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1

Solving Linear Equations via the Conjugate
Gradient Method

We discuss the problem of solving a system of linear equations. We first present the
Conjugate Gradient method which works when the corresponding matrix is positive
definite. We then give a simple proof of the rate of convergence of this method by
using low-degree polynomial approximations for xs.1

Given a matrix A ∈ Rn×n and a vector v ∈ Rn, our goal is to find a vector

x ∈ Rn such that Ax = v. The exact solution x?
def
= A−1v can be computed by

Gaussian elimination, but the fastest known implementation requires the same time
as matrix multiplication (currently O(n2.737)). For many applications, the number
of non-zero entries in A (denoted by m), or its sparsity, is much smaller than n2

and, ideally, we would like linear solvers which run in time Õ(m) 2, roughly the
time it takes to multiply a vector with A. While we are far from this goal for
general matrices, iterative methods, based on techniques such as gradient descent or
the Conjugate Gradient method reduce the problem of solving a system of linear
equations to the computation of a small number of matrix-vector products with the
matrix A when A is symmetric and positive definite (PD). These methods often
produce only approximate solutions. However, these approximate solutions suffice
for most applications. While the running time of the gradient descent-based method
varies linearly with the condition number of A, that of the Conjugate Gradient

1 This is almost identical to Chapter 9 from Sachdeva and Vishnoi [SV14].
2 The Õ notation hides polynomial factors in logn.
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2 Solving Equations via the Conjugate Gradient Method

method depends on the square-root of the condition number; the quadratic saving
occurring precisely because there exist

√
s- degree polynomials approximating xs.

The guarantees of the Conjugate Gradient method are summarized in the following
theorem:

Theorem 1.1. Given an n× n symmetric matrix A � 0, and a vector v ∈ Rn, the
Conjugate Gradient method can find a vector x such that ‖x−A−1v‖A ≤ δ‖A−1v‖A
in time O((tA+n) ·

√
κ(A) log 1/δ), where tA is the time required to multiply A with

a given vector, and κ(A) is the condition number of A.

1.1 A Gradient Descent Based Linear Solver

The gradient descent method is a general method to solve convex programs; here
we only focus on its application to linear systems. The PD assumption on A allows
us to formulate the problem of solving Ax = v as a convex programming problem:
For the function

fA(x)
def
= ‖x− x?‖2A = (x− x?)>A(x− x?) = x>Ax− 2x>v + x?>Ax?,

find the vector x that minimizes fA(x). Since A is symmetric and PD, this is a
convex function, and has a unique minimizer x = x?.

When minimizing fA, each iteration of the gradient descent method is as follows:
Start from the current estimate of x?, say xt, and move along the direction of
maximum rate of decrease of the function fA, i.e., against its gradient, to the point
that minimizes the function along this line. We can explicitly compute the gradient
of fA to be ∇fA(x) = 2A(x− x?) = 2(Ax− v). Thus, we have

xt+1 = xt − αt∇fA(xt) = xt − 2αt(Axt − v)

for some αt. Define the residual rt
def
= v −Axt. Thus, we have

fA(xt+1) = fA(xt + 2αtrt) = (xt − x? + 2αtrt)
>A(xt − x? + 2αtrt)

= (xt − x?)>A(xt − x?) + 4αt(xt − x?)>Art + 4α2
t r
>
t Art.

= (xt − x?)>A(xt − x?)− 4αtr
>
t rt + 4α2

t r
>
t Art

is a quadratic function in αt. We can analytically compute the αt that minimizes fA

and find that it is 1
2
· r
>
t rt

r>t Art
. Substituting this value of αt, and using x?−xt = A−1rt,

we obtain

‖xt+1 − x?‖2A = ‖xt − x?‖2A −
(r>t rt)

2

r>t Art
= ‖xt − x?‖2A

(
1− r>t rt

r>t Art
· r>t rt
r>t A

−1rt

)
.

Now we relate the rate of convergence to the optimal solution to the condition
number of A. Towards this, note that for any z, we have

z>Az ≤ λ1z
>z and z>A−1z ≤ λ−1

n z>z,
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where λ1 and λn are the largest and the smallest eigenvalues of A respectively. Thus,

‖xt+1 − x?‖2A ≤ (1− κ−1)‖xt − x?‖2A,

where κ
def
= κ(A) = λ1/λn is the condition number of A. Hence, assuming we start

with x0 = 0, we can find an xt such that ‖xt − x?‖A ≤ δ‖x?‖A in approximately
κ log 1/δ iterations, with the cost of each iteration dominated by O(1) multiplications
of the matrix A with a given vector (and O(1) dot product computations). Thus,
this gradient descent-based method allows us to compute a δ approximate solution
to x? in time O((tA + n)κ log 1/δ).

1.2 The Conjugate Gradient Method

Observe that at any step t of the gradient descent method, we have xt+1 ∈
Span{xt, Axt, v}. Hence, for x0 = 0, it follows by induction that for any positive
integer k,

xk ∈ Span{v,Av, . . . , Akv}.

The running time of the gradient descent-based method is dominated by the time
required to compute a basis for this subspace. However, this vector xk may not be
a vector from this subspace that minimizes fA. On the other hand, the essence of
the Conjugate Gradient method is that it finds the vector in this subspace that
minimizes fA, in essentially the same amount of time required by k iterations of the
gradient descent-based method. We must address two important questions about the
Conjugate Gradient method: (1) Can the best vector be computed efficiently? and
(2) What is the approximation guarantee achieved after k iterations? We show that
the best vector can be found efficiently, and prove, using a low-degree polynomial
approximations to xk, that the Conjugate Gradient method achieves a quadratic
improvement over the gradient descent-based method in terms of its dependence on
the condition number of A.

Finding the best vector efficiently. Let {v0, . . . , vk} be a basis for K def
=

Span{v,Av, . . . , Akv} (called the Krylov subspace of order k). Hence, any vector in
this subspace can be written as

∑k
i=0 αivi. Our objective then becomes

‖x? −
∑
i

αivi‖2A = (
∑
i

αivi)
>A(

∑
i

αivi)− 2(
∑
i

αivi)
>v + ‖x?‖2A .

Solving this optimization problem for αi requires matrix inversion, the very problem
we set out to mitigate. The crucial observation is that if the vis are A-orthogonal,
i.e., v>i Avj = 0 for i 6= j, then all the cross-terms disappear. Thus,

‖x? −
∑
i

αivi‖2A =
∑
i

(α2
i v
>
i Avi − 2αiv

>
i v) + ‖x?‖2A ,

and, as in the gradient descent-based method, we can analytically compute the set

of values αi that minimize the objective to be given by αi =
v>i v

v>i Avi
.
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Hence, if we can construct an A-orthogonal basis {v0, . . . , vk} for K efficiently,
we do at least as well as the gradient descent-based method. If we start with an
arbitrary set of vectors and try to A-orthogonalize them via the Gram-Schmidt
process (with inner products with respect to A), we need to compute k2 inner
products and, hence, for large k, it is not more efficient than the gradient descent-
based method. An efficient construction of such a basis is one of the key ideas here.
We proceed iteratively, starting with v0 = v. At the ith iteration, we compute Avi−1

and A-orthogonalize it with respect to v0, . . . , vi−1, to obtain vi. It is trivial to see
that the vectors v0, . . . , vk are A-orthogonal. Moreover, it is not difficult to see that
for every i, we have

Span{v0, . . . , vi} = Span{v,Av, . . . , Aiv}.

Now, since Avj ∈ Span{v0, . . . , vj+1} for every j, and A is symmetric, A-
orthonormality of the vectors implies v>i A(Avj) = v>j A(Avi) = 0 for all j such
that j + 1 < i. This implies that we need to A-orthogonalize Avi only to vectors
vi and vi−1. Hence, the time required for constructing this basis is dominated by
O(k) multiplications of the matrix A with a given vector, and O(k) dot-product
computations. Hence, we can find the best vector in the Krylov subspace efficiently
enough.

Approximation guarantee. We now analyze the approximation guarantee
achieved by this vector. Note that the Krylov subspace K = Span{v,Av, . . . , Akv}
consists of exactly those vectors which can be expressed as

∑k
i=0 βiA

iv = p(A)v,
where p is a degree-k polynomial defined by the coefficients βi. Let Σk denote the set
of all degree-k polynomials. Since the output vector xk is the vector in the subspace
that achieves the best possible error guarantee, we have ‖xk − x?‖2A

= inf
x∈K
‖x? − x‖2A = inf

p∈Σk

‖x? − p(A)v‖2A ≤ ‖x?‖2A · inf
p∈Σk

‖I − p(A)A‖2.

Observe that the last expression can be written as

‖x?‖2A · inf
q∈Σk+1,q(0)=1

‖q(A)‖2,

where the minimization is now over degree-(k+ 1) polynomials q that evaluate to 1
at 0. Since A is symmetric and, hence, diagonalizable, we know that

‖q(A)‖2 = max
i
|q(λi)|2 ≤ sup

λ∈[λn,λ1]

|q(λ)|2, (1.1)

where 0 < λn ≤ · · · ≤ λ1 denote the eigenvalues of the matrix A. Hence, in order to
prove that an error guarantee of ‖xk − x?‖A ≤ δ‖x?‖A is achieved after k rounds,
it suffices to show that there exists a polynomial of degree k + 1 that takes value 1
at 0, and whose magnitude is less than δ on the interval [λn, λ1].

As a first attempt, we consider the degree-s polynomial

q0(x)
def
=
(

1− 2x
(λ1+λn)

)s
.
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The maximum value attained by q0 over the interval [λn, λ1] is ((κ−1)/(κ+1))s . Hence,

d0
def
= dκ log 1/δ e suffices for this value to be less than δ. Or equivalently, approxi-

mately κ log 1/δ rounds suffice for error guarantee ‖x − x?‖A ≤ δ‖x?‖A, recovering
the guarantee provided by the gradient descent-based method.

However, for a better guarantee, we can apply the polynomial approximation to
xd0 . The proof is simple and appears in Chapter 3 of Sachdeva and Vishnoi [SV14].

Theorem 1.2. For any positive integers s and d, there is a degree-d polynomial
ps,d such that

sup
x∈[−1,1]

|ps,d(x)− xs| ≤ 2e−
d2/2s.

Hence, for any δ > 0, and d ≥
⌈√

2s log (2/δ)
⌉
, we have supx∈[−1,1] |ps,d(x)−xs| ≤ δ.

Let z
def
= 1 − 2x/(λ1+λn). Hence, q0(x) = zs. As x ranges over [0, λn + λ1], the

variable z varies over [−1, 1]. Theorem 1.2 implies that for d
def
=
⌈√

2d0 log 2/δ
⌉
,

the polynomial pd0,d(z) approximates the polynomial zd0 up to an error of δ over

[−1, 1]. Hence, the polynomial q1(x)
def
= pd0,d (z) approximates q0(x) up to δ for all

x ∈ [0, λ1 +λn]. Combining this with the observations from the previous paragraph,
q1(x) takes value at most 2δ on the interval [λn, λ1], and at least 1− δ at 0. Thus,
the polynomial q1(x)/q1(0) is a polynomial of degree d = O(

√
κ log 1/δ) that takes

value 1 at 0, and at most 2δ/(1−δ) = O(δ) on the interval [λn, λ1]. Or equivalently,
O(
√
κ log 1/δ) rounds suffice for an error guarantee ‖x − x?‖A ≤ O(δ)‖x?‖A, which

gives a quadratic improvement over the guarantee provided by the gradient descent-
based method. This completes the proof of Theorem 1.1.

1.3 Matrices with Clustered Eigenvalues

As another corollary of the characterization of (1.1) we show that the rate of con-
vergence of the Conjugate Gradient method is better if the eigenvalues of A are
clustered. This partly explains why it is attractive in practice; it is used in the next
lecture to construct fast Laplacian solvers.

Corollary 1.3. For a matrix A, suppose all eigenvalues are contained in a range
[l, u] and the rest are more than u but there are at most c of them. Then, after
t ≥ c+O(

√
u/l log 1/ε) iterations,

‖xt − x?‖A ≤ ε‖x?‖A.

