
The Laplacian Matrices of Graphs

ISIT, July 12, 2016

Daniel A. Spielman

Laplacians
Interpolation on graphs
Resistor networks
Spring networks
Graph drawing
Clustering
Linear programming

Sparsification

Solving Laplacian Equations
Best results
The simplest algorithm

Outline

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2 = x

T
Lx

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

Take	derivatives.	Minimize	by	solving	Laplacian

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2 = x

T
Lx

G = (V,E)
X

(a,b)2E

(x(a)� x(b))2
x : V ! R

1

0

0.51

0.61

0.53

0.30

The Laplacian Quadratic Form of

X

(a,b)2E

(x(a)� x(b))2
x : V ! R

1

0

0.51

0.61

0.53

0.30

(0.53)2

(0.49)2

(0.39)2

(0.31)2

The Laplacian Quadratic Form of G = (V,E)

Graphs with positive edge weights

X

(a,b)2E

wa,b(x(a)� x(b))2 = x

T
LGx

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

1V

0V

Resistor Networks

Induced voltages minimize
subject to constraints.

1V

0V

Resistor Networks
X

(a,b)2E

(x(a)� x(b))2

0V

0.5V

0.5V

0.625V0.375V

1V

X

(a,b)2E

(x(a)� x(b))2

0V

1V

Induced voltages minimize
subject to constraints.

Resistor Networks

1V

0V

0.5V

0.5V

0.625V0.375V

(0.5)2

(0.5)2
(0.

5)
2

(0
.5)
2

(0.375) 2
(0.
12
5)
2

(0.25)2

(0.125) 2

(0.375)2

1V

X

(a,b)2E

(x(a)� x(b))2

0V

1V

Induced voltages minimize
subject to constraints.

Resistor Networks

X

(a,b)2E

(x(a)� x(b))2

1V

0V

0.5V

0.5V

0.625V0.375V

1V

0V

1V

Effective resistance = 1/(current flow at one volt)

Induced voltages minimize
subject to constraints.

Resistor Networks

0.5

0.5 0.375

0.25

Nail down some vertices, let rest settle

View edges as rubber bands or ideal linear springs

Spring Networks

When stretched to length
potential energy is

`

�2/2

Nail down some vertices, let rest settle

Physics: position minimizes total potential energy

subject to boundary constraints (nails)

Spring Networks

1

2

X

(a,b)2E

(x(a)� x(b))2

(Tutte ’63)Drawing by Spring Networks

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

If the graph is planar,
then the spring drawing
has no crossing edges!

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

A n-by-n symmetric matrix has n
real eigenvalues
and eigenvectors such that

�1 � �2 · · · � �n

v1, ..., vn

These eigenvalues and eigenvectors tell us
a lot about a graph!

Lvi = �ivi

Spectral Graph Theory

A n-by-n symmetric matrix has n
real eigenvalues
and eigenvectors such thatv1, ..., vn

These eigenvalues and eigenvectors tell us
a lot about a graph!

(excluding)

Lvi = �ivi

Spectral Graph Theory

�1 = 0, v2 =

�1 � �2 · · · � �n

(Hall ’70)

3
1 2

4

5
6 7

8 9

Spectral Graph Drawing

Original
Drawing

Plot vertex at
draw edges as straight lines

(v2(a), v3(a))a

3
1 2

4

5
6 7

8 9

1
2

4

5

6

9

3

8

7

(Hall ’70)Spectral Graph Drawing

Original
Drawing

Spectral
Drawing

(Hall ’70)Spectral Graph Drawing

Original
Drawing

Spectral
Drawing

Original
Drawing

Spectral
Drawing

(Hall ’70)Spectral Graph Drawing

Best embedded by first three eigenvectors

Dodecahedron

Erdos’s co-authorship graph

Most edges are short
Vertices are spread out and don’t clump too much

is close to 0�2

When is big, say
there is no nice picture of the graph

�2 > 10/ |V |1/2

When there is a “nice” drawing

SS

Measuring boundaries of sets

Boundary: edges leaving a set

x(a) =

(
1 a in S

0 a not in S

Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

Measuring boundaries of sets

X

(a,b)2E

(x(a)� x(b))

