consists of truncating integers to the expected size for chunks
Mint8xxx and Mint16xxx. Formally, we have:

Theorem 4 (load store same
 
 ):

∀κ m b o v m′, store κ m b o v = bm′c → load κ m b o = bload result κ vc.

Because we use symbolic values and delay their evaluation, this theorem does
not hold anymore. This is illustrated by Example 10.

Example 10 Consider κ = Mint16unsigned, o = 0 and v = int(3735928559) =
int(0xDEADBEEF). In CompCert, the store operation first encodes v into concrete
bytes, keeping only the two least significant (because κ = Mint16unsigned) b1 =
0xBE and b0 = 0xEF and stores them at addresses (b, 1) and (b, 0) (respectively).
The load then decodes these two bytes and computes the resulting value v =
int(256 ∗ b1 + b2) = int(48879). Applying load result with κ = Mint16unsigned

to v results in the same integer int(48879).
In our model however, the behaviour is slightly different. The store encodes

each byte lazily, i.e. the addresses (b, 1) and (b, 0) do not contain concrete bytes
but symbolic smemvals that denote them. Let sv be the symbolic value denot-
ing the binary representation of value v for chunk Mint16unsigned, i.e. sv =
to bits Mint16unsigned v. For example, the location (b, 1) contains the smemval

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/CCMemory.html#Mem.load_store_same
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(Symbolic sv 1) that encodes byte number 1 of the binary representation of the
original symbolic value v. The load first decodes smemvals into symbolic values, and
then concatenates them to produce the final result. The smemval (Symbolic sv n) is
decoded into (sv � (8 ∗ n)) & 0xFF. In our example we have sv1 = (sv � 8) & 0xFF

and sv2 = sv & 0xFF. The concatenation is again expressed as a symbolic value
based on shifts. The result of the load is then equal to the concatenation of sv1

and sv2, i.e. L = (sv1�8)+sv2. On the other hand, load result Mint16unsigned v

amounts to zeroing the 2 highest bytes, resulting in the symbolic value v& (216−1).

The theorem load_store_same clearly does not hold for Example 10: the two sides
of the equation are different symbolic values. However, they are equivalent, i.e.
they would always evaluate to the same value. This equivalence relation between
symbolic values is formally defined as follows:

Definition 9 sv1 ≡ sv2 := ∀ cm im, Jsv1Kimcm = Jsv2Kimcm .

We generalize load_store_same and every theorem of the memory model to use
equivalence in lieu of syntactic equality when needed. We then state that there
exists a symbolic value sv ′ that is the result of the load and this symbolic value is
equivalent to the result we expect. The resulting theorems are of the form:

Theorem 5 (load store same
 
 with symbolic values):

∀ κ m b o sv m′, store κ m b o sv = bm′c →
∃sv ′, load κ m b o = bsv ′c ∧ sv ′ ≡ load result κ sv .

While the proof structure follows that of CompCert, the proof effort to port the
whole memory model is non-negligible because we have to reason modulo equiva-
lence of symbolic values.

7.2 Cross-validation of Memory Models

The semantics of the CompCert C language is part of the trusted computing base of
the compiler. Any modelling error can be responsible for a buggy, though formally
verified, compiler. To detect a glitch in the semantics, a first approach consists
in running tests and verifying that the CompCert C interpreter computes the
expected value. With this respect, the CompCert C semantics successfully run
hundreds of random test programs generated by CSmith [33]. Another indirect
but original approach consists in relating formally different semantics for the same
language. For instance, when designing the Clight semantics, several equivalences
between alternate semantics were proved to validate this semantics [6]. Our mem-
ory model is a new and interesting opportunity to apply this methodology. In the
following, we first describe the cross-validation of the Clight semantics that we
performed, then we explain the errors that we discovered during the process of
doing the proof.

7.2.1 Forward simulation between CompCert Clight and Symbolic Clight

In order to validate our semantics of Clight, we prove a forward simulation be-
tween CompCert Clight (CClight) and our modified symbolic Clight (SClight).
That is, whenever a program has defined semantics in CClight, it will have the

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.load_store_same
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same semantics in SClight. Of course, since the memory in SClight is finite and
that in CClight is infinite, this simulation will only hold in cases where the CClight
program does not exploit the fact that its memory is infinite. Thus, we perform
the proof under the hypothesis that our allocation never fails. To prove the simula-
tion, we need to define an invariant match_states that relates CClight and SClight
program states and that is preserved at every step of the semantics. This invariant
is built on top of a relation match_val that relates values and symbolic values. We
show in Example 11 a C program that we execute both with CClight and SClight
semantics. We will then discuss our choice for the match_val relation.

Example 11 Consider the following C program: int i ; return (&i != 0); It tests
whether a valid pointer is different from NULL. We are interested in the return value
of this program. We assume that variable i is allocated in block b. In CClight, the
C expression is transformed into ptr(b, 0)! = int(0), which in turn evaluates to
true, i.e. int(1). In SClight, we merely build the symbolic value ptr(b, 0)! = int(0).

