Ramanujan Graphs of Every Degree

Adam Marcus (Crisply, Yale)
Daniel Spielman (Yale)
Nikhil Srivastava (MSR India)

Expander Graphs

Sparse, regular well-connected graphs with many properties of random graphs.

Random walks mix quickly.

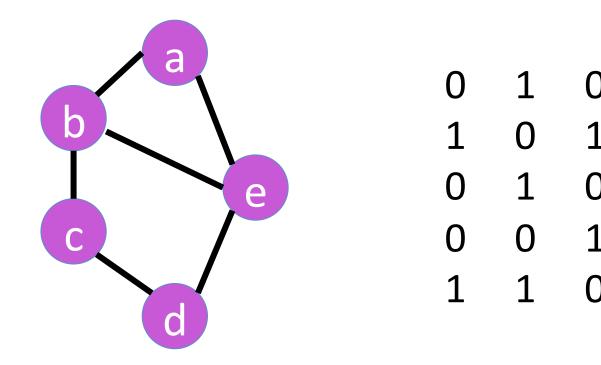
Every set of vertices has many neighbors.

Pseudo-random generators.

Error-correcting codes.

Sparse approximations of complete graphs.

Let G be a graph and A be its adjacency matrix



Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

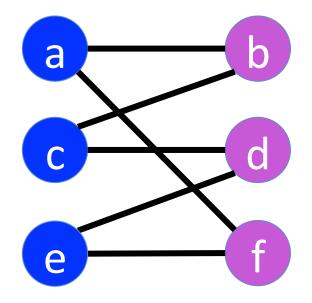
If d-regular (every vertex has d edges), $\lambda_1 = a$

"trivial"

If bipartite (all edges between two parts/colors) eigenvalues are symmetric about 0

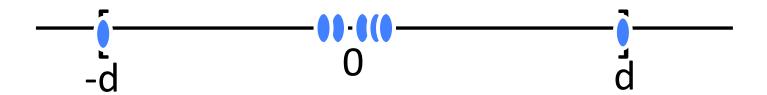
If d-regular and bipartite, $\lambda_n = -d$

"trivial"



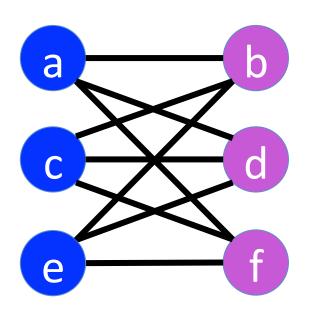
0	0	0	1	0	1
0	0	0	1	1	0
0	0	0	0	1	1
1	1	0	0	0	0
0	1	1	0	0	0
1	0	1	0	0	0

G is a good spectral expander if all non-trivial eigenvalues are small



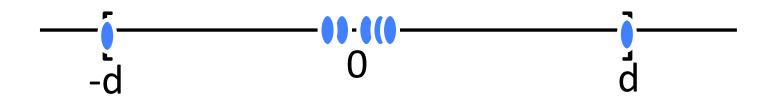
Bipartite Complete Graph

Adjacency matrix has rank 2, so all non-trivial eigenvalues are 0



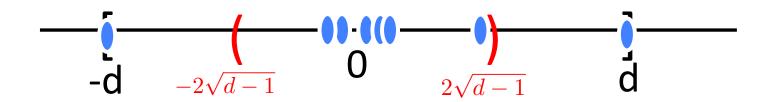
0				1	
0	0	0	1	1	1
0	0	0	1	1	1
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0

G is a good spectral expander if all non-trivial eigenvalues are small



Challenge: construct infinite families of fixed degree

G is a good spectral expander if all non-trivial eigenvalues are small



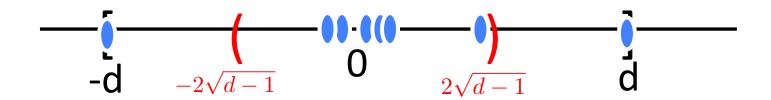
Challenge:

construct infinite families of fixed degree

Alon-Boppana '86: Cannot beat $2\sqrt{d-1}$

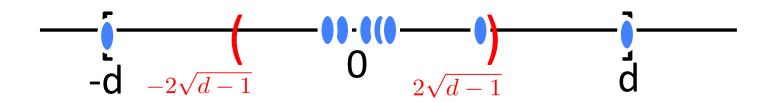
Ramanujan Graphs: $2\sqrt{d-1}$

G is a Ramanujan Graph if absolute value of non-trivial eigs $\leq 2\sqrt{d-1}$



Ramanujan Graphs: $2\sqrt{d-1}$

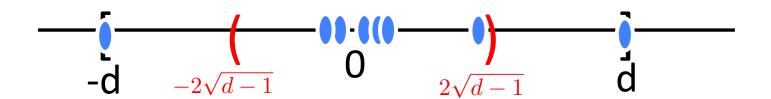
G is a Ramanujan Graph if absolute value of non-trivial eigs $\leq 2\sqrt{d-1}$



