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Interpolation on Graphs (Zhu,Ghahramani,Lafferty *03)

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize Y (2(i) — z(j))
(i,§)EE
Subject to given values
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Interpolation on Graphs (Zhu,Ghahramani,Lafferty *03)

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize Z (z(i) — z(§))* = 2! Loz
(4,5)€E
Subject to given values

0.51}020\ ANAPC10 1
0O cDbc27 ANAPC2 %3
0.30 ANAPC5 UBE2C (.61

Take derivatives. Minimize by solving Laplacian
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The Laplacian Quadratic Form
> (@) —=(5))
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The Laplacian Matrix ot a Graph




Spring Networks

View edges as rubber bands or ideal linear springs

Nail down some vertices, let rest settle

o womwd

In equilibrium, nodes are averages of neighbors.



Spring Networks

View edges as rubber bands or ideal linear springs

Nail down some vertices, let rest settle

o womwd

When stretched to length /
potential energy is ¢~ /2



Spring Networks

Nail down some vertices, let rest settle

o womwd

Physics: position minimizes total potential energy

= Y (2(i) — 2(5))°

(1,j)EE

subject to boundary constraints (nails)



Spring Networks

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize Z (z(i) — z(§))* = 2! Loz
(i,5)€eE
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Spring Networks

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize Z (z(i) — z(§))* = 2! Loz

(i,j)EE f
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Spring Networks

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize Z (z(i) — z(§))* = 2! Loz

(1,j)EE
0.51

CDC20 ANAPC10
/ 1
CDC27 ANAPC2
0 —un__ 0.53 \
ANAPC5 UBE2C
0.30 0.61

In the solution, variables are the average of their neighbors



Drawing by Spring Networks (Tutte *63)
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Drawing by Spring Networks (Tutte *63)




Drawing by Spring Netw?rks (Tutte *63)
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Drawing by Spring Netw?rks (Tutte *63)




Drawing by Spring Net\xﬁrks (Tutte *63)

If the graph is planar,
then the spring drawing
has no crossing edges!




Drawing by Spring Net\xﬁrks (Tutte *63)




Drawing by Spring Networks (Tutte *63)




Drawi}?g by Spring Networks (Tutt 3)
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Drawi}?g by Spring Networks



Measuring boundaries of sets

Boundary: edges leaving a set




Measuring boundaries of sets

Boundary: edges leaving a set

Characteristic Vector of S:

r

1 2in S
0O 72 notin S
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Measuring boundaries of sets

Boundary: edges leaving a set

Characteristic Vectorof §: _—— o _)-----

/

1 72in S
O 2notin S

(i,J)eE
= |boundary(.5)]




Spectral Clustering and Partitioning

Find large sets of small boundary

Heuristic to find
r with 21 Loz small

Compute eigenvector
Lagua = Agv9

Consider the level sets



The Laplacian Matrix of a Graph

<4
& ¢

( 3 1 -1 -1 0 0\ Symmetric
-1 2 0 0 0CD
-1 0 3 -1 -1 0 Non-positive
-1 0 —1 4 -1 -1 off-diagonals
0 0 —1 3 —1
\ 0 @ 0 -1 -1 3 ) Diagonally dominant



The Laplacian Matrix of a Graph
' Ler= ) (x(i) — x(j))




Laplacian Matrices of Weighted Graphs
z' Loz = Z wi j(2(i) — (7))

(i,j)EE

T )
E w;, (b, ;0; ;) where b; ; = ¢e; — ¢;
(4,)eE



Laplacian Matrices of Weighted Graphs

LG — Z Wi 4 (bz,]sz) where b@j = €; — €
(2,)eE

Lo=B'"WB

B is the signed edge-vertex adjacency matrix
with one row for each b, ;

Wis the diagonal matrix of weights w; ;



Laplacian Matrices of Weighted Graphs

Z w; j(b; ;L) Lo=B'WB
(,J)EE
1 -1 0 0 0 0
([fo 1 0 0 0 -1
9_6 1 0 0 -1 0 0
/ o 0 0 1 0 -1
B=|1 0 -1 0 0 0
\ 0 0 1 -1 0 0
6 e 0 0 1 0 -1 0
0 0 0 1 —1 0
\0 0 0 o0 1 -1




Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

O(mlog®nloge 1)

Where m is number of non-zeros and n is dimension
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Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

O(mlog®nloge 1)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

O(mlognloge™ )