Proof. Let q(x)
def
= ql,u,j(x) · Πc

i=1 (1− x/λi) where λ1, . . . , λc are the c eigenvalues
more than u, and ql,u,j is the degree-j polynomial for the interval [l, u] as described
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in the previous section. Since the value of q(λi) = 0 for all i = 1, . . . , c, we only
need to consider the maximum value of |q(x)|2 in the range [l, u]. By the properties
of ql,u,j described above, if we pick j = Θ(

√
u/l log 1/ε), for all x ∈ [l, u], |q(x)|2 ≤

ε. Therefore, the Conjugate Gradient method returns an ε-approximation in c +
O(
√
u/l log 1/ε) steps; note that this could be much better than

√
κ(A) since no

restriction is put on the c eigenvalues.
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Preconditioning for Laplacian Systems

We introduce the notion of preconditioning: Instead of solving Ax = b, here one
tries to solve PAx = Pb for a matrix P such that κ(PA) � κ(A) where it is not
much slower to compute Pv than A+v, thus speeding up iterative methods such as
the conjugate gradient method. As an application, preconditioners are constructed
for Laplacian systems from low-stretch spanning trees that result in a Õ(m

4/3) time
Laplacian solver.1

2.1 Preconditioning

We saw in the previous lecture that using the Conjugate Gradient method for a
symmetric matrix A � 0, one can solve a system of equations Ax = b in time
O(tA ·

√
κ(A) log 1/ε) up to an error of ε. Let us focus on the two quantities in

this running time bound: tA which is the time it takes to multiply a vector with
A, and κ(A), the condition number of A. Note that the algorithm requires only
restricted access to A: Given a vector v, output Av. Thus, one strategy to reduce
this running time is to find a matrix P s.t. κ(PA) � κ(A) and tP ∼ tA. Indeed, if
we had access to such a matrix, we could solve the equivalent system of equations
PAx = Pb.2 Such a matrix P is called a preconditioner for A. One choice for P is
A+. This reduces the condition number to 1 but reduces the problem of computing
A+b to itself, rendering it useless. Surprisingly, as we will see in this chapter, for a
Laplacian system one can often find preconditioners by using the graph structure,

1 This is almost identical to Chapter 17 from Vishnoi [Vis13].
2 One might worry that the matrix PA may not be symmetric; one normally gets around

this by preconditioning by P 1/2AP 1/2. This requires P � 0.

7



8 Preconditioning for Laplacian Systems

thereby reducing the running time significantly. The following theorems are the main
result of this chapter.

Theorem 2.1. For any undirected, unweighted graph G with m edges, a vector b
with 〈b, 1〉 = 0, and ε > 0, one can find an x such that ‖x − L+

Gb‖LG ≤ ε‖L+
Gb‖LG

in Õ(m
4/3 log 1/ε) time.

There are two crucial ingredients to the proof. The first is the following simple
property of the Conjugate Gradient method.

Lemma 2.2. Suppose A is a symmetric positive definite matrix with minimum
eigenvalue λ1 ≥ 1 and trace Tr(A) ≤ τ . Then the Conjugate Gradient method
converges to an ε-approximation in O(τ

1/3 log 1/ε) iterations.

Proof. Let Λ be the set of eigenvalues larger than τ/γ, where γ is a parameter to
be set later. Note that |Λ| ≤ γ. Therefore, apart from these γ eigenvalues, all the
rest lie in the range [1, τ/γ]. From Corollary 1.3, we get that the Conjugate Gradient

method finds an ε-approximation in γ + O(
√
τ/γ log 1/ε) iterations. Choosing γ

def
=

τ
1/3 completes the proof of the lemma.

The second ingredient is a construction of a combinatorial preconditioner for LG.
The choice of preconditioner is L+

T where T is a spanning tree of G. It is an easy
exercise to see that this preconditioner satisfies the property that L+

T v can be com-
puted in O(n) time. Thus, the thing we need to worry about is how to construct a
spanning tree T of G such that κ(L+

TLG) is as small as possible.

2.2 Combinatorial Preconditioning via Trees

LetG be an unweighted graph with an arbitrary orientation fixed for the edges giving
rise to the vectors be which are the rows of the corresponding incidence matrix. We
start by trying to understand why, for a spanning tree T of a graph G, L+

T might
be a natural candidate for preconditioning LG. Note that

LT =
∑
e∈T

beb
>
e �

∑
e∈G

beb
>
e = LG.

Thus, I ≺ L+
TLG, which implies that λ1(L+

TLG) ≥ 1. Thus, to bound the condition
number of κ(L+

TLG), it suffices to bound λn(L+
TLG). Unfortunately, there is no easy

way to bound this. Since L+
TLG is PSD, an upper bound on its largest eigenvalue

is its trace, Tr(L+
TLG). If this upper bound is τ, Lemma 2.2 would imply that the

conjugate gradient method applied to L+
TLG takes time approximately τ

1/3t
L+

T
LG
∼

O(τ
1/3(m+n)). Thus, even though it sounds wasteful to bound the trace by τ rather

than by the largest eigenvalue by τ, Lemma 2.2 allows us to improve the dependency
on τ from τ

1/2 to τ
1/3. We proceed to bound the trace of L+

TLG:
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Tr(L+
TLG) = Tr

(
L+
T

∑
e∈G

beb
>
e

)
=
∑
e

b>e L
+
T be,

where we use Tr(A + B) = Tr(A) + Tr(B) and Tr(ABC) = Tr(CAB). Note that
b>e L

+
T be is a scalar and is precisely the effective resistance across the endpoints of

e in the tree T where each edge of G has a unit resistance. The effective resistance
across two nodes i, j in a tree is the sum of effective resistances along the unique
path P (i, j) on the tree. Thus, we get

Tr(L+
TLG) =

∑
e∈G

|P (e)|.

A trivial upper bound on Tr(L+
TLG), thus, is nm. This can also be shown to hold

when G is weighted. This leads us to the following definition.

Definition 2.3. For an unweighted graph G, the stretch of a spanning T is defined

to be strT (G)
def
= Tr(L+

TLG).

Thus, to obtain the best possible bound on the number of iterations of the Conjugate
Gradient method, we would like a spanning tree T of G which minimizes the average
length of the path an edge of G has to travel in T. The time it takes to construct T
is also important.

2.3 An Õ(m4/3)-Time Laplacian Solver

In this section we complete the proof of Theorem 2.1. We start by stating the
following non-trivial structural result about the existence and construction of low-
stretch spanning trees whose proof is graph-theoretic and outside the scope of this
monograph. The theorem applies to weighted graphs as well.

Theorem 2.4. For any undirected graph G, a spanning tree T can be constructed
in Õ(m logn + n logn log logn) time such that strT (G) = Õ(m logn). Here Õ(·)
hides log logn factors.

This immediately allows us to conclude the proof of Theorem 2.1 using Lemma
2.2 and the discussion in the previous section. The only thing that remains is to
address the issue that the matrix L+

TLG is symmetric. The following trick is used
to circumvent this difficulty. One can compute the Cholesky decomposition of LT
in O(n) time. In particular, let LT = EE>, where E is a lower triangular matrix
with at most O(n) non-zero entries. The idea is to look at the system of equations

E+LGE
+>y = E+b instead of LGx = b. If we can solve for y then we can find

x = E+>y, which is computationally fast since E is lower triangular with at most
O(n) non-zero entries. Also, for the same reason, E+b can be computed quickly.
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Now we are in good shape. Let A
def
= E+LGE

+> and b′
def
= E+b; note that A is

symmetric. Also, the eigenvalues of A are the same as those of E>
+
AE> = L+

TLG.
Thus, the minimum eigenvalue of A is 1 and the trace is Õ(m) by Theorem 2.4.
Thus, using the conjugate gradient method, we find an ε-approximate solution to
Ay = b′ in Õ(m

1/3) iterations.
In each iteration, we do O(1) matrix-vector multiplications. Note that for any

vector v, Av can be computed in O(n+m) operations since E+v takes O(n) opera-
tions (since E is a lower triangular matrix with at most O(n) non-zero entries) and
LGv

′ takes O(m) operations (since LG has at most O(m) non-zero entries).



3

Newton’s Method and the Interior Point Method

In this lecture we continue our journey towards faster (and better) algorithms for
convex programs. The algorithms introduced till now assume access only to an
oracle for the value of the convex function and its gradient at a specified point. In
this lecture we assume that we are also given a second order access to f : namely,
given vectors x and y, we could obtain (∇2f(x))−1y. The resulting method would be
Newton’s method for solving unconstrained programming and will have this property
that if one starts close enough to the optimal solution the convergence would be
in log log 1/ε iterations! Finally, we present the application of Newton’s method to
solving constrained convex programs. This is achieved by moving from constrained
to unconstrained optimization via a barrier function. The resulting methods are
broadly termed as interior point methods. We analyze one such method, referred
to as the primal path-following interior point method, for linear programs. We end
this lecture by a discussion on self-concordant barrier functions which allow us to
go beyond linear programs to more general convex programs.1

3.1 Newton’s Method and its Quadratic Convergence

Our starting point is the versatile Newton’s method which we first explain in the
simplest setting of finding a root for a univariate polynomial.

11



12 Newton’s Method and the Interior Point Method

g(x)

r x1 x0

Fig. 3.1 One step of Newton’s Method

3.1.1 Newton-Raphson method

In numerical analysis, Newton’s method (also known as the Newton-Raphson
method), named after Isaac Newton and Joseph Raphson, is a method for finding
successively better approximations to the roots (or zeroes) of a real-valued function.
Suppose we are given a function g : R 7→ R and we want to find its root (or one of
its roots). Assume we are given a point x0 which is likely to be close to a zero of g.
We consider the point (x0, g(x0)) and draw a line through it which is tangent to the
graph of g. Let x1 be the intersection of the line with the x-axis (see Figure 3.1.1).
Then it is reasonable (at least if one were to believe the figure above) to suppose
that by moving from x0 to x1 we have made progress in reaching a zero of g. First
note that:

x1
def
= x0 −

g(x0)

g′(x0)

From x1, by the same method we obtain x2, then x3 etc. Hence, the general formula
is:

xk+1
def
= xk −

g(xk)

g′(xk)
for all k ≥ 0. (3.1)

Of course we require differentiability of g, in fact we will assume even more – that
g is twice continuously differentiable. Let us now analyze how fast the distance to
the root decreases with k.

Let r, be the root of g, that is g(r) = 0. Expand g into Taylor series at the point

1 This lecture appears as Lecture 3 in Vishnoi [Vis14].
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xk and, use the Mean Value Theorem, to obtain the following:

g(r) = g(xk) + (r − xk)g′(xk) +
1

2
(r − xk)2g′′(θ)

for some θ in the interval [r, xk]. From (3.1) we know that

g(xk) = g′(xk)(xk − xk+1).

Recall also that g(r) = 0. Hence, we get:

0 = g′(xk)(xk − xk+1) + (r − xk)g′(xk) +
1

2
(r − xk)2g′′(θ)

which implies that

g′(xk)(r − xk+1) =
1

2
(r − xk)2g′′(θ).

This gives us the relation between the new distance from the root in terms of the
old distance from it:

|r − xk+1| =
∣∣∣∣ g′′(θ)2g′(xk)

∣∣∣∣ |r − xk|2.
This can be summarized in the following theorem:

Theorem 3.1. Suppose g : R 7→ R is a C2 function, 2 r ∈ R is a root of g, x0 ∈ R
is a starting point and x1 = x0 − g(x0)

g′(x0)
, then:

|r − x1| ≤M |r − x0|2

where M = supx∈[r,x0]

∣∣∣ g′′(θ)2g′(x)

∣∣∣.
Thus, assuming that M is a small constant, say M ≤ 1 (and remains so throughout
the execution of this method) and that |x0 − r| < 1, we obtain quadratically fast
convergence of xk to r. For the error |xk−r| to became less then ε one needs to take
k = log log 1/ε. As one can imagine, for this reason Newton’s Method is very efficient
and powerful. In practice, it gives very good results even when no reasonable bounds
on M or |x0 − r| are available.

3.1.2 Newton’s Method for Convex Optimization

How could the benign looking Newton-Raphson method be useful to solve convex
programs? The key lies in the observation from the first lecture that the task of mini-
mization of a differentiable convex function in the unconstrained setting is equivalent
to finding a root of its derivative. In this section we abstract out the method from
the previous section and present Newton’s method for convex programming.

Recall that the problem is to find

x?
def
= arg inf

x∈Rn
f(x).