2

= |boundary(S)|

Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

Measuring boundaries of sets

x(a) =

(
1 a in S

0 a not in S

Find large sets of small boundary

S

0.2

-0.20
0.4

-1.1
0.5

0.8

0.81.1
1.0

1.6
1.3

0.9

0.7
-0.4

-0.3

1.3

S
0.5

Heuristic to find
x with small

Compute eigenvector

Consider the level sets

LGv2 = �2v2

x

T
LGx

Spectral Clustering and Partitioning

for some

(Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ’92)

S = {a : v2(a) � t} t
Cheeger’s inequality implies good approximation

Spectral Partitioning

for some

(Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ’92)

S = {a : v2(a) � t} t
Cheeger’s inequality implies good approximation

Spectral Partitioning

2

1 4
3 5

6

0

BBBBBB@

3 �1 �1 �1 0 0
�1 2 0 0 0 �1
�1 0 3 �1 �1 0
�1 0 �1 4 �1 �1
0 0 �1 �1 3 �1
0 �1 0 �1 �1 3

1

CCCCCCA

Symmetric

Non-positive
off-diagonals

Diagonally dominant

The Laplacian Matrix of a Graph

LG =
X

(a,b)2E

wa,bLa,b

x

T
LGx =

X

(a,b)2E

wa,b(x(a)� x(b))2

L1,2 =

✓
1 �1
�1 1

◆

=

✓
1
�1

◆�
1 �1

�

The Laplacian Matrix of a Graph

Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

Cohen, Kyng, Pachocki, Peng, Rao ’14:

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

eO(m log

1/2 n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Cohen, Kyng, Pachocki, Peng, Rao ’14:

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

eO(m log

1/2 n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Good code:
LAMG (lean algebraic multigrid) – Livne-Brandt
CMG (combinatorial multigrid) – Koutis

An -accurate solution to
is an satisfying

where

LGx = b

✏

kvkLG
=

p
vTLGv = ||L1/2

G v||

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kex� xkLG
 ✏ kxkLG

ex

An -accurate solution to
is an satisfying

LGx = b

✏

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kex� xkLG
 ✏ kxkLG

ex

Allows fast computation of eigenvectors
corresponding to small eigenvalues.

Laplacians appear when solving Linear Programs on
on graphs by Interior Point Methods

Maximum and Min-Cost Flow (Daitch, S ’08, Mądry ‘13)

Shortest Paths (Cohen, Mądry, Sankowski, Vladu ‘16)

Isotonic Regression (Kyng, Rao, Sachdeva ‘15)

Lipschitz Learning : regularized interpolation on graphs
(Kyng, Rao, Sachdeva, S ‘15)

Laplacians in Linear Programming

Interior Point Method for Maximum s-t Flow

maximize

subject to

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

s t/1

/3

/4/1

/1

Interior Point Method for Maximum s-t Flow

maximize

subject to

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

s t1/1

2/3

2/41/1

1/1

3 3

Interior Point Method for Maximum s-t Flow

maximize

subject to

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

maximize

subject to

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
X

(a,b)2E

w
a,b

f(a, b)2  C

Multiple calls with varying weights wa,b

Spectral Sparsification

Every graph can be approximated
by a sparse graph with a similar Laplacian

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

Preserves boundaries of every set

Solutions to linear equations are similar

As are effective resistances

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG () L�1
H ⇡✏ L

�1
G

Expanders Sparsify Complete Graphs

Yield good LDPC codes

Every set of vertices has large boundary

is large�2

Random regular graphs are usually expanders

Assign a probability pa,b to each edge (a,b)

Include edge (a,b) in H with probability pa,b.

If include edge (a,b), give it weight wa,b /pa,b

Sparsification by Random Sampling

E [LH] =
X

(a,b)2E

pa,b(wa,b/pa,b)La,b = LG

Choose pa,b to be wa,b times the
effective resistance between a and b.

Low resistance between a and b means there
are many alternate routes for current to flow and
that the edge is not critical.

Proof by random matrix concentration bounds
(Rudelson, Ahlswede-Winter, Tropp, etc.)

