
Building Deterministic Transaction Processing
Systems without Deterministic Thread Scheduling

Alexander Thomson
Yale University

thomson@cs.yale.edu

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT
Standard implementations of transactional systems such as
database systems allow several sources of nondeterminism
to introduce unpredictable behavior. The recent introduc-
tion of an architecture and execution model that isolates
sources of nondeterministic behavior in online transaction
processing systems in order to yield deterministic transac-
tion results makes active replication easier and mitigates
major scalability barriers. We observe here that (a) this
approach would nicely complement other determinism tech-
niques in the assembly of a fully deterministic application
stack and (b) the approach does not rely on any special
thread-scheduling machinery or deterministic concurrency
primitives and even benefits from the nondeterminism in-
herent in typical OS schedulers.

1. INTRODUCTION & BACKGROUND
Transactions are a useful programming abstraction; trans-

actional middleware systems such as database management
systems (DBMSs) and software transactional memory (STM)
libraries are ubiquitous components in a wide variety of
types of applications. Although sometimes unwieldy in their
implementations, such systems represent powerful tools for
application developers: program complexity can often be
vastly reduced when middleware layers can be made to do
a large amount of an application’s heavy lifting with regard
to data storage/formatting and concurrency control tasks.
Unfortunately, standard implementations of transactional
systems—and database systems in particular—allow non-
deterministic behavior to arise.

The ACID properties, which represent the gold standard
of transactionality (and isolation in particular) demand se-
rializability, i.e. the equivalence between actual (potentially
highly concurrent) execution of a set of transactions and
some sequential execution of those same transactions.

For example, given a set of transactions {T1, T2, T3}, sup-
pose T1 and T3 conflict on a shared resource R1 (i.e. they
both access this resource in a non-commutative way, such as
by setting its value if the resource is a variable) while T2 and
T3 conflict on a resource R2, but T1 and T2 do not conflict
with one another at all. Then serializability permits several
possibilities:

• execute T1, T2 and T3 sequentially in any order

• execute T1 and T2 concurrently, and execute T3 after
they have both completed

• execute T3 first, and execute T1 and T2 concurrently
after it has completed

The first possibility above is by definition equivalent in
outcome to itself and therefore to a sequential execution,
thus satisfying serializability. Since transactions T1 and T2

do not conflict—and therefore commute—the second option
is equivalent both to the sequential execution T1-then-T2-
then-T3 and to the sequential execution T2-then-T1-then-T3,
while the third one is equivalent to both T3-then-T1-then-T2

and T3-then-T2-then-T1. Since these all satisfy the ACID
properties, typical DBMS implementations employ concur-
rency control methods that are agnostic to which of these ex-
ecutions actually occurs. The serial order to which execution
is equivalent is therefore left to the mercy of a wide variety
of potentially nondeterministic factors, including OS-level
thread-scheduling, possible cache misses and page faults, the
possibility of hardware failures, variable network latency if
the system is partitioned and/or replicated across multiple
physical machines, deadlock detection and resolution mech-
anisms, and so forth.

1.1 A deterministic transactional system
Our recent paper, The Case for Determinism in Database

Systems [7], outlines a distributed database system architec-
ture and execution model based closely on two-phase lock-
ing that, given a global ordering of transactions as input,
executes them in a manner equivalent to that specific order
while still maintaining high concurrency. We accomplish
this by implementing a concurrency control mechanism re-
sembling standard two-phase locking, but with three added
invariants:

• Ordered locking. For any pair of transactions Ti and
Tj which both request locks on some record R, if Ti

appears before Tj in the global ordering then Ti must
request its lock on R before Tj does. Further, the lock
manager must grant each lock to requesting transac-
tions strictly in the order in which those transactions
requested the lock.

• Execution to completion. Once entering the sys-
tem, each transaction must go on to run to completion—
until it either commits or aborts due to deterministic

program logic. Thus even in cases where a transac-
tion is delayed for some reason (e.g. due to network
latency or hardware failure), the transaction must be
kept active until either it executes to completion or the
replica is killed—even if other transactions are waiting
on locks held by the blocked one.



In practice, ordered locking is most easily implemented
by requiring transactions to request all locks they will need
in their lifetimes immediately upon entering the system.
For certain classes of transactions, it may be impossible to
know at the time a transaction enters the system exactly
which locks it will acquire, because the results of access-
ing resources early in the transaction may determine what
resources the transaction subsequently uses. For example,
database management systems are expected to handle trans-
actions that update a record only after locating it by per-
forming a lookup in a secondary index. We handle this case
using a technique called Optimistic Lock Location Predic-
tion (OLLP). In this scheme, the transaction is decomposed
into two separate transactions:

• the reconnaissance unit, which performs all index look-
ups required to discover the original transaction’s full
set of required locks (but doesn’t cause any actual state
changes to be made), then reports this lock set back to
the system component tasked with choosing the global
order (which can be either the application layer or a
special preprocessor in the database system)

• the execution unit, which (aided by the reconnaissance
knowledge) deterministically executes the original trans-
action if the indexes have not meanwhile been updated
in a manner that changes its read-write set (or if they
have, it repeats the reconnaissance step to be resched-
uled later)

Conveniently, secondary indexes tend to be updated much
less frequently than they are read (especially since the most
common data structures used in index implementation—B+
trees—are not designed to handle extremely high update
rates), and OLLP therefore seldom results in repeatedly
restarting the same transaction.