A natural candidate for match_val v sv is that sv must be the normalisation
of v. However, this requires parameterizing match_val with a memory state and
proving that all memory operations preserve match_val. As a matter of fact, the
free operation does not preserve the normalisation. For example, consider m

the memory state of the program before returning its result. The symbolic value
ptr(b, 0)! = int(0) normalises to int(1) in m. However, if we call m′ the memory
state obtained after freeing block b from memory m, then the same symbolic value
does not normalise in m′ because ptr(b, 0) is no longer valid. This is in accordance
with the C standard8 but a loss of completeness with respect with the existing
CompCert semantics.

For the sake of the proof, we adapt the semantics of SClight to avoid this
situation. The solution is to normalise symbolic values is a more eager manner i.e.
before any write into memory or into a register, and only keep symbolic values
when the normalisation fails. This is implemented by the function simplify:

Definition 10 simplify m sv := if normalise m sv = undef

then sv else normalise m sv.

Back to our example, after introducing the simplifications, the match val rela-
tion needs to relate int(1) and the simplification of ptr(b, i)! = int(0), i.e. int(1).
We define match val as follows:

Definition 11 match val v sv := ∀ cm im, JvKimcm ≤ JsvKimcm .

We use ≤ instead of equality to account for the fact that SClight gives semantics
to more programs than CClight, i.e. undef in CClight can be matched with any
symbolic value in SClight.

A large part of the simulation proof is the preservation of C operators. That is,
in a memory m, for any operation op that produces a value v in CClight, the same
operation will produce an symbolic value sv , such that match val v (normalisem sv).
Indeed, if CClight produced a value v 6= undef, then we must normalise it into the
same value. This is stated formally in Lemma 3. The sem binop function gives the
CompCert semantics of a binary operator op applied to values v1 of type t1 and v2

8 [17][§6.2.4.2]: The value of a pointer becomes indeterminate when the object it points to
(or just past) reaches the end of its lifetime.
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int main ( ){
int i =0, ∗p = &i ;
for ( i =0; i < INT MAX; i++) {

i f (p++ == 0) {
return 1 ;

}
}
return 0 ;

}

Fig. 20: A NULL pointer comparison glitch

of type t2. It is parameterised by a function valid m that takes a location (b, i) and
returns true if and only if the location (b, i) is valid in memory m. This is needed
for example for the semantics of pointer comparisons (see figure 9). The function
sem binop sval mimics the signature of sem binop except that symbolic values re-
place values and it does not need information about the validity of pointers when
constructing the symbolic values.

Lemma 3 (expr binop preserved
 
 ):

∀ op m v1 sv1 v2 sv2 t1 t2 v, match val v1 sv1 → match val v2 sv2 →
sem binop op v1 t1 v2 t2 (valid m) = bvc →
∃sv , sem binop sval op sv1 t1 sv2 t2 = bsvc ∧ match val v (normalise m sv).

7.2.2 An opportunity to discover bugs

During the proof, we have uncovered several issues, including silly mistakes in
the evaluation of symbolic values: a particular cast operator was mapped to the
wrong syntactic constructor. This is also during the proof that we have identified
the issue of weakly valid pointers and therefore have excluded 232 − 1 from the
address space (see Section 4.2). After these relatively easy fixes, we have found an
interesting discrepancy with the semantics of CompCert C (version 2.4). The issue
is related to the comparison with the NULL pointer. In CompCert, the NULL pointer is
represented by the integer 0. The semantics therefore assumes that a location can
never be equal to the NULL pointer. In our semantics, a location (b, i) can evaluate
to 0 in case of wrap around. This is a glitch in the CompCert semantics that is
illustrated by the code snippet of Fig. 20. This program initialises a pointer p to
the address of the variable i. In the loop, p is incremented until it equals 0 in which
case the loop exits and the program returns 1. With this program, the executable
semantics of CompCert C returns 0 because p==0 is always false whatever the
value of p. However, when running the compiled program, the pointer is a mere
integer, the integer eventually overflows; wraps around and becomes 0. Hence,
the test holds and the program returns 1. We might wonder how the CompCert
semantic preservation can hold in the presence of such a contradiction. Actually,
the pointers are kept logical all the way through to the assembly level, and the
comparison with the NULL pointer is treated the same during all the compilation
process, thus even the assembly program in CompCert returns 0. The inconsistency
only appears when the assembly program is compiled into binary and run on a
physical machine.

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Cop.html#expr_binop_preserved
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The fix consists in defining the semantics of the comparison with the NULL

pointer only if the pointer is weakly valid. This causes the program to have un-
defined semantics at the C level as soon as we increment the pointer beyond its
bounds. The issue has been acknowledged and is fixed since CompCert 2.5. After
adjusting both memory models, we are able to prove that operators of CClight
are preserved when transformed to SClight operators. Using this result, we prove
a forward simulation between CClight and SClight, thus validating our formal
semantics and that of CompCert.

8 Redesign of Memory Injections

As explained in Section 3.4, memory injections are an essential component for
proving the correctness of the different compiler passes. In this section, we show
how we adapt the definitions of memory injections for symbolic values. We also
detail key properties of our injections with respect to the normalisation function.