Margulis, Lubotzky-Phillips-Sarnak'88: Infinite sequences of Ramanujan graphs exist for $d=\mathrm{prime}+1$

Ramanujan Graphs: $2\sqrt{d-1}$

G is a Ramanujan Graph if absolute value of non-trivial eigs $\leq 2\sqrt{d-1}$



Friedman'08: A random d-regular graph is almost

Ramanujan : $2\sqrt{d-1} + \epsilon$

Ramanujan Graphs of Every Degree

Theorem:

there are infinite families of bipartite Ramanujan graphs of every degree.

Ramanujan Graphs of Every Degree

Theorem:

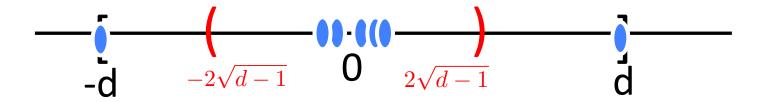
there are infinite families of bipartite Ramanujan graphs of every degree.

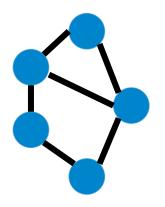
And, are infinite families of (c,d)-biregular Ramanujan graphs, having non-trivial eigs bounded by

$$\sqrt{d-1} + \sqrt{c-1}$$

Bilu-Linial '06 Approach

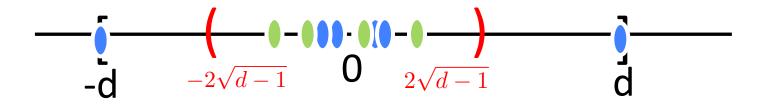
Find an operation that doubles the size of a graph without creating large eigenvalues.

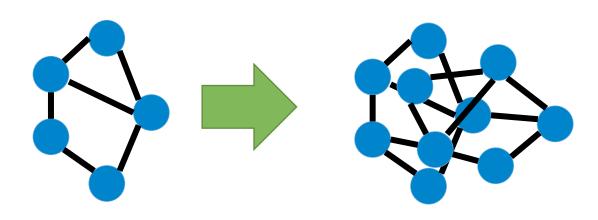


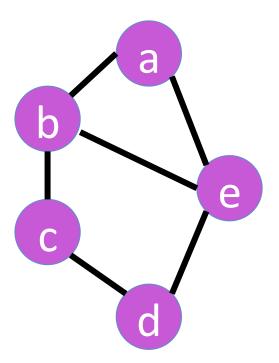


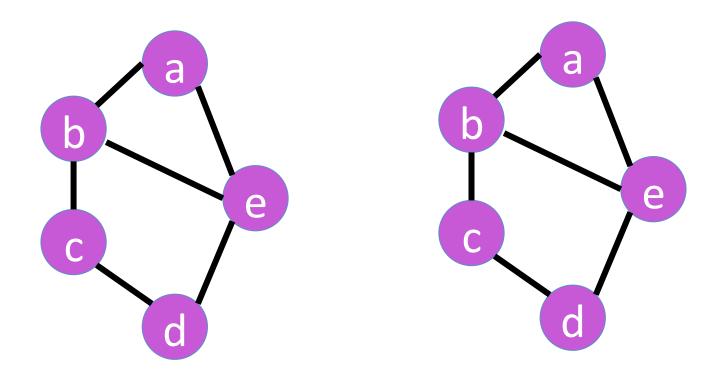
Bilu-Linial '06 Approach

Find an operation that doubles the size of a graph without creating large eigenvalues.