2 The function is twice differentiable and the second derivative is continuous.
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where f is a convex (smooth enough) function. The gradient ∇f of f is a function
Rn 7→ Rn and its derivative ∇2f maps Rn to n× n symmetric matrices. Hence, the
right analog of the update formula (3.1) to our setting can be immediately seen to
be:

xk+1
def
= xk − (∇2f(xk))−1∇f(xk) for all k ≥ 0. (3.2)

For notational convenience we define the Newton step at point x to be

n(x)
def
= −(∇2f(x))−1∇f(x),

then (3.2) gets abbreviated to xk+1 = xk+n(xk). One may convince themselves that
(3.2) is meaningful by applying it to f being a strictly convex quadratic function (i.e.
f(x) = x>Mx for M positive definite). Then, no matter which point we start, after
one iteration we land in the unique minimizer. This phenomenon can be explained
as follows: suppose f̃ is the second order approximation of f at point x,

f̃(y) = f(x) + (y − x)>∇f(x) +
1

2
(y − x)>∇2f(x)(y − x)

If f is sctrictly convex then its Hessian is positive definite, hence the minimizer of
f̃(y) is

y? = x− (∇2f(x))−1∇f(x) = x+ n(x)

For this reason Newton’s method is called a second-order method, because it takes
advantage of the second order approximation of a function to make a step towards
the minimum. All the algorithms we looked at in the previous lecture were first-order
methods. They used only the gradient (first order approximation) to perform steps.
However, computationally our task has increased as now we would need a second
order oracle to the function: given x and y, we would need to solve the system of
equations ∇2f(x)y = ∇f(x).

The next question is if, and, under what conditions xk converges to the mini-
mizer of f . It turns out that it is possible to obtain a similar quadratic convergence
guarantee assuming that x0 is sufficiently close to the minimizer x?. We can prove
the following theorem whose hypothesis and implications should be compared to
Theorem 3.1.

Theorem 3.2. Let f : Rn 7→ R be a C2 function and x? be its minimizer. Denote
the gradient ∇2f(x) by H(x) and assume that the following hold:

• There is some constant h > 0 and a ball B(x?, r) around x? such that,
whenever x ∈ B(x?, r), ‖H(x)−1‖ ≤ 1

h
.

• There is some constant L > 0 and a ball B(x?, r) around x? such that,
whenever x, y ∈ B(x?, r), ‖H(x)−H(y)‖ ≤ L‖x− y‖.

If x0 is a starting point, sufficiently close to x? and x1 = x0 + n(x) then:

‖x1 − x?‖ ≤M‖x0 − x?‖2

for some constant M . For example M = L
2h

will do.
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Thus, ifM ≤ 1, then with a starting point close enough to the optimal solution, New-
ton’s method converges quadratically fast. One can present a rough analogy of this
theorem with Theorem 3.1. There, for the method to have quadratic convergence,
|g′(x)| should be bigger in comparison to |g′′(x)| (to end up with small M). Here, the
role of g is played by the derivative f ′ of f (the gradient in the one-dimensional case).
The first condition on H(x) says basically that |f ′′(x)| is big. The second condition
may be a bit more tricky to decipher, it says that f ′′(x) is Lipschitz-continuous,
and upper-bounds the Lipschitz constant. Assuming f is thrice continuously differ-
entiable, this essentially gives an upper bound on |f ′′′(x)|. Note that this intuitive
explanation does not make any formal sense, since f ′(x), f ′′(x), f ′′′(x) are not num-
bers, but vectors, matrices and 3-tensors respectively. We only wanted to emphasize
that the spirit of Theorem 3.2 still remains the same as Theorem 3.1.

Proof. [Proof of Theorem 3.2] The basic idea of the proof is the same as in 3.1. We
need a similar tool as the Taylor expansion used in the previous chapter. To obtain
such, we consider the function φ : [0, 1] → Rn, φ(t) = ∇f(x + t(y − x)). Applying
the fundamental theorem of calculus to φ (to every coordinate separately) yields:

φ(1)− φ(0) =

∫ 1

0

∇φ(t)dt

∇f(y)−∇f(x) =

∫ 1

0

H(x+ t(y − x))(x− y)dt. (3.3)

Let x = x0 for notational convenience and write x1 − x? in a convenient form:

x1 − x? = x− x? + n(x)

= x− x? −H(x)−1∇f(x)

= x− x? +H(x)−1(∇f(x?)−∇f(x))

= x− x? +H(x)−1

∫ 1

0

H(x+ t(x? − x))(x− x?)dt

= H(x)−1

∫ 1

0

(H(x+ t(x? − x))−H(x))(x− x?)dt.

Now take norms:

‖x1 − x?‖ ≤ ‖H(x)−1‖
∫ 1

0

‖(H(x+ t(x? − x))−H(x))(x− x?)‖dt

≤ ‖H(x)−1‖‖x− x?‖
∫ 1

0

‖(H(x+ t(x? − x))−H(x))‖dt. (3.4)

We use the Lipschitz condition on H to bound the integral:∫ 1

0

‖(H(x+ t(x? − x))−H(x))‖dt ≤
∫ 1

0

L‖t(x? − x)‖dt

≤ L‖x? − x‖
∫ 1

0

tdt

=
L

2
‖x? − x‖.
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Together with (3.4) this implies:

‖x1 − x?‖ ≤
L‖H(x)−1‖

2
‖x? − x‖2 (3.5)

which completes the proof. We can take M = L‖H(x)−1‖
2

≤ L
2h

.

3.2 Constrained Convex Optimization via Barriers

In this section return to constrained convex optimization problems of the form:

inf
x∈K

f(x) (3.6)

where f is a convex, real valued function and K ⊆ Rn is a convex set. 3 In the first
lecture we discussed how gradient-descent type methods could be adapted in this
setting by projecting onto K at every step. We took an improvement step xk 7→ x′k+1

with respect to f and then we projected x′k+1 onto K to obtain xk+1. There are a few
problems with this method. One of them is that in most cases computing projections
is prohibitively hard. Furthermore, even if we ignore this issue, the projection-based
methods are not quiet efficient. To get an ε-approximation to the solution, the
number of iterations depends polynomially on ε−1 (i.e. the number of iterations is
proportional to 1/εO(1)). Unfortunately such dependence on ε is often unsatisfactory.
For example, to obtain the optimal solution for a linear program we need to take ε
of the form 2−L, where L is the size of the instance.4 Hence, to get a polynomial
time algorithm, we need the running time dependence on ε to be logO(1)(1/ε). Today
we will see an interior point algorithm which achieve such a guarantee.

3.2.1 Following the Central Path

We are going to present one very general idea for solving constrained optimization
problems. Recall that our aim is to minimize a given convex function f(x) subject to
x ∈ K. To simplify our discussion, we assume that the objective function is linear,
5 i.e. f(x) = c>x and the convex body K is bounded and full-dimensional (it has
positive volume).

Suppose we have a point x0 ∈ K and we want to perform an improvement step
maintaining the condition of being inside K. The simplest idea would be to move in
the direction −c to decrease our objective value as much as possible. Our step will
then end up on the boundary ofK. The second and further points would lie very close
to the boundary, which will force our steps to be short and thus inefficient. In case

3K is given to us either explicitly – by a collection of constraints defining it, or by a
separation oracle.

4 One should think of L as the total length of all the binary encodings of numbers in the
description of the linear program. In the linear programming setting, LO(1) can be shown
to bound the number of binary digits required to represent the coordinates of the optimal
solution.

5 Actually we are not losing on generality here. Every convex problem can be stated equiv-
alently with a linear objective function.
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of K being a polytope, such a method would be equivalent to the simplex algorithm,
which as known to have an exponential worst case running time. For this reason we
need to set some force, which would repel us from the boundary of K. More formally,
we want to move our constraints to the objective function and consider c>x+F (x),6

where F (x) can be regarded as a “fee” for violating constraints. F (x) should become
big for x close to ∂K. Of course, if we would like the methods developed in the
previous sections for unconstrained optimization to be applicable here, we would
also like f to be strongly convex. Thus, this is another route we could take to
convert a constrained minimization problem into unconstrained minimization, but
with a slightly altered objective function. To formalize this approach we introduce
the notion of a Barrier Function. Instead of giving a precise definition, we list some
properties, which we wish to hold for a barrier function F :

• F is defined in the interior of K, i.e. dom(F ) = int(K) , (3.7)

• for every point b ∈ ∂K we have: limx→b F (x) = +∞, (3.8)

• F is strictly convex. (3.9)

Suppose F is such a barrier function, let us define a perturbed objective function
fη, where η > 0 is a real parameter:

fη(x)
def
= ηc>x+ F (x) (3.10)

We may imagine that fη is defined on all of Rn but attains finite values only on
int(K). Intuitively, making η bigger and bigger reduces the influence of F (x) on the
optimal value of fη(x). Furthermore, observe that since c>x is a linear function, the
second order behavior of fη is completely determined by F , that is ∇2fη = ∇2F .
In particular, fη is strictly convex and it has a unique minimizer x?η. The set

{x?η : η ≥ 0}

can be seen to be continuous due to the Implicit Function Theorem and is referred
to as a central path starting at x?0 and approaching x? – the solution to our convex
problem 3.6. In other words:

lim
η→∞

x?η = x?.

A method which follows this general approach is called a path-following interior
point method. Now, the key question is: “how fast is this convergence?”. Needless
to say, this would depend on the choice of the barrier function and the method for
solving the unconstrained optimization problem. We answer it in the next section for
linear programs: using the logarithmic barrier function along with Newton’s method
from the previous section we can give an algorithm to solve linear programs in time
polynomial in the encoding length.

6 One seemingly perfect choice of F would be a function which is 0 on K and +∞ on the

complement of K. This reduces our problem to unconstrained minimization of c>x+F (x).
However, note that we have not gained anything by this reformulation, even worse: our
objective is not continuos anymore.
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Fig. 3.2 Example of a central path

3.3 Interior Point Method for Linear Programming

3.3.1 A Brief History of IPMs

Interior point methods (IPMs), as alluded to in the previous section, first appear
in a recognizable form in the Ph.D. thesis of Ilya Dikin in the 60s. However, there
was no analysis for the time needed for convergence. In 1984 Narendra Karmarkar
announced a polynomial-time algorithm to solve linear programs using an IPM.
At that point there was already a known polynomial time algorithm for solving
LPs, namely the Ellipsoid Algorithm from 1979. Further, the method of choice in
practice, despite known to be inefficient in the worst case, was the Simplex method.
However, in his paper, he also presented empirical results which showed that his
algorithm was consistently 50 times faster than the simplex method. This event,
which received publicity around the world throughout the popular press and media,
marks the beginning of the interior-point revolution. For a nice historical perspective
on this revolution, we refer the reader to the survey of Wright [Wri05].

Karmarkar’s algorithm needed roughly O(m log 1/ε) iterations to find a solution
(which is optimal up to an additive error of ε) to a linear program, where m is
the number of constraints. Each such iteration involved solving a linear system of
equations, which could be easily performed in polynomial time. Thanks to the loga-
rithmic dependence on the error ε it can be used to find the exact, optimal solution
to a linear program in time polynomial with respect to the encoding size of the
problem. Thus, Karmarkar’s algorithm was the first efficient algorithm with prov-
able worst case polynomial running time. Subsequently, James Renegar proposed an
interior point algorithm with reduced number of iterations: O(

√
m log(1/ε)). Around
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the same time, Nesterov and Nemirovski abstracted out the essence of interior point
methods and came up with the the notion of self-concordance, which in turn was
used to provide efficient, polynomial time algorithms for many nonlinear convex
problems such as semi-definite programs.

We begin our discussion by introducing the logarithmic barrier function and
then Newton’s Method, which is at a core of all interior-point algorithms. Then
we present Renegar’s primal path following method. We give a full analysis of this
algorithm, i.e. we prove that after Õ(

√
m log(1/ε)) it outputs a solution which is

ε-close to the optimum.

3.3.2 The Logarithmic Barrier

In this section we switch from a general discussion on constrained convex opti-
mization to a particular problem: linear programming. We will use ideas from the
previous section to obtain an efficient algorithm for solving linear programs in the
form:

min
x∈Rn

c>x

s.t. Ax ≤ b
(3.11)

where x is the vector of variables of length n, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. We
will denote the rows of A by a1, a2, . . . , am (but treat them as column vectors). We
will assume that the set of constraints Ax ≤ b defines a bounded polytope P of
nonzero volume in Rn.7

We are going to use the following barrier function which is often called the
logarithmic barrier function:

F (x)
def
= −

m∑
i=1

log(bi − a>i x)

It is easy to see that F (x) is well defined on int(P ) and tends to infinity when
approaching the boundary of P . Let us now write down formulas for the first and
second derivative of F , they will prove useful a couple of times in the analysis. To
simplify the notation, we will often write si(x) for bi − a>i x.

Fact 3.3. If x is a point in the interior of P , then:

(1) ∇F (x) =
∑m
i=1

ai
si(x)

(2) ∇2F (x) =
∑m
i=1

aia
>
i

si(x)2

7 Of course this is not always the case for general linear programs, however if the program

is feasible then we can perturb the constraints by an exponentially small ε > 0 to force
the feasible set to be full dimensional. Moreover, it will turn out soon that infeasibility is
not a serious issue.
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Using the above formulas we can investigate the convexity of F . It is clear that
∇2F (x) � 0, which implies convexity. Strong convexity of F (i.e. ∇2F (x) � 0) is
equivalent to the fact that a1, a2, . . . , an span the whole Rn, in our case this is true,
because of the assumption that P is full dimensional and bounded. Which is which
should be clear from the context.

