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Objective of Sparsification:

Approximate any (weighted) graph by a
sparse weighted graph.




Objective of Sparsification:

Approximate any (weighted) graph by a
sparse weighted graph.

Spanners - Preserve Distances [Chew '89]

Cut-Sparsifiers — preserve wt of edges leaving
every setS €V [Benczur-Karger ‘96]




Spectral Sparsification [S-Teng]

Approximate any (weighted) graph by a
sparse weighted graph.

Graph € ) Laplacian
G = (V, E,w) > Wuole(w) —2(v)’

(u,v)EFE

— 2l Lox



Laplacian Quadratic Form, examples

All edge-weights are 1 ]
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Laplacian Quadratic Form, examples

All edge-weights are 1 ]

L0 0
0

X

! Lox = Z (z(u) — z(v))?
(u,v)EFE

__ Sum of squares of
differences across edges
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Laplacian Quadratic Form, examples

When x is the characteristic vector of a set S,
sum the weights of edges on the boundary of S




Lea rning on Graphs (Zhu-Ghahramani-Lafferty '03)

Infer values of a function at all vertices
from known values at a few vertices.

Minimize Y (z(a) — z(b))?

(a,b)eE
Subject to known values
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Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.
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Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

Induced voltages minimize

> (v(a) —v(b))’

(a,b)eFE

Subject to fixed voltages (by battery)



Graphs as Resistor Networks

Effective Resistance between sandt =
potential difference of unit flow

2 1 0
o000 Reff(s,t) = 2
1 0.5
O—~—
1.5 0
g{i Reff(s,t) = 1.5
O— 1 —



Laplacian Matrices



Laplacian Matrices

Sum of outer
where bu v — Oy — (Sv products



Laplacian Matrices

Positive semidefinite

If connected, nullspace = Span(1)



Inequalities on Graphs and Matrices

For matrices M and M

N

M < M if mTMazng]\Aja: forall z

Forgraphs G = (V,E,w) and H = (V,F,z)

G%H if LG LH
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Forgraphs G = (V,E,w) and H = (V,F,z)
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Approximations of Graphs and Matrices
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Approximations of Graphs and Matrices

MM (1+eM

Forgraphs G = (V,E,w) and H = (V,F, z)
G ~e H if LG LH

Thatis, forall x € RY

1 Cwer fuo(a(w) — ()’

<1
l14+€ ™ Z(u,v)EE wU,U(m(u) _:C(v))Q =T




Implications of Approximation

G~ . H

Boundaries of sets are similar.
Effective resistances are similar.

L, and L have similar eigenvalues

+ o 77
L ~e Ly

Solutions to systems of linear equations are similar.



Spectral Sparsification [S-Teng]

For an input graph G with n vertices,
find a sparse graph H having O(n) edges

sothat G ~. H



Why?

Solving linear equations in Laplacian Matrices
key part of nearly-linear time algorithm
use for learning on graphs, maxflow, PDEs, ...

Preserve Eigenvectors, Eigenvalues
and electrical properties

Generalize Expanders

Certifiable cut-sparsifiers



Approximations of Complete Graphs are Expanders

Expanders:
d-reqular graphs on n vertices (n grows, d fixed)
every set of vertices has large boundary
random walks mix quickly

incredibly useful



Approximations of Complete Graphs are Expanders

Expanders:
d-regular graphs on n vertices (n grows, d fixed)
weak expanders: eigenvalues bounded from 0

strong expanders: all eigenvalues near d



Example: Approximating a Complete Graph

For G the complete graph on n verts.
all non-zero eigenvalues of L are n.

For x 1 1, ||z]| =1 ' Lax=n
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Example: Approximating a Complete Graph

For G the complete graph on n verts.
all non-zero eigenvalues of L are n.

For x 1 1, ||z]| =1 ' Lax=n

For H a d-reqgular strong expander,
all non-zero eigenvalues of L, are close to d.

For x 1 1, |lz]l=1 z'Lyxz~d

%H is @ good approximation of



Best Approximations of Complete Graphs

Ramanujan Expanders
[Margulis, Lubotzky-Phillips-Sarnak]

d—2Vd—1<XNLg)<d+2Vd-1



Best Approximations of Complete Graphs

Ramanujan Expanders
[Margulis, Lubotzky-Phillips-Sarnak]

d—2Vd—1<XNLg)<d+2Vd-1

Cannot do better if n grows while d is fixed
[Alon-Boppanal]



Best Approximations of Complete Graphs

Ramanujan Expanders
[Margulis, Lubotzky-Phillips-Sarnak]

d—2Vd—1<\NLyg)<d+2Vd—1

Can we approximate every graph this well?