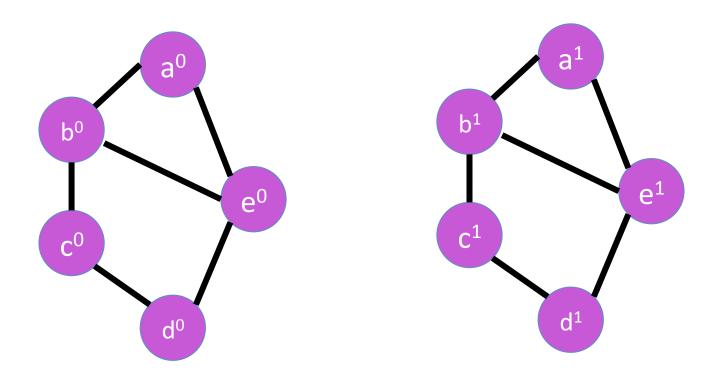




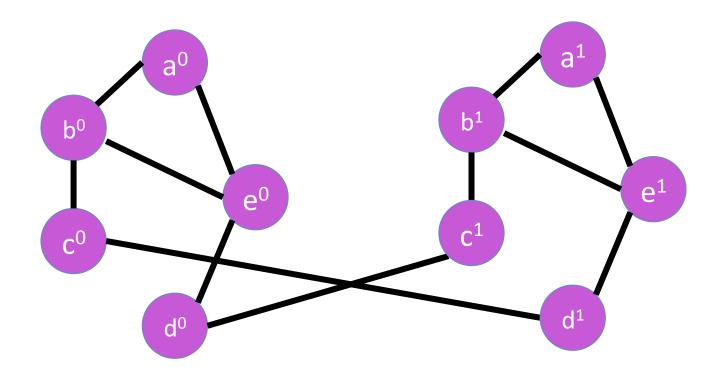




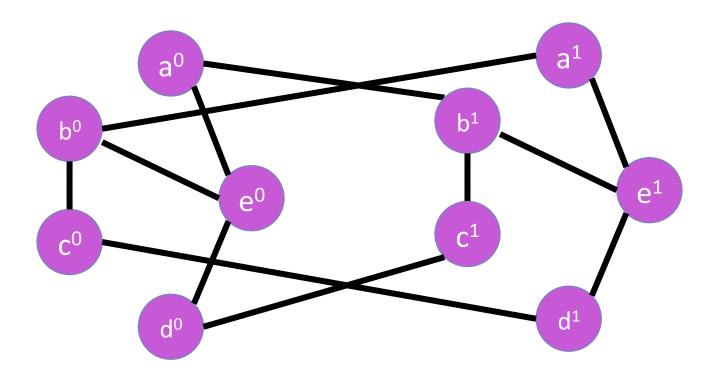
duplicate every vertex



duplicate every vertex



for every pair of edges: leave on either side (parallel), or make both cross



for every pair of edges: leave on either side (parallel), or make both cross

```
      0
      1
      0
      0
      1

      1
      0
      1
      0
      1

      0
      1
      0
      1
      0

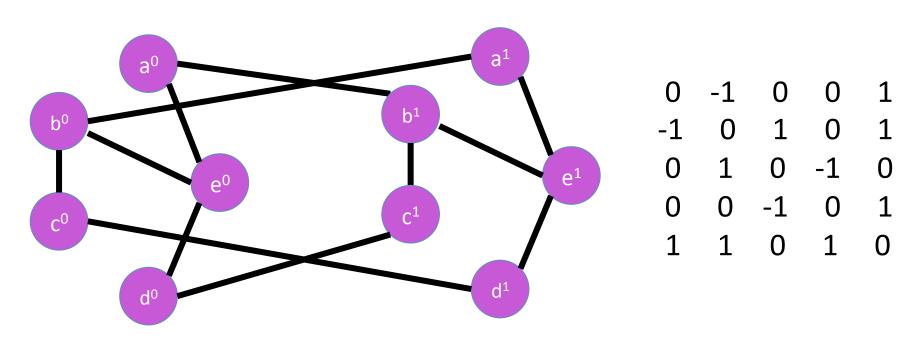
      0
      0
      1
      0
      1

      1
      1
      0
      1
      0
```

```
0
                    0
0
         0
                         0
                             0
                                  0
    0
                    0
                         0
                             0
                                  0
                                       0
0
         0
                    0
                         0
                             0
                                  0
                                       0
         1
    0
                    0
                         0
                                       0
                         1
                             0
    0
         0
0
                         0
                             1
    0
         0
                                  0
0
                         1
                             0
                                  1
    0
         0
                    0
                                       0
                    0
0
    0
         0
              0
                         0
                                  0
0
                         1
                                  1
    0
         0
              0
                                       0
                             0
```