Cohen, Kyng, Pachocki, Peng, Rao '14:
O(mlog'?nloge )

Where m is number of non-zeros and n is dimension



Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

O(mlog®nloge 1)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

O(mlognloge™ )

Cohen, Kyng, Pachocki, Peng, Rao '14:
O(mlog'?nloge )

Good code:
LAMG (lean algebraic multigrid) — Livhe-Brandt
CMG (combinatorial multigrid) — Koutis



Quickly Solving Laplacian |

H.quations

S,Teng '04: Using low-stretch trees and sparsifiers

O(mlog®nloge 1)

An e-accurate solutionto Lox = b

IS an x satisfying

|z — x*HLG <

ellz” L,

1/2

where ||UHLG = \/UTLG”U = HLG vl|



Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers
O(mlog®nloge 1)

An e-accurate solutionto Lox = b
IS an x satisfying

|l — 2|, <ellz™llL,

Allows fast computation of eigenvectors
corresponding to small eigenvalues.



Laplacians in Linear Programming

Laplacians appear when solving Linear Programs on
on graphs by Interior Point Methods

Lipschitz Learning : regularized interpolation on graphs
(Kyng, Rao, Sachdeva,S ‘15)

Maximum and Min-Cost Flow (Daitch, S '08, Madry ‘13)
Shortest Paths (Cohen, Madry, Sankowski, Vladu ‘16)

Isotonic Regression (Kyng, Rao, Sachdeva ‘15)



Isotonic Regression (Ayer et. al. ‘55)

A function 2 : V — R is isotonic with respect to a
directed acyclic graph if x increases on edges.



Isotonic Regression

SAT

3.8

College GPA
3.7
3.6
4.0
3.9
3.2
2.5

(Ayer et. al. ‘55)

High-school GPA



Isotonic Regression (Ayer et. al. ‘55)

College GPA
B
3.6
s Estimate by
SAT ® carest neighbor?
3.2 55
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High-school GPA



Isotonic Regression (Ayer et. al. ‘55)

College GPA
B
3.6
s Estimate by
SAT ® carest neighbor?
3.2 55
3.2
2.5

High-school GPA

We want the estimate to be monotonically increasing



Isotonic Regression (Ayer et. al. ‘55)

College GPA

/

_.5

3.9

High-school GPA

Given y : V — R find the isotonic x minimizing ||z — y||



Isotonic Regression (Ayer et. al. ‘55)

College GPA

__——

3.866

ZZ/ 35.866
/

_.5

SAT
3.2

High-school GPA

Given y : V — R find the isotonic x minimizing ||z — y||



Fast IPM for Isotonic Regression
(Kyng, Rao, Sachdeva '15)

Given y : V — R find the isotonic x minimizing ||z — y||,



Fast IPM for Isotonic Regression
(Kyng, Rao, Sachdeva '15)

Given y : V — R find the isotonic x minimizing ||z — y||,
or [[z —yll, forany p>1

in time O (m3/21og® m)



Linear Program for Isotonic Regression

Signed edge-vertex incidence matrix

(L O 0 -1 0 0 0)
1 0 0 0 -1 0 0
01 -1 0 0 0 0
00 1 0 -1 0 0
00 1 0 0 -1 0
00 0 1 0 0 -1
00 0 0 1 0 -1
\0 0 0 0 0 1 -1/

—

/

[~

z is isotonic if Bx < (



Linear Program for Isotonic Regression

Given y, minimize ||z — y|l;

subjectto Bx <0

(L O 0 -1 0 0 0)

Mo 0 0 -1 0 0 ”
01 -1 0 0 0 0 /

00 1 0 -1 0 O /’f
00 1 0 0 -1 0

00 0 1 0 0 -1 ~
00 0 0 1 0 -1 A

\0 0 0 0 0 1 -1/



Linear Program for Isotonic Regression

Given y, minimize > . r;

subjectto Bz <0

i =y =1

(L O 0 -1 0 0 0)

Mo 0 0 -1 0 0 ”
01 -1 0 0 0 0 /

00 1 0 -1 0 O /’f
00 1 0 0 -1 0

00 0 1 0 0 -1 ~
00 0 0 1 0 -1 A

\0 0 0 0 0 1 -1/



Linear Program for Isotonic Regression

Given y, minimize > . r;

subjectto Bz <0

1z — yi| <
(10 0 -1 0 0 0)
Lo o o -1 0 O ﬂ
01 -1 0 0 0 0 /
00 1 0 -1 0 0 /f
00 1 0 0 -1 0
00 0 1 0 0 -1 ~
00 0 0 1 0 -1 A
\0 0 0 0 0 1 -1



Linear Program for Isotonic Regression

Given y, minimize > . r;

subjectto Bx <0

;.