Example: Dumbbell

Complete graph Complete graph
e P 9 p O O p 9 p
on n vertices on n vertices

d-regular
Ramanujan, O
times n/d

d-reqgular
O Ramanujan,
times n/d

33



Example: Dumbbell

d-reqular

Ramanujan,
times n/d
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Example: Dumbbell
G, 1

d-reqular

d-regular

Ramanujan, Ramanujan,

times n/d

G=G1+ G+ G5 G1$(1—|—6)H1
H = H; + Hy + Hs Gs = Hy
G3 < (14 ¢€)Hs

times n/d

Gx(1+e¢)H

35



Cut-Sparsifiers [Benczur-Karger '96]

For every G, is an H with O(nlogn/e?) edges
forallz € {0,1}"




Cut-approximation is different

m — 1
A

=
’ |
XXX
XY
XXX




Cut-approximation is different

m — 1




Cut-approximation is different

m — 1

vl Lox = km + m?

Need long edgeif &k < m



Main Theorems for Graphs
Forevery G = (V, E,w), thereisa H = (V,F,z) s.t.

GreH and  |FI<|V|(2+ €)% /€



Main Theorems for Graphs
Forevery G = (V,E,w), thereisa H = (V, F,z) s.t.

GreH and  |FI<|V|(2+ €)% /€

Within a factor of 2 of the Ramanujan bound



Main Theorems for Graphs
Forevery G = (V, E,w), thereisa H = (V,F,z) s.t.

GreH and  |FI<|V|(2+ €)% /€

By careful random sampling, get
|F| < 0 (|V‘ log |V| /62) (S-Srivastava 08)

Intime O(|E|log” |V |log(1/¢))

(Koutis-Levin-Peng '12)



Sparsification by Random Sampling
Assign a probability p,, , to each edge (u,v)
Include edge (u,v) in H with probability p, ,

If include edge (u,v), give it weightw, ,/p, ,

[LH Z puv wuv/puv) uv_LG

(u,v)eEE



Sparsification by Random Sampling

Choose p,, to be w,  times the
effective resistance between u and v,

Low resistance between u# and v means there
are many alternate routes for current to flow and
that the edge is not critical.

Proof by random matrix concentration bounds
(Rudelson, Ahlswede-Winter, Tropp, etc.)






Matrix Sparsification

(M)=(B )(BT) = 3, beb?

) = (1) () = . pebt

[most Se = ()]




Main Theorem (Batson-S-Srivastava)

For M = _b.b!" , there exist s. so that for
M =3, sebeb!

P

M~_ M
and

at most n(2 + €)?/e* s are non-zero



Simplification of Matrix Sparsification

1 __
M<M<(+oM
(1 + €) ( )

is equivalent to

I< M '2PMMY2 < (1+6)l
(1+¢€)



Simplification of Matrix Sparsification

I M 'PMMY2 < (1+6)l

i+0

Set v, = M/, > vevg =1

(&

“"Decomposition of
the identity”

> (u,0e)” = [l

(&
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Simplification of Matrix Sparsification

I M 'PMMY2 < (1+6)l

i+ 0

Set v, = M/, > vevg =1

(&

T
We need E SeVel, ¢ 1

(&

Random sampling sets pe = H%H2



What happens when we add a vector?

A(A)



Interlacing

BN N

0 -0
A(A+ v T)




More precisely

Characteristic Polynomial:

pa(x) = det(xl — A)



More precisely

Characteristic Polynomial:

pa(x) = det(xl — A)

Rank-one update:

PA+vuT = (1 T Z <v ; )pA

Where Au; = \;u;



More precisely

Characteristic Polynomial:

pa(x) = det(xl — A)

Rank-one update:

PA+voT — (1 =+ Z <U > )pA

M A + vol) are zeros of J




r

&

Physical model of interlacing
)

A. = positive unit charges

resting at barriers on a slopej




Physical model of interlacing

AA + vol)

2 . .
u; 1S elgenvector
A v is added vector
2 :
(v,u;)” charge on barrier



Physical model of interlacing

[Barriers repel eigs.]