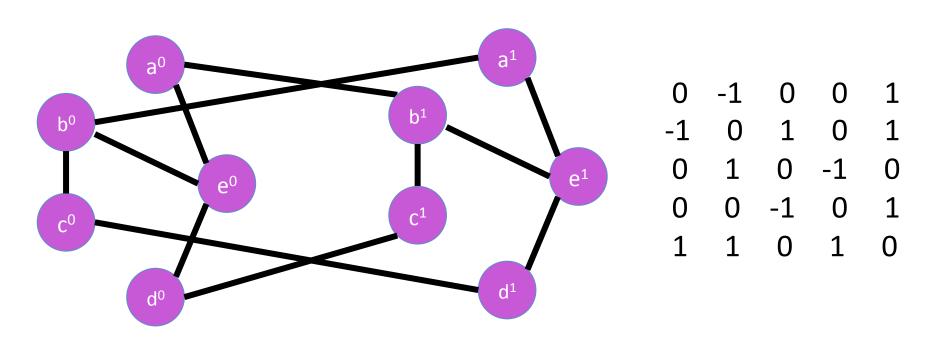
```
0
0
         0
                              0
                                   0
    0
                    0
                         0
                              0
                                       0
0
         0
                    0
                         0
                                   0
                                       0
                    0
    0
                                       0
              0
                         0
                                   0
                    0
0
    0
         0
                         0
                              1
                                   0
              0
0
    0
                    0
                         1
                              0
              0
                    0
0
         0
              0
                         0
                                   0
0
    0
                         1
                                   1
         0
              0
                              0
                                       0
```

Given a 2-lift of G, create a signed adjacency matrix A_s with a -1 for crossing edges and a 1 for parallel edges



Theorem:

The eigenvalues of the 2-lift are the union of the eigenvalues of A (old) and the eigenvalues of A_s (new)



Theorem:

The eigenvalues of the 2-lift are the union of the eigenvalues of A (old) and the eigenvalues of A_s (new)

Conjecture:

Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$

Conjecture:

Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$

Would give infinite families of Ramanujan Graphs:

start with the complete graph, and keep lifting.

Conjecture:

Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$

We prove this in the bipartite case.

a 2-lift of a bipartite graph is bipartite

Theorem:

Every d-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$

Trick: eigenvalues of bipartite graphs are symmetric about 0, so only need to bound largest

Theorem:

Every d-regular bipartite graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$

First idea: a random 2-lift

Specify a lift by $s \in \{\pm 1\}^m$

Pick s uniformly at random

First idea: a random 2-lift

Specify a lift by $s \in \{\pm 1\}^m$

Pick s uniformly at random

Are graphs for which this usually fails

First idea: a random 2-lift

Specify a lift by $s \in \{\pm 1\}^m$

Pick s uniformly at random

Are graphs for which this usually fails

Bilu and Linial proved G almost Ramanujan, implies new eigenvalues usually small.

Improved by Puder and Agarwal-Kolla-Madan

The expected polynomial

Consider
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)]$$

The expected polynomial

Consider
$$\mathbb{E}_{s}\left[\chi_{A_{s}}(x) \right]$$

Prove max-root
$$\left(\mathbb{E}\left[\ \chi_{A_s}(x) \ \right] \right) \leq 2\sqrt{d-1}$$

Prove $\chi_{A_s}(x)$ is an interlacing family

Conclude there is an s so that

$$\operatorname{max-root}(\chi_{A_s}(x)) \leq 2\sqrt{d-1}$$

The expected polynomial

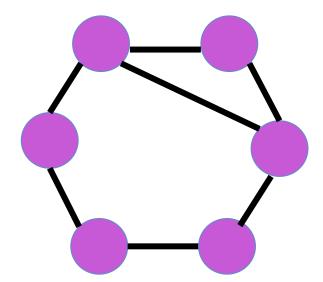
Theorem (Godsil-Gutman '81):

$$\mathbb{E}_{s} \left[\chi_{A_{s}}(x) \right] = \mu_{G}(x)$$

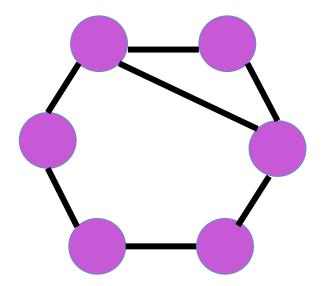
the matching polynomial of G

$$\mu_G(x) = \sum_{i>0} x^{n-2i} (-1)^i m_i$$

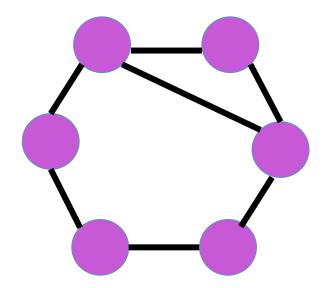
 m_i = the number of matchings with i edges



$$\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$$

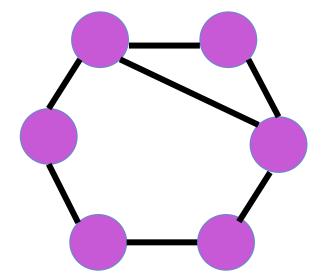


$$\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$$
 one matching with 0 edges