From now on, whenever we talk about a function F we will write H(x) for its
Hessian ∇2F (x) and g(x) for the gradient ∇F (x). Note however that at some places
in the text we refer to F as a general function and sometimes we fix F to be a specific
one: the logarithmic barrier.

3.3.3 Local Norms

In this section we introduce an important concept of a local norm. It plays a cru-
cial role in understanding interior point methods. Rather than working with the
Euclidean norm, the analysis of our algorithm will be based on bounding the local
norm of the Newton step. Let A ∈ Sn be a positive definite matrix, we associate
with it the inner product 〈·, ·〉A defined as:

〈x, y〉A
def
= x>Ay

and the norm ‖ · ‖A:

‖x‖A
def
=
√
x>Ax

Note that a ball of radius 1 with respect to such a norm corresponds to an ellipsoid
in the Euclidean space. Formally, we define the ellipsoid associated with the matrix
A, centered at x0 ∈ Rn as:

Ex0(A)
def
= {x : (x− x0)>A(x− x0) ≤ 1}.

Matrices of particular interest are for us Hessians of strictly convex functions F :
Rn 7→ R (such as the logarithmic barrier). For them we usually write in short:

‖z‖x
def
= ‖z‖H(x)

whenever the function F is clear from the context. This is called a local norm at x
with respect to F . From now on, let F (x) =

∑m
i=1− log(bi−a>i x) be the logarithmic

barrier function. For the logarithmic barrier, Ex(∇2F (x)) is called the Dikin Ellipsoid
centered at x. An important property of this ellipsoid is that it is contained in P
and that the Hessian does not change much. Thus, the curvature of the central path
with respect to the local norm does not change much and, hence, it is close to a
straight line. Thus, taking a short Newton step inside this ellipsoid from the center
keeps one close to the central path.

We return to this intimate connection between the Dikin Ellipsoid and IPMs
in the appendix. We conclude this section by noting that there is another way to
motivate measuring progress in the local norm: that Newton’s method is affinely
invariant. This means that if, for a invertible linear transformation A, we do a
change of variables x = Ay, then the Newton step is just a transformation by
A: n(x) = An(y). On the other hand the Lipschitz condition on the Hessian in
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Theorem 3.2 is not affine invariant w.r.t. the Euclidean norm. However, it would be
if we redefine it as

‖H(x)−H(y)‖ ≤ L‖x− y‖x,
this remains affine invariant.

3.3.4 A Primal Path-Following IPM

We come back to the description of the path following algorithm. Recall that we
defined the central path as: {x?η : η > 0} consisting of optimal solutions to the
perturbed linear program. We want to start at x0 = x?η0 for some small η0 > 0 and
move along the path by taking discrete steps of certain length. This corresponds
essentially to increasing η in every step. So one idea for our iterative procedure
would be to produce a sequence of pairs (x0, η0), (x1, η1), . . . such that η0 < η1 < · · ·
and xk = x?ηk for every k. We should finish at the moment when we are close enough
to the optimum, that is when c>xk < c>x? + ε. Our first lemma gives a bound on
when to stop:

Lemma 3.4. For every η > 0 we have c>x?η − c>x? < m
η

.

Proof. Calculate first the derivative of fη(x):

∇fη(x) = ∇(ηc>x+ F (x)) = ηc+∇F (x) = ηc+ g(x)

The point x?η is the minimum of fη, hence ∇fη(x?η) = 0 and so:

g(x?η) = −ηc (3.12)

Using this observation we obtain that

c>x?η − c>x? = −
〈
c, x? − x?η

〉
=

1

η

〈
g(x?η), x? − x?η

〉
To complete the proof it remains to argue that

〈
g(x?η), x? − x?η

〉
< m. We will show

even more, that for every two points x, y in the interior of P , we have 〈g(x), y − x〉 <
m. This follows by a simple calculation:

〈g(x), y − x〉 =

m∑
i=1

a>i (y − x)

si(x)

=

m∑
i=1

(bi − a>i x)− (bi − a>i y)

si(x)

=

m∑
i=1

si(x)− si(y)

si(x)
= m−

m∑
i=1

si(y)

si(x)
< m

Where in the last inequality we make use of the fact that our points x, y are strictly
feasible, i.e. si(x), si(y) > 0 for all i.
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This lemma tells us that if want an ε-additive solution, we could stop our path
following procedure when

η = Ω
(m
ε

)
.

At this point one may wonder why instead of working in an iterative fashion we do
not just set η = m/ε and solve the perturbed linear problem to optimality. It turns
out that it is hard to compute x?η when some arbitrary η > 0 is given (essentially,
it is at least as hard as solving linear optimization problems). What we are able to
do is given x?η for some η > 0 calculate x?η′ for η′ a little bit larger than η. This
immediately rouses another question: then how do we find x?η0 at the very beginning
of the algorithm? We will discuss this problem in detail later, for now let us assume
that it is possible to provide some η0 > 0 and the corresponding point x0 = x?η0 .

One step of our algorithm will essentially correspond to one step of Newton’s
method. Before we give a full description of the algorithm recall that n(x) is the
Newton step at point x with respect to some underlying function f . Whenever we
write n(xk), we have the function fηk (x) = ηkc

>x+ F (x) in mind. So

n(xk) = −H(xk)−1∇fηk (xk).

We now give the algorithm.

Primal Path Following IPM for Linear Programming :

(1) Find an initial η0 and x0 with ‖n(x0)‖x0 ≤ 1
2
.

(2) At iteration k (k = 0, 1, 2, . . .):

• compute xk+1 according to the rule:

xk+1
def
= xk + n(xk)

• set ηk+1
def
= ηk

(
1 + 1

8
√
m

)
.

(3) Stop when for the first time K, ηK > m
ε

.

(4) Calculate x̂
def
= x?ηK by Newton’s method (starting at xK), output

x̂.

In this algorithm we do not ensure that xk = x?ηk at every step. This means that
as opposed to what we have said before, our points do not lie on the central path.
All we care about is that the points are close enough to the central path. By close
enough, we mean ‖n(xk)‖xk ≤ 1/2. It may not be clear why this is the right notion
of the distance from central path. We will discuss this in the Section 3.4. Let us
conclude the description of the algorithm by the following remark.

Remark 3.5. At step 4. of the Primal Path Following IPM we apply Newton’s
method to obtain a point on the central path. At this moment it is not obvious that
it will converge and, if yes, how quickly. We will see later that the point xK is in
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the quadratic convergence region of Newton’s method, so in fact we will need only a
few iterations to reach x?ηK . Instead of doing this final computation, one could also
output simply xK . It can be shown that the optimality guarantee at point xK is
O(ε), see Appendix 3.6

We summarize what we prove about the algorithm above:

Theorem 3.6. The primal path following algorithm, given a linear program with
m constraints and a precision parameter ε > 0, performs O(

√
m logm/η0·ε) iterations

and outputs a point x̂ satisfying:

c>x̂ ≤ c>x? + ε.

3.3.5 Analysis of the Algorithm

This section is devoted to the proof of Theorem 3.6. The statement does not provide
any bounds on the cost of a single iteration. It is easy to see that the only expensive
operation we perform at every iteration is computing the Newton step. This com-
putation can be viewed as solving a linear system of the form H(x)z = g(x), where
z is the vector of variables. Of course, a trivial bound would be O(n3) or O(nω), but
these may be significantly improved for specific problems. For example, computing
a Newton step for an LP max-flow formulation can be done in Õ(|E|) time.

Recall that we initialize our algorithm with some η0 > 0. Then, at every step
we increase η by a factor of (1+ 1

8
√
m

), thus after O(
√
m logm/η0·ε) we reach Ω(m/ε).

This establishes the bound on the number of iterations. It remains to prove the
correctness (the optimality guarantee).

The following lemma plays a crucial role in the proof of correctness. It asserts
that the points we produce lie close to the central path:

Lemma 3.7. For every k = 0, 1, . . . ,K it holds that ‖n(xk)‖xk ≤ 1
2
.

To prove this, we consider one iteration and show that, if started with ‖n(xk)‖xk ≤
1/2, then we will end up with ‖n(xk+1)‖xk+1 ≤ 1/2. Every iteration consists of two
steps: the Newton step w.r.t. fηk and the increase of ηk to ηk+1. We formulate
another two lemmas explaining what happens when performing those steps.

Lemma 3.8. After taking one Newton step at point x w.r.t. the function fη , the
new point x′ satisfies:

‖n(x′)‖x′ ≤ ‖n(x)‖2x.
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Lemma 3.9. For every two positive η, η′ > 0, we have:

‖H−1(x)∇fη′(x)‖x ≤
η′

η
‖H−1(x)∇fη(x)‖x +

√
m

∣∣∣∣η′η − 1

∣∣∣∣ .
It is easy to verify that the above two lemmas together imply that if ‖n(xk)‖xk ≤ 1

2
,

then

‖n(xk+1)‖xk+1 ≤
1

4
+

1

8
+ o(1) <

1

2
.

Hence, Lemma 3.7 follows by induction.
It remains to prove Lemmas 3.8 and 3.9. We start with the latter, since its proof

is a bit simpler.

Proof. [Proof of Lemma 3.9] We have

H−1(x)∇fη′(x) = H−1(x)(η′c+ g(x))

=
η′

η
H−1(x)(ηc+ g(x)) + (1− η′

η
)H−1g(x)

=
η′

η
H−1(x)∇fη(x) +

(
1− η′

η

)
H−1g(x).

After taking norms and applying triangle inequality w.r.t. ‖ · ‖x:

‖H−1(x)∇fη′(x)‖x ≤
η′

η
‖H−1(x)∇fη(x)‖x +

∣∣∣∣1− η′

η

∣∣∣∣ ‖H−1g(x)‖x.

Let us stop here for a moment and try to understand what is the significance of
the specific terms in the last expression. In our analysis of the algorithm, the term
‖H−1(x)∇fη(x)‖x is a small constant. The goal is to bound the left hand side by a
small constant as well. We should think of η′ as η(1 + δ) for some small δ > 0. In

such a setting η′

η
‖H−1(x)∇fη(x)‖x will be still a small constant, so what prevents

us from choosing a large δ is the second term (1− η′

η
)‖H−1g(x)‖x. We need to derive

an upper bound on ‖H−1g(x)‖x. We show that ‖H−1g(x)‖x ≤
√
m. Let us denote

z
def
= H−1g(x). We get:

‖z‖2x = z>g(x) =
m∑
i=1

z>ai
si(x)

≤
√
m

√√√√ m∑
i=1

(z>ai)2

si(x)2
. (3.13)

The last inequality follows from Cauchy-Schwarz. Further:

m∑
i=1

(z>ai)
2

si(x)2
= z>

(
m∑
i=1

aia
>
i

si(x)2

)
z = z>H(x)z = ‖z‖2x. (3.14)

Putting (3.13) and (3.14) together we obtain that ‖z‖2x ≤
√
m‖z‖x, so in fact ‖z‖x ≤√

m.



3.3. Interior Point Method for Linear Programming 25

Before we proceed with the proof of Lemma 3.8 let us remark that it can be seen as
an assertion that x belongs to the quadratic convergence region of Newton’s method.

Proof. [Proof of Lemma 3.8] We know that the point x′ is the minimizer of the
second order approximation of fη at point x, hence:

∇fη(x) +H(x)(x′ − x) = 0.

which implies that:

m∑
i=1

ai
si(x)

+

m∑
i=1

aia
>
i

si(x)2
(x′ − x) = −ηc.

We use it to compute ∇fη(x′):

∇fη(x′) = ηc+

m∑
i=1

ai
si(x′)

= −

(
m∑
i=1

ai
si(x)

+

m∑
i=1

aia
>
i

si(x)2
(x′ − x)

)
+

m∑
i=1

ai
si(x′)

=

m∑
i=1

(
ai

si(x′)
− ai
si(x)

− aia
>
i (x′ − x)

si(x)2

)

=

m∑
i=1

(
aia
>
i (x′ − x)

si(x)si(x′)
− aia

>
i (x′ − x)

si(x)2

)

=

m∑
i=1

ai(a
>
i (x′ − x))2

si(x)2si(x′)
.