2 . .
u; 1S elgenvector
A v is added vector
2 :
(v,u;)” charge on barrier



Physical model of interlacing

[Barriers repel eigs.]

<’U,U,n>2
\ 0
e 2
Inverse law
_|_<v)1< Vrepulsmn)

A\ 2
1+ 5, 5 =0

A1
gravity ]




Examples




Exa: All weight on u,




Exa: All weight on u,
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Exa: All weight on u,

Gravity keeps resting
on barrier

Pushed up against
next barrier .T

+1



Ex2: Equal weighton u,, u,
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Ex3: Equal weightonallu,, u, , ..., u

n

+1/n




Ex3: Equal weightonallu,, u, , ..., u

n

+1/n




Adding a random U,

Because Ve are decomposition of identity,

E { (Ve, ;) } =1/m

€

1 1
E[PA"'UGBU;F]: (1+EZ)\ZQ§') PA

1 d

= P P
A m dx A




Many random U,

» [ PA—I-’UQUZ (ZU) } =1

(&

v { P,Uel,ug +Fve, 0T (:U)
ex

1 €k




Many random U,

1 d
= [ PA+veveT($) } =1 - deA(x)
ﬂ 1 d\"
61,.?7% {Pvelvgl+---+vekvzk (33) } — (1 m dx) L

Is an associated Laguerre polynomial!

For k = n/é?

n
roots lie between (1 — 6)2—2 and (1 + 6)2_
TNe MLE



Matrix Sparsification Proof Sketch

T T
Have E vev, =1  Want E SeVel, e 1
(& (&

Will do with [{e : s # 0}| < 6n

All eigenvalues between1and 13, e ~ 2.6



Broad outline: moving barriers
A=

@
-N 0 n










Stepa

A=O
O

-n 0 n
+vvl ve {ve}
BR A = vy AN

®-
O n+2



Stepa
A =

0 looser constraint
tighter
constraint T

\% v € {ve}

+1/3 +2
A =vv!l a
0

®-
O

-n+1/3 n+2



Step 1+1







Step 1+1

AG) AGi+1)

I\
b
N






Step 1+1

A@ AG+1) A>+2)

I\
b
N



Step 1+1

A@ AG+1) A>+2)
+1/3m

@®-i- 0
o)
—I—VVT



Step 1+1

AG) AG+1)  AG+2)  A>+3)

I\
b
N




Step 1+1
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Step 1+1

A@) A+ AG+2) AG+3)

I\
b
N




Step 6n

A@ A+ AG@+2) AG@G+3)  A(6n)

I\
b
N



Step 6n

A@ A+ AG@+2) AG@G+3)  A(6n)

—000— 0}
0 coe n | 3n

- E— B S B S B EEE B SEE S EEE S EEE BEE B BN S BN BEE B B S B S S B B B S e ey



Problem

-

)
need to show that an appropriate
2 fh
Gve

always exists. y

\




Problem

-

\

1

~

need to show that an appropriate

J

<A<t

Is not strong enough for induction



Problems

If many small eigenvalues, can only move one

NN

Bunched large eigenvalues
repel the highest one




The Lower Barrier Potential Function

(A) =% 5 = Tr (A= 0D)7)

k

14




The Lower Barrier Potential Function

(A) =% 5 = Tr (A= 0D)7)

k

14

Py(A) <1 = Apin(4) > 0+1



The Lower Barrier Potential Function

(A) =3 5 = Tr (A= 00)7)

No A within dist. 2
No 2 A, within dist. 2
No 3 A. within dist. 3

14

No k A within dist. k

Py(A) <1 = Apin(4) > 0+1



The Upper Barrier Potential Function

(I)u(A) _ Zz u—l)\q; = ITr ((UI — A)_l)

J

u




The Beginning
A=0

0



The Beginning
A=0




Step 1+1

A@ AG+1) A>+2)

\_ J

®--1—+
0

dU(A) < 1
dp(A) < 1.



Step 1+1

A@ AG+1) A>+2)

+1/3N +240%
®1-1—

0
4 R

Lemma. o
can always choose +seveveT PU(A) <1
so that potentials do not increase CDK(A) < 1.

\_ )




Step 1+1

AG) AG+1)  AG+2)  A>+3)

\_ ),
—0-0—0¢ -
0
dU(A) < 1

dp(A) < 1.