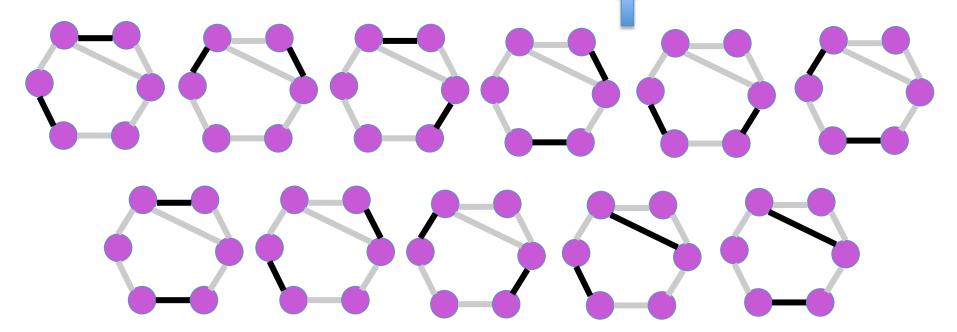


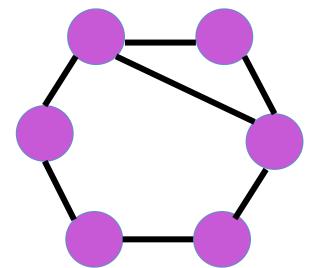
$$\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$$

7 matchings with 1 edge

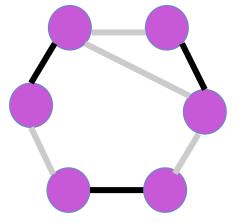


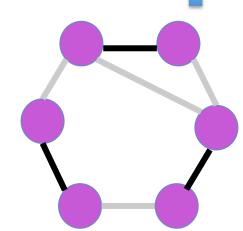
$$\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$$





$$\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$$





Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}_{s} \left[\det(xI - A_s) \right]$ using permutations

Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}\left[\det(xI-A_s)\right]$ using permutations

Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}_s \left[\det(xI - A_s) \right]$ using permutations

Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}_s \left[\det(xI - A_s) \right]$ using permutations

Get 0 if hit any 0s

Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}_s \left[\det(xI - A_s) \right]$ using permutations

Get 0 if take just one entry for any edge

Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}_s\left[\det(xI-A_s)\right]$ using permutations

Only permutations that count are involutions

Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}_s\left[\det(xI-A_s)\right]$ using permutations

Only permutations that count are involutions

Proof that
$$\mathbb{E}_{s}[\chi_{A_{s}}(x)] = \mu_{G}(x)$$

Expand $\mathbb{E}_{s} \left[\det(xI - A_s) \right]$ using permutations

Only permutations that count are involutions

Correspond to matchings

$$\mu_G(x) = \sum_{i>0} x^{n-2i} (-1)^i m_i$$

Theorem (Heilmann-Lieb) all the roots are real

$$\mu_G(x) = \sum_{i>0} x^{n-2i} (-1)^i m_i$$

Theorem (Heilmann-Lieb) all the roots are real and have absolute value at most $2\sqrt{d-1}$

$$\mu_G(x) = \sum_{i>0} x^{n-2i} (-1)^i m_i$$

Theorem (Heilmann-Lieb) all the roots are real and have absolute value at most $2\sqrt{d-1}$

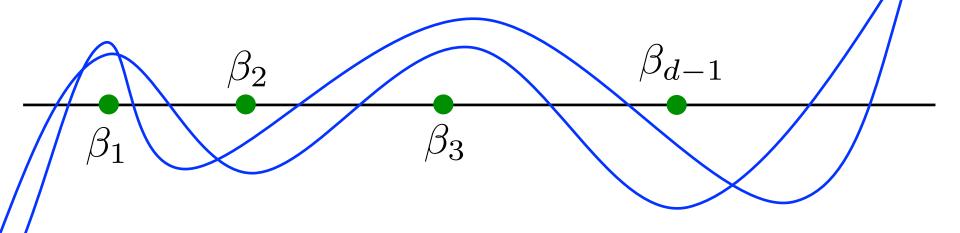
Implies max-root
$$\left(\mathbb{E}\left[\begin{array}{c}\chi_{A_s}(x)\end{array}\right]\right) \leq 2\sqrt{d-1}$$