8.1 Injection of Symbolic Values

The injection of values val inject is lifted to symbolic values by the relation
sval inj. The injection f has the same type has before: when defined, it maps a
block b to an offset δ in another block b′. A difference with the existing injection of
values is that the injection function f is also used to inject indeterminate values.
Rules (13), (14) and (15) directly lifts the injection val inject of values to symbolic

sval inj f undef sv
(12)

val inject f v1 v2
sval inj f v1 v2

(13)

sval inj f sv1 sv2

sval inj f op1(sv1) op(sv2)
(14)

sval inj f sv1 sv2 sval inj f sv ′
1 sv ′

2
sval inj f op2(sv1, sv ′

1) op2(sv2, sv ′
2)

(15)

f(b1) = b(b2, δ)c
sval inj f indet(b1, i) indet(b2, i+ δ)

(16)

Fig. 21: Injection sval inj of symbolic values

values by induction over the structure of symbolic values. Rule (12) states that
undef can be injected into any symbolic value. This is a direct generalisation of
the fact that the value undef can be injected into any value. Finally, rule (16)
explains how to inject indeterminate values. It mimics rule (1) (see Section 3.4)
that injects the location l of a pointer ptr(b, i) using the injection function f .
Injecting indeterminate values is needed to ensure that the locations are still fresh
after an injection.

Note that the definition of sval inj is syntactic. For example, we might have
sval inj f (ptr(b, i) + 1) (ptr(b′, i+ δ) + 1), but not sval inj f (ptr(b, i) +
1) (ptr(b′, i+ δ + 1)). As this is too restrictive, we consider the relation sval inject

that is obtained by closing the relation sval inj by the equivalence relation on
symbolic values ≡ (see Definition 9).



A Verified CompCert Front-End for an Enhanced Memory Model 39

Definition 12 (sval inject):

sval inject f sv1 sv2 := ∃ sv ′1 sv ′2, sv1 ≡ sv ′1∧sval inj f sv ′1 sv ′2∧ sv ′2 ≡ sv2.

To define the injection of memories, we use the injection of symbolic values to
inject memory values of the form Symbolic sv n. Two smemvals, mv1 and mv2
are in injection if the symbolic values they represent i.e. smv to sval mv1 and
smv to sval mv2, are in injection (see Fig. 17 for the definition of smv_to_sval).

Definition 13 (memval inject):

memval inject f mv1 mv2 :=sval inject f (smv to sval mv1 ) (smv to sval mv2 ).

8.2 Injection of Memories

Given the previous generalisation to symbolic values, the definition of mem inject is
very similar to the original definition of CompCert. Definition 14 shows an excerpt
from the mem inject specification.

Definition 14 (mem inject):
mem inject f m1 m2 : P := {
. . .

mi align : ∀ b b′ δ, f(b) = b(b′, δ)c →
alignment(m1, b) ≤ alignment(m2, b

′) ∧ 2[alignment(m1,b)] | δ;
mi size mem : size mem m2 ≤ size mem m1

}

It features two distinctive properties, mi_align and mi_size_mem, that illustrate the
main modifications due to symbolic values.

Absence of offset overflows. The existing specification of mem inject has a property
mi_representable which states that if f(b) = b(b′, δ)c, then for any valid offset o of
b, the offset o + δ obtained after injection does not overflow (i.e. it is an integer
that fits in 32 bits). With our memory model, this property can be derived from
the other properties of the injection. Indeed, if o is a valid offset of b, then o+δ is a
valid offset of b′ (see the well-formedness properties of the injection in Section 3.4).
Since o+ δ is a valid offset of a block, then it is necessarily lower than the size of
the whole memory, which is itself, as we have explained in Section 5.1, strictly less
than 232, therefore o+ δ fits in a 32-bit integer.

Alignment constraints are modelled by the property mi_align. In CompCert, this
is only a property of the offsets δ. As explained in Section 3.4, a chunk κ can be
used to access a location (b, δ) if the offset δ is a multiple of size chunk κ. The
existing CompCert makes the implicit assumption that memory blocks are always
sufficiently aligned to make the actual concrete address aligned as expected. In
our model, blocks are given an explicit alignment. As a result, we can precisely
state that an injection preserves alignement and is given by the mi_align property
of Fig. 14. We require that the target block is at least as aligned as the source block
and that the offset δ is sufficiently aligned so that aligned locations are injected
into at least as aligned locations.
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The size constraint is a property that is only present in our specification. It states
that the memory after injection has to be smaller than the original memory. Here,
the size is computed by the function size mem m := fresh addr(blocks of m) (see
Fig. 15 for relevant definitions) The function fresh_addr is presented in Fig. 15;
it ensures that all the blocks of the memory can fit below the computed fresh
address. This restriction is needed to ensure that if a memory allocation succeeds
for a source language, it also succeeds for the target language performing the
allocation on an injected memory. This is illustrated by Theorem 6 given below. It
states that provided that two memory states m1 and m2 are in injection, if we can
allocate a block of size sz in m1, then we can do the same in m2 and the resulting
memory states are in injection.

