
CompCertS: A Memory-Aware Verified C
Compiler using Pointer as Integer Semantics

Frédéric Besson1, Sandrine Blazy2, and Pierre Wilke3

1 Inria, Rennes, France
2 Université Rennes 1 - IRISA, Rennes, France

3 Yale University, USA

Abstract. The CompCert C compiler provides the formal guarantee
that the observable behaviour of the compiled code improves on the ob-
servable behaviour of the source code. In this paper, we present a formally
verified C compiler, CompCertS, which is essentially the CompCert
compiler, albeit with a stronger formal guarantee: it gives a semantics
to more programs and ensures that the memory consumption is pre-
served by the compiler. CompCertS is based on an enhanced memory
model where, unlike CompCert but like Gcc, the binary representa-
tion of pointers can be manipulated much like integers and where, unlike
CompCert, allocation may fail if no memory is available.
The whole proof of CompCertS is a significant proof-effort and we high-
light the crux of the novel proofs of 12 passes of the back-end and a
challenging proof of an essential optimising pass of the front-end.

1 Introduction

Over the past decade, the CompCert compiler has established a milestone
in compiler verification. CompCert is a formally verified C compiler written
with the Coq proof assistant, which initially targeted safety-critical embedded
software. The compiler comes with a machine-checked proof that it does not
introduce bugs during compilation [2]. This semantic preservation proof relies
on the formal semantics of the source and target languages of the compiler, and
requires that the source program has a defined semantics. Therefore, CompCert
only provides formal guarantees for programs that do not exhibit undefined
behaviours – a property that is in general undecidable.

CompCert’s memory model is a central component of the compiler. In this
paper, we show how to adapt CompCert for a more expressive memory model
which lifts two main limitations. First, memory allocation in CompCert always
succeeds, therefore modelling infinite memory. As a consequence, the compiler
does not guarantee anything on the memory consumption of the compiled pro-
gram. In particular, the compiled program may exhibit a stack overflow. Second,
CompCert’s memory model limits pointer arithmetic: any implementation-
defined operations on pointers result in an undefined behaviour of the memory
model. This may seem restrictive but this is compliant with the C standard.

In previous work [3], we proposed a more concrete memory model inspired
by CompCert where memory is finite and pointers can be used as integers. On
that basis, we have adapted the proof of 3 passes of CompCert’s front-end [4].

In this work, we present a fully verified CompCert compiler where 12 re-
maining passes have been ported to our new memory model. This compiler is
called CompCertS (for CompCert with Symbolic values). CompCertS gives
much stronger guarantees about the behaviour of arbitrary pointer arithmetic,
thus avoiding the miscompilation of programs performing bit-level manipula-
tion of pointers. CompCertS also provides strong guarantees about the relative
memory usage of the source and target programs. This is challenging because it
is unclear how to even define the memory usage at the C level. We show how to
tackle this challenge using oracles, aiming at ensuring that compiled programs
use no more memory than source programs. In particular, this ensures that the
absence of memory overflow is preserved by compilation.

All the results presented in this paper have been mechanically verified using
the Coq proof assistant. The development is available online [1]. Additionnally,
we include links to the online documentation for several definitions and theorems
in this paper under the form of Coq logos . Our contribution is CompCertS,
which is safer than CompCert in the following sense: 1) CompCertS offers
guarantees for a wider class of programs; 2) CompCertS also offers guarantees
about the memory usage of the compiled program. More precisely, we make the
following technical contributions:

– We present the proof of the compiler back-end (i.e. 12 compiler passes) in-
cluding constant propagation, common subexpression elimination and dead-
code elimination. In particular, we detail how the existing alias analyses of
CompCert [15] benefit from our more defined semantics.

– We show how to instrument the C semantics with oracles specifying the
memory usage of functions, so that the compiler only reduces the memory
usage of the program. We thus ensure that the absence of memory overflow
is preserved by compilation.

The rest of the paper is organised as follows. First, Section 2 gives background
information on CompCert and the symbolic memory model of our previous
work [4]. Section 3 highlights the proof challenges related to treating pointers as
integers. In particular, we explain the impact on optimisations and on the proof
of one important pass of the front-end of CompCert. Section 4 shows how we
ensure that the compiler reduces the memory usage of programs and proves that
the absence of memory overflows is preserved. Section 5 mentions related work
and finally, Section 6 concludes.

2 Background on CompCert

This section describes the architecture of the CompCert compiler [12]. It also
summarises the main features and properties of our memory model [3,4].

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/../index.html

val 3 v := int(i) | ptr(b, o) | undef
memval 3 mv := Byte(b) | Pointer(b, o, n) | Undef

Fig. 1: Runtime and memory values

2.1 Architecture of the CompCert Compiler
CompCert compiles C programs into assembly code, through 8 intermediate
languages. The same memory model is shared by all the languages of the com-
piler. Each language is given a formal semantics in the form of a state transition
system. Every transformation from one language to another is proved to be
semantics preserving using simulation relations, stating that every step in the
source language can be simulated by a number of steps in the target language,
such that some matching relation between program states is preserved by those
steps. The composition of all the simulation lemmas for the individual compiler
passes forms the semantic preservation theorem given below. For the sake of sim-
plicity, we consider that the semantics observe behaviours that are either defined
behaviours, with a trace of I/O events, or undefined behaviours.
Theorem 1. Suppose that tp is the result of the successful compilation of the
program p. If bh′ is a behaviour of tp then there exists a behaviour bh such that
bh is a behaviour of p and bh′ improves on the behaviour bh.

bh′ ∈ ASem(tp) ⇒ ∃bh.bh ∈ CSem(p) ∧ bh ⊆ bh′

In the theorem, CSem gives the semantics of C programs and ASem gives the
semantics of assembly programs. Moreover, a behaviour bh′ improves on a be-
haviour bh (written bh ⊆ bh′) if either bh and bh′ are the same, or undefined
behaviours in bh are replaced by defined behaviours in bh′.