Only need edges

Sparsification by Random Sampling

O(n log n/✏2)

(S, Srivastava ‘08)

For every , there is a s.t.G = (V,E,w) H = (V, F, z)

and

(Batson, S, Srivastava ‘09)

|F |  (2 + ✏)2n/✏2LG ⇡✏ LH

Optimal Graph Sparsification?

Is within a factor of 2 of how well
Ramanujan expanders approximate complete graphs

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Gaussian Elimination:
compute upper triangular U so that

LG = UTU

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

LG ⇡ UTU

Find 𝑈, upper triangular matrix, s.t 𝑈"𝑈 = 𝐴
0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA𝐴 =

Additive view of Gaussian Elimination

Additive view of Gaussian Elimination

�

���

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

�

��� =

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�
Find the rank-1 matrix that agrees on the first row and column.

�

���

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

�

���

�

���

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

�

���

Additive view of Gaussian Elimination
�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

Subtract the rank 1 matrix.
We have eliminated the first variable.�

���

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

�

���

�

���

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

�

��� � =

Additive view of Gaussian Elimination
�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

Additive view of Gaussian Elimination

Find the rank-1 matrix that agrees on the next row and column.

�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

�

���

0 0 0 0
0 4 �2 �2
0 �2 1 1
0 �2 1 1

�

��� =

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

Additive view of Gaussian Elimination

Subtract the rank 1 matrix.

�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

�

���

0 0 0 0
0 4 �2 �2
0 �2 1 1
0 �2 1 1

�

���

�

�

���

0 0 0 0
0 0 0 0
0 0 9 �3
0 0 �3 5

�

���=

We have eliminated the second variable.

Additive view of Gaussian Elimination

Running time proportional to sum of squares
of number of non-zeros in these vectors.

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�

+

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

+

�

���

0
0
3

�1

�

���

�

���

0
0
3

�1

�

���

�

+

�

���

0
0
0
2

�

���

�

���

0
0
0
2

�

���

�

𝐴 =

Additive view of Gaussian Elimination

=

�

���

4 0 0 0
�1 2 0 0
�2 �1 3 0
�1 �1 �1 2

�

���

�

���

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

�

���

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�

+

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

+

�

���

0
0
3

�1

�

���

�

���

0
0
3

�1

�

���

�

+

�

���

0
0
0
2

�

���

�

���

0
0
0
2

�

���

�

𝐴 =

Additive view of Gaussian Elimination
0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�

+

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

+

�

���

0
0
3

�1

�

���

�

���

0
0
3

�1

�

���

�

+

�

���

0
0
0
2

�

���

�

���

0
0
0
2

�

���

�

𝐴 =

=

�

���

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

�

���

� �

���

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

�

��� = 𝑈" 𝑈

Gaussian Elimination of Laplacians

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

=

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

If this is a Laplacian, then so is this

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

=

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

Gaussian Elimination of Laplacians

If this is a Laplacian, then so is this

2

1 4

3 6

54

8

4 1
2

4

3 6

5

22
2

When eliminate a node, add a clique on its neighbors

Approximate Gaussian Elimination

2

1 4

3 6

54

8

4 1
2

4

3 6

5

22
2

1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

(Kyng & Sachdeva ‘16)

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1. When eliminate a node of degree d,
add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

1

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0. Initialize by randomly permuting vertices, and
making copies of every edgeO(log

2 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

Total time is O(m log

3 n)

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0. Initialize by randomly permuting vertices, and
making copies of every edgeO(log

2 n)

Total time is O(m log

3 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

Can be improved by sacrificing some simplicity

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Analysis by Random Matrix Theory:

Write UTU as a sum of random matrices.

Random permutation and copying
control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11)

E
⇥
UTU

⇤
= LG

Other families of linear systems

complex-weighted Laplacians

connection Laplacians

✓
1 ei✓

e�i✓ 1

◆

✓
I Q
QT I

◆

Recent Developments

(Kyng, Lee, Peng, Sachdeva, S ‘16)

Laplacians.jl

To learn more

My web page on:
Laplacian linear equations, sparsification, local graph
clustering, low-stretch spanning trees, and so on.

My class notes from
“Graphs and Networks” and “Spectral Graph Theory”

Lx = b, by Nisheeth Vishnoi