Theorem 6 (palloc parallel inject
 
 ):

∀ f m1 m2 sz al m′1 b1,
0 ≤ sz → mem inject f m1 m2 → palloc m1 sz al = b(m′1, b1)c →
∃ m′2 b2, palloc m2 sz al = b(m′2, b2)c ∧ mem inject f [b1 7→ b(b2, 0)c] m′1 m′2.

Proof The insight of the proof is that the allocation palloc m1 sz al succeeds for
a memory m1 that is larger than m2. By definition of palloc, we have that

size mem m1 + sz ≤ Int.max unsigned− 2MA

Moreover, by definition of the injection between m1 and m2, we also have that

size mem m2 ≤ size mem m1

By arithmetics, it follows that size mem m2 + sz ≤ Int.max unsigned− 2MA.
As a result, the allocation palloc m2 sz al succeeds and returns a memory m′2

and a block b2. It remains to prove that m′1 is in injection with m′2. Tough tedious,
the proof of this part mimics the existing proof of CompCert. ut

8.3 Preservation of Normalisation by Injection

This section details the proof of the main result relating normalisation and injec-
tion. The main theorem is the following:

Theorem 7 (norm inject
 
 ):

∀ f m m′ sv sv ′, all blocks injected f m→
mem inject f m m′ → sval inject f sv sv ′ →
val inject f (normalise m sv) (normalise m′ sv ′).

Informally, Theorem 7 states that the normalisation function preserves the
injection of symbolic values. In particular, the result will be more defined (in the
sense of the ≤ relation) after injection. The intuition is that a memory injection
amounts to merging blocks. As a result, pointer arithmetics gets more defined and
therefore more symbolic values get a definite normalisation.

To formally prove this result, it is necessary to introduce the counterpart of
memory injections for concrete memories and indeterminate memories. The defi-
nitions inj_cm and inj_im are similar; inj_cm states that blocks that are in injection
are mapped to the same concrete address in both concrete memories and inj_im

states that locations that are in injections have the same indeterminate value.

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.alloc_parallel_inject
http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.norm_inject_alt
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Definition 15 (inj cm and inj im
 
 ):

inj cm f cm cm ′ := ∀ b b′ δ, f(b) = b(b′, δ)c → cm(b) = cm ′(b′) + δ.

inj im f im im ′ := ∀ l l′, sval inj f indet(l) indet(l′)→ im(l) = im ′(l′).

Given these definitions, we now prove the following result about the evalua-
tion of symbolic values in injections in such concrete memories and indeterminate
memories.

Lemma 4 (eval sval inject
 
 ):

∀ f cm cm im im ′ sv sv ′, inj cm f cm cm ′ → inj im f im im ′ →
sval inject f sv sv ′ → JsvKimcm ≤ Jsv ′Kim

′

cm′ .

Proof By definition of sval inject, there exists sv1 and sv2 such that sv ≡ sv1

and sv ′ ≡ sv2 and sval inj f sv1 sv2. After rewriting the equivalences, the proof
amounts to showing

Jsv1Kimcm ≤ Jsv2Kim
′

cm′ .

The proof is by induction over sval inj f sv1 sv2.

– Case sv1 = undef. Then, Jsv1Kimcm = undef. Because ∀v, undef ≤ v, the property
holds.

– Case sv1 = v and sv2 = v′ where v and v′ are values such that val inject f v v′.

We must prove that JvKimcm ≤ Jv′Kim
′

cm′ . The proof is by case analysis over
val inject f v v′.
– v = undef. Then JvKimcm = undef and the property holds.
– v = ptr(b, i) and v′ = ptr(b′, i+ δ) and f(b) = b(b′, δ)c. On one hand

we have JvKimcm = cm(b) + i, and on the other hand, we have Jv′Kim
′

cm′ =
cm ′(b′)+(i+δ). Because cm and cm ′ are in injection, we know that cm(b) =
cm ′(b′) + δ and the property holds.

– v and v′ are neither undef nor pointers. In this case v = v′, and their
evaluations do not depend on the concrete memory and are therefore equal.

– Case sv1 = indet(b, i) and sv2 = indet(b′, i+ δ) and f(b) = b(b′, δ)c. This case
is similar to the proof of the case of pointers above.

– Case sv1 = op1 sv ′1 and sv2 = op1 sv ′2 and sval inj f sv ′1 sv ′2. The induction
hypothesis gives us:

∀cm ` m, ∀im, Jsv ′1K
im
cm ≤ Jsv ′2K

im′

cm′

We have on one hand Jsv1Kimcm = Jop1 sv ′1K
im
cm = eval unop(op1, Jsv ′1K

im
cm) and

on the other hand Jsv2Kim
′

cm′ = Jop1 sv ′2K
im′

cm′ = eval unop(op1, Jsv ′2K
im
cm). The

property holds because eval unop is a morphism for ≤.
– Case sv1 = sv3 op2 sv4 and sv2 = sv ′3 op2 sv ′4. The property holds by induction

hypothesis using the same arguments as for the unary operators. ut

The following lemma is an important step in the proof of the norm_inject the-
orem. It claims that if a symbolic value sv can be injected by f , then its normali-
sation can also be injected.

