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Outline

Why?
Definitions (by formula, by picture, by example)

Examples:
Perceptron
Condition numbers (Gaussian Elimination)
Simplex Method
K-means
Decision trees

What you can do, and how.



May be contrived examples on which they fail.

fail to converge
take too long
return wrong answer

Worst-case analysis is not satisfactory.



Attempted fix: Average-case analysis

Measure expected
performance on random inputs.

random graphs
random point sets
random signals

random matrices



Random is not typical




Critique of Average-Case analysis

Actual inputs might not look random.

Random inputs have very special properties
with very high probability.



Smoothed Analysis

Assume randomness/noise in low-order bits

Randomly perturb problem

Problem comes through noisy channel

measurement error
random sampling

arbitrary circumstances

(managers)



Hybrid of worst and average case

Complexity of algorithm : inputs -> time

Worst case: C'(n) = max T(x)
relR"™

Avecase: (C(n)= E [T(r)]

Smoothed: (C(n,o0) = max ];JR | T(z +7o||z|]) |
x reR"™

Gaussian perturbation of std dev o |||




Smoothed Complexity

C'(n,0) = max e]%{” | T(x +ro||x|]) ]

Interpolates between worst and average case
Considers neighborhood of every input

If low, all high complexity is unstable



Complexity Landscape
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Smoothed Complexity Landscape
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Perceptron Algorithm

Given points z; € R* and labels b; € {1, —1}

T

Find w so that sign(w” x;) = b; forall¢

Algorithm: iteratively find violated condition,
and use it to update w

Eventually finds a solution, if one exists



Perceptron Algorithm
(smoothed analysis by Blum-Dunagan ‘02)

Given points z; € R* and labels b; € {1, —1}

TLEZ') = b; for allz

Find w so that sign(w
Perturbation:
T, =x; + 10 ||z
r; a Gaussian random vector
Theorem: if solution exists

Prob[# steps > O(d°m?/c%6°)] < §



Smoothed Margin
Margin = angle separating pos from neg examples
Block-Novikoff:

Perceptron converges in
O(1/6%) iterations.

Blum-Dunagan:

Prob[ margin < € ] < O(md*®°¢/o)



Smoothed Margin (simplified)

Assume data is separable by w,
and re-label when perturb

Perturbation: ;= x; + 10 ||z

~

b; = sign(w; y;)

Analysis: is unlikely that any x; gets close to
separating plane




Smoothed Margin (simplified)

Assume data is separable by w,
and re-label when perturb

Perturbation: ;= x; + 10 ||z

~

b; = sign(w; y;)

Analysis: is unlikely that any z, gets close to
separating plane

Prob[dist <€] < €/0 i

density of z;



Smoothed Margin (simplified)

Assume data is separable by w,
and re-label when perturb

Perturbation: v = z; + rio ||z

¢; = sign(w; y;)

Analysis: is unlikely that any z, gets close to
separating plane

Prob[dist <€] < €/0

density of x;



Explain where going from here

Body text



Condition Numbers

Measure maximum of
norm(change in output)

norm(change in input)
Or, 1/(distance to ill-posed problem)
1/margin is a condition number
Perturbed problems usually

have small condition number, and
are not to close to ill-posed problems



The Matrix Condition Number
K(A) = ||A| [|A™H]

The ratio of largest to smallest singular values.
Condition number for problem Az = b
Focus on ||A7Y|| = 1/0min(A)

As [l All =~ || A]



Estimating Smoothed Condition Number

Approximately aspect ratio of
simplex formed by vectors
in columns, and origin.

max ||a|

min 4;




Probability of Large Condition Number

Unlikely, as large ||a;|| very unlikely,
and small ; not too likely,
because Gaussian point unlikely near plane




Smoothed Analysis of ||[A7]]

Edelman:
for standard Gaussian random matrix G

Vd

Prllc™H > ] < —

Sankar-S-Teng:
for A=A+ oG
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Geometry of ||A~%|

A: . A_1=X= L1 &2 == Iqn

i T

1
A X = :
L1 = : ‘ lzall = dist (a1, Span (ag, . .., an))

0



Geometry of ||A7!|| (A7 = X)

1
1l = dist (a1, Span (az, ... ,an))

2
Pr(dist (a1, Span (az,...,an)) < €| < \/;—

ag

2 d .
Pr [ﬂlﬁx ”ﬂ*z’” e ?{I E — (union bound)
' T to
2 dafE h should be d¥/2

Pr{A7 > ] <4/=

T to
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Improving bound on [|47}|

_ 21
o |lpf =1 Pr[|A7] 2] <

?rta'

Apply to random b

Pr | |4~ 1p| > Al ] > const
|A™70|| = v’_" |

conjecture

Pr [||A-1p| > 2
eflat 2 < U4 2 G| Daava

const t

So




Gaussian Elimination w/ Partial Pivoting

>> A = randn(2) > X = A\ Db
A = X =
-0.4326 0.1253 -5.6821
-1.6656 0.2877 -28.7583
>> b = randn(2,1) >> norm(A*x - b)
b = ans =
-1.1465 8.0059e-016

1.1909



Gaussian Elimination w/ Partial Pivoting

>>
>>
>>
>>
>>

A = 2*eye(70) - tril(ones(70));
A(:,70) = 1;

b =

ans =

3.5340e+004 > Failed!

randn(70,1);
X = A\ b;
norm(A*x - b)
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Gaussian Elimination w/ Partial Pivoting

>> A = 2*%eye(70) - tril(ones(70));
>> A(:,70) = 1;

>> p = randn(70,1);

>> X = A\ b;

>> norm(A*x - b)

ans =

3.5340e+004 > Failed!