1.2 Performance & applications
Evaluations of a prototype system implementing deter-

ministic and traditional transaction execution methods side-
by-side in the same framework have shown that determinis-
tic transactional execution keeps up with traditional execu-
tion so long as one condition is met: there must be no long-
running transactions executed at high isolation levels. This
condition is increasingly satisfied under real-world deploy-
ment conditions, by virtue of two current trends in transac-
tion processing workloads and systems:

• Short transactions. Today’s real-world OLTP work-
loads overwhelmingly consist of many short updates—
typically implemented as compiled stored procedures
rather than sent ad hoc as SQL statements—executing
at high isolation levels, with only occasional longer
(lower-isolation) queries.

• No disk stalls. A typical disk seek takes 5-15ms—
a near eternity in an environment in which today’s
blazing fast processors and monstrous caches often eat
through transactions in under 10µs once relevant data
has been fetched.1 Fortunately, today’s OLTP data

1The historical reason for the original design decision to
allow nondeterministic behavior in database systems is in
fact exactly this. Since transactions in the early days of
database systems research were likely to stall for long peri-

sets increasingly fit entirely in the main memory of
a single high-end server—or a cluster of commodity
machines.

Deployed in a main-memory-only setting and under typ-
ical OLTP workloads, our deterministic transaction execu-
tion model comes with three significant benefits in addition

to the debugging and repeatability perks that typically ac-
company deterministic behavior:

• Unsynchronized active replication. Given identi-
cal inputs, deterministic database system replicas will
maintain strong consistency (meaning that replica states
do not diverge, nor are some replicas forced to lag be-
hind others) without incurring the latency-consistency-
overhead tradeoffs inherent in other replication schemes
such as log shipping, eventual consistency, and syn-
chronized active replication [5,6,3].

• No distributed commit protocols. In existing (non-
deterministic) partitioned database systems, transac-
tions spanning multiple partitions require a multi-phase
commit protocol to ensure atomicity against the possi-
bility of nondeterministic abort at a subset of involved
nodes. Since locks must be held for the full duration of
this protocol, this necessity sharply drives up lock con-
tention between transactions. The result is that these
commit protocols are the primary hurdle to achieving
outward scalability of distributed databases on clusters
of commodity machines. Our deterministic execution
model allows these distributed commit protocols to be
shortened—and in many cases omitted completely—
sharply mitigating this cost, and therefore promising
significant scalability gains. This is because nonde-
terministic events (such as node failure) cannot cause
a transaction to abort (failure is dealt with through
on-the-fly failover to an active replica or deterministic
recovery of state by replaying history from the input
log), so all parts of the protocol that deal with failure
or confirmation that the effects of a transaction has
made it to stable storage are no longer needed.

• No ARIES logging. Careful studies of database sys-
tem performance has shown that logging components
of transactional systems cause at least 10% perfor-
mance overhead (typically more) due to the physical
nature of physical database logging algorithms such as
ARIES, where every action that the database makes
while performing a transaction is identified and logged
to disk [4]. In deterministic database systems, only
input must be logged (since database state can at all
points be deterministically re-derived from an initial
state and a record of subsequent input). Not only is
logging input far less labor intensive than logging all

ods of time during disk seeks and user stalls, many transac-
tions would be actively executing at any given time, sharply
driving up lock contention. In high-contention environ-
ments where some transactions cannot proceed because they
are blocked on others that are waiting on a disk accesses,
finding useful work to do on newer, potentially contention-
free transactions—i.e. performing on-the-fly transaction
reordering—is obviously an extremely useful tool. Early
database systems therefore profited greatly from a serial-
izability guarantee agnostic to which particular order is em-
ulated.



transaction actions, but the input can even be logged
prior to starting the transaction, allowing all logging
overhead to occur before any locks are acquired, fur-
ther reducing system contention. If lightweight check-
pointing is used, system recovery can occur from re-
playing history from a checkpoint (or alternatively from
cloning the state of an active replica).

It is important to note here that the internal behavior of this
type of transaction processing system does not need to be
fully deterministic for transactional output to be determined
solely by its input. Our current prototype fully maintains
its determinism invariant while running on a public cluster
of off-the-shelf Linux workstations.