Lemma 5 (sval inject val inject
 
 ):

∀ f m sv sv ′ v, sval inject f sv sv ′ →
normalise m sv = v → ∃v′, val inject f v v′.

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memdata.html#inj_cm
http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memdata.html#eval_sval_inject
http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.sval_inject_val_inject
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Proof By definition of sval inject we have for some sv1 and sv2

sv ≡ sv1 ∧ sval inj f sv1 sv2 ∧ sv2 ≡ sv ′.

Since the normalisation is invariant under ≡, we have normalise m sv1 = v and it
remains to prove:

sval inj f sv1 sv2 → normalise m sv1 = v → ∃v′, val inject f v v′.

The proof is by case analysis over v.

– Case v = undef. By rule (2) of val inject (∀v, val inject f undef v), the
property holds.

– Case v 6= ptr(b, i). By rule (3) of val inject (∀v, val inject f v v), the property
holds.

– Case v = ptr(b, i). From Lemma 2, we have that b appears syntactically in
sv1. By direct induction over sval inj sv1 sv2, it follows that f(b) = b(b′, δ)c
for some b′ and δ. By rule (1) of val inject, v′ = ptr(b′, i+ δ) is in injection
with v and the property holds. ut

The previous lemmas play a major role in the proof of Theorem 7 whose
statement is recalled below. As precondition, the theorem requires that all the
blocks with a positive size are injected i.e. the injection function f is defined for
all the allocated blocks.

Definition 16 all blocks injected f m : P := ∀ b, size m b > 0→ f(b) 6= ∅.

As we show in the proof, this condition is needed to ensure that it is always
possible to construct concrete memories and indeterminate memories that are also
in injection. We repeat the main theorem below and prove it.

Theorem 7 (norm inject
 
 ):

∀ f m m′ sv sv ′, all blocks injected f m→
mem inject f m m′ → sval inject f sv sv ′ →
val inject f (normalise m sv) (normalise m′ sv ′).

Proof The proof is by case analysis over the result, say v, of the normalisation
normalise m sv .

– Case v = undef. As rule (12) states that undef can be injected to any value,
the property holds.

– Case v 6= undef. From Lemma 5, we can always construct a value v′ such that
val inject f v v′. To prove the property, it suffices to show that v′ is indeed
the result of the normalisation of sv ′, i.e. we have to prove the following:

∀ cm ′ ` m′, ∀im ′, Jv′Kim
′

cm′ ≤ Jsv ′Kim
′

cm′ .

To relate the evaluations before and after injection, we exhibit a concrete mem-
ory cm and an indeterminate memory im defined by:

cm(b) = match f(b) with| b(b′, δ)c ⇒ cm ′(b′) + δ | ∅⇒ 0 end.
im(b, i) = match f(b) with | b(b′, δ)c ⇒ im ′(b′, i+ δ) | ∅⇒ 0 end.

http://www.irisa.fr/celtique/ext/frontend-symbolic/html/Memory.html#Mem.norm_inject_alt
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This construction inverts the injection. It computes a concrete memory cm

such that cm ` m and inj cm f cm cm ′ and an indeterminate memory im

such that inj im f im im ′. Note that this construction is only valid when all
blocks are injected since non-injected blocks are mapped to an invalid concrete
address (0). The intuition for this construction is given by Fig 22. On the left,
Fig. 22 depicts the compatible concrete memories before injection. For this
example, the injection has the effect of concatenating the blocks b1 and b2, i.e.
f(b1) = b(b, 0)c and f(b2) = b(b, δ)c where δ is the upper bound of b1. The left
arrows ← show the effect of the function inj cm which inverts the injection.
The construction of inj im is similar.
By Lemma 1 and because cm ` m, we get Hypothesis 4:

∀ im, JvKimcm = JsvKimcm . (4)

By applying Lemma 4 for v and v′ and again for sv and sv′, we also get:

JvKimcm ≤ Jv′Kim
′

cm′ JsvKimcm ≤ Jsv′Kim
′

cm′

Because v 6= undef, we have JvKimcm = Jv′Kim
′

cm′ , and by transitivity, we get:

Jv′Kim
′

cm′ = JvKimcm = JsvKimcm ≤ Jsv′Kim
′

cm′

As a result, the property holds. ut

9 Proof of the Front-end of the CompCert Compiler

This section gives a high-level account of the proof of the front-end of CompCert
using symbolic values. The overall structure of the front-end is depicted in Fig. 7.
It is composed of four languages and three transformations. Details about the
different languages and transformations can be found in Section 3.2. In the follow-
ing, we first present how the semantics are modified to accommodate for symbolic
values. For each transformation, we also highlight the difficulty of the proof with
respect to our memory model.

b2 b1

b2 b1

b2 b1

b2b1

b2b1

b2b1

8 16 24 32 40 48

Concrete memories of m

8 16 24 32 40 48

Concrete memories of m′

Fig. 22: Injection of concrete memories
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9.1 Semantics of the Front-end Languages with Symbolic Values

