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Outline

Disclaimer

The Kadison-Singer Problem, defined.

Restricted Invertibility, a simple proof.

Break

Kadison-Singer, outline of proof.



The Kadison-Singer Problem (°59)

A positive solution is equivalent to:
Anderson’s Paving Conjectures (79, ‘81)
Bourgain-Tzafriri Conjecture (91)
Feichtinger Conjecture (‘05)

Many others

Implied by:

Akemann and Anderson’s Paving Conjecture (91)
Weaver’s KS, Conjecture
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The Kadison-Singer Problem (°59)

Let A be a maximal Abelian subalgebra of B(¢*(N)),
the algebra of bounded linear operators on ¢?(N)

Let p: A — C be a pure state.
s the extension of p to B(¢?(N)) unique?

See Nick Harvey’s Survey or Terry Tao’s Blog



Anderson’s Paving Conjecture ‘79

For all ¢ > 0 there is a k so that for every
n-by-n symmetric matrix A with zero diagonals,

there is a partition of {1,...,n}into Sy, ..., Sk
JA(S;, S)| < ellAll for j=1,....k

Recall ||A|| = max ||Ax]||
[z][=1
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Anderson’s Paving Conjecture ‘79

For all € > 0 there is a k so that for every
self-adjoint bounded linear operator A on £,

there is a partition of N into 51, ..., Sk

JA(S;, S < €|l Al for j=1,....k

|A|l = sup [|Az]

lz][=1



Anderson’s Paving Conjecture ‘79

For all ¢ > 0 there is a k so that for every
n-by-n symmetric matrix A with zero diagonals,

there is a partition of {1,...,n}into Sy, ..., Sk
JA(S;, S)| < ellAll for j=1,....k

s equivalent if restrict to projection matrices.
[Casazza, Edidin, Kalra, Paulsen ‘07]



Anderson’s Paving Conjecture ‘79

Equivalent to [Harvey "13]:

There exist an ¢ > 0 and a k so that for v1, ..., V,, € ce
such that [|v; || < 1/2 and Y v} =1

then exists a partition of {1,...,n}into k parts s.t.

<1—c¢€

[Sies, v




Moments of Vectors

The moment of vectors vy, ..., v, T o
in the direction of a unit vector 1 is E (Ui )



Moments of Vectors

The moment of vectors v1, ..., v,
in the direction of a unit vector 14 is

D Wlu? =% ul ()

1 1



Vectors with Spherical Moments

For every unit vector u

S (wFu?=1




Vectors with Spherical Moments

For every unit vector u

S (wFu?=1

1

va? =/

1

Also called isotropic position



Partition into Approximately Y2-Spherical Sets




Partition into Approximately Y2-Spherical Sets

~

~

1/4< Y es (0T 0)? < 3/4
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Partltlon mto Approximately 2-Spherical Sets
51 S5

1/4< 3 es, (v 1)? <3/4

1/4 < eigs()_;eg, Vit Yy <3/4

— szes V; U

T T
because D vivi =1— > ww;

1€51 1€S5




Big vectors make this difficult
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Big vectors make this difficult
5:1 SZ




Weaver’s Conjecture KS,
There exist positive constants a and € so that
if all ||v;]| <

then exists a partition into S, and S, with

eigs(ziesj vvf) <1 —¢€



Weaver’s Conjecture KS,
There exist positive constants a and € so that
if all [|vi|| <«
then exists a partition into S, and S, with

eigs(ziesj vvf) <1 —¢€

Implies Akemann-Anderson Paving Conjecture,
which implies Kadison-Singer



Main Theorem
Forall o > 0
if all [|vi|| <«
then exists a partition into S, and S, with

eigs(D_;eg, Viv]) < = + 3a

Implies Akemann-Anderson Paving Conjecture,
which implies Kadison-Singer



A Random Partition?

Works with high probability if all [|v:]|> < O(1/ log d)
(by Tropp ‘11, variant of Matrix Chernoff, Rudelson)
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A Random Partition?

Works with high probability if all [|v:]|> < O(1/ log d)
(by Tropp ‘11, variant of Matrix Chernoff, Rudelson)

Troublesome case: each ||v;]| =
is a scaled axis vector

are 1/a” of each
chance that all in one direction
land in same set is 9—1/a”
/ Chance there exists a direction in which
A . all land in same set is
. d
| — (1 _ 2—1/@2) 1




The Graphical Case

From a graph G = (V,E) with IVl = n and [El = m
Create m vectors in n dimensions:

1 itc=a

T
vap(c) =4 =1 ifc=0b > vapvay = La

0 otherwise (a.b)€E

It G is a good d-regular expander, all eigs close to d
very close to spherical



Partitioning Expanders

Can partition the edges of a good
expander to obtain two expanders.

Broder-Frieze-Upfal '94:
construct random partition guaranteeing
degree at least d/4, some expansion

Frieze-Molloy '99: Lovéasz Local Lemma,
good expander

Probability is works is low, but can prove non-zero



Interlacing Families of Polynomials

A new technique for proving existence
from very low probabilities



Restricted Invertibility (Bourgain-Tzafriri)

Special case:
For v1, ..., v, € C* with > vivs =1
forevery k < d thereisa S C {1,...,n},|S| =k

so that

AL (Zies vw,}k) > (1 —
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Restricted Invertibility (Bourgain-Tzafriri)

Special case:
For v1, ..., v, € C* with > vivs =1
forevery k < d thereisa S C {1,...,n},|S| =k

so that

AL (Zies vw,}k) > (1 —

=
\/
|\

S|

s far from singular on the span of {/Ui}ies



Restricted Invertibility (Bourgain-Tzafriri)
For v, ..., v, € C* with > vivy =1

forevery k < d thereisa S C {1,...,n},|S| =k
2
sothat A (Tyequivy) = (1- /%) 4

* d
For k =1 says A (vv*) 2 =,

while )\1(?}?}*) — v Y = HUHZ ~ %

Similar bound for k a constant fraction of d!



