
Laplacian Matrices of Graphs:
Algorithms and Applications

ICML, June 21, 2016

Daniel A. Spielman

Laplacians
Interpolation on graphs
Spring networks
Clustering
Isotonic regression

Sparsification

Solving Laplacian Equations
Best results
The simplest algorithm

Outline

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(i,j)2E

(x(i)� x(j))2

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(i,j)2E

(x(i)� x(j))2

X

(i,j)2E

(x(i)� x(j))2 = x

T
LGx

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

Take	derivatives.	Minimize	by	solving	Laplacian

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(i,j)2E

(x(i)� x(j))2 = x

T
LGx

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(i,j)2E

(x(i)� x(j))2

The Laplacian Quadratic Form

x

T
LGx =

X

(i,j)2E

(x(i)� x(j))2

The Laplacian Matrix of a Graph

Nail down some vertices, let rest settle

View edges as rubber bands or ideal linear springs

In equilibrium, nodes are averages of neighbors.

Spring Networks

Nail down some vertices, let rest settle

View edges as rubber bands or ideal linear springs

Spring Networks

When stretched to length
potential energy is

`

�2/2

Nail down some vertices, let rest settle

Physics: position minimizes total potential energy

subject to boundary constraints (nails)

Spring Networks

1

2

X

(i,j)2E

(x(i)� x(j))2

X

(i,j)2E

(x(i)� x(j))2 = x

T
LGx

0

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

Spring Networks

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

1

1

0

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

Spring Networks

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize
X

(i,j)2E

(x(i)� x(j))2 = x

T
LGx

X

(i,j)2E

(x(i)� x(j))2 = x

T
LGx

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

Spring Networks

In the solution, variables are the average of their neighbors

(Tutte ’63)Drawing by Spring Networks

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

If the graph is planar,
then the spring drawing
has no crossing edges!

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

Drawing by Spring Networks (Tutte ’63)

SS

Measuring boundaries of sets

Boundary: edges leaving a set

Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

x(i) =

(
1 i in S

0 i not in S

Measuring boundaries of sets

Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

x(i) =

(
1 i in S

0 i not in S

Measuring boundaries of sets

X

(i,j)2E

(x(i)� x(j))

2

= |boundary(S)|

Find large sets of small boundary

S

0.2

-0.20
0.4

-1.1
0.5

0.8

0.81.1
1.0

1.6
1.3

0.9

0.7
-0.4

-0.3

1.3

S
0.5

Heuristic to find
x with small

Compute eigenvector

Consider the level sets

LGv2 = �2v2

x

T
LGx

Spectral Clustering and Partitioning

2

1 4
3 5

6

0

BBBBBB@

3 �1 �1 �1 0 0
�1 2 0 0 0 �1
�1 0 3 �1 �1 0
�1 0 �1 4 �1 �1
0 0 �1 �1 3 �1
0 �1 0 �1 �1 3

1

CCCCCCA

Symmetric

Non-positive
off-diagonals

Diagonally dominant

The Laplacian Matrix of a Graph

x

T
LGx =

X

(i,j)2E

(x(i)� x(j))2

x(i)� x(j) =
�
1 �1

�✓
x(i)
x(j)

◆

=

✓
x(i)
x(j)

◆T ✓
1 �1
�1 1

◆✓
x(i)
x(j)

◆

The Laplacian Matrix of a Graph

(x(i)� x(j))2 =

✓
x(i)
x(j)

◆T ✓
1
�1

◆✓
1
�1

◆T ✓
x(i)
x(j)

◆

x

T
LGx =

X

(i,j)2E

wi,j(x(i)� x(j))2

Laplacian Matrices of Weighted Graphs

LG =
X

(i,j)2E

wi,j(bi,jb
T
i,j) where bi,j = ei � ej

B is the signed edge-vertex adjacency matrix
with one row for each

W is the diagonal matrix of weights

LG =
X

(i,j)2E

wi,j(bi,jb
T
i,j)

bi,j

wi,j

LG = BTWB

Laplacian Matrices of Weighted Graphs

where bi,j = ei � ej

LG = BTWB

Laplacian Matrices of Weighted Graphs

B =

0

BBBBBBBBBBBB@

1 �1 0 0 0 0
0 1 0 0 0 �1
1 0 0 �1 0 0
0 0 0 1 0 �1
1 0 �1 0 0 0
0 0 1 �1 0 0
0 0 1 0 �1 0
0 0 0 1 �1 0
0 0 0 0 1 �1