The semantics of all intermediate languages need to be modified in order to ac-
count for symbolic values. In principle, the transformation consists in replacing
values by symbolic values everywhere and introducing the normalisation function
when necessary. In reality, the transformation can be more subtle because, for
instance, certain intermediate semantic functions explicitly require locations rep-
resented as pairs (b, δ). In such situations, a naive solution consists in introducing
a normalisation. Sometimes, the added normalisations are spurious and break the
semantics preservation proofs when subsequent semantics do not have a matching
normalisation. The right approach consists in delaying normalisations as much
as possible. Normalisations are therefore introduced before memory accesses, in
a seemingless way. Indeed, the memory model comes with high-level operations
loadv and storev which now take a symbolic value instead of a block and offset.
These instructions include a normalisation to recover a block and an offset, and
then perform the operation. Normalisations are also introduced when evaluating
the condition of if statements. For CompCert C9, normalisations are also added
to model the lazy evaluation of && and || operators. Using this strategy we have
adapted the semantics of the 4 languages of the front-end.

9.2 From CompCert C to Clight

The main purpose of the transformation from CompCert C to Clight is to pull side-
effects out of expressions. The original proof is subtle and required a significant
proof effort from the CompCert’s authors. One reason is that this is the only
compiler pass which requires an explicit backward simulation proof due to the
non-deterministic nature of the semantics of CompCert C.

However, this transformation preserves all the memory accesses. As a result,
the simulation relation stipulates that the memories are syntactically the same
for both the source and target programs. It follows that the existing proof can be
reused almost unchanged providing that the normalisations are introduced at the
right place. As hinted above, CompCert C includes many constructs that require
a normalisation but are compiled away in Clight.

9.3 From Clight to C]minor

The compilation from Clight to C]minor translates loops and switch statements
into simpler control structures. This pass also performs type-directed transfor-
mations and removes redundant casts. For example, it translates the expression
p + 1 with p of type int ∗ into the expression p + sizeof(int). For the existing
memory model, both expressions compute exactly the same value. However, with
symbolic values, syntactic equality is too strong a requirement. The simulation
proof requires a weaker equivalence relation. A natural candidate is the equality
of the normalisation. However, this relation is too weak and fails to pass the in-
duction step. Indeed, when expressions e1 and e2 have the same normalisation

9 These constructs are absent from other languages.



A Verified CompCert Front-End for an Enhanced Memory Model 45

m1 m2
mem inject p f

m′
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1

mem
inject p f

m1

m′
2

mem
inject p f

m′
1∃f ′, mem inject p f ′

2

1. allocation of stack frame
2. allocation of local variables

Fig. 23: Structure of match_callstack_alloc_variables’s proof in CompCert

(sv1 ≡N sv2), it is not always the case that op1 sv1 ≡N op1 sv2. Take for example
sv1 = indet(b, i)|0x1 and sv2 = indet(b, i)&0x0. The normalisations of sv1 and
sv2 are undef, hence equal to each other. However, imagine the operation lastbit

which retrieves the last bit of an integer. Now lastbit(sv1) normalises into int(1)
and lastbit(sv2) normalises into int(0).

A stronger relation is the equivalence of symbolic values, introduced in Sec-
tion 7.1. This relation is lifted to smemvals and memories:

Definition 17 smemval eq mv1 mv2 := smv to sval mv1 ≡ smv to sval mv2 .

Two memory states m1 and m2 are equivalent, written m1 ≡m m2, if for all the
locations both memories hold equivalent smemvals according to smemval_eq. To carry
out the proof, we also extend the interface of the memory model and prove that the
memory operations are morphisms for the equivalence relation. For example, we
prove that starting from memory states m1 and m2 such that m1 ≡m m2, storing
equivalent symbolic values at the same addresses will result in memory states m′1
and m′2 that are equivalent, i.e. m′1 ≡m m′2. With these modifications, the compiler
pass can be proved semantics preserving using the existing proof structure.

9.4 From C]minor to Cminor

From the proof point of view, the compiler pass from C]minor to Cminor is the
most challenging. The reason is that this particular pass is responsible for allo-
cating the stack frame. Therefore, it transforms significantly the memory layout
and therefore the memory accesses. After the transformation, the stack frame is
a single block and local variables are accessed via offsets within this block. The
proof introduces a memory injection stating how the blocks representing local vari-
ables in C]minor are mapped into the single block representing the stack frame in
Cminor.

The existing proof can be adapted with our generalised notion of injection (see
Section 8) with the notable exceptions of two intermediate lemmas whose proofs
need to be completely re-engineered. The problem is related with the preservation
of the memory injection when allocating and de-allocating the variables in C]minor
and the stack frame in Cminor. The structure of the original proof is depicted
in Fig. 23 where plain arrows represent hypotheses and the dotted arrow the
conclusion. The existing proof first allocates the stack frame in memory m2 to
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obtain the memory m′2. It then establishes that the existing injection between the
initial memories m1 and m2 still holds with the memory m′2. In a second step,
the memory m′1 is obtained by allocating variables in memory m1 and the proof
constructs an injection thus concluding the proof.