2.2 The Memory Model of CompCert
The memory model of CompCert is the cornerstone of the semantics of all
intermediate languages. It consists of a collection of separated blocks, where
blocks are arrays of a given size. A value v ∈ val (see Fig. 1) can be either a
32-bit integer int(i), a pointer or the token undef. A pointer is a pair ptr(b, o)
consisting of a block identifier b and an offset o. CompCert also features 64-bit
integers, single and double precision floating-point numbers, which we ignore in
this paper for the sake of simplicity. To allow fine-grained access to the memory,
CompCert does not store values directly in the memory. Rather, values are
encoded as sequences of byte-sized memory values called memval that describe
the content of a memory block. They are either concrete 8-bit integers Byte (b), a
special Undef byte that represents uninitialised memory, or a byte-sized fragment
of a pointer value Pointer (b, o, n) (read: n-th byte of pointer ptr(b, o)). Therefore,
a pointer ptr(b, o) is encoded in memory as a sequence of 4 memvals, from
Pointer(b, o, 0) to Pointer(b, o, 3). The memory model exports four operations:
load reads values from the memory at a given address (a block and an offset),
store writes values into the memory at a given address, alloc allocates a new
block and free frees a given block.

struct rb_node { uintptr_t rb_parent_color;
struct rb_node *rb_right; struct rb_node *rb_left; };

#define rb_color(rb) (((rb)-> rb_parent_color) & 1)
#define rb_parent(r) ((struct rb_node *) ((r)-> rb_parent_color & ~3))

Fig. 2: Red-black tree implementation in Linux

sval 3 sv := val | unop(u, sv) | binop(b, sv1, sv2)
smemval 3 smv := Symbolic(sv, n)

Fig. 3: Symbolic runtime and memory values

2.3 A Symbolic Memory Model for CompCert

In previous work [3], we extended CompCert’s memory model and gave se-
mantics to pointer operations by replacing the value domain val by a more
expressive domain sval of symbolic values. We first give a motivating example;
then we recall the principles of symbolic values and their normalisations.

Motivation for Pointers as Integers. In previous work [4], we introduced a
low-level memory model that enables reasoning about the bit-level encoding of
pointers within CompCert. We give in Fig. 2 an example of C code that benefits
from our low-level memory model. This is an implementation of red-black trees
which belongs to the Linux kernel. A node in a red-black tree (type rb_node)
contains an integer rb_parent_color and two pointers to its children nodes. The
integer rb_parent_color encodes both the color of the node and a pointer to
the parent node. The rationale for this encoding is as follows: 1) pointers to
rb_nodes are at least 4-byte aligned, therefore the two trailing bits are zeros;
and 2) the color of a node can be encoded with a single bit. Retrieving each piece
of information from this encoding is implemented by the two macros rb_color
and rb_parent shown in Fig. 2. To get the parent pointer, the macro clears the
two trailing bits using a bitwise & with ∼ 3 (i.e. 0b1 . . . 100). In CompCert,
these operations are undefined because of the bitwise operations on pointers. In
CompCertS, these operations are defined and therefore this kernel code can be
safely compiled without fear of any miscompilation.

Symbolic Values. A symbolic value sv ∈ sval (see Fig. 3) is either a value
v or an expression built from unary and binary C operators over symbolic val-
ues. Memory values memval are also generalised into symbolic memory values
smemval, which have a single constructor Symbolic(sv, n), denoting the n-th
byte of a symbolic value sv. This constructor is inspired from the Pointer (·, ·, ·)
constructor of CompCert (see Fig. 1) and subsumes the three existing cases.

Building symbolic values instead of the token undef for undefined operations
delays the challenge of giving more semantics to C expressions. However, sym-
bolic values cannot be kept symbolic indefinitely. To perform memory accesses

at an address represented by the symbolic value addr, the address addr must
be normalised into a genuine pointer ptr(b, o). Similarly, the condition cond of a
conditional statement must be normalised into an integer int(i) to decide which
branch to follow. The normalisation is specified as a function normalise which
takes as input a memory state m and a symbolic value sv, and outputs a value
v. Its specification relies on the notions of concrete memories valid for a memory
state m, and of evaluation of expressions that we recall below.

Concrete Memories and Evaluation. A concrete memory is a mapping from
blocks to concrete addresses, represented as 32-bit integers. Each memory block
b has a size size and an alignment constraint al; a pointer ptr(b, o) is valid if the
offset o is within the bounds [0, size[, written valid(m, b, o). We can retrieve the
alignment of a block b with the accessor align(m, b).