1

CCCCCCCCCCCCA

2

1 4
3 5

6

LG =
X

(i,j)2E

wi,j(bi,jb
T
i,j)

Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

Cohen, Kyng, Pachocki, Peng, Rao ’14:

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

eO(m log

1/2 n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Cohen, Kyng, Pachocki, Peng, Rao ’14:

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

eO(m log

1/2 n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Good code:
LAMG (lean algebraic multigrid) – Livne-Brandt
CMG (combinatorial multigrid) – Koutis

An -accurate solution to
is an x satisfying

where

LGx = b

✏

kvkLG
=

p
vTLGv = ||L1/2

G v||

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kx� x

⇤kLG
 ✏ kx⇤kLG

An -accurate solution to
is an x satisfying

LGx = b

✏

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kx� x

⇤kLG
 ✏ kx⇤kLG

Allows fast computation of eigenvectors
corresponding to small eigenvalues.

Laplacians appear when solving Linear Programs on
on graphs by Interior Point Methods

Lipschitz Learning : regularized interpolation on graphs
(Kyng, Rao, Sachdeva,S ‘15)

Maximum and Min-Cost Flow (Daitch, S ’08, Mądry ‘13)

Shortest Paths (Cohen, Mądry, Sankowski, Vladu ‘16)

Isotonic Regression (Kyng, Rao, Sachdeva ‘15)

Laplacians in Linear Programming

(Ayer et. al. ‘55)Isotonic Regression

2.5

3.2

3.2

4.0

3.7
3.6

3.9

A function is isotonic with respect to a
directed acyclic graph if x increases on edges.

x : V ! R

Isotonic Regression

2.5

3.2

3.2

4.0

3.7
3.6

3.9

College GPA

High-school GPA

SAT

(Ayer et. al. ‘55)

Isotonic Regression

2.5

3.2

3.2

4.0

3.7
3.6

3.9

College GPA

High-school GPA

SAT
Estimate by
nearest neighbor?

(Ayer et. al. ‘55)

Isotonic Regression

2.5

3.2

3.2

4.0

3.7
3.6

3.9

College GPA

High-school GPA

SAT
Estimate by
nearest neighbor?

We want the estimate to be monotonically increasing

(Ayer et. al. ‘55)

Isotonic Regression

2.5

3.2

3.2

4.0

3.7
3.6

3.9

College GPA

High-school GPA

SAT

Given find the isotonic x minimizingy : V ! R kx� yk

(Ayer et. al. ‘55)

Isotonic Regression

2.5

3.2

3.2

3.866

3.866
3.6

3.866

College GPA

High-school GPA

SAT

(Ayer et. al. ‘55)

Given find the isotonic x minimizingy : V ! R kx� yk

Given find the isotonic x minimizingy : V ! R kx� yk1

(Kyng, Rao, Sachdeva ’15)
Fast IPM for Isotonic Regression

Given find the isotonic x minimizingy : V ! R kx� yk1

or for any

in time

kx� ykp p > 1

O(m3/2
log

3 m)

(Kyng, Rao, Sachdeva ’15)
Fast IPM for Isotonic Regression

Signed edge-vertex incidence matrix

x is isotonic if
Bx  0

B =

0

BBBBBBBBBB@

1 0 0 �1 0 0 0
1 0 0 0 �1 0 0
0 1 �1 0 0 0 0
0 0 1 0 �1 0 0
0 0 1 0 0 �1 0
0 0 0 1 0 0 �1
0 0 0 0 1 0 �1
0 0 0 0 0 1 �1

1

CCCCCCCCCCA

Linear Program for Isotonic Regression

Given y, minimize

subject to

kx� yk1

Bx  0

B =

0

BBBBBBBBBB@

1 0 0 �1 0 0 0
1 0 0 0 �1 0 0
0 1 �1 0 0 0 0
0 0 1 0 �1 0 0
0 0 1 0 0 �1 0
0 0 0 1 0 0 �1
0 0 0 0 1 0 �1
0 0 0 0 0 1 �1