Interlacing

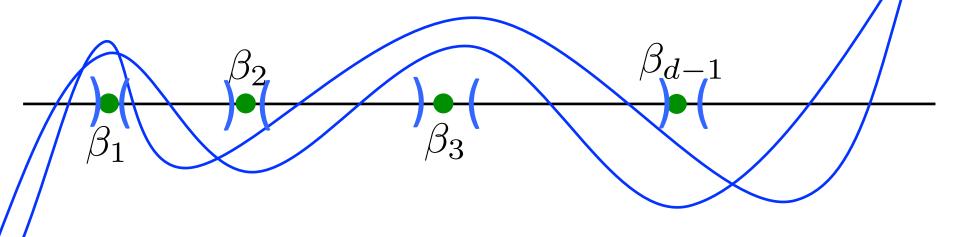
Polynomial
$$p(x) = \prod_{i=1}^d (x - \alpha_i)$$
 interlaces $q(x) = \prod_{i=1}^{d-1} (x - \beta_i)$

if
$$\alpha_1 \leq \beta_1 \leq \alpha_2 \leq \cdots \leq \alpha_{d-1} \leq \beta_{d-1} \leq \alpha_d$$

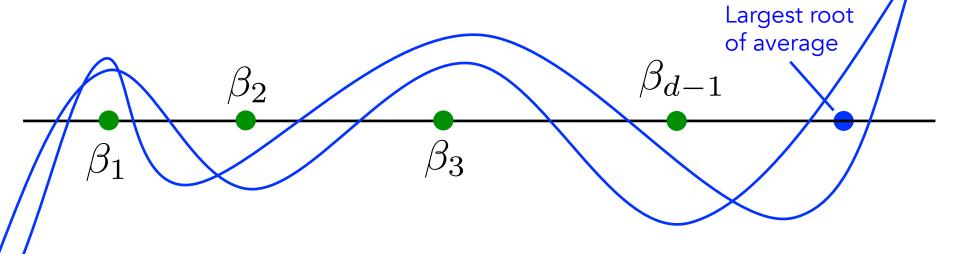
 $p_1(x)$ and $p_2(x)$ have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly



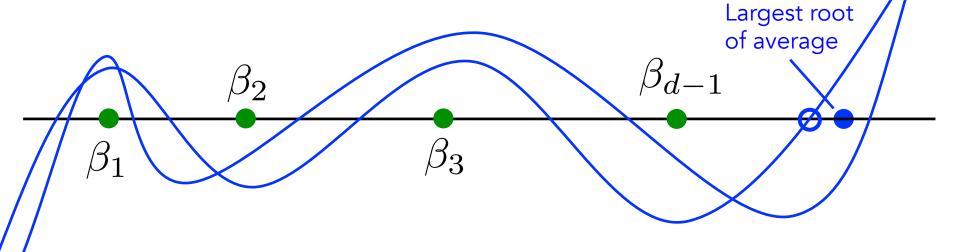
 $p_1(x)$ and $p_2(x)$ have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly



If p_1 and p_2 have a common interlacing, max-root $(p_i) \leq \max$ -root $(\mathbb{E}_i [p_i])$ for some i.



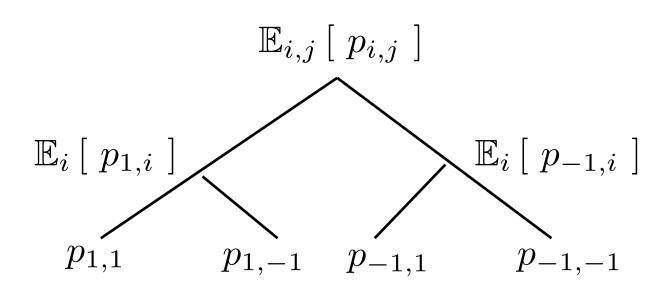
If p_1 and p_2 have a common interlacing, max-root $(p_i) \leq \max$ -root $(\mathbb{E}_i [p_i])$ for some i.