Definition 1. A concrete memory cm is valid for a memory state m (cm ` m)
if the following conditions hold:

1. Valid addresses lie within the address space, i.e.
∀ b o, valid(m, b, o) ⇒ cm(b) + o ∈]0; 232 − 1[.

2. Valid pointers from distinct blocks do not overlap, i.e. ∀ b b′ o o′,
b 6= b′ ∧ valid(m, b, o) ∧ valid(m, b′, o′) ⇒ cm(b) + o 6= cm(b′) + o′.

3. Addresses are properly aligned, i.e. ∀ b, 2align(m,b) | cm(b).

The evaluation of a symbolic value sv in a concrete memory cm (written JsvKcm)
consists in replacing pointers with their integer value (according to cm) and then
evaluating the resulting expression with standard integer operations.

Example 1. Consider for example a concrete memory cm1 that maps a block b
to the address 32. The evaluation of the symbolic value sv = ptr(b, 5)& int(1)
results in int(1) because JsvKcm = (cm(b) + 5)& 1 = (32 + 5)& 1 = 37& 1 = 1.

Specification of the normalisation. The normalisation of sv in m returns a
value v if for every cm ` m, sv and v evaluate identically in cm.

(∀cm ` m ⇒ JsvKcm = JvKcm) ⇒ normalise(m, sv) = v
If no such value v can be found, the normalisation returns undef.

Example 2. Consider a program which stores information in the 2 least signifi-
cant bits of a 4-byte aligned pointer (cf. Fig. 2). The symbolic value after setting
the last 2 bits of a pointer ptr(b, 0) is sv = ptr(b, 0) | 3. To recover the original
pointer, the last two bits can be cleared by the following bitwise manipulation:
sv′ = sv & ∼ 3. We have that sv′ normalises into pointer ptr(b, 0) because for
any valid concrete memory cm:

Jsv′Kcm = J(ptr(b, 0) | 3)& ∼ 3Kcm = (cm(b) | 3)& ∼ 3 = cm(b)

The last rewriting step is justified by the alignment constraints of block b.
Since Jptr(b, 0)Kcm = cm(b) for any cm, then sv′ normalises into ptr(b, 0).

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/NormaliseSpec.html#compat

b1

b2

b3

b′

δ1

δ2

f(b1) = b(b′, 0)c
f(b2) = b(b′, δ1)c
f(b3) = b(b′, δ2)c

Fig. 4: Injecting several blocks into one

2.4 Memory Injections

Memory injections are CompCert’s central notion to formalise the effect of
merging blocks together; they are used to specify the passes that transform the
memory layout. The stereotypical example is the construction of stack frames,
which happens during the transformation from C]minor to Cminor. At the C]mi-
nor level, each local variable is allocated in its own block. In Cminor, a single
block contains all the local variables, stored at different offsets. This mapping
from local variable blocks in C]minor to offsets in the stack block in Cminor
is captured by a memory injection. A memory injection is characterised by an
injection function f : block → bblock × Zc that optionally associates with each
block a new block and an offset within that block. For example, in Fig. 4, the
blocks b1, b2 and b3 are injected by f into the single block b′, at different offsets.

In addition to reflecting the structural relation between memory states, in-
jections also relate the contents of the memory states. Values that are stored at
corresponding locations are required to be in injection. Two values v1 and v2 are
in injection if 1) v1 is undef, or 2) v1 and v2 are the same non-pointer value, or
3) v1 is ptr(b, o), v2 is ptr(b′, o+ δ) and f(b) = b(b′, δ)c4. For example, in Fig. 4,
the pointer ptr(b2, o) is in injection with the pointer ptr(b′, o+ δ1).

Two symbolic values are in injection (see [4]) if they have the same structure
(the same operators are applied) and the values at the leaves of each symbolic
value are in injection. We proved a central result that relates injections and
normalisations, recalled in Theorem 2.

Theorem 2. For any total injection f , for any memory states m1 and m2

in injection by f , for any symbolic values sv1 and sv2 in injection by f , the
normalisations of sv1 in m1 and of sv2 in m2 are in injection by f .

This theorem has the precondition that f must be a total injection, i.e. all
non-empty blocks must be injected (i.e. f(b) 6= ∅). In this paper, one of our
contributions is a generalisation of Theorem 2, which covers the case of more
general injections. As we shall see in Section 3.1, it is required to prove the
SimplLocals pass of CompCert.

4 b·c denotes the option type. We write bvc for Some(v) and ∅ for None.

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/Memory.html#Mem.norm_inject

3 Proof Challenges for Pointers as Integers

This section presents the proof challenges that we tackle for porting CompCert
to a semantics with symbolic values, where pointer operations behave as integer
operations, e.g. bitwise operators are defined on pointers. The first challenge
concerns the SimplLocals pass of CompCert, which modifies the structure of
the memory. The second challenge is related to optimisations, and in particular
the notion of pointer provenance. The existing pointer analysis in CompCert
needs to be refined, so that it is correct in our symbolic setting.

