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Expander Graphs

Sparse, regular well-connected graphs
with many properties of random graphs.

Random walks mix quickly.

Every set of vertices has many neighbors.
Pseudo-random generators.
Error-correcting codes.

Sparse approximations of complete graphs.



Spectral Expanders

Let G be a graph and A be its adjacency matrix
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f d-regular (every vertex has d edges), A1 = d



Spectral Expanders

It bipartite (all edges between two parts/colors)

eigenvalues are symmetric about O
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Spectral Expanders

G is a good spectral expander
it all non-trivial eigenvalues are small
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Bipartite Complete Graph

Adjacency matrix has rank 2,
so all non-trivial eigenvalues are O
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Spectral Expanders

G is a good spectral expander
it all non-trivial eigenvalues are small
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construct infinite families of fixed degree



Spectral Expanders

G is a good spectral expander
it all non-trivial eigenvalues are small
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Challenge:
construct infinite families of fixed degree

Alon-Boppana ‘86: Cannot beat 2v/d — 1



Ramanujan Graphs: 2v/d — 1

G is a Ramanujan Graph

if absolute value of non-trivial eigs < 2vd — 1
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Ramanujan Graphs: 2v/d — 1

G is a Ramanujan Graph
if absolute value of non-trivial eigs < 2vd — 1
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Margulis, Lubotzky-Phillips-Sarnak’88: Infinite
sequences of Ramanujan graphs exist for d = prime + 1



Ramanujan Graphs: 2v/d — 1

G is a Ramanujan Graph

if absolute value of non-trivial eigs < 2vd — 1
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Friedman’08: A random d-regular graph is almost
Ramanujan: 2v/d — 1+ €



Ramanujan Graphs of Every Degree
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Theorem:
there are infinite families of

bipartite Ramanujan graphs of every degree./
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Ramanujan Graphs of Every Degree

Theorem:
there are infinite families of
bipartite Ramanujan graphs of every degree.

And, are infinite families of (c,d)-biregular
Ramanujan graphs, having non-trivial eigs

bounded by
d—1++vc—-1



Bilu-Linial ‘06 Approach

Find an operation that doubles the size of a
graph without creating large eigenvalues.
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Bilu-Linial ‘06 Approach

Find an operation that doubles the size of a
graph without creating large eigenvalues.
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2-lifts of graphs




2-lifts of graphs

duplicate every vertex



2-lifts of graphs

duplicate every vertex



2-lifts of graphs

for every pair of edges:
leave on either side (parallel),
or make both cross
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2-lifts of graphs

-1 = O 1 O

O O -+ O

© 1 O € O

- O 1 O

O = O O



2-lifts of graphs
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2-lifts of graphs
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Eigenvalues of 2-lifts (Bilu-Linial)

Given a 2-lift of G,
create a signed adjacency matrix A,
with a -1 for crossing edges
and a 1 for parallel edges

0O -1 0 O
-1 0 1 O
0O 1 0 -1
O 0 -1 O
1 1 0 1

O O Fr K



Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-litt are the

union of the eigenvalues of A (old)
and the eigenvalues of A, (new)

0O -1 0 O
-1 0 1 O
0O 1 0 -1
O 0 -1 O
1 1 0 1

O O Fr K



Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-litt are the
union of the eigenvalues of A (old)
and the eigenvalues of A_ (new)

Conjecture:
Every d-regular graph has a 2-lift
in which all the new eigenvalues
have absolute value at most 2v/d — 1



Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture:
Every d-regular graph has a 2-lift
in which all the new eigenvalues
have absolute value at most 2vd —1

Would give infinite families of Ramanujan Graphs:

start with the complete graph,
and keep lifting.



Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture:
Every d-regular graph has a 2-lift
in which all the new eigenvalues
have absolute value at most 2vd — 1

We prove this in the bipartite case.

a 2-lift of a bipartite graph is bipartite



Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
Every d-regular graph has a 2-lift
in which all the new eigenvalues
have abselute value at most 2vd — 1

Trick: eigenvalues of bipartite graphs
are symmetric about O,
so only need to bound largest



Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
Every d-regular bipartite graph has a 2-lift
in which all the new eigenvalues
have absolute value at most 2vd — 1



First idea: a random 2-lift

Specify a liftby s € {£1}"™

Pick s uniformly at random
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Pick s uniformly at random

Are graphs for which this usually fails



First idea: a random 2-lift

Specify a liftby s € {£1}"™

Pick s uniformly at random

Are graphs for which this usually fails

Bilu and Linial proved G almost Ramanujan,
implies new eigenvalues usually small.