2. CONTRIBUTING TO A SAFER
APPLICATION STACK

Since unintentional nondeterminism is the bane of mul-
tithreaded software development, fully deterministic envi-
ronments are extremely desirable to programmers. Because
most operating systems supporting real world application
deployments take for granted a license to schedule threads
and perform other tasks completely free of determinism guar-
antees, extremely few tools have been developed to support
explicitly deterministic multi-threaded execution of any sort,
and none (to our knowledge) support efficient deterministic
transactional execution.

2.1 The alternatives, and why they’re difficult
One very promising approach to quickly building deter-

ministic application components is to run legacy (potentially
nondeterministic) applications on operating systems sport-
ing deterministic thread schedulers and other mechanisms
for isolating potential sources of nondeterminism, such as
dOS or Determinator [8,1]. These systems explicitly tag,
log, and synchronize across replicas any nondeterministic
events which appear as input to programs or can affect their
behavior indirectly.

Almost all of today’s database systems, however, make
heavy use of nondeterministic resources such as the system
clock (most notably in timeout-based deadlock detection
mechanisms). While locally logging accesses to the system
clock and other nondeterministic events incur prohibitive
overhead in itself, in an actively replicated system these val-
ues would have to be synchronized across all replicas, which
is extremely expensive—especially in the increasingly fre-
quent case of replication over a wide area network.2

Furthermore, in the case where within each replica, data is
partitioned across multiple physical machines (partitioning
and replication are orthogonal characteristics of distributed
database systems), all replicas must agree on the order in
which any intra-replica messages are delivered—again a pro-
hibitively high inter-replica communications overhead. In
addition, because network latency is inherently nondeter-
ministic, non-clock-based timeouts will not detect deadlocks
deterministically, and the cost of cycle detection in wait-

2Two alternatives to clock-based deadlock detection are (a)
using timeouts built on a timer which measures progress in
some deterministic task, such as a repeatedly incremented
counter, and (b) performing explicit cycle detection on the
waits-for graph. Both of these come with higher overhead
than clock-based deadlock detection.

Figure 1: Architecture incorporating a deterministic

transaction processing system serving a determinis-

tic application.

for graphs spanning multiple machines is much higher than
when all transactions are local.

Although it may be possible to engineer around these dif-
ficult problems, it is clearly a difficult problem to force a
traditional transaction processing system to behave deter-
ministically using only OS-level tools without severely ham-
pering performance.

2.2 Where deterministic transaction
processing fits in

A transaction processing engine designed to be explicitly
deterministic would complement other determinism tech-
niques nicely in a deterministic application stack.

Figure 1 illustrates an example architecture combining ap-
plications running on a deterministic operating system such
as dOS or Determinator [8,1] with a deterministic transac-
tion processing middleware layer like we propose. Since each
instance of the transactional system accepts as input only an
ordered set of transaction requests from the application—
which will of course be identical between replicas of the
deterministic application server—the transaction processing
system replicas will not need to communicate with one an-
other at all.

3. NONDETERMINISTIC SCHEDULING
As mentioned in section 1.1, our deterministic transaction

execution protocol requires no determinism guarantees on
the part of its operating system. Standard nondeterminis-
tic scheduling and unreliable or ill-ordered network message
delivery do not detract from the deterministic relationship
between input transaction sequences and externally observ-
able behavior. There also are several subtle advantages to
being able to run this kind of transaction processing system
on off-the-shelf systems.

First, allowing any given deployment of the system to
schedule threads in the best manner for its specific hardware
setup can be extremely useful. To illustrate this, suppose
we have a sequence of transactions {T1, T2, T3, T4} where
T1, T2, and T3 do not conflict with one another at all (i.e.
they can be executed as concurrently as we like), but where
T4 conflicts with all three of the previous transactions (i.e.
we cannot begin executing it until they are all complete).
Suppose also that the transaction processing application is



replicated on two unlike machines, replica A and replica B
(in the manner illustrated in Figure 1), where replica A will
take extra time to execute T2—e.g., due to a cache miss oc-
curring only on one machine since the machines could have
different cache sizes—while replica B will take extra time to
execute T1—e.g., because its ALU is slower than replica A’s
at certain operations. Figure 2 illustrates several possible
execution schedules that might occur if each replica has two
hardware contexts executing transactions. Schedule 1 repre-
sents a good schedule for replica A, but if it is chosen deter-
ministically, then replica B will also choose schedule 1, with
the same interleaving of transaction begin and end events.
In this case, it is forced to start T3 only after T1 finishes, and
it must stretch T2 out to complete when T3 does, resulting
in poor CPU resource utilization, increased transaction la-
tency, and—ultimately—reduced system throughput.