Interlacing Family of Polynomials

 $\{p_s\}_{s\in\{\pm 1\}^m}$ is an interlacing family

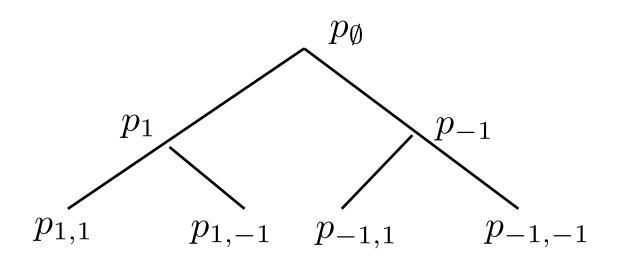
If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings



Interlacing Family of Polynomials

 $\{p_s\}_{s\in\{\pm 1\}^m}$ is an interlacing family

If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings

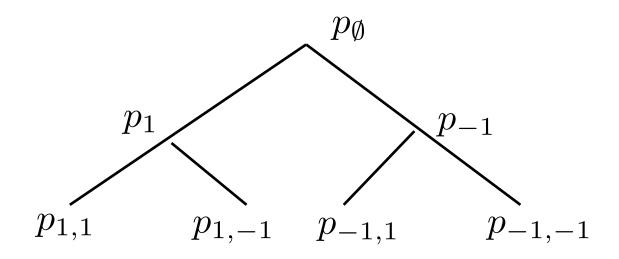


Interlacing Family of Polynomials

Theorem:

There is an s so that

$$\operatorname{max-root}(p_s(x)) \leq \operatorname{max-root}\left(\mathbb{E}\left[\ p_s(x)\ \right]\right)$$



An interlacing family

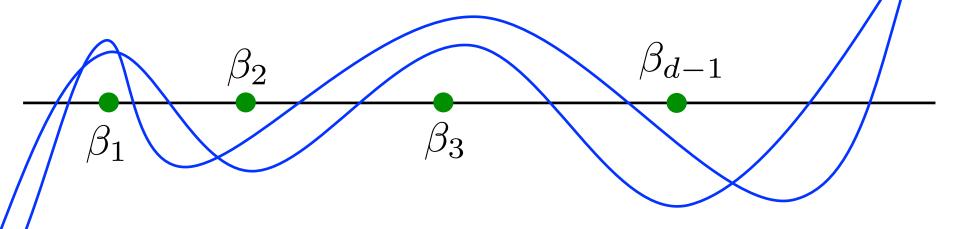
Theorem:

Let
$$p_s(x) = \chi_{A_s}(x)$$

 $\{p_s\}_{s\in\{\pm 1\}^m}$ is an interlacing family

Interlacing

 $p_1(x)$ and $p_2(x)$ have a common interlacing iff $\lambda p_1(x) + (1-\lambda)p_2(x)$ is real rooted for all $0 \le \lambda \le 1$



To prove interlacing family

Let
$$p_{s_1,...,s_k}(x) = \mathbb{E}_{s_{k+1},...,s_m} [p_{s_1,...,s_m}(x)]$$

To prove interlacing family

Let
$$p_{s_1,...,s_k}(x) = \mathbb{E}_{s_{k+1},...,s_m} [p_{s_1,...,s_m}(x)]$$

Need to prove that for all $s_1, \ldots, s_k, \lambda \in [0, 1]$

$$\lambda p_{s_1,\ldots,s_k,1}(x) + (1-\lambda)p_{s_1,\ldots,s_k,-1}(x)$$

is real rooted

To prove interlacing family

Let
$$p_{s_1,...,s_k}(x) = \mathbb{E}_{s_{k+1},...,s_m} [p_{s_1,...,s_m}(x)]$$

Need to prove that for all $s_1, \ldots, s_k, \lambda \in [0, 1]$ $\lambda p_{s_1, \ldots, s_k, 1}(x) + (1 - \lambda) p_{s_1, \ldots, s_k, -1}(x)$ is real rooted

 s_1,\dots,s_k are fixed s_{k+1} is l with probability λ , -l with $1-\lambda$ s_{k+2},\dots,s_m are uniformly ± 1

Generalization of Heilmann-Lieb

We prove

$$\underset{s \in \{\pm 1\}^m}{\mathbb{E}} \left[\ p_s(x) \ \right]$$
 is real rooted

for every independent distribution on the entries of s

Generalization of Heilmann-Lieb

We prove

$$\underset{s \in \{\pm 1\}^m}{\mathbb{E}} \left[\ p_s(x) \ \right]$$
 is real rooted

for every independent distribution on the entries of s

Mixed Characteristic Polynomials

For $a_1, ..., a_n$ independently chosen random vectors

$$\mathbb{E} \left[\text{ poly}(\sum_{i} a_i a_i^T) \right] = \mu(A_1, ..., A_n)$$

is their mixed characteristic polynomial.

Theorem: Mixed characteristic polynomials are real rooted.

