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Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values 
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Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values 

Take	derivatives.	Minimize	by	solving	Laplacian
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G = (V,E)
X

(a,b)2E

(x(a)� x(b))2
x : V ! R
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Graphs with positive edge weights
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View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.
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Induced voltages minimize                                
subject to constraints.
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Nail down some vertices, let rest settle

View edges as rubber bands or ideal linear springs

Spring Networks

When stretched to length 
potential energy is 

`

�2/2



Nail down some vertices, let rest settle

Physics: position minimizes total potential energy

subject to boundary constraints (nails)

Spring Networks
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(Tutte ’63)Drawing by Spring Networks



Drawing by Spring Networks (Tutte ’63)
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If the graph is planar,
then the spring drawing
has no crossing edges!

Drawing by Spring Networks (Tutte ’63)
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A n-by-n symmetric matrix has n
real eigenvalues
and eigenvectors such that

�1 � �2 · · · � �n

v1, ..., vn

These eigenvalues and eigenvectors tell us
a lot about a graph!

Lvi = �ivi

Spectral Graph Theory



A n-by-n symmetric matrix has n
real eigenvalues
and eigenvectors such thatv1, ..., vn

These eigenvalues and eigenvectors tell us
a lot about a graph!

(excluding                              )

Lvi = �ivi

Spectral Graph Theory

�1 = 0, v2 =

�1 � �2 · · · � �n
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Plot vertex    at
draw edges as straight lines 
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Best embedded by first three eigenvectors

Dodecahedron



Erdos’s co-authorship graph 



Most edges are short
Vertices are spread out and don’t clump too much

is close to 0�2

When      is big, say         
there is no nice picture of the graph

�2 > 10/ |V |1/2

When there is a “nice” drawing
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Measuring boundaries of sets

Boundary: edges leaving a set
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Boundary: edges leaving a set
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Measuring boundaries of sets



X

(a,b)2E

(x(a)� x(b))

2

= |boundary(S)|

Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

Measuring boundaries of sets

x(a) =

(
1 a in S

0 a not in S



Find large sets of small boundary
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Spectral Clustering and Partitioning



for some

(Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ’92)

S = {a : v2(a) � t} t
Cheeger’s inequality implies good approximation

Spectral Partitioning
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Spectral Partitioning
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The Laplacian Matrix of a Graph
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The Laplacian Matrix of a Graph



Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers



Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations



Where m is number of non-zeros and n is dimension

Cohen, Kyng, Pachocki, Peng, Rao ’14:
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Cohen, Kyng, Pachocki, Peng, Rao ’14:

O(m log
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Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Good code:
LAMG (lean algebraic multigrid) – Livne-Brandt
CMG (combinatorial multigrid) – Koutis



An   -accurate solution to                 
is an satisfying

where 

LGx = b

✏

kvkLG
=

p
vTLGv = ||L1/2

G v||

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kex� xkLG
 ✏ kxkLG

ex



An   -accurate solution to                 
is an satisfying

LGx = b

✏

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kex� xkLG
 ✏ kxkLG

ex

Allows fast computation of eigenvectors
corresponding to small eigenvalues.



Laplacians appear when solving Linear Programs on
on graphs by Interior Point Methods

Maximum and Min-Cost Flow       (Daitch, S ’08, Mądry ‘13)

Shortest Paths             (Cohen, Mądry, Sankowski, Vladu ‘16)

Isotonic Regression                    (Kyng, Rao, Sachdeva ‘15) 

Lipschitz Learning : regularized interpolation on graphs
(Kyng, Rao, Sachdeva, S ‘15)