>> Ap = A + randn(70) / 1079; Perturb A
>> X = Ap \ Db;
>> norm(Ap*x - b)
ans =
5.8950e-015



Gaussian Elimination w/ Partial Pivoting

>> p = randn(70,1);
>> X = A\ Db;

>> norm(A*x - b)
ans =

3.5340e+004 > Failed!

>> Ap = A + randn(70) 7/ 10M9; Perturb A
>> X = Ap \ Db;
>> norm(Ap*x - b)
ans =
5.8950e-015

>> norm(A*x - b)
ans =
3.6802e-008 Solved original too!



Gaussian Elimination with Partial Pivoting

Fast heuristic for maintaining precision,
by trying to keep entries small

Pivot not just on zeros,
but to move up entry of largest magnitude

-1 6 3 2 -3 —4
1—4—1>< 1 —4 -1
2 -3 —4 -1 6 3

- .

2 -3 —4 2 -3 —4
0 —5/2 1 0 9/2 1
(o 9/2 1)><<0 —5/2 1)



Gaussian Elimination with Partial Pivoting

“Gaussian elimination with partial pivoting is utterly stable in
practice. In fifty years of computing, no matrix problems that
excite an explosive instability are know to have arisen under
natural circumstances ...

Matrices with large growth factors are vanishingly rare in

applications.”
Nick Trefethen



Gaussian Elimination with Partial Pivoting

“Gaussian elimination with partial pivoting is utterly stable in
practice. In fifty years of computing, no matrix problems that
excite an explosive instability are know to have arisen under
natural circumstances ...

Matrices with large growth factors are vanishingly rare in

applications.”
Nick Trefethen

Theorem:
Pr [Growth > z(n/o)%| < z~ '°&F

[Sankar-S-Teng]



Simplex Method for Linear Programming

maX cf =z
S1. Az <b

Worst-Case: exponential
Average-Case: polynomial
Widely used in practice



Smoothed Analysis of Simplex Method

max clz I max el z
st. Az <b s.t. (A+0|A||G)z <b

G I1s Gausslian

I

Theorem: For all A, b, ¢, simplex method takes
expected time polynomial in m,n,1/o



Shadow Vertices

0.5
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Another shadow
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Shadow vertex pivot rule

start

objective
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Theorem: For every plane, the
expected size of the shadow of the
perturbed tope is poly(m,d,1/o)




Theorem: For every £, two-Phase
Algorithm runs in expected time
poly(m,d,1/o)
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A Local condition for optimality

\Vertex on ay,...,
maximizes z iff

Z € cone(ay,...,

41



Primal
a,'x <1
a,’'x <1

Polar

- ConvexHull(a,, a,, ...

)

42






Polar Linear Program

max o
az € ConvexHull(a,, a,, ..., &)
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Opt
Simplex

Initial Simplex |



Shadow vertex pivot rule

46






Count facets by discretizing
to N directions, N - 79

i

=

A\




Count pairs In different facets

\\y/ - prf]<on
IR

S0, expect ¢ Facets




Expect cone of large angle




Distance

\
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Isolate on one Simplex

4
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Integral Formulation

(/b lebﬂ'(l)) < T} .U:ﬂ-(z') (bﬂ-(z)) (lbﬁ(l)) .
v V(i)

[z € Cone(w, 1, c1,...,¢q)] [ang (2, 0Simplex (cy, ..., ¢q)) < €
JC1,...,C4

d
Hy;"’r(cz-)VOI(Simplex (c1,...,¢q)) dwdrde; --- deg
1=1

53



Example:

For a and b Gaussian distributed points,
given that ab intersects x-axis

Prob[6 < g] = O(&?)

54
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P.=Pr[0 < ¢ | abn axis = 0]

= j [0<e][ab  axis = 0] u,(a) 1 (b)dadb

Claim: Fore<g P <&

61



Change of variables

da db = |(u+V)sin(@)| du dv dz d@

o (@) ——> v, (U, z,0)
1, (0) ——vy(v,z,0)
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Analysis: Fore<g P,< &

P.=c [(u+V) [|SIN(6)|v,(u,z,6)v,(v,z,6)dudvdzde

u,v,z O<¢&

Slight change in & has little effect on v,
for all but very rare u,v,z

63



Distance:
Gaussian distributed corners




Idea: fix by perturbation

D
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