Step 1+1

A@) A+ AG+2) AG+3)

\_ J
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dU(A) < 1

dp(A) < 1.



Step 1+1
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dU(A) < 1
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Step 1+1

A@) A+ AG+2) AG+3)

\_ _J

dU(A) < 1
dp(A) < 1.



Step 6n

A@ A+ AG@+2) AG@G+3)  A(6n)

\_ J

—000— 0}
0 coe n | 3n

dU(A) < 1
dp(A) < 1.



Step 6n

A@ A+ AG@+2) AG@G+3)  A(6n)

—000— 0}
0 coe n | 3n
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Goal

4 R
Lemma. o
can always choose +SeUeUp PU(A) <1
so that potentials do not increase P ,(A) < 1.

- Y,

+1/30% 0%

T
+SeVeg



Add

Upper Barrier Update

SV

T

.

“+svv

2

and set u' «— u + 2.



Upper Barrier Update

.

“+svv

2

Add svv!l and set u' «— u 4+ 2.

O (A + svv™)
=Tr ((v'I — A—svv’)™ )



Upper Barrier Update

.

“+svv

2

Add svv! and set u' «— u 4+ 2.

O (A + svv’)
=Tr ((v'I — A—svo’)™ )

svl (W'l — A) v

— d% (A) -

By Sherman-Morrison Formula

1 —svl(u'l—A)~tv



Upper Barrier Update

.

“+svv

2

Add svv! and set u' «— u 4+ 2.

O (A + svv’)
=Tr ((v'I — A—svo’)™ )

— d% (A) -

svl (W'l — A) v

Need < ®“(A)

1 —svl(u'l—A)~tv



How much of vv! can we add?
Rearranging:
O (A + svoT) < ¥(A)
iff

T (u/I_A)_Q | / —1
1> sv (@U(A)—CI)U’(A) F(u'l — A) )’U




How much of vv! can we add?
Rearranging:
O (A + svoT) < ¥(A)
iff

T (u/I_A)_Q | / —1
1> sv (@U(A)—CI)U’(A) F(u'l — A) )’U

Writeas 1> svlUav



| ower Barrier

Similarly:
(I)l/(A -+ S’U’UT) < (I)Z(A)

iff

T (A_Z,I)_2 I T\—1
1 < swv (CI)Z/(A)—CDZ(A) (A—=1UT) )fv

Write as [1 < svl L v }




Goal

Show that we can always add some vector while
respecting both barriers.

4 )
+1/3@ +2@
_ —I—SUUT y

Need: svlU v <1< sv!iLav



Two expectations

Need: svlUjv <1 <sv!L,v

Canshow: [E vZUAve < 3/2m

5[ vl Lave | > 2/m
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Two expectations

Need: svlUjv <1 <sv!L,v

Canshow: | E UZUA’UQ < S/Qm\

Ll vl Lav. | >2/m
& __ i /

So: 4, [ ”UZUA”Ue ] < [t [ UZLAUe }

€ &

- A T
And, exists e : v, Upve < v, Lave

And s that puts 1 between them



Bounding expectations

v U v = Tr (UAUUT)



Bounding expectations

_ Tr ((u'I — A)~2)
Pu(A) — v (A)

Tr (Ua) - Tr ((u'I — A)~)

L — B (A)

< ©(A)
<1

As barrier function is
monotone decreasing



Bounding expectations
Tr ((u'I — A )

Tr(Uga) = e (A) - Tr ((u'I — A)~)

Numerator is derivative ' B (I)u

of barrier function. -

< Y )
As barrier function is convex, <1
1
<
u — u

Tr(Ua) <1/24+1=3/2



Bounding expectations

1
Similarly, Tr(La) > T 1

1
1/3

|
-




Step 1+1

A@ AG+1) A>+2)

+1/3N +240%
®1-1—

0
4 R

Lemma. o
can always choose -|-SVVT P (A) <1
so that potentials do not increase CDK(A) < 1.

\_ )




Twice-Ramanujan Sparsifiers

Fixing dn steps and tightening parameters
gives ratio

Amaz(4)  d+1+2Vd
<
)\min (A) d+1— 2\/a

Less than twice as many edges as used by
Ramanujan Expander of same quality



Open Questions
The Ramanujan bound
Properties of vectors from graphs?

Faster algorithm

union of random Hamiltonian cycles?