Improved by Puder and Agarwal-Kolla-Madan



The expected polynomial

Consider E| xa_ (x) |



The expected polynomial

Consider E| xa_ (x) |

S

S

[Prove max-root (43[ XA, (T) ]) <2vd-—-1 ]

[Prove XA. (x) is an interlacing family J

r . N
Conclude there is an s so that

max-root (x4_(2)) < 2vd — 1
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The expected polynomial

Theorem (Godsil-Gutman ‘81):

L xa, (@) | = pe(z)

S

the matching polynomial ot G



The matching polynomial
(Heilmann-Lieb ‘72)

palr) =Y 2" H(=1)'m;

i>0

m, = the number of matchings with i edges



na(x) = 2° — 72* + 1122 — 2



na(x) = 2° — 72* + 1122 — 2
tL one matching with 0 edges



ne(x) = x° —%:1:4 +11z° — 2

7 matchings with 1 edge
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Proof that E| x4,(z) | = pa(z)

S

Expand E| det(x] — A;) | using permutations

S

x %1 0 0O 1 *1
+] x *1 0 0 0
0 =1 X *1 0 0
0 0 =1 x *1 0
1 O 0 =1 x 1
+t1 O 0 0 =1 X



Proof that E| x4,(z) | = pa(z)

S

Expand E| det(x] — A;) | using permutations

S

same edge: X @ 0 0 +1 1
same value @ x *1 0 0 0
0 =1 x *1 0 0
0 0 =1 x *1 0
1 O 0 =1 x =1
*t1 O 0 0 =1 X



Proof that E| x4,(z) | = pa(z)

S

Expand E| det(x] — A;) | using permutations

S

same edge: x %1 0 0 @ +]
samevalue 1 x *1 0 0 0
0 =1 x *1 0 0
0 0 =1 x *1 0
@ 0 0 =1 x t1
*t1 O 0 0 =1 X



Proof that E| x4,(z) | = pa(z)

S

Expand E| det(x] — A;) | using permutations

S

x 1 0 0 1

] x %1 @ 0 @
0 1 (x) I 0 o0
0 0 *I x (x1) o0
+] <:> 0O =1 x *1
@ 0 0 0 =1 X

Get O if hit any Os



Proof that E| x4,(z) | = pa(z)

S

Expand E| det(x] — A;) | using permutations

S

x *1 0 0O =1

1] x @ 0 0 E%))
0 (1) x t1 0 o0
0 0 =1 @ t1 0
@ 0 0O =1 x *1
t1 0 0 0 @ X

Get O if take just one entry for any edge



Proof that E| x4,(z) | = pa(z)

S

Expand E| det(x] — A;) | using permutations

S

5P L 004
0 +1 @ +1 0
0 0 =1 @ @ 0
£1 0 0 +1
t1 0 0 0 i}1< @

Only permutations that count are involutions



Proof that E| x4,(z) | = pa(z)

S

Expand E| det(x] — A;) | using permutations

S

X 0 O *1 =1
@@ t1 0 0 0
0 +1 x @ 0 0
0 0 @ x *1 0
1 O 0O =1 X @
t1 0 0 0 (1) x

Only permutations that count are involutions



Proof that E|[ xa.(z) | = pc(z)

Expand E| det(x] — A;) | using permutations

S

X 0 0O 1 =1
@@ t1 0 0 0
0 +1 x @ 0 0
0 0 @ x *1 0
1 O 0O =1 X @
t1 0 0 0 ((1) x

Only permutations that count are involutions

Correspond to matchings



The matching polynomial
(Heilmann-Lieb ‘72)

pale) =3 a2 (=1)'m,

i>0

Theorem (Heilmann-Lieb)
all the roots are real



The matching polynomial
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pale) =3 a2 (=1)'m,
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The matching polynomial
(Heilmann-Lieb ‘72)

pale) =3 a2 (=1)'m,

i>0

Theorem (Heilmann-Lieb)
all the roots are real
and have absolute value at most 2vd — 1

Implies max-root (41[ XA () ]) <2vd-—1

S



Interlacing

Polynomial p(z) =

interlaces  q(x) =

[1;
[1i=

it ag <0 <ap< -



Common Interlacing

pi(z) and p2(z) have a common interlacing if
can partition the line into intervals so that
each interval contains one root from each poly
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Common Interlacing

pi(z) and p2(z) have a common interlacing if
can partition the line into intervals so that
each interval contains one root from each poly
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Common Interlacing

It p, and p, have a common interlacing,

max-root (p;) < max-root (E; [ p; |)

for some i.

Largest root

of average

RETID



Common Interlacing

It p, and p, have a common interlacing,

max-root (p;) < max-root (E; [ p; |)

for some i.