Our goal is to show that ‖n(x′)‖x′ ≤ ‖n(x)‖2x. Instead 8 , we will prove that for
every vector z, we have that 〈z, n(x′)〉x′ ≤ ‖z‖x′‖n(x)‖2x.
Indeed:〈

z, n(x′)
〉
x′

= z>∇fη(x′) =

m∑
i=1

z>ai(a
>
i (x′ − x))2

si(x)2si(x′)

Cauchy−Schwarz

≤

(
m∑
i=1

(z>ai)
2

si(x′)2

)1/2

·

(
m∑
i=1

(a>i (x′ − x))4

si(x)4

)1/2

≤ ‖z‖x′ ·

(
m∑
i=1

(a>i (x′ − x))2

si(x)2

)
= ‖z‖x′‖n(x)‖2x

which completes the proof.

8 The following fact is true for every Hilbert space H: the norm of an element u ∈ H is

given by the formula ‖u‖ = max{ 〈z,u〉‖z‖ : z ∈ H \ {0}}. We work with H = Rn but with

nonstandard inner product: 〈u, v〉x′ = u>H(x′)v
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3.3.6 The Starting Point

In this section we give a method for finding a valid starting point. More precisely,
we show how to find efficiently some η0 > 0 and x0 such that ‖n(x0)‖x0 ≤ 1/2.

Before we start, we would like to remark that this discussion provides a very
small η0, of order 2−L. This enables us to prove that in fact IPM can solve linear
programming in polynomial time, but does not seem promising when trying to apply
IPM to devise fast algorithms for combinatorial problems. Indeed, there is a factor
of log η−1

0 in the bound on number of iterations, which translates to L for such a
tiny η0. To make an algorithm fast, we need to have η0 = Ω(1/poly(m)). However,
it turns out that for specific problems (such as maximum flow) we can often devise
some specialized methods for finding satisfying η0 and x0 and thus solve this issue.

First, we will show how given a point x′ ∈ int(P ) we can find some starting pair
(η0, x0). Then finally we show how to obtain such point x′ ∈ int(P ). Let us assume
now that such a point is given. Furthermore, we assume that each of its coordinates
is written using O(L) bits and each constraint is satisfied with slack at least 2−L,
that is bi − a>i x′ ≥ 2−L. Our procedure for finding x′ will provide such an x′ based
on our assumption that P is full dimensional. 9

Recall that we want to find a point x0 close to the central path Γc = {x?η : η ≥ 0},
which corresponds to the objective function c>x. Note that as η → 0, x?η → x?0 = xc,
the analytic center of P . So finding a point x0, very close to the analytic center and
choosing η0 to be some very tiny number should be a good strategy. In fact it is,
but how to find a point close to xc?

The central path Γc is of main interest for us, because it tends to the optimal
solution to our linear program. In general, if d ∈ Rn we may define Γd to be the
path consisting of minimizers to the functions νd>x+ F (x) for ν ≥ 0. What do all
the paths Γd have in common? The origin! They all start at the same point: analytic
center of P . Our strategy will be to pick one such path on which x′ lies and traverse
it backwards to reach a point very close to the origin of this path, which at the same
time will be a good choice for x0.

Recall that g is the gradient of the logarithimic barrier F and define d = −g(x′).
Now it turns out that x′ ∈ Γd. Why is this? Denote f ′ν(x) = d>x+F (x) and let x′?ν
be the minimizer of f ′ν . Then x′?1 = x′, since ∇f ′1(x′) = 0. We will use n′(x) for the
Newton step at x with respect to f ′ν . We see in particular that n′(x′) = 0.

As mentioned above, our goal is to move along the Γd path in the direction of
decreasing ν. We will use exactly the same method as in the Primal Path Following.
We perform steps, in each of them we make one Newton step w.r.t. current ν and
then decrease ν by a factor of (1− 1/8√m). At each step it holds that ‖n′(x)‖x ≤ 1/2,
by an argument identical to the proof of Lemma 3.7. It remains to see, how small ν
we need to have (how many iterations we need to perform).

Lemma 3.10. If ‖H(x)−1g(x)‖x ≤ 1/4 and we take η0 = (4‖H(x)−1c‖x)−1, then

9 In this presentation we will not discuss some details, e.g. the full-dimensionality assump-
tion. These are easy to deal with and can be found in any book on linear programming.
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the point x is a good candidate for x0. The Newton step n(x) w.r.t. fη0 satisfies:

‖n(x)‖x ≤
1

2
.

Proof. This is just a simple calculation:

‖n(x)‖x = ‖H−1(x)(η0c+ g(x))‖x ≤ η0‖H(x)−1c‖x + ‖H(x)−1g(x)‖x ≤
1

4
+

1

4
.

Suppose now we have some very small ν > 0 and a point x such that ‖n′(x)‖x ≤ 1/2.
By performing two further Newton steps, we may assume ‖n′(x)‖x ≤ 1/16. We have:

n′(x) = H(x)−1(−νg(x′) + g(x)),

hence:

‖H(x)−1g(x)‖x ≤ ν‖H(x)−1g(x′)‖x + ‖n′(x)‖x ≤ ν‖H(x)−1g(x′)‖x +
1

16

So it turns out, by Lemma 3.10 that it is enough to make ν‖H(x)−1g(x′)‖x smaller
then a constant. We can make ν as small as we want, but what with ‖H(x)−1g(x′)‖x?
Let us present a technical claim, which we leave without proof:

Claim 3.11. All the calculations during the backward walk along Γd can be per-
formed with 2O(L) precision.

This means that we may assume that all the points x computed during the procedure
have only O(L) places after the comma, and are of absolute value at most 2O(L).
This allows us to provide an upper bound on ‖H(x)−1g(x′)‖x.

Claim 3.12. If the description sizes of x′ and x are O(L), then ‖H(x)−1g(x′)‖x ≤
2poly(L).

This follows from the fact that a solution to a linear system is of polynomial size.
Now it remains to take ν so small that ν‖H(x)−1g(x′)‖x ≤ 1/8. By our previous
reasoning this is enough to get suitable (η0, x0). To reach such a ν we need to

perform Õ(
√
m log 1/ν) iterations, but log 1/ν is polynomial in L, so we are done.

To complete our considerations we show how to find a suitable x′ ∈ int(P ). To
this end, we consider an auxiliary linear program:

min
(t,x)∈Rn+1

t

a>i x ≤ bi + t, for all i
(3.15)

Taking x = 0 and t big enough (t = 1 +
∑
i |bi|), we get a strictly feasible solution.

Having such, we may solve 3.15 up to an additive error of 2−O(L) in polynomial time
(by IPM). This will give us a solution (t′, x′) with t′ = −2−Ω(L), so x′ ∈ int(P ) is a
suitable starting point for our walk along Γd.
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3.4 Self-Concordant Barrier Functions

Finally, in this section we present the definition of a self-concordant barrier function
for a convex set P. Armed with this definition, the task of bounding the number
of iterations of the path following method for minimizing a linear function over P
reduces to analyzing certain structural properties of the self-concordant barrier func-
tion. We omit the straightforward details about how, once we have a self-concordant
barrier function for a convex set, one can design a path following IPM for it.

Definition 3.13. Let F : int(P ) 7→ R be a C3 function. We say that F is self-
concordant with parameter ν if:

(1) F is a barrier function: F (x)→∞ as x→ ∂P.
(2) F is strictly convex.
(3) For all x ∈ int(P ), ∇2F (x) � 1

ν
∇F (x)∇F (x)>.

(4) For all x ∈ int(P ),
∣∣∇3F (x)[h, h, h]

∣∣ ≤ 2‖h‖3x = 2
∣∣∇2F (x)[h, h]

∣∣3/2 .10

With this definition in hand, it is not difficult to give an IPM for P which takes
about

√
ν log 1/ε iterations. In fact, a careful reader would already have observed

that Lemmas 3.9 and 3.8 prove exactly (3) and (4) for the log-barrier function with
the complexity parameter m.

Similar to the log-barrier function for the positive real-orthant, for semidefinite
programs over the cone of positive-definite matrices (or an affine transformation of
it), one can use the following barrier function:

F (X) = − log detX

for X � 0.
In the next lecture we will discuss self-concordant barrier functions with com-

plexity parameters � m. The main object of study will be the volumetric barrier of
Vaidya.

3.5 Appendix: The Dikin Ellipsoid

Recall our setting:

min 〈c, x〉
s.t. Ax ≤ b

where Ax ≤ b defines a bounded, nonempty and full-dimensional polytope P . Recall
that we can write the constrains at 〈ai, x〉 ≤ bi and then consider the slacks si(x) =
bi − 〈ai, x〉 which capture the extent to which a constraint is satisfied. Clearly, if

10 Here we interpret ∇3F (x)[h, h, h] as the inner product between the 3-tensor ∇3F (x) and
h⊗h⊗h, namely, 〈∇3F (x), h⊗h⊗h〉) and∇2F (x)[h, h] = h>∇2F (x)h = 〈∇2F (x), h⊗h〉.
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x is a feasible point, then si(x) ≥ 0 for all i. Note that, when clear from context,
we will often write si for si(x) for conciseness. The log-barrier function (rather its
negative) and its differentials are:

F (x) =
∑
i

log(si(x))

where

∇F (x) =
ai
si
, and

∇2F (x) =
∑
i

aia
>
i

s2
i

.

We often write H(x) = ∇2F (x) for the Hessian of x, and note that H(x) � 0 (and
in fact H(x) � 0 when A is fully-dimensional).

Now, we can consider the ellipsoid centred at x and defined by H, namely

Ex(H(x)) = {y : (y − x)>H(x)(y − x) ≤ 1}.
This is the Dikin ellipsoid centred at x.

Definition 3.14. The Dikin Ellipsoid at x ∈ int(P ) is defined as the ball of radius
1 around x in the local norm defined by H(x) at x.

We will show that the Dikin ellipsoid is always completely contained in the poly-
tope P . Furthermore, if we denote by xc the Analytic Center of P , i.e. the unique
minimizer of F (x), then the Dikin ellipsoid at xc inflated m times contains the
whole polytope P (we will also show that

√
m blow-up is sufficient for symmetric

polytopes). We start by proving the first claim.

Theorem 3.15. For every x ∈ int(P ), the Dikin ellipsoid at x is fully contained in
P .11

Proof. This is easy to see since, for any y ∈ Ex, all slacks are non-negative, and
hence y ∈ P . Formally, let y ∈ Ex(H(x)). Then,

(y − x)>H(x)(y − x) ≤ 1

⇒
∑
i

〈ai, y − x〉2

s2
i

≤ 1

⇒ 〈ai, y − x〉
2

s2
i

≤ 1 ∀i since all summands are non-negative

⇒
(
si(x)− si(y)

si(x)

)2

≤ 1 ∀i

⇒
∣∣∣∣1− si(y)

si(x)

∣∣∣∣ ≤ 1 ∀i.

11 In fact, this also holds when P is not bounded for certain cases such as if P is the positive

orthant.
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Hence, for all i we know that 0 ≤ si(y)/si(x) ≤ 2, and, in particular, si(y) ≥ 0 ∀i.

Let us start with a very interesting lemma describing one crucial property of the
analytic center of P :

Lemma 3.16. If xc is the analytic center of P then for every point x ∈ int(P ) it
holds that:

m∑
i=1

si(x)

si(xc)
= m.

Proof. Let us denote r(x) =
∑m
i=1

si(x)
si(xc)

. We know that r(xc) = m. To show that a
function is constant, it remains to find its derivative and argue that it is zero:

∇r(x) = ∇

(
m∑
i=1

si(x)

si(xc)

)
=

ai
si(xc)

= ∇F (xc)

but xc is the minimizer of F (x) so the gradient at this point vanishes.

Now we are ready to proof the second theorem describing the Dikin ellipsoid. This
time we look at the Dikin ellipsoid centered at a specific point xc:

Theorem 3.17. The Dikin ellipsoid at xc inflated m times contains P inside: P ⊆
mExc(H(xc)).

Proof. Take any point x ∈ P , the goal is to show that (x−xc)>H(xc)(x−xc) ≤ m2.
We compute:

(x− xc)>H(xc)(x− xc)

=(x− xc)>
(

m∑
i=1

aia
>
i

si(xc)2

)
(x− xc)

=

m∑
i=1

(a>i (x− xc))2

si(xc)2
=

m∑
i=1

(si(xc)− si(x))2

si(xc)2

=

m∑
i=1

si(x)2

si(xc)2
+

m∑
i=1

si(xc)
2

si(xc)2
− 2

m∑
i=1

si(xc)si(x)

si(xc)2
.