/

Ti —Yi ST

_(xz_yi)
(L0 0 -1 0 0 0)
1 0 0 0 -1 0 O
0 1 -1 0 0 0 0
00 1 0 —-1 0 0
00 1 0 0 -1 0
00 0 1 0 0 -1
00 0 0 1 0 -1
\0 0 0 0 0 1 -1

[~



Linear Program tor Isotonic Regression

Minimize . r;

subjectto (U0 B\ 0
- 1 (x> <1 Y
—1 -1 —q



Linear Program tor Isotonic Regression

Minimize . r;

subjectto (0 B\ 0
at (x> <\l v
T I —y

IPM solves a sequence of equations of form

0 B\ /Sy 0 0 0 B
7T 0 S, o l-1 1
S 0 0 S,/ \—I —JI

with positive diagonal matrices Sy, .51, .52



Linear Program tor Isotonic Regression

0 B\ /Sy 0 0 0 B
7T 0 S, o |=-1 1
7 -7 0 0 S,/ \—I —JI

(51 + 52 So — 51
S \S - 5 ‘BTSOB,JrS1+SQ
|

Laplacian!

So, 51,92 are positive diagonal



Linear Program for Isotonic Regression

0 B\ /Sy 0 0 0 B
7T 0 S, o |=-1 1
7 -7 0 0 S,/ \—I —JI

(51 + 52 So — 51
S \S - 5 ‘BTSOB,+S1+SQ
|

Laplacian!

So, 51,92 are positive diagonal

Kyng, Rao, Sachdeva ’15:
Reduce to solving Laplacians to constant accuracy



Spectral Sparsification

Every graph can be approximated
by a sparse graph with a similar Laplacian



Approximating Graphs

A graph H is an e-approximation of G if

1 ol Lox
for all z < H
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Approximating Graphs

A graph H is an e-approximation of G if

1 ol Lox
for all z < H

Solutions to linear equations are similiar

Ly~ Lg < Ly ~.Lg'



Spectral Sparsification (Batson, S, Stivastava ’09)

Every graph G has ane-approximation A
with n(2 + €)?/e* edges




Spectral Sparsification (Batson, S, Stivastava ’09)

Every graph G has ane-approximation A
with n(2 + €)?/e* edges

Random regular graphs approximate complete graphs



Fast Spectral Sparsitication

(S & Srivastava ‘08)
If sample each edge with probability
iInversely proportional to its effective spring constant,
only need O(nlogn/e*) samples

Takes time O(m log2 n) (Koutis, Levin, Peng ‘12)
(Lee & Sun ‘15)

Can find an e-approximation with O(n/e*) edgesin
time O(n'™¢) for every c > 0



Approximate Gaussian Elimination
(Kyng & Sachdeva ‘16)

Gaussian Elimination:
compute upper triangular U so that

Lo=U'U

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

LG ~ UTU



Gaussian Elimination

16 -4 -8 —4
(—4 5 0 —1\

8 0 14 0
\—4 -1 0 7/

1. Find the rank-1 matrix that agrees
on the first row and column
16 -4 -8 —4 4
(—4 1 2 1\_(—1\ L1
) 4 - (

-8 2 2
\—4 1 2 1) \-1)

2. Subtract it

-2 —1)



Gaussian Elimination

1. Find the rank-1 matrix that agrees
on the first row and column

(16 —4 =8 —4\ (4\

—4 1 2 1 —1
2 4

\:i 12 ?) \—1)

2. Subtract it

16 —4 -8 —4 16 -4 -8 —4 0
—4 5 0 -1 -4 1 2 1] [o
-8 0 14 o |-8 2 4 2 0
—4 -1 0 7 -4 1 2 1 0

3. Repeat

— (4 -1 -2 -1)

0
4
—2
—2

0
—2
10
—2

0
—2
—2

6



Gaussian Ellmination
2. Subtract it

16 —4 —8 —4 16 —4 —8 —4 0o 0 0 O
—4 5 0 -1 -4 1 2 1] [0 4 —2 =2
-8 0 14 o |-8 2 4 2 0 —2 10 =2
—4 -1 0 7 -4 1 2 1 0 -2 —2 6