Largest root

of average
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Interlacing Family of Polynomials
{Ps}tscrr1ym is an interlacing family

It the polynomials can be placed on the leaves of a tree
so that when put average of descendants at nodes
siblings have common interlacings

Ei ;| pij ]

N/

P11 P1,—-1 P-11 P-1,—1

E; | p1,i | E; | p—1, |



Interlacing Family of Polynomials
{Ps}tscrr1ym is an interlacing family

It the polynomials can be placed on the leaves of a tree
so that when put average of descendants at nodes
siblings have common interlacings

Po

P1 P—1

N/

P11 P1,—-1 P-11 P-1,—1



Interlacing Family of Polynomials

Theorem:

There is an s so that

max-root (ps(z)) < max-root (;A | ps() ])

Po

P1 P—1

N/

P11 P1,—-1 P-11 P-1,—1



An interlacing family

Theorem:
Let ps(z) = xa,(x)

{Ps}serx1ym is an interlacing family



Interlacing

p1(x) and pa(x) have a common interlacing iff
Ap1(z) + (1 — A)p2(x) isreal rooted forall 0 < A <1
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To prove interlacing family

Let Psi,... s (ZE) — Y [p81,...,3m (.CL') ]

Sk+15---38m



To prove interlacing family

Let Psi,... s (ZE) — Y [p81,...,3m (.CL') ]

Sk+15---38m

Need to prove that for all s1,...,s%,A € [0, 1]

ApSl,...,Sk,l(aj) (1 o A)psl,...,sk,—l(aj)

is real rooted



To prove interlacing family

Let Psi,... s (.CIZ‘) — Y [p81,...,3m (.CL‘) ]

Sk+15---38m

Need to prove that for all s1,...,s%,A € [0, 1]
)‘psl,...,sk,l(x) (1 o >\)p317._.75k’_1(aj)

is real rooted

S$1,...,SE are fixed
Sk+1 is I with probability A, -1 with1 — A

Sk42,--.,Sm are uniformly £1




Generalization of Heilmann-Lieb

We prove

seq1}m | ps(z) | s real rooted

for every independent distribution
on the entries of s



Generalization of Heilmann-Lieb

We prove

seq1}m | ps(z) | s real rooted

for every independent distribution
on the entries of s



Mixed Characteristic Polynomials

For a1, ..., @yn independently chosen random vectors
S [ poly (Yo, aial ) | = u(Ay, ..., Ay)

is their mixed characteristic polynomial.

Theorem: Mixed characteristic polynomials
are real rooted.

Proof: Using theory of real stable polynomials.



Mixed Characteristic Polynomials

For a1, ..., @yn independently chosen random vectors
S [ poly (Yo, aial ) | = u(Ay, ..., Ay)

is their mixed characteristic polynomial.
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Mixed Characteristic Polynomials

For a1, ..., @yn independently chosen random vectors
S [ poly (Yo, aial ) | = u(Ay, ..., Ay)

is their mixed characteristic polynomial.

Solution: add to the diagonal

or



Generalization of Heilmann-Lieb

We prove

seq1}m | ps(z) | s real rooted

for every independent distribution
on the entries of s

Implies x4, () is an interlacing family



Generalization of Heilmann-Lieb

We prove

seq1}m | ps(z) | s real rooted

for every independent distribution
on the entries of s

[Implies XA. () is an interlacing family

" Conclude there is an s so that
max-root (x . (z)) < 2vd — 1
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Universal Covers

The universal cover of a graph G
is a tree T of which G is a quotient.
vertices map to vertices
edges map to edges
homomorphism on neighborhoods

s the tree of non-backtracking walks in G.

The universal cover of a d-regular graph
is the infinite d-reqular tree.



Quotients of Trees

d-regular Ramanujan as
quotient of infinite d-ary tree

Spectral radius and norm of inf d-ary tree are

2vd —1



Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v
vertices are paths in G starting at v
edges to paths differing in one step
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Godsil’s Proof of Heilmann-Lieb
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edges to paths differing in one step

Theorem:
The matching polynomial divides
the characteristic polynomial of T(G,v)



Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v
vertices are paths in G starting at v
edges to paths differing in one step

Theorem:
The matching polynomial divides
the characteristic polynomial of T(G,v)

s a subgraph of infinite tree,
so has smaller spectral radius



Quotients of Trees

(c,d)-biregular bipartite Ramanujan as
quotient of infinite (c,d)-ary tree

Spectral radius vd —1++v/c—1

For (c,d)-regular bipartite Ramanujan graphs

d—1++vVec—1



Questions

Non-bipartite Ramanujan Graphs of
every degree?

Efficient constructions?

Explicit constructions?