Now, the middle term
∑m
i=1

si(xc)2

si(xc)2
is equal to m and

∑m
i=1

si(xc)si(x)

si(xc)2
=∑m

i=1
si(x)
si(xc)

= m by Lemma 3.16. So we obtain:

(x− xc)>H(xc)(x− xc) =

m∑
i=1

si(x)2

si(xc)2
−m.
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Observe that all the terms in the sum
∑m
i=1

si(x)2

si(xc)2
are nonnegative, so we can use

the simple bound
∑m
i=1

si(x)2

si(xc)2
≤
(∑m

i=1
si(x)
si(xc)

)2

= m2 (the last equality again by

Lemma 3.16) and obtain finally:

(x− xc)>H(xc)(x− xc) ≤ m2 −m ≤ m2.

The last theorem we want to proof about the Dikin ellipsoid asserts that when we
restrict ourselves to symmetric polytopes (i.e. symmetric with respect to the center
of P ) then the Dikin ellipsoid at the center inflated only

√
m times contains the

polytope.

Theorem 3.18. Let P be a symmetric polytope, then P ⊆
√
mExc(H(xc)).

Remark 3.19. Note that the Dikin ellipsoid depends not exactly on P but rather
on the description of P (on the set of constraints). In the above theorem we assume
that the description of P is reasonable. Since P is symmetric (with respect to the
origin), we can assume that for every constraint x>ai ≤ bi there is a corresponding
constraint −x>ai ≤ bi.

Proof. [Proof of Theorem 3.18] We assume that P is symmetric w.r.t. the origin, so
xc = 0. Further, since all the bi’s are nonzero, we may rescale the constraints and
assume bi = 1 for all i. After this reductions, our ellipsoid is as follows: E = {x :∑m
i=1(x>ai)

2 ≤ 1}.
Take any point x on the boundary of E , that is

∑m
i=1(x>ai)

2 = 1. We need to
show that

√
mx /∈ int(P ). This will finish the proof.

Since
∑m
i=1(x>ai)

2 = 1, there exists i with |x>ai| ≥ 1√
m

. The set of constraints

is symmetric, so we can assume that x>ai ≥ 1√
m

. Hence (
√
mx)>ai ≥ 1, so

√
mx /∈

int(P ).

Theorems 3.17 and 3.18 together with Theorem 3.15 demostrate that the Dikin
ellipsoid centered at xc is a very good approximation of the polytope P . We obtain
an ellipsoid with a blow-up ratio of m (that is Exc(H(xc)) ⊆ P ⊆ mExc(H(xc))) or√
m for the symmetric case. One can ask if this is the best we can do. It turns out

that we can obtain better ratio by taking the so called John ellipsoid. It is defined
as the largest-volume ellipsoid contained in the polytope P . When we inflate it by a
factor of n, it contains P inside (similarly,

√
n is enough for symmetric polytopes).

This means that the John Ellipsoid achieves better blow-up ratio, because n ≤ m (we
need at least n linear inequalities to define a non-degenerate, bounded polytope in
n-dimensional space). One can also prove that this is indeed tight, the best possible
blow-up ratio for the n-dimensional simplex is exactly n.
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3.5.1 The Dikin Algorithm and some Intuition for
√
m Iter-

ations

The results above imply an particularly simple greedy IPM: start with the analytic
centre xc of a polytope P and move to the boundary of Exc(H(xc)) in the direction
of −c, where c is the cost vector. Repeat the same from the next point. First note
that algorithmically this makes sense as Theorem 3.15 implies that throughout the
execution of the algorithm, we are always inside P. The cost is also decreasing.
However, we can only argue that the cost becomes 1/√m in the symmetric case (or
1/m in the non-symmetric case) of the optimal cost in the first iteration. To see
this assume that P is symmetric. Thus, xc = 0 and the cost of this point is 0. Let
x be the point on the boundary of Exc(H(xc)) in the direction of −c. We know
from Theorem 3.15 that x ∈ P. However, we also know from Theorem 3.18 that
〈c,
√
mx〉 ≤ 〈c, x?〉 = opt, where x? is the optimal solution to the linear program.

This is because
√
mx lies on the boundary of

√
mExc which contains P, and is in the

direction of −c. Thus, 〈c, x〉 ≤ 1√
m

opt. If this were to magically continue at every

step then one would expect the cost to come around opt in about
√
m iterations.

However, we cannot prove this and this analogy ends here.

3.6 Appendix: The Length of Newton Step

In this section we explain the relation between the length of the Newton step at
point x (with respect to the function fη) and the distance to the optimum x?η. We
show that whenever ‖n(x)‖x is sufficiently small, ‖x − x?η‖x is small as well. This
together with a certain strenghtening of Lemma 3.4 imply that in the last step of
Primal Path Following IPM we do not need to go with xK to optimality. In fact,
only 2 additional Newton steps bring us (2ε)-close to the optimum.

Let us start by a generalization of Lemma 3.4, which shows that to get a decent
approximation of the optimum we do not neccessarily need to be on the central
path, but only close enough to it.

Lemma 3.20. For every point x ∈ int(P ) and every η > 0, if ‖x− x?η‖x < 1 then:

c>x− c>x? ≤ m

η
(1− ‖x− x?η‖x)−1.

Proof. For every y ∈ int(P ) we have:

c>x− c>y = c>(x− y)

= 〈c, x− y〉
= 〈cx, x− y〉x
≤ ‖cx‖x‖x− y‖x

Where cx = H−1(x) and the last inequality follows from Cauchy-Schwarz. Now, we
want to bound ‖cx‖x. Imagine we are at point x and we move in the direction of −cx
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until hitting the boundary of Dikin’s ellipsoid. We will land in the point x− cx
‖cx‖x ,

which is still inside P by Theorem 3.15. Therefore:〈
c, x− cx

‖cx‖x

〉
≥ 〈c, x?〉.

Since 〈c, cx〉 = ‖cx‖2x, we get:

‖cx‖x ≤ 〈c, x〉 − 〈c, x?〉.

We have obtained:

c>x− c>y ≤ ‖x− y‖x(c>x− c>x?). (3.16)

Now, let us express

c>x− c>x? = (c>x− c>x?η) + (c>x?η − c>x?)

and use 3.16 with y = x?η. We obtain

c>x− c>x? ≤ (c>x− c>x?)‖x− y‖x + (c>x?η − c>x?).

Thus

(c>x− c>x?)(1− ‖x− y‖x) ≤ c>x?η − c>x?.

By applying Lemma 3.4 we get the result.

Note that in the algorithm we never literally mention the condition that ‖x−x?η‖x is
small. However, we will show that it follows from ‖n(x)‖x being small. We will need
the following simple fact about logarithmic barrier. A proof appears in the notes on
Volumetric Barrier in the next lecture.

Fact 3.21. If x, z ∈ int(P ) are close to each other, i.e. ‖z−x‖z ≤ 1
4

then H(x) and
H(z) are close as well:

4

9
H(x) � H(z) � 4H(x).

We are ready to prove the main theorem of this section.

Theorem 3.22. Let x be any point in int(P ) and η > 0. Consider the Newton step
n(x) at point x with respect to fη. If ‖n(x)‖x ≤ 1

18
, then ‖x− x?η‖x ≤ 5‖n(x)‖x.

Proof. Pick any h such that ‖h‖x ≤ 1
4
. Expand fη(x+h) into a Taylor series around

x:

fη(x+ h) = fη(x) + h>∇fη(x) +
1

2
h>∇2fη(θ)h (3.17)
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for some point θ lying on the segment [x, x+ h]. We proceed by lower-bounding the
linear term. Note that:∣∣∣h>∇fη(x)

∣∣∣ = |〈h, n(x)〉x| ≤ ‖h‖x‖n(x)‖x (3.18)

by Cauchy-Schwarz. Next:

h>∇2fη(θ)h = h>H(θ)h ≥ 4

9
h>H(x)h (3.19)

where we used Fact 3.21. Applying bounds 3.18, 3.19 to the expansion 3.17 results
in:

fη(x+ h) ≥ fη(x)− ‖h‖x‖n(x)‖x +
2

9
‖h‖2x. (3.20)

Set r = 9
2
‖n(x)‖x and consider points y satysfing ‖x − y‖x = r, i.e. points on the

boundary of the local norm ball of radius r centered at x. Then 3.20 simplifies to:

fη(x+ h) ≥ fη(x)

which implies that x?η, the unique minimizer of fη, belongs to the above mentioned
ball and the theorem follows.

Combining Lemma 3.20 with Theorem 3.22 we get that if η ≥ m
ε

and ‖n(x)‖x ≤ 1
18

then c>x− c>x? < 2ε.
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Volumetric Barrier, Universal Barrier and John
Ellipsoids

In this lecture we take a step towards improving the
√
m in the number of iter-

ations the path-following IPM presented in the previous lecture to
√
n. This will

be achieved by considering more involved barrier functions rather than altering the
basic framework of IPMs. The log-barrier function was particularly nice as working
with it was computationally not harder than solving linear systems. However, it had
many shortcomings. An obvious one is that it has no way to take into account that
a constraint could be repeated many time. One way to handle this would be to work
with weighted barrier functions which have the following form:

∑
i wi(x) log si(x)

where we could allow the weights to depend on the current point as well. Analyzing
such methods, however, poses great technical challeges as now the gradients and
Hessians become more unwieldy. Amazingly, Vaidya laid the foundations of analyz-
ing such weighted barrier functions. He introduced one such function, the volumetric
barrrier and showed how it allows us to improve the

√
m to (mn)

1/4. Computation-
ally, the volumetric barrier was no harder than computing determinants.

Subsequently, Nesterov-Nemirovskii discovered the Universal Barrier which
achieves the stated goal of

√
n iterations. Their result held far beyond the set-

ting of LPs and worked for almost any convex body. However, computationally the
barrier is at least hard as solving the convex program itself!

The search for a
√
n barrier which is computationally efficient got a major boost

by a recent result of Lee-Sidford who demonstrated a computationally efficient bar-
rier (about the same complexity as solving linear systems) which achieves Õ(

√
n)

iterations. In my opinion, their result is inspired by Vaidya’s work: while Vaidya con-
sidered the volume of the Dikin ellipsoid as a barrier, Lee-Sidford consider an object
which can be considered a smoothening of John ellipsoid. It remains an outstanding

35
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problem to remove the log-factors from the work of Lee-Sidford.1

We begin by presenting yet another proof of
√
m convergence and then show

how the volumetric barrier allows us to improve this to (mn)
1/4. Towards the end,

we give a brief presentation (without proofs) of the
√

rank Universal Barrier by
Nesterov-Nemirovskii for any convex set. As for the work of Lee-Sidford, currently,
explaining it simply remains a challenge. However, in the appendix we introduce the
John ellipsoid and give some basic intuition about why one may expect the

√
m to

be possibly replaced by
√
n.

4.1 Restating the Interior Point Method for LPs

We start by restating the interior point method in a slightly different but equivalent
way.

Theorem 4.1. Let F be a barrier function such that there exists δ and θ as follows:

(1) For all x, z ∈ int(P ) such that ‖x − z‖2∇2F (z) ≤ δ, we have ∇2F (z)
O(1)
≈

∇2F (x),2 and
(2) ‖∇F (x)‖(∇2F (x))−1 ≤ θ.3

Then, there is an interior point method that produces an ε-approximate solution to
LPs of the form min c>x, such that Ax ≤ b in O(θ/δ log 1/ε) iterations. Here m is the
number of rows of A.

Note that the first property captures the fact that, if two points x and z are close
in the local norm, then the Hessian does not change by much. These two require-
ments along with differentiability are equivalent to self-concordance with complexity
parameter θ/ε. We leave the proof to the reader.

4.1.1 The Logarithmic Barrier Revisited

Before we proceed to the volumetric barrier, as an exercise, we revisit the log-barrier
funtion and derive the O(

√
m)-iteration convergence result for it, yet again. Recall

that the log-barrier function is:

F (x)
def
= −

m∑
i=1

log(bi − a>i x).

We will show that for this function θ =
√
m and δ = O(1). Hence, via Theorem 4.1,

it follows that this results in an IPM which converges in roughly
√
m iterations.

1 This lecture appears as Lecture 4 in Vishnoi [Vis14].
2 Formally, this means that there exist constants c1 and c2 such that c1∇2F (z) � ∇2F (x) �
c2∇2F (z).

3 Equivalently, we could write (∇F (x))(∇F (x))−1 � θ∇2F (x).
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4.1.1.1 θ for log-barrier

Let S be the diagonal matrix where Sii = si(x). We can now restate the gradient
and Hessian of F with more convenient notation as follows:

∇F (x) = A>S−11, and

∇2F (x) = A>S−2A.