With our memory model, memory injections need to reduce the memory usage
– this is needed to ensure that allocations cannot fail. Here, this is obviously not
the case because the memory m′2 contains a stack frame whereas the corresponding
variables are not yet allocated in m1.

Our modified proof is directly by induction over the number of allocated vari-
ables. In this case, we prove that if the variables do fit into memory, then so does
the stack frame. Note that to accommodate for alignment and padding the stack
frame might allocate more bytes than the size of the variables themselves. For
example, consider a variable x of type char and a variable y of type int. The size
of the variables is 5 bytes, but the stack frame needs to be 8-byte-wide because
the integer has alignment constraints. However, remember that our allocation al-
gorithm makes a worst-case assumption about alignment therefore there is always
enough space to allocate the stack frame. Indeed, in the previous example, each
of the variables x and y took 8 bytes in memory, therefore the stack frame takes
less space. We therefore conclude that the memories m′1 and m′2 are in injection.

At function exit, the variables and the stack frame are freed from memory. As
before, the arguments of the original proof do not hold with our memory model and
we adapt the two-step proof with a direct induction over the number of variables.
To carry out this proof and establish an injection we have to reason about the
relative sizes of the memories. We already discussed how the allocation algorithm
rules out the possibility for the stack frame not to fit into the memory. Here, we
have to deal with the opposite situation where the stack frame uses less memory
than the variables.

Consider memory states m1 and m2 where mem inject f m1 m2 for some f .
We are about to de-allocate variables (of size sz vars) from m1 and the stack
block (of size stack size) from m2. We know that stack size ≤ sz vars and also that
size mem m2 ≤ size mem m1. We need to show that the sizes of the memory after
de-allocation satisfy the mi_size_mem constraint (see section 8 for details), i.e. that
size mem m2 − stack size ≤ size mem m1 − sz vars. This is not provable with these
hypotheses: as far as we know, stack size may be as small as possible and sz vars

as large as we want.
To avoid this situation, we need to enrich our invariant with a property of

the sizes of the memories at every function entry. We use the existing notion of
call stack, which is a list of functions frames. A frame is a proof object relat-
ing C]minor and Cminor program states. It consists, amongst other things, of a
C]minor environment (tracking local variables of a function) and of the size of the
Cminor stack block, which is all we need for our purposes.

We define a property size_mem_preserved that captures the intuition that before
allocating the local variables, m2 was already smaller than m1. It maintains a stack
of memory states that is used to remember the relative order of their sizes at every
point in the semantics. Fig. 24 gives its definition on the left and represents the
sizes of related memories on the right. Each rectangle represents a new stack frame,
either as a set of local variables (in C]minor) or as a stack block (in Cminor). The
height of the stack frames represents their size, and the size of the memory is the
cumulated size of all the stack frames. The information that the size_mem_preserved
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Inductive size_mem_preserved:
list mem → list mem → callstack → Prop :=
| smo_nil: ∀ m1 m2,
size_mem m2 ≤ size_mem m1 →
size_mem_preserved (m1::nil) (m2::nil) nil
| smo_cons: ∀ m1 m2 m′

1 lm1 m′
2 lm2 f cs,

size_mem m′
1 = size_mem m1 − sz_vars f →

size_mem m′
2 = size_mem m2 − stack_size f →

size_mem m2 ≤ size_mem m1 →
size_mem_preserved (m′

1 :: lm1) (m′
2 :: lm2) cs →

size_mem_preserved (m1 :: m′
1 :: lm1)

(m2 :: m′
2 :: lm2) (f :: cs).

C]minor Cminor

Fig. 24: The size_mem_preserved predicate

predicates captures is depicted by the dashed lines: it remembers the relative size
of the memories for each frame in the call stack.

At function entry, we need to add a new frame to size_mem_preserved, which is
achieved through simple reasoning about the size of the memory after allocations.
At function exit, we can use the size_mem_preserved fact to prove the mi_size_mem

property of injections. This reasoning enables us to throw out supplementary stack
space, that would otherwise pollute our stack frame.

10 Related Work

Several works have proposed different memory models for the analysis of C pro-
grams. Among them is the work of Norrish [30], who gives a semantics for C using
a concrete memory model (i.e. the memory is a mere array from concrete ad-
dresses to bytes). Reasoning about memory operations in those terms is difficult.
Tuch et al. [31] use separation logic to make this reasoning tractable. VCC [11]
transforms C programs annotated with specifications and function contracts into
verification conditions [10], that are subsequently solved used the Z3 SMT solver.
This work aims at verifying a hypervisor. It uses a typed memory model where the
memory is a mapping from typed pointers to structured C values. Again, pointers
are mere integers. This memory model is not formally verified.