Proof: Using theory of real stable polynomials.

Mixed Characteristic Polynomials

For $a_1, ..., a_n$ independently chosen random vectors

$$\mathbb{E} \left[\text{ poly}(\sum_{i} a_i a_i^T) \right] = \mu(A_1, ..., A_n)$$

is their mixed characteristic polynomial.

Obstacle: our matrix is a sum of random rank-2 matrices

Mixed Characteristic Polynomials

For $a_1, ..., a_n$ independently chosen random vectors

$$\mathbb{E} \left[\text{ poly}(\sum_{i} a_i a_i^T) \right] = \mu(A_1, ..., A_n)$$

is their mixed characteristic polynomial.

Solution: add to the diagonal

Generalization of Heilmann-Lieb

We prove

$$\underset{s \in \{\pm 1\}^m}{\mathbb{E}} [p_s(x)]$$
 is real rooted

for every independent distribution on the entries of *s*

Implies $\chi_{A_s}(x)$ is an interlacing family

Generalization of Heilmann-Lieb

We prove

$$\underset{s \in \{\pm 1\}^m}{\mathbb{E}} \left[\ p_s(x) \ \right]$$
 is real rooted

for every independent distribution on the entries of *s*

Implies $\chi_{A_s}(x)$ is an interlacing family

Conclude there is an s so that $\max - \operatorname{root} (\chi_{A_s}(x)) \leq 2\sqrt{d-1}$

Universal Covers

The universal cover of a graph G is a tree T of which G is a quotient.

vertices map to vertices

edges map to edges

homomorphism on neighborhoods

Is the tree of non-backtracking walks in G.

The universal cover of a d-regular graph is the infinite d-regular tree.

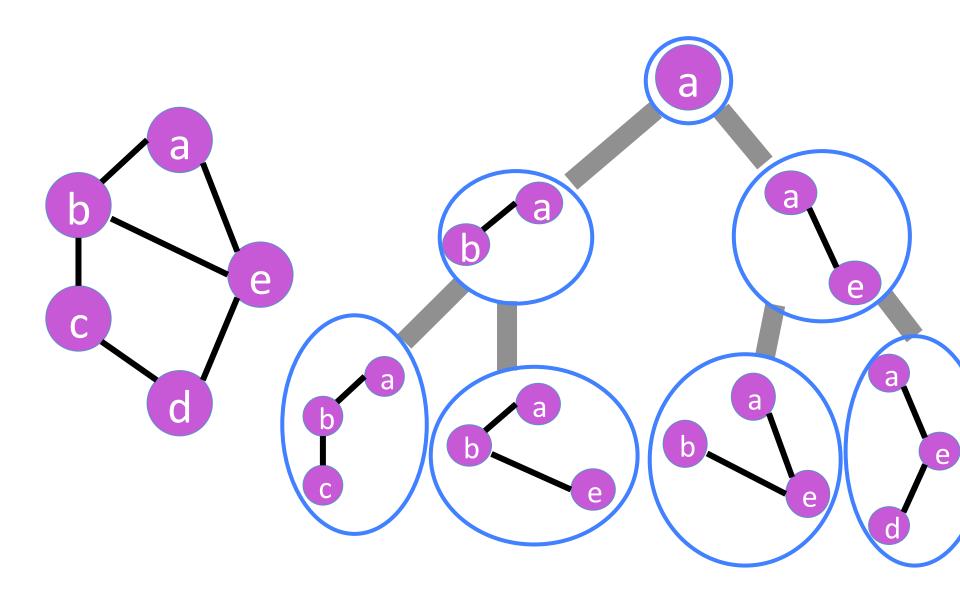
Quotients of Trees

d-regular Ramanujan as quotient of infinite d-ary tree

Spectral radius and norm of inf d-ary tree are

$$2\sqrt{d-1}$$

T(G,v): the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step



T(G,v): the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Theorem:

The matching polynomial divides the characteristic polynomial of T(G,v)

T(G,v): the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Theorem:

The matching polynomial divides the characteristic polynomial of T(G,v)

Is a subgraph of infinite tree, so has smaller spectral radius

Quotients of Trees

(c,d)-biregular bipartite Ramanujan as quotient of infinite (c,d)-ary tree

Spectral radius
$$\sqrt{d-1} + \sqrt{c-1}$$

For (c,d)-regular bipartite Ramanujan graphs

$$\sqrt{d-1} + \sqrt{c-1}$$

Questions

Non-bipartite Ramanujan Graphs of every degree?

Efficient constructions?

Explicit constructions?