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Interpolate values of a function at all vertices
from given values at a few vertices.
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Subject to given values 
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Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values 

Take	derivatives.	Minimize	by	solving	Laplacian
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The Laplacian Quadratic Form
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The Laplacian Matrix of  a Graph



Nail down some vertices, let rest settle

View edges as rubber bands or ideal linear springs

In equilibrium, nodes are averages of neighbors.

Spring Networks



Nail down some vertices, let rest settle

View edges as rubber bands or ideal linear springs

Spring Networks

When stretched to length 
potential energy is 

`

�2/2



Nail down some vertices, let rest settle

Physics: position minimizes total potential energy

subject to boundary constraints (nails)

Spring Networks
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Interpolate values of a function at all vertices
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Spring Networks

In the solution, variables are the average of their neighbors



(Tutte ’63)Drawing by Spring Networks



Drawing by Spring Networks (Tutte ’63)
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Drawing by Spring Networks (Tutte ’63)



Drawing by Spring Networks (Tutte ’63)



If the graph is planar,
then the spring drawing
has no crossing edges!

Drawing by Spring Networks (Tutte ’63)
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Drawing by Spring Networks (Tutte ’63)
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Measuring boundaries of sets

Boundary: edges leaving a set



Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

x(i) =

(
1 i in S

0 i not in S

Measuring boundaries of sets
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Find large sets of small boundary
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Laplacian Matrices of Weighted Graphs
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B is the signed edge-vertex adjacency matrix
with one row for each

W is the diagonal matrix of weights

LG =
X
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T
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bi,j

wi,j

LG = BTWB

Laplacian Matrices of Weighted Graphs

where bi,j = ei � ej



LG = BTWB

Laplacian Matrices of Weighted Graphs
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Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers
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Quickly Solving Laplacian Equations



Where m is number of non-zeros and n is dimension

Cohen, Kyng, Pachocki, Peng, Rao ’14:
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Quickly Solving Laplacian Equations



Cohen, Kyng, Pachocki, Peng, Rao ’14:
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Quickly Solving Laplacian Equations

Good code:
LAMG (lean algebraic multigrid) – Livne-Brandt
CMG (combinatorial multigrid) – Koutis



An   -accurate solution to                 
is an x satisfying

where 

LGx = b
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p
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Quickly Solving Laplacian Equations
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An   -accurate solution to                 
is an x satisfying

LGx = b

✏

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kx� x

⇤kLG
 ✏ kx⇤kLG

Allows fast computation of eigenvectors
corresponding to small eigenvalues.



Laplacians appear when solving Linear Programs on
on graphs by Interior Point Methods

Lipschitz Learning : regularized interpolation on graphs
(Kyng, Rao, Sachdeva,S ‘15)

Maximum and Min-Cost Flow       (Daitch, S ’08, Mądry ‘13)

Shortest Paths             (Cohen, Mądry, Sankowski, Vladu ‘16)

Isotonic Regression                    (Kyng, Rao, Sachdeva ‘15)

Laplacians in Linear Programming



(Ayer et. al. ‘55)Isotonic Regression
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Isotonic Regression
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Estimate by
nearest neighbor?

We want the estimate to be monotonically increasing  

(Ayer et. al. ‘55)



Isotonic Regression
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Isotonic Regression
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Given                   find the isotonic x minimizingy : V ! R kx� yk1

(Kyng, Rao, Sachdeva ’15)
Fast IPM for Isotonic Regression



Given                   find the isotonic x minimizingy : V ! R kx� yk1

or                 for any

in time   

kx� ykp p > 1

O(m3/2
log

3 m)

(Kyng, Rao, Sachdeva ’15)
Fast IPM for Isotonic Regression



Signed edge-vertex incidence matrix

x is isotonic if 
Bx  0

B =

0
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0 0 0 0 0 1 �1
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Linear Program for Isotonic Regression



Given y, minimize

subject to  
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Linear Program for Isotonic Regression



Bx  0

|xi � yi| = ri

Given y, minimize

subject to  
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with positive diagonal matrices S0, S1, S2

Linear Program for Isotonic Regression
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Kyng, Rao, Sachdeva ’15: 
Reduce to solving Laplacians to constant accuracy 

Linear Program for Isotonic Regression



Spectral Sparsification

Every graph can be approximated 
by a sparse graph with a similar Laplacian



for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG



for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

Preserves boundaries of every set 



Solutions to linear equations are similiar

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs
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Spectral Sparsification

Every graph G has an -approximation H
with                      edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)



Spectral Sparsification

Every graph G has an -approximation H
with                      edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)

Random regular graphs approximate complete graphs 



Fast Spectral Sparsification

(S & Srivastava ‘08)  
If sample each edge with probability 
inversely proportional to its effective spring constant,
only need                          samples

Takes time                         (Koutis, Levin, Peng ‘12)

O(n log n/✏2)

(Lee & Sun ‘15)  
Can find an   -approximation with               edges in 
time               for every 

O(n/✏2)✏
O(n1+c) c > 0

O(m log

2 n)



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Gaussian Elimination:
compute upper triangular U so that

LG = UTU

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

LG ⇡ UTU



Gaussian Elimination

1. Find the rank-1 matrix that agrees 
on the first row and column

2. Subtract it
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Gaussian Elimination
1. Find the rank-1 matrix that agrees 

on the first row and column

2. Subtract it
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3. Repeat



Gaussian Elimination

1. Find the rank-1 matrix that agrees 
on the next row and column

2. Subtract it
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Gaussian Elimination
1. Find the rank-1 matrix that agrees 
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Gaussian Elimination
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Gaussian Elimination
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Gaussian Elimination
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Gaussian Elimination
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Computation time proportional to the 
sum of the squares of the number of nonzeros

in these vectors



Gaussian Elimination of  Laplacians
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If this is a Laplacian,                             then so is this
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Gaussian Elimination of  Laplacians

If this is a Laplacian,                             then so is this
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When eliminate a node, add a clique on its neighbors



Approximate Gaussian Elimination
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1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

(Kyng & Sachdeva ‘16)



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1. When eliminate a node of degree d,
add d edges at random between its neighbors, 
sampled with probability proportional to 
the weight of the edge to the eliminated node

1



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0.  Initialize by randomly permuting vertices, and 
making                 copies of every edgeO(log

2 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors, 
sampled with probability proportional to 
the weight of the edge to the eliminated node

Total time is O(m log

3 n)



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0.  Initialize by randomly permuting vertices, and 
making                 copies of every edgeO(log

2 n)

Total time is O(m log

3 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors, 
sampled with probability proportional to 
the weight of the edge to the eliminated node

Can be improved by sacrificing some simplicity 



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Analysis by Random Matrix Theory:

Write UTU as a sum of random matrices.

Random permutation and copying 
control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11) 

E
⇥
UTU

⇤
= LG



Other families of linear systems

complex-weighted Laplacians

connection Laplacians

✓
1 ei✓

e�i✓ 1

◆

✓
I Q
QT I

◆

Recent Developments

(Kyng, Lee, Peng, Sachdeva, S ‘16)

Laplacians.jl



To learn more

My web page on:
Laplacian linear equations, sparsification, local graph 
clustering, low-stretch spanning trees, and so on.

My class notes from 
“Graphs and Networks” and “Spectral Graph Theory”

Lx = b, by Nisheeth Vishnoi