3.1 Proving the Correctness of SimplLocals

The SimplLocals compiler pass is one of the earliest in CompCert. Its source
language is Clight, a stripped-down dialect of C where expressions are side-effect-
free. The purpose of this pass is to pull out of memory the local variables that
do not need to reside in memory: those whose address is never taken. Those
variables are transformed into temporaries, i.e. pseudo-registers, upon which all
the subsequent optimisations can operate.

Arguments for the correctness of SimplLocals. In CompCert, the correct-
ness of this compiler pass relies on memory injections. The blocks corresponding
to variables that are not transformed into temporaries are injected into them-
selves (i.e. f(b) = bb, 0c), while the blocks corresponding to variables that are
transformed into temporaries are not injected (i.e. f(b) = ∅).

The core difficulty of porting the proof of SimplLocals to the symbolic setting
resides in proving that normalisations are preserved by injections. In previous
work, we have established Theorem 2 which proves this preservation for total
injections. Here, the injection is partial (i.e. some blocks are not injected) and
therefore Theorem 2 does not apply. The following example illustrates the chal-
lenge of dealing with partial injections.

Example 3. For the sake of simplicity, consider a memory size of 32 bytes. Con-
sider a memory state m1 with two blocks b and b′ which are both 4-byte aligned:
b of size 8 and b′ of size 16. We show in Fig. 5a the only two possible concrete
memories, where b is the darker block and b′ is the lighter one. Note that no
block can be assigned the address 0 nor the address 28, as per Definition 1.

Consider the symbolic value sv = ptr(b, 0)! =16. It normalises into 0 in m1,
because b is never allocated at address 16 in any concrete memory valid for m1.
Indeed, this address is always occupied by block b′. Now consider a memory state
m2 where the block b′ has been pulled out of memory. Fig. 5b shows that in m2

it is, of course, still possible to allocate block b at addresses 4 and 20. However,
there is a new possible configuration where block b can be allocated at address
16. The normalisation of sv is now undefined because sv evaluates to different
values (1 or 0) depending on the concrete memory used.

0 4 8 12 16 20 24 28 32

bb′
b′b

(a) Before injection

0 4 8 12 16 20 24 28 32

b

b

b

(b) After injection

Fig. 5: Concrete memories and partial injections

The essence of the problem illustrated by the above example is that blocks
may have more allowed positions after the injection than before, meaning that
the set of valid concrete memories is larger after the injection. Therefore, the
normalisation may be less defined after a partial injection and Theorem 2 cannot
be generalised for arbitrary partial injections.

Well-behaved injections. We identify a restricted class of well-behaved injec-
tions functions f , for which we show that blocks that are injected by f (those for
which f(b) 6= ∅) do not gain new valid concrete addresses after the injection. The
criterion for well-behavedness of injection functions f is defined in Definition 2.

Definition 2 (Well-behaved injection). An injection function f is said
to be well-behaved if only the blocks that are at most 8-byte wide and at most
8-byte aligned may be forgotten by f . Formally,

well_behaved (f,m) , ∀ b, f(b) = ∅ ⇒ size(m, b) ≤ 8 ∧ align(m, b) ≤ 8.

The injection used for the correctness proof of SimplLocals satisfies this con-
straint because only scalar variables may be removed from the memory, i.e. the
largest are long-typed variables that are 8-byte wide and 8-byte aligned. Using
such well-behaved injections, we can prove Lemma 1, from which a generalised
version of Theorem 2 can be derived, as we explain at the end of this section.

Lemma 1. Let f be a well-behaved injection function. Let m1 and m2 be
memory states in injection by f . For every concrete memory cm2 valid for m2,
there is a corresponding concrete memory cm1 valid for m1, such that every
non-forgotten block has the same address in cm1 and cm2. Formally,
∀f, well_behaved f ⇒

∀ m1 m2, mem_inject f m1 m2 ⇒ ∀ cm2 ` m2,∃ cm1 ` m1 ∧ cm1 ≡f cm2

where cm1 ≡f cm2 , ∀ b b′, f(b) = b(b′, 0)c ⇒ cm1(b) = cm2(b
′)

The problem that Lemma 1 solves can be thought of as follows: for every
concrete memory cm2 valid for m2 (cm2 ` m2), it is possible to insert back
all the blocks that have been forgotten by f , without moving the others. In
other words, all block positions that are allowed in m2 were already allowed
in m1, therefore we avoid the problems illustrated by Example 3. The proof of
Lemma 1 goes by counting 8-byte wide and 8-byte aligned regions of memory

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ForgetNorm.html#inject_well_behaved
http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ForgetNorm.html#forget_compat

that we call boxes. We call nbox(cm) the number of used boxes for a given
concrete memory cm. Our allocation algorithm [4] entails that for every memory
state m, there exists a concrete memory cm that we call the canonical concrete
memory of m and write canon_cm(m), that is built by allocating all the blocks
of m at maximally-aligned, i.e. 8-byte aligned, addresses. Thanks to alignment
constraints, we have that for any concrete memory cm valid for m, cm uses no
more boxes than canon_cm(m), i.e. nbox(cm) ≤ nbox(canon_cm(m)).