1

CCCCCCCCCCA

Linear Program for Isotonic Regression

Bx  0

|xi � yi| = ri

Given y, minimize

subject to

P
i ri

B =

0

BBBBBBBBBB@

1 0 0 �1 0 0 0
1 0 0 0 �1 0 0
0 1 �1 0 0 0 0
0 0 1 0 �1 0 0
0 0 1 0 0 �1 0
0 0 0 1 0 0 �1
0 0 0 0 1 0 �1
0 0 0 0 0 1 �1

1

CCCCCCCCCCA

Linear Program for Isotonic Regression

Given y, minimize

subject to

P
i ri

Bx  0

|xi � yi|  ri

B =

0

BBBBBBBBBB@

1 0 0 �1 0 0 0
1 0 0 0 �1 0 0
0 1 �1 0 0 0 0
0 0 1 0 �1 0 0
0 0 1 0 0 �1 0
0 0 0 1 0 0 �1
0 0 0 0 1 0 �1
0 0 0 0 0 1 �1

1

CCCCCCCCCCA

Linear Program for Isotonic Regression

Bx  0

xi � yi  ri

�(xi � yi)  ri

Given y, minimize

subject to

P
i ri

B =

0

BBBBBBBBBB@

1 0 0 �1 0 0 0
1 0 0 0 �1 0 0
0 1 �1 0 0 0 0
0 0 1 0 �1 0 0
0 0 1 0 0 �1 0
0 0 0 1 0 0 �1
0 0 0 0 1 0 �1
0 0 0 0 0 1 �1

1

CCCCCCCCCCA

Linear Program for Isotonic Regression

Minimize

subject to

P
i ri

0

@
0 B

�I I

�I �I

1

A
✓
r

x

◆


0

@
0
y

�y

1

A

Linear Program for Isotonic Regression

Minimize

subject to

P
i ri

0

@
0 B

�I I

�I �I

1

A
✓
r

x

◆


0

@
0
y

�y

1

A

IPM solves a sequence of equations of form
0

@
0 B
�I I
�I �I

1

A
T 0

@
S0 0 0
0 S1 0
0 0 S2

1

A

0

@
0 B
�I I
�I �I

1

A

with positive diagonal matrices S0, S1, S2

Linear Program for Isotonic Regression

0

@
0 B
�I I
�I �I

1

A
T 0

@
S0 0 0
0 S1 0
0 0 S2

1

A

0

@
0 B
�I I
�I �I

1

A

=

✓
S1 + S2 S2 � S1

S2 � S1 BTS0B + S1 + S2

◆

S0, S1, S2 are positive diagonal

Laplacian!

Linear Program for Isotonic Regression

0

@
0 B
�I I
�I �I

1

A
T 0

@
S0 0 0
0 S1 0
0 0 S2

1

A

0

@
0 B
�I I
�I �I

1

A

=

✓
S1 + S2 S2 � S1

S2 � S1 BTS0B + S1 + S2

◆

S0, S1, S2 are positive diagonal

Laplacian!

Kyng, Rao, Sachdeva ’15:
Reduce to solving Laplacians to constant accuracy

Linear Program for Isotonic Regression

Spectral Sparsification

Every graph can be approximated
by a sparse graph with a similar Laplacian

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

Preserves boundaries of every set

Solutions to linear equations are similiar

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG () L�1
H ⇡✏ L

�1
G

Spectral Sparsification

Every graph G has an -approximation H
with edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)

Spectral Sparsification

Every graph G has an -approximation H
with edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)

Random regular graphs approximate complete graphs

Fast Spectral Sparsification

(S & Srivastava ‘08)
If sample each edge with probability
inversely proportional to its effective spring constant,
only need samples

Takes time (Koutis, Levin, Peng ‘12)

O(n log n/✏2)

(Lee & Sun ‘15)
Can find an -approximation with edges in
time for every

O(n/✏2)✏
O(n1+c) c > 0

O(m log

2 n)

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Gaussian Elimination:
compute upper triangular U so that