Hence,

‖∇F (x)‖2(∇2F (x))−1) = (∇F (x))>(∇2F (x))−1(∇F (x))

= (A>S−11)>(A>S−2A)−1(A>S−11)

= 1>(S−1A(A>S−2A)−1A>S−1)1.

Denote
Π

def
= S−1A(A>S−2A)−1A>S−1,

and note that Π is a projection matrix; i.e., Π2 = Π. Hence,

‖∇F (x)‖2(∇2F (x))−1) = 1>Π1 = 1>Π21.

= ‖Π1‖22 ≤ ‖1‖22
= m.

Thus, ‖∇F (x)‖(∇2F (x))−1) ≤
√
m as desired.

4.1.1.2 δ for the log-barrier

We will show that∇2F (z)
O(1)
≈ ∇2F (x) for δ = 1/4. Let x, z be such that ‖x−z‖z ≤ δ.

Hence,

(x− z)>(∇2F (z))(x− z) =
∑
i

〈ai, x− z〉2

s2
i (z)

=
∑
i

(a>i (x− z))2

s2
i (z)

=
∑
i

(
si(x)− si(z)

si(z)

)2

.

Therefore, ∣∣∣∣si(x)− si(z)
si(z)

∣∣∣∣ ≤ √δ ∀i.

In particular, for all i, 1−
√
δ ≤ si(x)/si(z) ≤ 1 +

√
δ, and hence, for δ = 1/4,

s2
i (z)

s2
i (x)

≤ 4 and
s2
i (x)

s2
i (z)

≤ 9

4
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for all i. Since mini
(
s2i (z)

s2i (x)

)
· ∇2F (z) � ∇2F (x) � maxi

(
s2i (z)

s2i (x)

)
· ∇2F (z), we have

that
4

9
∇2F (z) � ∇2F (x) � 4∇2F (z)

which gives ∇F (x)
O(1)
≈ ∇F (z) as desired.

4.2 Vaidya’s Volumetric Barrier

Now, we go beyond
√
m; though we would like to get roughly

√
n iterations, we

will not quite reach this target, but will come somewhere in-between. The problem
with the log-barrier function is that it weighs each constraint equally. Thus, if, for
instance, a constraint is repeated many times, there is no way for the log-barrier
function to know this. Vaidya introduced the volumetric barrier function which aims
to bypass this limitation by assigning weights to each constraint:

−
∑
i

wi log(bi − a>i x).

Of course, a useful choice of weights must depend on the current point x, and this
causes several technical difficulties. His work laid the foundations for and developed
many techniques to analyze such weighted barrier functions.

4.2.1 The Volumetric Barrier

The proposed barrier function by Vaidya uses the log-volume of the Dikin Ellipsoid.

Definition 4.2. The volumetric barrier is defined to be

V (x)
def
= −1

2
· log det

(
∇2F (x)

)
.

Note that, whenever we come up with a new barrier function, we must also worry
about its computability along with the computability of its first and second order
oracle. Using the restatement of the barrier function as the determinant of a positive
definite matrix, we see that the volumetric barrier is efficiently computable.

Notation and basic properties. Notation will play an important role
in understanding the rather technical sections that are to follow. Towards this,
we introduce new notation, some of which may conflict with what we have used
previously. Instead of F (x), V (x), H(x), and so on, we denote the same quantities by
Fx, Vx, and Hx. Similarly, the slack vector will be denoted by sx and its components
by sx,i = si(x). Let the i-th row of A be the vector ai. For an x ∈ int(P ), let

Ax
def
= S−1

x A
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where Sx is the diagonal matrix corresponding to the vector sx. Then, the Hessian
of the log-barrier function can be written as

Hx = A>x Ax = A>S−2A.

Thus, if Vx = − 1
2

log detHx, then

∇Vx = A>x σx (4.1)

where

σx,i
def
=

a>i H
−1
x ai

s2
x,i

.

An informed reader could compare σx,i with leverage scores, or effective resistances
that arise when dealing with graph Laplacians. We note some simple properties of
σx which will allow us to build towards finding the θ and δ necessary for applying
Thoerem 4.1.

Fact 4.3.

(1) σx ≤ 1.
(2) σ>x 1 = n.

Proof. The first fact follows from the fact that
a>i H

−1
x ai

s2x,i
≤ 1 if and only if

aia
>
i

s2x,i
�

Hx. But the latter is true since Hx is the sum over all i of quantites on the left hand
side. For the second part note that

σ>x 1 =
∑
i

a>i H
−1
x ai

s2
x,i

= Tr

(
H−1
x

∑
i

aia
>
i

s2
x,i

)
= Tr

(
H−1
x Hx

)
= n.

Thus, each σx,i is at most one and they sum up to n. Thus, σx,i assigns a relative
importance to each constraint while maintaining a budget of n. This is unlike in the
setting of log-barrier where each constraint has a weight of 1 and, hence, requires a
budget of m. Further, note the following straightforward fact:
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Fact 4.4. σx,i =
∑
j

(a>i H
−1
x aj)2

s2x,is
2
x,j

.

Proof.

σx,i =
a>i H

−1
x ai

s2
x,i

=
a>i H

−1
x HxH

−1
x ai

s2
x,i

=

a>i H
−1
x

(∑
j

aja
>
j

s2x,j

)
H−1
x ai

s2
x,i

=
∑
j

(a>i H
−1
x aj)

2

s2
x,is

2
x,j

.

Let Σx denote the diagonal matrix corresponding to σx. Let

Px
def
= AxH

−1
x A>x = Ax(A>x Ax)−1A>x .

Note that Px � 0, is symmetric and is a projection matrix since

P 2
x = Ax(A>x Ax)−1A>x Ax(A>x Ax)−1A>x = Px.

Further, let P
(2)
x denote the matrix whose each entry is the square of the corre-

sponding entry of Px. Then, Fact 4.4 above can be restated as

σx = P (2)
x 1.

Thus, P
(2)
x ≥ 0, Σx − P (2)

x is symmetric and (Σx − P (2)
x )1 = 0. Thus, it is a graph

Laplacian. As a consequence we obtain the following fact.

Fact 4.5. Λx
def
= Σx − P (2)

x � 0.

Gradient and the Hessian of the Volumetric Barrier. In the
appendix we show the following by a straightforward differentiation of the volumetric
barrier:

Lemma 4.6.

(1) ∇Vx = A>x σx and

(2) ∇2Vx = A>x (3Σx − 2P
(2)
x )Ax.

Thus, using Fact 4.5, we obtain the following corollary which allows us to think
of the Hessian of the volumetric barrier as the log-barrier weighted with leverage
scores. This lemma greatly simplifies the calculations to come.
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Corollary 4.7.
A>x ΣxAx � ∇2Vx � 5A>x ΣxAx.

Proof. The lower bound is a direct consequence of Fact 4.5.
For the upper bound, note that for a graph Laplacian, it follows from the in-

equality (a− b)2 ≤ 2(a2 + b2) that

Λx � 2(Σx + P (2)
x ).

Thus,

∇2Vx = A>x (3Σx − 2P (2)
x )Ax = A>x (Σx + 2Λx)Ax � 5A>x ΣxAx.

We now let Qx
def
= A>x ΣxAx. The next lemma relates Qx back the Hessian of the

log-barrier function.

Lemma 4.8. 1
4m
Hx � Qx � Hx.

This lemma is responsible for us losing the grounds we gained by the weighted
barrier function. If we could somehow improve the lower bound to 1

100
Hx, then we

would achieve our goal of
√
n. In the next section we show how to alter the barrier

function to get a lower bound of n
m
Hx which will enable us to get the bound of

(mn)
1/4.

Proof. The upper bound follows straightforwardly from Fact 4.3 which states that
Σx � I.

For the lower bound, we first break the sum into two parts as follows

Qx =
∑
i

σx,iaia
>
i

s2
x,i

=
∑

i:σx,i≥1/2m

σx,iaia
>
i

s2
x,i

+
∑

σx,i<1/2m

σx,iaia
>
i

s2
x,i

�
∑

i:σx,i≥1/2m

σx,iaia
>
i

s2
x,i

.

Thus,

Qx �
1

2m

∑
i:σx,i≥1/2m

aia
>
i

s2
x,i

=
1

2m

Hx − ∑
i:σx,i<1/2m

aia
>
i

s2
x,i

 . (4.2)

Now note that by the definition of σx,i, we obtain for all i,

aia
>
i

s2
x,i

� σx,iHx.

Thus, ∑
i:σx,i<1/2m

aia
>
i

s2
x,i

�
∑

i:σx,i<1/2m

σx,iHx �
1

2m

∑
i

Hx �
1

2
Hx.
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Thus, plugging in this estimate in (4.2), we obtain that

Qx �
1

2m

(
Hx −

1

2
Hx

)
=

1

4m
Hx.

This completes the proof of the lemma.

This allows us to get the following crucial bounds on σx.

Lemma 4.9.
a>i Q

−1
x ai

s2x,i
≤ min

{
1

σx,i
, 4mσx,i

}
≤ 2
√
m.

Proof. From the lower bound estimate of Lemma 4.8, it follows that

a>i Q
−1
x ai

s2
x,i

≤ 4ma>i H
−1
x ai

s2
x,i

= 4mσx,i.

The other inequality follows from the following simple inequality

σx,iaia
>
i

s2
x,i

� Qx.

We can now conclude by stating the key properties of the volumetric barrier function
necessary to get a desired bound on the number of iterations of the IPM:

Theorem 4.10.

(1) ∇V >x (∇2Vx)−1∇Vx ≤ n.
(2) For all x, y ∈ int(P ) such that ‖x− y‖x ≤ 1

8m1/2 ,

∇2Vx
O(1)
≈ ∇2Vy.

Proof. For the first part, note that

ζ>∇Vx∇V >x ζ = 〈ζ, A>x σx〉2

= 〈ζ, A>x Σx1〉2

= 〈Σ1/2
x Axζ,Σ

1/2
x 1〉2

≤
(
ζ>A>x ΣxAxζ

)(
1>Σx1

)
≤

(
ζ>Qxζ

)
n

≤ n
(
ζ>∇2Vxζ

)
.
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For the second part, we start by noting that ‖x − y‖x ≤ δ is the same as (x −
y)>Qx(x− y) ≤ δ2. This in turn implies that

|a>i (x− y)|2 ≤ δ2a>i Q
−1
x ai ≤

1

4
· s2
x,i.

Thus, an argument similar to what we did for the log-barrier implies that∣∣∣∣1− sy,i
sx,i

∣∣∣∣ ≤ 1

2
.

This implies that Hx ≈ Hy and σx,i ≈ σy,i for all i. Thus, Qx ≈ Qy. This implies
that ∇2Vx ≈ ∇2Vy, completing the proof.

4.2.2 The Hybrid Barrier

Now consider the barrier function

Gx = Vx +
n

m
Fx,

where Vx is the volumetric barrier function and Fx the log-barrier function.

∇2Gx = ∇2Vx +
n

m
Hx.

This adding a scaled version of the log-barrier function changes nothing significantly
in the previous section. However, crucially this addition implies, via Lemmas 4.7 and
4.8 that

∇2Gx �
n

m
Hx

rather than 1
4m
Hx in the case of volumetric barrier. This implies that the upper

bound in Lemma 4.9 comes down to
√
m/n. This then implies that, while the first

part of Theorem 4.10 continues to hold with 4n instead of n, the second part holds
with (mn)

1/4 rather than
√
m. Hence, from Theorem 4.1, we obtain an (mn)

1/4

iteration IPM for LPs.
One can interpret Vaidya’s technique as starting with a barrier F and replacing

it with

−1

2
log det∇2F (x) +

n

m
F (x).

One may ask if repeating this helps improve the bound of (mn)
1/4. In particular, it

is an interesting question to understand the fixed point of this functional equation
and to what extent is it self-concordant.

4.3 Appendix: The Universal Barrier

In this section we introduce Nesterov-Nemirovskii’s result that every bounded and
convex body K in n-dimensions admits an O(n) -self concordant barrier function.
This implies that the number of iterations scale like

√
n. This not only improves the

self-concordance results for polytopes we have proved till now, but also significantly
generalizes it to all convex bodies. However, as we will see, computationally it is
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not very attractive. Designing a barrier function that does not require much more
computation than solving linear system of equations, at least for polytopes, remains
an outstanding open problem.

What is their barrier function that works in such a general setting? It is a
volumetric barrier; however, not of any ellipsoid, rather of the polar of the body K
centered at the current point x. More precisely, for a point x ∈ int(K), let

K◦x
def
= {z : z>(y − x) ≤ 1 ∀y ∈ K}.