Consider now two memory states m1 and m2 in injection by some well-
behaved injection function f , such that m2 is the result of forgetting F blocks
from m1. We have that nbox(canon_cm(m2)) = nbox(canon_cm(m1)) − F .
Starting from a concrete memory cm2 ` m2, we derive that nbox(cm2) + F ≤
nbox(canon_cm(m1)). In other words, it is possible to find F free boxes in cm2.
Because the blocks we forgot each fit in a box, all we have to do at this point is
use each of these F boxes to contain the F forgotten variables.

Theorem 3 is the generalised version of Theorem 2 for well-behaved injections.

Theorem 3. For any well-behaved injection f , for any memory states m1

and m2 in injection by f , for any symbolic values sv1 and sv2 in injection by f ,
the normalisations of sv1 in m1 and of sv2 in m2 are in injection by f .

Proof. The proof is performed in two steps.

– First, we exhibit some value v such that the normalisation of sv1 injects into
v. This shows that if the normalisation of sv1 is a pointer, then this pointer
is injected by f . This is a consequence of the fact that sv1 is injected into
another symbolic value.

– Then, we show that this v is necessarily the normalisation of sv2 in m2. This
boils down to showing that: ∀ cm2 ` m2, JvKcm2

= Jsv2Kcm2
. Using Lemma 1

and the specification of the normalisation, we conclude this proof.

This theorem is a central piece of the proof of the SimplLocals pass, which is
now fully proved in CompCertS.

3.2 Optimisations

CompCert features several standard optimisations. Among them, constant prop-
agation, strength reduction and common subexpression elimination exploit the
result of a dataflow analysis computing the combination of an interval analy-
sis and an alias analysis. In this section, we explain why the existing dataflow
transfer functions are not sound for CompCertS and how to fix them. This
demonstrates that the semantics of CompCertS is a provably strong safeguard
preventing the miscompilations of low-level pointer arithmetic.

The abstract value domain of CompCert is made of the sum of a pointer
domain and a numeric domain. One purpose of the pointer domain is to distin-
guish pointers to the current stack frame from other pointers. A representative

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ForgetNorm.html#forget_norm

1 rb_node* get_parents_right_child(rb_node* r){ // r: (¬Stack,>)
2 uintptr_t rpc = r->rb_parent_color;//get the parent/color field
3 // rpc: (¬Stack,>)
4 rb_node* p = (rb_node*) (rpc & ~3);//get the parent of r
5 // p: (⊥,>), (¬Stack,>)
6 rb_node* rchild = p->rb_right; // access its right child
7 // rchild: (⊥,⊥), (¬Stack,>)
8 return rchild; }

Fig. 6: Dataflow analysis for red-black trees

but simplified abstract pointer-domain (aptr) is given below. Its semantics is
given by its concretization function γsb where sb is the memory block of the cur-
rent stack frame. The empty set of pointers is denoted by ⊥. Stk ofs represents
the stack pointer ptr(sb, ofs). The set of all pointers to the current stack frame
(block sb at any offset) is captured by Stack. All pointers to blocks different from
the stack block sb are abstracted by ¬Stack. Finally, > is the set of all pointers.

aptr ::= ⊥ | Stk ofs | Stack | ¬Stack | >
The numeric domain anum is standard: it tracks intervals of integers and

floating-point constants. The domain of abstract values aval = aptr × anum is
the sum domain such that γsb(ap, an) = γsb(ap) ∪ γ(an). The sum domain is
relevant because a value can be either a pointer or an integer but not both.

In CompCert, the transfer functions are written with prudence in order to
avoid miscompilations and ”[Track] leakage of pointers through arithmetic oper-
ations”.5 This is done by computing carefully crafted transfer functions which
are purposely non-optimal in order to prevent aggressive optimisations (which
are sound by relying on undefined behaviours of the CompCert semantics). For
instance, the most precise transfer function for a bitwise & is such that

(¬Stack,>) & (⊥,>) = (⊥,>).
For the pointer part, it returns ⊥ because a bitwise & between pointers returns
undef (it cannot be a pointer). For the integer part, it returns > because a bitwise
& between arbitrary integers is still an arbitrary integer. This formulation is
semantically sound but is not prudent because several bits of the pointer may
leak through the bitwise &.

Example 4. To illustrate the severe consequence of not tracking the leakage of
pointers, consider the red-black tree code of Fig. 6. The code is annotated by
an aggressive dataflow analysis and a prudent dataflow analysis, both being
semantically sound. When both analyses differ (e.g. Lines 5 and 7), we write
the aggressive result first. At function entry, the current stack frame has just been
created and is therefore free of aliases. As a result, the parameter r and the local
variable rpc can be abstracted by (¬Stack,>). Line 5, the aggressive analysis is
using the previous transfer function for the bitwise & and obtain (⊥,>) for the
5 See https://github.com/AbsInt/CompCert/blob/
a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707.

https://github.com/AbsInt/CompCert/blob/a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707
https://github.com/AbsInt/CompCert/blob/a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707

abstraction of p. This makes the reasoning that p can only be an integer. As the
dereference of an integer has no semantics, the aggressive analysis infers that
the rest of the code is not reachable. Line 7, this is encoded by the abstraction
(⊥,⊥) for the variable rchild. Based on this information, a live-variable analysis
and an aggressive dead-code removal could replace the whole function body by
a no-op which is obviously a miscompilation.