LG = UTU

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

LG ⇡ UTU

Gaussian Elimination

1. Find the rank-1 matrix that agrees
on the first row and column

2. Subtract it

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

0

BB@

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

1

CCA =

0

BB@

4
�1
�2
�1

1

CCA
�
4 �1 �2 �1

�

Gaussian Elimination
1. Find the rank-1 matrix that agrees

on the first row and column

2. Subtract it

0

BB@

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

1

CCA =

0

BB@

4
�1
�2
�1

1

CCA
�
4 �1 �2 �1

�

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

1

CCA =

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

3. Repeat

Gaussian Elimination

1. Find the rank-1 matrix that agrees
on the next row and column

2. Subtract it
0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

1

CCA =

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 1 1
0 �2 1 1

1

CCA =

0

BB@

0
2
�1
�1

1

CCA
�
0 2 �1 �1

�

Gaussian Elimination
1. Find the rank-1 matrix that agrees

on the next row and column

2. Subtract it

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 1 1
0 �2 1 1

1

CCA =

0

BB@

0
2
�1
�1

1

CCA
�
0 2 �1 �1

�

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA�

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 1 1
0 �2 1 1

1

CCA =

0

BB@

0 0 0 0
0 0 0 0
0 0 9 �3
0 0 �3 5

1

CCA

Gaussian Elimination

=

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

+

0

BB@

0
2
�1
�1

1

CCA

0

BB@

0
2
�1
�1

1

CCA

T

+

0

BB@

0
0
3
�1

1

CCA

0

BB@

0
0
3
�1

1

CCA

T

+

0

BB@

0
0
0
2

1

CCA

0

BB@

0
0
0
2

1

CCA

T

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

Gaussian Elimination

=

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

+

0

BB@

0
2
�1
�1

1

CCA

0

BB@

0
2
�1
�1

1

CCA

T

+

0

BB@

0
0
3
�1

1

CCA

0

BB@

0
0
3
�1

1

CCA

T

+

0

BB@

0
0
0
2

1

CCA

0

BB@

0
0
0
2

1

CCA

T

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

0

BB@

4 0 0 0
�1 2 0 0
�2 �1 3 0
�1 �1 �1 2

1

CCA

0

BB@

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

1

CCA

Gaussian Elimination

=

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

+

0

BB@

0
2
�1
�1

1

CCA

0

BB@

0
2
�1
�1

1

CCA

T

+

0

BB@

0
0
3
�1

1

CCA

0

BB@

0
0
3
�1

1

CCA

T

+

0

BB@

0
0
0
2

1

CCA

0

BB@

0
0
0
2

1

CCA

T

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

0

BB@

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

1

CCA

T 0

BB@

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

1

CCA

Gaussian Elimination

=

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

+

0

BB@

0
2
�1
�1

1

CCA

0

BB@

0
2
�1
�1

1

CCA

T

+

0

BB@

0
0
3
�1

1

CCA

0

BB@

0
0
3
�1

1

CCA

T

+

0

BB@

0
0
0
2

1

CCA

0

BB@

0
0
0
2

1

CCA

T

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

Computation time proportional to the
sum of the squares of the number of nonzeros

in these vectors

Gaussian Elimination of Laplacians

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

=

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

If this is a Laplacian, then so is this

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

=

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

Gaussian Elimination of Laplacians

If this is a Laplacian, then so is this

2

1 4

3 6

54

8

4 1
2

4

3 6

5

22
2

When eliminate a node, add a clique on its neighbors

Approximate Gaussian Elimination

2

1 4

3 6

54

8

4 1
2

4

3 6

5

22
2

1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

(Kyng & Sachdeva ‘16)

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1. When eliminate a node of degree d,
add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

1

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0. Initialize by randomly permuting vertices, and
making copies of every edgeO(log

2 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

Total time is O(m log

3 n)

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

0. Initialize by randomly permuting vertices, and
making copies of every edgeO(log

2 n)

Total time is O(m log

3 n)

1. When eliminate a node of degree d,
add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

Can be improved by sacrificing some simplicity

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Analysis by Random Matrix Theory:

Write UTU as a sum of random matrices.

Random permutation and copying
control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11)

E
⇥
UTU

⇤
= LG

Other families of linear systems

complex-weighted Laplacians

connection Laplacians

✓
1 ei✓

e�i✓ 1

◆

✓
I Q
QT I

◆

Recent Developments

(Kyng, Lee, Peng, Sachdeva, S ‘16)

Laplacians.jl

To learn more

My web page on:
Laplacian linear equations, sparsification, local graph
clustering, low-stretch spanning trees, and so on.

My class notes from
“Graphs and Networks” and “Spectral Graph Theory”

Lx = b, by Nisheeth Vishnoi