Laplacians in Linear Programming



Interior Point Method for Maximum s-t Flow

maximize

subject to  

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

s t/1

/3

/4/1

/1



Interior Point Method for Maximum s-t Flow

maximize

subject to  
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Interior Point Method for Maximum s-t Flow

maximize

subject to  

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

maximize

subject to  

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
X

(a,b)2E

w
a,b

f(a, b)2  C

Multiple calls with varying weights  wa,b



Spectral Sparsification

Every graph can be approximated 
by a sparse graph with a similar Laplacian



for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG



for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

Preserves boundaries of every set 



Solutions to linear equations are similar

As are effective resistances

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG () L�1
H ⇡✏ L

�1
G



Expanders Sparsify Complete Graphs

Yield good LDPC codes

Every set of vertices has large boundary

is large�2

Random regular graphs are usually expanders



Assign a probability pa,b to each edge (a,b)

Include edge (a,b) in H with probability pa,b.

If include edge (a,b), give it weight wa,b /pa,b

Sparsification by Random Sampling

E [ LH ] =
X

(a,b)2E

pa,b(wa,b/pa,b)La,b = LG



Choose pa,b to be wa,b times the 
effective resistance between a and b.

Low resistance between a and b means there
are many alternate routes for current to flow and
that the edge is not critical.

Proof by random matrix concentration bounds
(Rudelson, Ahlswede-Winter, Tropp, etc.)

Only need                        edges 

Sparsification by Random Sampling

O(n log n/✏2)

(S, Srivastava ‘08)



For every                       , there is a                       s.t.G = (V,E,w) H = (V, F, z)

and

(Batson, S, Srivastava ‘09)

|F |  (2 + ✏)2n/✏2LG ⇡✏ LH

Optimal Graph Sparsification?

Is within a factor of 2 of how well 
Ramanujan expanders approximate complete graphs



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Gaussian Elimination:
compute upper triangular U so that

LG = UTU

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

LG ⇡ UTU



Find 𝑈, upper triangular matrix, s.t 𝑈"𝑈 = 𝐴
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Additive view of  Gaussian Elimination
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Additive view of  Gaussian Elimination
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Additive view of  Gaussian Elimination
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Additive view of  Gaussian Elimination

Find the rank-1 matrix that agrees on the next row and column.
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Additive view of  Gaussian Elimination

Subtract the rank 1 matrix.
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We have eliminated the second variable.



Additive view of  Gaussian Elimination

Running time proportional to sum of squares
of number of non-zeros in these vectors. 
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Additive view of  Gaussian Elimination
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Additive view of  Gaussian Elimination
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Gaussian Elimination of  Laplacians
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If this is a Laplacian,                             then so is this
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Gaussian Elimination of  Laplacians

If this is a Laplacian,                             then so is this
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When eliminate a node, add a clique on its neighbors



Approximate Gaussian Elimination
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1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

(Kyng & Sachdeva ‘16)



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1. When eliminate a node of degree d,
add d edges at random between its neighbors, 
sampled with probability proportional to 
the weight of the edge to the eliminated node

1



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0.  Initialize by randomly permuting vertices, and 
making                 copies of every edgeO(log

2 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors, 
sampled with probability proportional to 
the weight of the edge to the eliminated node

Total time is O(m log

3 n)



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0.  Initialize by randomly permuting vertices, and 
making                 copies of every edgeO(log

2 n)

Total time is O(m log

3 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors, 
sampled with probability proportional to 
the weight of the edge to the eliminated node

Can be improved by sacrificing some simplicity 



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Analysis by Random Matrix Theory:

Write UTU as a sum of random matrices.

Random permutation and copying 
control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11) 

E
⇥
UTU

⇤
= LG



Other families of linear systems

complex-weighted Laplacians

connection Laplacians

✓
1 ei✓

e�i✓ 1

◆

✓
I Q
QT I

◆

Recent Developments

(Kyng, Lee, Peng, Sachdeva, S ‘16)

Laplacians.jl



To learn more

My web page on:
Laplacian linear equations, sparsification, local graph 
clustering, low-stretch spanning trees, and so on.

My class notes from 
“Graphs and Networks” and “Spectral Graph Theory”

Lx = b, by Nisheeth Vishnoi