A formally prudent dataflow analysis. With our semantics, the aggressive
dataflow analysis of Example 4 is not sound and therefore such miscompilations
cannot occur. The reason is that our semantics computes symbolic values for
arithmetic operations (e.g. the bitwise &) that need to be captured by the con-
cretisation function. Interestingly, we eventually noticed that, to get a concreti-
sation that is both sound and robust to syntactic variations, what was needed
was a formal account of pointer tracking. It is formalised by a notion of pointer
dependence of a symbolic value sv with respect to a set S of memory blocks. We
say that sv depends at most on the set of blocks S if sv evaluates identically in
concrete memories that are identical for all the blocks in S; they may differ arbi-
trarily for other blocks. Formally, dep(sv, S) = ∀ cm ≡S cm′, JsvKcm = JsvKcm′ ,
where cm ≡S cm′ = ∀ b ∈ S, cm(b) = cm′(b). The concretisation function γsb,
where sb is the current stack block, is defined in Fig. 7 . Intuitively, Cst rep-
resents any symbolic value which always evaluates to the same value whatever
the concrete memory (i.e., it does not depends on pointers); Stack represents
any symbolic value which depends at most on the current stack block sb and
¬Stack represents any symbolic value which may depend on any block except
the current stack block sb.

Our abstract domain is still a pair of values (ap, an) ∈ aptr × anum but it
represents a (reduced) product of domains. For symbolic values, there is no syn-
tactic distinction between pointer and integer values. Hence, the concretisation
is given by an intersection of concretisations (instead of a union)

γsb(ap, an) = γsb(ap) ∩ γ(an),
where the concretisation of the numeric abstract domain is defined in terms of
the evaluation of symbolic expressions: γ(an) = {sv | ∀cm, JsvKcm ∈ γ(an)}.
With this formulation, the most precise transfer function for a bitwise & is given
by (¬Stack,>) & (⊥,>) = (¬Stack,>).

For the pointer part, it returns ¬Stack because the resulting expression may
still depends on a ¬Stack pointer. For the integer part, it returns > because
(like before) a bitwise & between arbitrary integers is still an arbitrary integer.

γsb(⊥) = {} γsb(>) = sval
γsb(Cst) = {sv | dep(sv, ∅)}
γsb(Stk o) = {sv | ∀cm, JsvKcm = cm(sb) + o}
γsb(Stack) = {sv | dep(sv, {sb})}
γsb(¬Stack) = {sv | dep(sv, block \ {sb})

Fig. 7: CompCertS concretisation for alias analysis

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/ValueDomain.html#epmatch

stack frame size

SimplLocals Cminorgen Stacking

Fig. 8: Evolution of the size of stack frames

As a result, the aggressive transfer function of CompCertS implements the
informally prudent transfer functions of CompCert. It follows that, for our
semantics, miscompilation due to pointer leaking (e.g. Example 4) is impossible.

While adapting the proof, we found and fixed several minor but subtle bugs
in CompCert related to pointer tracking, where the existing transfer functions
were unsound for our low-level memory model. Though unlikely, each of them
could potentially be responsible for a miscompilation. Note that CompCertS
generates the right code not by chance but really because our semantics forbids
program transformations that are otherwise valid for CompCert. In general, we
believe that our semantics provides the right safeguard for avoiding any miscom-
pilation of programs performing arbitrary arithmetic operations on pointers.

4 Preservation of Memory Consumption

The C standard does not impose a model of memory consumption. In particu-
lar, there is no requirement that a conforming implementation should make a
disciplined use of memory. A striking consequence is that the possibility of stack
overflow is never mentioned. From a formal point of view, CompCert mod-
els an unbounded memory and therefore, as the C standard, does not impose
any limit on stack consumption of the binary code. As a result, the existing
CompCert theorem is oblivious of memory consumption of the assembly code.
Though CompCert makes a wise usage of memory this is not explicit in the
correctness statement and can only be assessed by a close inspection of the code.
CompCertS provides a stronger formal guarantee. It ensures that if the source
code does not exhaust the memory, then neither does the assembly code. Said
otherwise, the compilation ensures that the assembly code consumes no more
memory than the source code does.

4.1 Evolution of Stack Memory Usage Throughout Compilation

Fig. 8 shows the evolution of the size of stack frames across compiler passes.
The figure distinguishes the three passes which modify the memory usage. First,
the SimplLocals pass introduces pseudo-registers for certain variables, which are
pulled out of memory. This pass reduces the memory usage of functions and
therefore satisfies our requirement that compilation reduces memory usage. The

Cminorgen pass allocates a unique stack frame containing all the remaining
variables of a function. This pass makes the memory usage grow because some
padding is inserted to ensure proper alignment. However, because our allocation
strategy considers maximally aligned blocks, this pass still preserves the memory
usage. The remaining problematic pass is the Stacking pass which builds acti-
vation records from stack frames. This pass makes explicit some low-level data
(e.g. return address or spilled locals) and is responsible for an increase of the
memory usage. In the following, we explain how to solve this discordance and
ensure nonetheless a decreasing usage of memory across the compiler passes.

4.2 The Stacking Compiler Pass

Stacking transforms Linear programs into Mach code. The Linear stack frame
consists of a single block which contains local variables. The Mach stack frame
embeds the Linear stack frame together with additional data, namely the return
address of the function, spilled pseudo-registers that could not be allocated in
machine registers, callee-save registers, and outgoing arguments to function calls.