If deterministic thread scheduling were instead to yield
schedule 2 at both replicas, replica A would up with a simi-
larly suboptimal execution trace. A better scenario would be
to execute the set of transactions with schedule 1 at replica
A and schedule 2 at replica B—which is only possible if
threads are free to yield CPU resources to one another based
on nondeterministic factors such as the real wall-clock time
that different machines actually spend executing each trans-
action.

In the case of systems that partition their data across
multiple machines at each replica, even worse scenarios with
more dramatic performance costs present themselves in the
event of variations in intra-replica network latencies.3

Second, replication across several machines running a het-
erogeneous mix of platforms, improves overall availability,
since different replicas tend to take different code paths
through the underlying OS, and therefore rare bugs or vul-
nerabilities in an operating system or other software compo-
nent of a given platform are less likely to trigger correlated
failures. Portability to any platform—not only those which
provide convenient determinism guarantees—is therefore es-
pecially valuable in transaction processing systems where
high availability is usually considered critical.

Finally, the architecture we propose is also compatible
with traditional (non-deterministic) transactional execution
—the set of valid executions in our system is, after all, a
direct subset of the set of executions allowed in standard
transaction processing systems. Our system therefore incor-
porates the possibility to transition on-the-fly (and almost
seamlessly) between deterministic mode and traditional ex-
ecution mode, which can increase concurrency under some
workload and execution conditions. Combining this prop-
erty with an application execution environment support-

3Interestingly, this effect is perfectly analogous to the phe-
nomenon discussed in the footnote1 on page 2, where on-
the-fly transaction reordering proves profitable against disk
latency-rooted variations in transaction duration. In this
case, however, we only reorder the execution of logically
commutable transactions (relaying commit messages back
to the application in the original order, of course), so that
the end system state is unaffected. Note that since threads
share system data that they access at the start and end
of each transaction (e.g. lock manager data structures and
thread pool metadata), it would be extremely difficult for a
scheduling library to automatically guess at this commuta-
tivity via memory ownership tracking or other static analysis
techniques in the style of CoreDet and increase concurrency
accordingly [2].

Figure 2: Two possible execution schedules for a

pair of replicas of a transactional system. Dark grey

denotes the shortest time in which a transaction

could execute; light gray denotes artificial stretch-

ing out of transaction execution to maintain equiv-

alent instruction interleaving with that of the oppo-

site replica’s schedule.

ing determinism guarantees—which are presumably equally
easy to turn off dynamically—we also envision a selectively-
deterministic platform where a user may control in real time
which applications execute“normally”and which ones deter-
ministically. Applications for such a platform would include
development and testing, as well as deployment of systems
where some components must execute deterministically (to
ensure replayability or strongly consistent replication, for
example) while less important components—or highly non-
deterministic legacy code—forgo the modest overhead that
comes with enforcing determinism.

4. CONCLUSION
Implementing determinism in transactional systems need

not simply leverage deterministic primitives of the underly-
ing OS. Rather, concurrency control and commit protocols
of the transactional system can be modified, thereby allow-
ing the transactional system to run on legacy operating sys-
tems for improved performance and robustness to correlated
failures. Such a deterministic database system nonetheless
fits into a deterministic application stack that includes other
tools and applications running on a deterministic OS.

Perhaps surprisingly, running a deterministic transaction
processing system on top of a traditional OS, not only is the
overhead of determinism minimal, but it can actually im-

prove performance relative to traditional (completely nonde-
terministic) approaches due to the ability to omit contention-
increasing distributed commit protocols. As the number of
applications that could profit performance-wise by determin-
istic execution, we expect an increasing number of database
systems to implement deterministic concurrency control in
the future.



5. REFERENCES
[1] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient

system-enforced deterministic parallelism. In OSDI,
2010.

[2] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D.
Grossman. CoreDet: A compiler and runtime system

for deterministic multithreaded execution. In ASPLOS,
2010.

[3] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proc. of
SIGMOD, pages 173-182, 1996.

[4] S. Harizopoulos, D. J. Abadi, S. R. Madden, and M.
Stonebraker. OLTP through the looking glass, and what

we found there. In SIGMOD, Vancouver, Canada, 2008.

[5] K. Krikellas, S. Elnikety, Z. Vagena, and O. Hodson.
Strongly consistent replication for a bargain. In ICDE,
pages 52-63, 2010.

[6] C. A. Polyzois and H. Garcia-Molina. Evaluation of

remote backup algorithms for transaction-processing

systems. ACM Trans. Database Syst., 19(3):423-449,
1994.

[7] A. Thomson and D. J. Abadi. The case for determinism

in database systems. In VLDB, Singapore, 2010.

[8] Tom Bergan, Nick Hunt, L. Ceze, and S. Gribble.
Deterministic process groups in dOS. In OSDI, 2010.