1. Find the rank-1 matrix that agrees
on the next row and column

0 0 0 0 0

/ (0

0 4 -2 -2
0 9 1 = 0 2 -1 -1)

\0 -2 1 1) \j)




(Gaussian |

Hlimination

1. Find the rank-1 matrix that agrees
on the next row and column

0 0
4 =2
-2 1
-2 1

0 0
4 =2
-2 10
-2 =2

(0
1)

0 2 -1 -1)

ooo\ (0

4 -2 =2 0
2 1 1 0
2 1 1) \o

o O O O




Gaussian Elimination

(16 —4 -8
4 5 0
8 0 14

\—4 -1 0

4 4
N
—2 —2

—1 —1

h

0

T

7

_|_

0
2
—1
—1

0
2
—1
—1

OO O

N O OO



(Gaussian

(16

4

\—4

Elimination
—4 -8 —4
5 0 \
0 14 0
-1 0 7 )

dE[EREIE

(4 0 0 0

_1200

—92 1

\-1 -1 —12/

0 2
0 0
\0 0

[

S

0
0
3

—1
3
0

w o O

|

—1

J

—1

2/

0
0
0
2

|

N O OO

)T



Gaussian Elimination
( 16 —4 -8 —4\
4 5 0 -1

0
—1

El

(4 —1

g
\—4
4
—1
—2
—1

o 2
~lo o
\0 0

14
0

4
—1
—2
—1

)

K

0
2
—1
—1

0
2
—1
—1

)|

T

2 -1

-1 —1\ 0 2
3 —1] [0 o
o 2/ \o o

w o O
N O OO

J

(4 ~-1 =2 —1\




Gaussian Elimination

16 —4 -8 —4
/ -

—4 5 0
—& 0 14 0
\-4 -1 0 7
4 4\ 7" 0 o\’ 0 o\"  /o\ /o\"
1| [ =1 2 2 0 0 ol [0
o =2 Tl =1 T o3 s | Tlol]o
1) \ 1 1) \ -1 1) \ 1 2/ \2

Computation time proportional to the
sum of the squares of the number of nonzeros
In these vectors



Gaussian Elimination of Laplacians

If this is a Laplacian,

16 —4 —8 —4
(—4 5 0 —1\_

8 0 14 0
\—4 -1 0 7/

()

1)

T

then so Is this
(0 0 0 0\
0 4 -2 -2
0 —2 10 -2

\0 -2 -2 6



Gaussian Elimination ot Laplacians

If this is a Laplacian, then so is this
16 —4 -8 —4 4 A\N" /0 0 0 0
(—4 5 0 —1\ /—1\ (—1\ (0 4 -2 —2\

-8 0 14 —2 —2 0 -2 10 -2

\—4 -1 0 2) \-1/ \-1/  \o -2 -2 ¢

When eliminate a node, add a clique on its neighbors

H g IR g
8 " @————0O ———0




Approximate Gaussian Elimination
(Kyng & Sachdeva ‘16)

1. when eliminate a node, add a clique on its neighbors

e\
e—e

2. Sparsify that clique, without ever constructing it




Approximate Gaussian Elimination
(Kyng & Sachdeva ‘16)

1. When eliminate a node of degree d,

add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node




Approximate Gaussian Elimination
(Kyng & Sachdeva ‘16)

0. Initialize by randomly permuting vertices, and
making O(log” n) copies of every edge

1. When eliminate a node of degree d,

add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

Total time is O(m log® n)



Approximate Gaussian Elimination
(Kyng & Sachdeva ‘16)

0. Initialize by randomly permuting vertices, and
making O(log” n) copies of every edge

1. When eliminate a node of degree d,

add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

Total time is O(m log® n)

Can be improved by sacrificing some simplicity



Approximate Gaussian Elimination
(Kyng & Sachdeva ‘16)

Analysis by Random Matrix Theory:

Write U1'U as a sum of random matrices.
E[U'U| = Lg

Random permutation and copying
control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11)



Recent Developments

Other families of linear systems
(Kyng, Lee, Peng, Sachdeva, S ‘16)

10
complex-weighted Laplacians (6_11-9 61)

connection Laplacians I
Qr I

Laplacians.|l



To learn more

My web page on:

Laplacian linear equations, sparsification, local graph
clustering, low-stretch spanning trees, and so on.

My class notes from
“Graphs and Networks” and “Spectral Graph Theory”

Lz = b, by Nisheeth Vishnoi