Provisioning memory. In order to fit the Stacking pass into the decreasing
memory usage framework, our solution is to provision memory from the begin-
ning of the compilation chain. Hence, we instrument the semantics of all inter-
mediate languages, from C to Linear, with an oracle ns which specifies, for each
function f , the additional space that is needed. The semantics therefore include
special operations that reserve some space at function entry and release it at
function exit. To justify that the Mach stack frame fits into our finite memory
space, we can now leverage the fact that at the Linear level, there was enough
space for the Linear stack frame plus ns(f) additional bytes. Provided that the
oracle ns is correct, this entails that the Mach stack frame fits in memory.

It may be possible to derive an over-approximation of the needed stackspace
for each function from a static analysis. However, the estimate would probably
be very rough as, for instance, it seems unlikely that the impact of register allo-
cation could be modelled accurately. Instead, as the exact amount of additional
memory space is known during the Stacking pass, we construct the oracle ns as
a byproduct of the compilation. In other words, the compiler returns not only
an assembly program but also a function that associates with each function the
quantity of additional stack space required. Note that the construction is not
circular since the oracle is only needed for the correctness proof of the compiler
and not by the compiler itself.

CompCertS’ final theorem takes the form of Theorem 4.

Theorem 4. Suppose that (tp,ns) is the result of the successful compilation
of the program p. If tp has the behaviour bh′, then there exists a behaviour bh
such that bh is a behaviour of p with oracle ns and bh′ improves on the behaviour
bh.

bh′ ∈ ASem(tp) ⇒ ∃bh.bh ∈ CSem(p,ns) ∧ bh ⊆ bh′.

http://www.cs.yale.edu/homes/wilke-pierre/itp17/doc/html/Compiler.html#transf_c_program_correct

The only difference with CompCert is that the C semantics is instrumented by
the oracle ns computed by the compiler. Though not completely explicit, Theo-
rem 4 ensures that the absence of memory overflows is preserved by compilation.
The fundamental reason is that the failure to allocate memory results in an ob-
servable going wrong behaviour. On the contrary, if the source code does not
have a going wrong behaviour, neither does the assembly. It follows that if the C
source succeeds at allocating memory, so does the assembly. Hence, CompCertS
ensures that the absence of memory overflows is preserved by compilation.

Recycling memory. Because our semantics are now parameterised by a bound
on the memory usage of functions, this bound should be as low as possible so
that as many programs as possible can be given a defined semantics.

In order to give a smaller bound, we notice that the SimplLocals pass forgets
some blocks and therefore throws away some memory space. We can reuse this
freed space and therefore have a weaker requirement on the source semantics.

Example 5. Consider a function with long-integer local variables x and y. During
SimplLocals, x is transformed into a temporary while y is kept and allocated on
the stack. During Stacking, say 20 additional bytes are needed to build the Mach
activation record from the Linear stack frame. Then, we must reserve those 20
bytes from the beginning, i.e. from the C semantics. However, we can recycle
the space from the local variable x, therefore saving 8 bytes and we only require
12 bytes at the C level, therefore making it easier to have a C semantics.

5 Related Work

Formal semantics for C. The first formal realistic semantics of C is due to
Norrish [14]. More recent works [7,10,9] aim at providing a formal account of
the subtleties of the C standard. Hathhorn et al. [7] present an executable C
semantics within the K framework which precisely characterise the undefined
behaviours of C. Krebbers [10,9] gives a formal account of sequence points and
non-aliasing. These notions are probably the most intricate of the ISO C stan-
dard. Memarian et al. [13] realise a survey among C experts, in which they
aim at capturing the de facto semantics of C. They consider problems such as
uninitialised values and pointer arithmetic.

Our work builds upon the CompCert C compiler [12]. The semantics and the
memory model used in the compiler are close to ISO C. Our previous works [3,4]
show how to extend the support for pointer arithmetic and adapt most of the
front-end of CompCert to this extended semantics.

CompCert and memory consumption. Carbonneaux et al. [6] propose a logic
for reasoning, at source level, on the resource consumption of target programs
compiled by CompCert. They instrument the event traces to include resource
consumption events that are preserved by compilation, and use the compiler
itself to determine the actual size of stack frames. We borrow from them the

idea of using a compiler-generated oracle. Their approach to finite memory is
more lightweight than ours. However, our ambition to reason about symbolic
values in CompCert requires more intrusive changes.

CompCertTSO [16] is a version of CompCert implementing a TSO relaxed
memory model. It also models a finite memory where pointers are pairs of inte-
gers. Their soundness theorem is oblivious of out-of-memory errors. They remark
that they could exploit memory bounds computed by the compiler, but do not
implement it. In terms of expressiveness, their semantics and ours seem to be
incomparable. For instance, CompCertTSO gives a defined semantics to the com-
parison of arbitrary pointers, we do not. Yet, the example of Section 2.3 is not
handled by the formal semantics of CompCertTSO.