Then, the Nesterov-Nemirovskii barrier function is defined to be

F (x)
def
= log volK◦x .

Since K is bounded, this is well-defined in the interior of K. Moreover, it is easy
to see that as x approaches the boundary of K from the interior, the volume blows

up to infinity. For instance, if K is the interval [0, 1] then K◦x =
[
− 1
x
, 0
]
∪
[
0, 1

1−x

]
.

Thus, as x → 1, the right end of the polar goes to +∞ and as x → 0, the left end
of the polar goes to −∞. In either case, the volume goes to infinity.

In fact this one-dimensional intuition goes a long way in understanding F (x).
This is due to the following simple observation which allows us to think of K◦x as a
collection of line segments. Let v ∈ Sn−1 be a unit vector and let p(v) denote the
maximum over y ∈ K of v>y. Thus, we can rewrite the polar as a collection of the
following line segments; each along a unit vector v.

K◦x =
⋃

v∈Sn−1

[
0,

1

p(v)− v>x

]
v.

This representation allows us to easily rewrite the volume of K◦x as

f(x)
def
= vol K◦x =

1

n

∫
v∈Sn−1

(p(v)− v>x)−ndS(v)

where dS(v) is the (n − 1)-dimensional volume of the surface of the unit sphere
around v.

What we achieve by this transformation is an understanding of the derivatives
of f(x) in terms of moment integrals over the polar. In fact the following claim can
now be seen easily:

Dlf(x)[h, h, . . . , h] =
(−1)l(n+ l)!

n!
Il(h)

where

Il(h)
def
=

∫
K◦x

(z>h)ldz.

However, we are interested in the differentials of F (x) = log f(x). How do we calcu-
late the differentials of this function? This is also easy since

d log g(x)

dx
=

1

g(x)

dg(x)

dx
.

This allows us to easily derive the following expressions:
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(1) DF (x)[h] = −(n+ 1) I1(h)
I0

.

(2) D2F (x)[h, h] = (n+ 1)(n+ 2) I2(h)
I0
− (n+ 1)2 I

2
1 (h)

I20
.

(3) D3F (x)[h, h, h] = −(n+3)(n+2)(n+1) I3(h)
I0

+3(n+2)(n+1)2 I2(h)I1(h)

I20
−

2(n+ 1)3 I1(h)3

I30
.

It follows that F (x) is convex since a straightforward calculation shows that

D2F (x)[h, h] > 0.

Further, it is not difficult to see that

|DF (x)[h, h]| ≤
√
n+ 1

√
|D2F (x)[h, h]|,

which establishes the required bound on the complexity parameter. The self-
concordance property remains to be proved; that does not seem to have a very
illuminating proof and hence we omit the details here.

In summary, we sketched the proof of the fact that log-volume of the polar is
a
√
n self-concordant barrier function. Could this be improved beyond

√
n? The

answer turns out to be no in general. This is as far as the theory of self-concordant
barriers takes us. However, that is not to say that interior point methods cannot
take us further, at least in the case of combinatorial polytopes!

4.4 Appendix: Calculating the Gradient and the Hessian of
the Volumetric Barrier

In this section we give a sketch of the gradiant and Hessian calculation of the volu-
metric barrier. In particular, we prove the followin lemma mentioned earlier.

Lemma 4.11. (1) ∇Vx = A>x σx and

(2) ∇2Vx = A>x (3Σx − 2P
(2)
x )Ax.

Proof. Recall that Hx =
∑
i

aia
>
i

s2x,i
and Vx = 1

2
log detHx. Let ζ be a vector and let

t ∈ R be an infinitesimal. First note that

Hx+tζ −Hx =
∑
i

aia
>
i

s2
x+tζ,i

−
∑
i

aia
>
i

s2
x,i

= 2t
∑
i

aia
>
i

s2
x,i

a>i ζ

sx,i
+O(t2).
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Let ∆
def
= 2t

∑
i

aia
>
i

s2x,i

a>i ζ
sx,i

. Thus, for an infinitesimal t,

1

2
log detHx+tζ −

1

2
log detHx ≈ 1

2
log det(Hx + ∆)− 1

2
log detHx

=
1

2
log detH

1/2
x (I +H−

1/2
x ∆H−

1/2
x )H

1/2
x −

1

2
log detHx

=
1

2
log det(I +H−

1/2
x ∆H−

1/2
x )

≈ 1

2
Tr(H−

1/2
x ∆H−

1/2
x )

= tTr

(
H−

1/2
x

∑
i

aia
>
i

s2
x,i

a>i ζ

sx,i
H−

1/2
x

)

= t
∑
i

σx,i
a>i ζ

sx,i
.

Thus, ∇Vx = A>x σx.
To get the formula for the Hessian, start by noting that

∂2Vx
∂xk∂xl

=
∂

∂xk
e>l A

>
x σx =

∂

∂xk

∑
i

a>i H
−1
x ai

Ail
s3
x,i

=
∑
i

(
Ail
s3
x,i

· ∂

∂xk
a>i H

−1
x ai + a>i H

−1
x ai ·

∂

∂xk

Ail
s3
x,i

)
=

∑
i

(
Ail
s3
x,i

· ∂

∂xk
a>i H

−1
x ai + 3a>i H

−1
x ai ·

AilAik
s4
x,i

)
.

It remains to compute ∂
∂xk

a>i H
−1
x ai. Towards this first note that similar to the

calculation we did above,

H−1
x+tζ −H

−1
x ≈ −H−1

x ∆H−1
x .

Thus, a>i H
−1
x+tζai − a>i H

−1
x ai = −a>i H−1

x

(
2t
∑
j

aja
>
j

s2x,j

a>j ζ

sx,j

)
H−1
x ai =

−2t
∑
j

(a>i H
−1
x aj)2

s2x,j

a>j ζ

sx,j
. Thus,

Ail
s3
x,i

· ∂

∂xk
a>i H

−1
x ai = −2

∑
j

(a>i H
−1
x aj)

2

s2
x,js

2
x,i

Ajk
sx,j

Ail
sx,i

= −2A>x P
(2)
x Ax.

Thus taking ζ = ek and letting t→ 0, we obtain

∇2Vx = A>x (3Σx − 2P (2)
x )Ax.
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4.5 Appendix: John ellipsoid

In this section4 we introduce the John ellipsoid and contrast it with the Dikin
ellipsoid introduced in the previous lecture. In particular, we show a fundamental
result that, for symmetric polytopes, the John ellipsoid

√
n approximates the body

(as opposed to the
√
m achieved by the Dikin ellipsoid). Thus, just as we did with

the Dikin ellipsoid, one can in principle define “The John Algorithm” and hope
that it converges in

√
n iterations. Whether it does remains far from clear. Recently,

Lee-Sidford show that a smoothened version of John ellipsoid actually does converge
in
√
n logO(1)(m) iterations.

Definition 4.12. Given a bounded polytope P
def
= {x ∈ Rn : a>i x ≤ bi for i =

1, . . . ,m} and a point x ∈ int(P ), the John ellipsoid of P at x is defined to be the
ellipsoid of maximum volume which is centered at x and contained in P .

Let us try to describe the John ellipsoid Ex centered at a point x using a quadratic
form. Towards this, let Bx be a PSD matrix such that

Ex = {y : ‖y − x‖2Bx
≤ 1}.

Then, the constraint that Ex is contained inside the polytope P would require that
for every i = 1, . . . ,m

Ex ⊆ {y : 〈ai, y〉 ≤ bi}.
In other words for all i,

max
y∈Ex

〈ai, y〉 ≤ bi

or equivalently
max

y:y>Bxy≤1
〈ai, y + x〉 ≤ bi

or equivalently
max

y:y>Bxy≤1
〈ai, y〉 ≤ bi − 〈ai, x〉 = si(x).

It can be checked that the left-hand side is equal to ‖ai‖B−1
x

. Because si(x) ≥ 0, we
can square both sides and obtain the constraint

a>i B
−1
x ai ≤ si(x)2.

As for the volume of Ex (which we are maximizing), we have that

vol(Ex) = vol({y : y>Bxy ≤ 1}) = vol({B−1/2
x v : ‖v‖2 ≤ 1}) = Vn ·

(
det(B−

1/2
x )

)
where Vn is the volume of the unit `2 ball in Rn. Ignoring the Vn term (by just
redefining the volume relative to Vn) we obtain

log vol Ex =
1

2
log det(B−1

x ).

4 Scribed by Jakub Tarnawski.
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We take the logarithm here because this will allow us to obtain a convex program.
We can now write the following program, called (John-Primal):

min − log detB−1

s.t.
a>i B

−1ai
si(x)2

≤ 1 for i = 1, . . . ,m.

Note that we deal with the constraint B � 0 (equivalently, B−1 � 0) by encoding
it into the domain of the function log det.

Let us denote C = B−1. The program (John-Primal) is convex in the variables
{Cij}.

4.5.1 Duality

Let us now write the dual program (John-Dual). We multiply the i-th constraint by
a multiplier wi ≥ 0, obtaining the Lagrangian

L(C,w) = − log detC +
∑
i

wi

(
a>i Cai
si(x)2

− 1

)

= − log detC + C •

(∑
i

wi
si(x)2

aia
>
i

)
−
∑
i

wi.

The KKT optimality condition ∇CL(C,w) = 0 yields

−C−1 +
∑
i

wi
si(x)2

aia
>
i = 0

and thus
B = C−1 =

∑
i

wi
si(x)2

aia
>
i .

The dual objective function is

g(w) = inf
C
L(C,w) = − log det

(∑
i

wi
si(x)2

aia
>
i

)−1

+ n−
∑
i

wi,

with constraints wi ≥ 0 and
∑
i

wi
si(x)2

aia
>
i � 0 (the latter arising from our restric-

tion of log det to PD matrices).
Slater’s condition holds (just consider a small ball certifying that x ∈ int(P ))

and we have strong duality. Thus, at optimal values of C and w:

− log detC = − log detC −
∑
i

wi + n,

and hence ∑
i

wi = n.

We can interpret wi as a measure of how strongly the ellipsoid Ex is supported on
the hyperplane defined by the i-th constraint. For example, from the complementary
slackness conditions we have that if a>i B

−1ai < si(x)2 (i.e., the ellipsoid does not
touch the hyperplane), then wi = 0.
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4.5.2 Approximating symmetric polytopes

Now we show that the John ellipsoid improves the
√
m of the Dikin ellipsoid to

√
n

for symmetric polytopes.

Proposition 4.13. Let P be a polytope which is symmetric around the origin (i.e.,
P = −P ), 0 ∈ int(P ), and let E be the John ellipsoid of P at 0. Then the ellipsoid√
nE contains P .

Proof. The proof resembles the one of a similar statement for Dikin ellipsoids. With-
out loss of generality assume that all bi = 1. Also, because P is symmetric, we assume
that for every constraint 〈ai, x〉 ≤ 1 there is a corresponding constraint 〈−ai, x〉 ≤ 1.
Now all si(x) = 1 and the John ellipsoid E is given by

B =
∑
i

wiaia
>
i , E = {x : x>Bx ≤ 1} =

{
x :
∑
i

wi 〈ai, x〉2 ≤ 1

}
.

Pick a point x on the boundary of E . It is enough to show that
√
nx is not inside

K. Since x ∈ ∂E , we have ∑
i

wi 〈ai, x〉2 = 1.

If it were the case that
√
nx ∈ int(P ), then for every i we would have 〈ai,

√
nx〉 < 1

and 〈−ai,
√
nx〉 < 1, so that 〈

ai,
√
nx
〉2
< 1,

and multiplying by wi/n and summing over all i we would get∑
i

wi 〈ai, x〉2 =
∑
i

wi
n

〈
ai,
√
nx
〉2
<

∑
i wi

n
= 1,

a contradiction.

4.5.3 The John Algorithm?

Thus, the John ellipsoid provides us with an alternative to the Dikin ellipsoid and one
may ask what is stopping us from defining a barrier similar to Vaidya’s volumetric
barrier. After all, it does give us a barrier of the form∑

i

wi(x)
aia
>
i

si(x)2

with weights summing up to n at every point raising the possibility of a
√
n-iteration

algorithm. Unfortunately, the weights wi(x) are not even continuous (let alone dif-
ferentiable). For example, consider the square [−1, 1]2 defined by the four natural
constraints (suppose w1 corresponds to x ≤ 1 and w2 corresponds to −x ≤ 1). At
a point (ε, 0), with ε very small, we have w1 = 1 and w2 = 0, but at (−ε, 0) the
converse is true. However, Lee-Sidford were able to find a workaround by smoothen-
ing the weights at a poly-log cost in the number of iterations. The details are quite
involved and omitted here.
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