Using Isabelle/HOL, Autocorres [13,14] constructs provably correct abstrac-
tions of C programs. The abstractions are expressed in a monadic style. Since
the abstraction is correct, any property derived from the abstraction also holds
for the C program. The memory models of VCC [11] and Autocorres [14] ensure
separation properties of pointers for high-level code and are complete with respect
to the concrete memory model. The CompCert model [26] has disjoint blocks by
construction, therefore no logic is required to ensure separation properties. For
our symbolic extension, the completeness (and correctness) of the normalisation is
defined with respect to a concrete memory model and therefore allows reasoning
over low-level idioms.
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Several formal semantics of C are defined over a block-based memory model.
Ellison and Roşu [12] define kcc, a C semantics based on the K framework that
encodes semantic rules as rewriting systems. Their semantics follows closely the
C standard and is executable. Most recently [15], they extend their work to give
what they call a negative semantics of C, that allows to detect all kinds of undefined
behaviours listed in the standard when they occur. Their aim is to detect maximally

portable, strictly-conforming programs, and is therefore orthogonal to ours, which is
centered around formal proofs of compiler transformations.

The CompCert C semantics [7] provides the specification for the correctness of
the CompCert compiler [24]. CompCert is used to compile safety critical embedded
systems [2] and the semantics departs from the ISO C standard to capture exist-
ing practices. For example, signed integer arithmetic is defined to wrap around
modulo in case of overflow. Another example is related to sequence points. In C,
it is undefined behaviour to access the same object several times between two se-
quence points, but CompCert assigns an arbitrary evaluation order and defines the
semantics of such programs. Our work goes further in that direction and defines
semantics of even more non-conforming programs.

Krebbers et al. extend the CompCert semantics but aim at being as close as
possible to the C standard [22]; they formalise sequence points in non-deterministic
programs [21] and strict aliasing restrictions in union types of C11 [20]. This is
orthogonal to the focus of our semantics, which gives a meaning to implementation
defined low-level pointer arithmetic and models bit-fields.

Most recently, Kang et al. [19] propose a formal memory model for a C-like
language which allows optimisations in the presence of casts between integers and
pointers. Pointers are kept logical until they are cast to integers, then a concrete
address is non-deterministically assigned to the block of the pointer. This means
that casting a pointer to an integer triggers memory allocation, and can there-
fore fail if no chunk of memory is available, making this model rather unintuitive.
Moreover, their work focuses on a minimal C-like language and there is no actual
optimiser. They seem to have proof principles that enable them to prove for two
given programs that they are equivalent, or that one is a correct optimisation of
the other, however they do not have a proven compiler/optimizer, which is what
we aim at. Their model also lacks an essential property of CompCert’s memory
model: determinism. For instance, with a fully concrete memory model, allocat-
ing a memory chunk returns a non-deterministic pointer – one of the many that
does not overlap with an already allocated chunk. In CompCert, the allocation
returns a block (merely an identifier, not an actual address) that is computed in
a deterministic way. As discussed in Section 3.1, determinism is instrumental for
the simulation proofs of the compiler passes and its absence is a show stopper.
Indeed, the final theorem of CompCert is a backward simulation. However, for-
ward simulations are easier to reason about and can be transformed into backward
simulations provided that the input language is deterministic.

Carbonneaux et al. [8] propose Quantitative CompCert. This is an extension
of CompCert that gives additional guarantees about the resource consumption of
programs compiled by CompCert. For example, they give formal bounds on the
stack usage of C programs. They compute these bounds thanks to a dedicated
Hoare logic at the Clight level, and prove that these bounds are preserved by the
compilation. Our model follows this direction because the compilation makes the
memory usage of programs decrease, as we discussed in Section 8.2.
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11 Conclusion

This work is a milestone towards a CompCert compiler proved correct with respect
to a more concrete memory model. Our formal development adds about 20000 lines
of Coq to the existing CompCert memory model and another 20000 lines for the
proofs of the front-end. A side-product of our work is that we have uncovered
and fixed a problem in the existing semantics of the comparison with the NULL

pointer. We are very confident that this is the very last remaining bug that can be
found at this semantics level. We also prove that the front-end of CompCert can
be adapted to our refined memory model. The proof effort is non-negligible: the
proof script for our new memory model is twice as big as the existing proof script.
The modifications of the front-end are less invasive because the proof of compiler
passes heavily rely on the interface of the memory model.

As future work, we shall study how to adapt the back-end of CompCert. We
are confident that program optimisations based on static analyses will not be
problematic. We expect the transformations to still be sound with the caveat that
static analyses might require minor adjustments to accommodate for our more
defined semantics. A remaining challenge is register allocation which may allocate
additional memory during the spilling phase. An approach to solve this issue is to
use the extra-memory that is available due to our pessimistic construction of stack
frames. Withstanding the remaining difficulties, we believe that the full CompCert
compiler can be ported to our novel memory model. This would improve further
the confidence in the generated code.
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12. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In: POPL.
ACM (2012)

13. Greenaway, D., Andronick, J., Klein, G.: Bridging the Gap: Automatic Verified Abstrac-
tion of C. In: ITP, LNCS, vol. 7406. Springer (2012)

14. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: formal
verification of C code without the pain. In: PLDI. ACM (2014)
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