Pointers as integers. Kang et al. [8] propose a hybrid memory model where an
abstract pointer is mapped to a concrete address at pointer-integer cast time.
Their semantics may get stuck at cast-time if there is not enough memory avail-
able. For our semantics, a cast is a no-op and our semantics may get stuck at
allocation time. They study aggressive program optimisations but do not pre-
serve memory consumption. In CompCertS, we consider simpler optimisations
but implemented in a working compiler for a real language. Moreover, we ensure
that the memory consumption is preserved by compilation.

6 Conclusion

We present CompCertS, an extension of the CompCert compiler that is based
on a more defined semantics and provides additional guarantees about the com-
piled code. Programs performing low-level bitwise operations on pointers are now
covered by the semantics preservation theorem, and can thus be compiled safely.
CompCertS also guarantees that the compiled program does not require more
memory than the source program. This is done by instrumenting the semantics
with an oracle providing, for each function, the size of the stack frame.

CompCertS compiles down to assembly; compared to CompCert, we adap-
ted all the 4 passes of the front-end and 12 out of 14 passes of the backend. This
whole work amounts to more than 210k lines of Coq code, which is 60k more
than the original CompCert 2.4 we started with. CompCertS does not fea-
ture the two following optimization passes. First, the inlining optimisation makes
functions use potentially more stack space after the transformation than before.
This disagrees with our decreasing memory size policy, but we should be able to
provision memory in a similar way as we did for the Stacking pass, as described
in Section 4.2. Second, the tail call recognition transforms regular function calls
into tail calls when appropriate. Its proof cannot be adapted in a straightforward
way because of the additional stack space we introduced for the Stacking pass:
the releases of those blocks do not happen at the same place before and after
the transformation. We need to investigate further the proof of this optimisation
and come up with a more complex invariant on memory states.

As future work, we shall investigate how security-related program transfor-
mations would benefit from the increased expressiveness of CompCertS. Kroll

et al. [11] implement software isolation within CompCert. However, the trans-
formation they define depends on a pointer masking operation which has no
CompCert semantics and is therefore axiomatised. In CompCertS, pointer
masking is defined and the isolated program could benefit from all the existing
optimisations. Recently, Blazy and Trieu [5] pioneered the integration of an ob-
fuscation pass within CompCert. Our semantics paves the way for aggressive
obfuscations, which cannot be proved sound for pointers with CompCert.

Lastly, currently every function stores its stack frame in a distinct block, even
in assembly. An ultimate compiler pass that merges blocks into a concrete stack
would be possible with our finite memory and would bring even more confidence
in CompCertS.

References

1. Companion website. http://www.cs.yale.edu/homes/wilke-pierre/itp17/.
2. R. Bedin Franca, S. Blazy, D. Favre-Felix, X. Leroy, M. Pantel, and J. Souyris.

Formally verified optimizing compilation in ACG-based flight control software. In
ERTS 2012: Embedded Real Time Software and Systems, 2012.

3. F. Besson, S. Blazy, and P. Wilke. A precise and abstract memory model for C
using symbolic values. In APLAS, volume 8858 of LNCS, pages 449–468, 2014.

4. F. Besson, S. Blazy, and P. Wilke. A concrete memory model for CompCert. In
ITP’15, volume 9236 of LNCS, pages 67–83. Springer, 2015.

5. S. Blazy and A. Trieu. Formal verification of control-flow graph flattening. In
CPP’16, pages 176–187. ACM, 2016.

6. Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end veri-
fication of stack-space bounds for C programs. In PLDI ’14. ACM, 2014.

7. C. Hathhorn, C. Ellison, and G. Rosu. Defining the undefinedness of C. In PLDI’15,
pages 336–345. ACM, 2015.

8. J. Kang, C. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and V. Vafeiadis. A
formal C memory model supporting integer-pointer casts. In PLDI’15, 2015.

9. R. Krebbers. Aliasing restrictions of C11 formalized in Coq. In CPP, volume 8307
of LNCS. Springer, 2013.

10. R. Krebbers. An operational and axiomatic semantics for non-determinism and
sequence points in C. In POPL. ACM, 2014.

11. J. A. Kroll, G. Stewart, and A. W. Appel. Portable software fault isolation. In
CFS 2014, pages 18–32. IEEE, 2014.

12. X. Leroy. Formal verification of a realistic compiler. C. ACM, 52(7):107–115, 2009.
13. K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. Watson,

and P. Sewell. Into the depths of C: elaborating the de facto standards. In PLDI’16.
14. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.
15. V. Robert and X. Leroy. A formally-verified alias analysis. In CPP 2012, volume

7679 of LNCS, pages 11–26. Springer, 2012.
16. J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell.

CompCertTSO: A verified compiler for relaxed-memory concurrency. J. ACM,
60(3):22:1–22:50, June 2013.

http://www.cs.yale.edu/homes/wilke-pierre/itp17/

	CompCertS: A Memory-Aware Verified C Compiler using Pointer as Integer Semantics
	Introduction
	Background on CompCert
	Architecture of the CompCert Compiler
	The Memory Model of CompCert
	A Symbolic Memory Model for CompCert
	Memory Injections

	Proof Challenges for Pointers as Integers
	Proving the Correctness of cSimplLocals
	Optimisations

	Preservation of Memory Consumption
	Evolution of Stack Memory Usage Throughout Compilation
	The cStacking Compiler Pass

	Related Work
	Conclusion