Method of proof

Let 71, ..., Tk be chosen uniformly from {v1, ..., vy }

1. Ex {Z Tjr;f] () is real rooted

\\ the characteristic polynomial in the variable x
of the matrix inside the brackets
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Method of proof

Let 71, ..., Tk be chosen uniformly from {v1, ..., vy }

1. Ex {Z rjr;f} () is real rooted

2. Ak (“3X [Z Tjr;'f] (x)) > (1 — z) %
3. With non-zero probability
AL (X {Z rjrﬂ (x)) > A\ (ﬂX {Z rjrﬂ (:1;))

Because is an interlacing family of polynomials




Rank-1 updates of characteristic polynomials

As > vvf =1, Lriry = 1

Lemma: For a symmetric matrix A,

L x [A+ 7] (2) = (1 — 10,)x[4](z)




Rank-1 updates of characteristic polynomials

As > vvf =1, Lriry = 1

Lemma: For a symmetric matrix A,

L x [A+ 7] (2) = (1 — 10,)x[4](z)

Proot: follows from rank-1 update tfor determinants:

det(A + vwu*) = det(A)(1 + u* A" u)



The expected characteristic polynomial

Lemma: For a symmetric matrix A,

L x [A+rrE] () = (1 — 18,)x[A](z)

Corollary:




Real Roots

Lemma: if p(x) is real rooted, sois (1 — 0, )p(x)
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Real Roots

Lemma: if p(x) is real rooted, sois (1 — 0, )p(x)

p(x)

N/'/\+ S
\J




Real Roots

Lemma: if p(x) is real rooted, sois (1 — 0, )p(x)

DY [Z?:l rjrﬂ () = (1 — £8,)*a?

So, E x [Z§:1 rjr;f} () is real rooted



Lower bound on the kth root

xSy (@) = (1= 0.k
_ md_k(l _ %&E)dajk

= xd_kLZ_k(n:E)

1

a scaled associated Laguerre polynomial



Lower bound on the kth root

OB% [Z?:l rjr;f] (z) = 29 * LI (na)
1

a scaled associated Laguerre polynomial

Let R be a k-by-d matrix of independent A (0,1/n)

L xX[RRT] = L~ " (nx)

CX[RTR) = 24 F LY " (na)



Lower bound on the kth root

5 k * _ _
ox [ | () = 2R L )

1

a scaled associated Laguerre polynomial

D% [Z Tjrﬂ (aj‘)) > (1 B 'Z)QZ

(Krasikov ‘06)



3. With non-zero probability
Ak (X [Z rjfrﬂ (a:)) > Ak (ﬂx [Z frjr;f} (:1:))

Proof: the polynomials

S

pzlzgzk(x) — X [fuilv;: S i vikvik} (33)

form an interlacing family.



Interlacing



Interlacing

Polynomial p(x) = Hle(w — ;)
interlaces ¢q(x) = Hf;l(i’? — Bi)

if a1 < <as<--raq-1 <

For example, p(x) interlaces



Interlacing

Polynomial p(x) = Hle(w — ;)
interlaces ¢q(x) = Hf;l(i’? — Bi)

if a1 < <as<--raq-1 <

It generalize to allow same degree,
Cauchy’s interlacing theorem says

x|A](x) interlaces



Common Interlacing

pi(z) and p2(z) have a common interlacing if
can partition the line into intervals so that
each contains one root from each polynomial

LN /}/ﬁ\\&u
ESZN



Common Interlacing

pi(z) and p2(z) have a common interlacing if
can partition the line into intervals so that
each contains one root from each polynomial

5] /\ Ba—1
&W



Common Interlacing

It p1(x),p2(z),...,pn(z) have a common interlacing,

then mln )\k(pj) < >\k Ep] < max )\k(p])

ARG




Common Interlacing

It p1(x),p2(z),...,pn(z) have a common interlacing,

then mjln M (D) < Ak (%‘;m) < mjaX Ak (Dj)
B < / d—1
51 :/ )_5.?:( A




Common Interlacing

It p1(x),p2(z),...,pn(z) have a common interlacing,

then min )\k(pj) < g (EPj) < max )\k(pj)
J J J

All are non-positive here

5 | Ba—1

< }6‘3{/ N

All are

non-negative
here

51

So, the average has a root between the smallest and largest kth roots



Without a common interlacing

(z+1)(z + 2)5\ /




Without a common interlacing

(x +1)(x + 2)




Without a common interlacing
(x+4)(x —1)(x — 8)

100 -
50 - //\
g /

~ / \/
100 F
150 |

2005 !




Without a common interlacing
(x+4)(x —1)(x — 8)
(x +32)(x —6.8)(x —T7)




Common Interlacing

It p1(x),p2(z),...,pn(z) have a common interlacing,

then mln )\k(pj) < >\k Ep] < max )\k(p])

ARG




Interlacing Family of Polynomials

{p+(2)}, is an interlacing family

if its members can be placed on the leaves of a tree so that
when every node is labeled with the average of leaves below,
siblings have common interlacings

Eijlpij |

E; | p1; | E; | p2.i | E; | p3.i |

SN

P11 P12 P13 P21 P22 P23 P31 P32 P33
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Interlacing Family of Polynomials

{p+(2)}, is an interlacing family

k
For o € {1,..,72/} , set pig, ... th T

P1 D2 D3

P11 P12 P13 P21 P22 P23 P31 P32 P33



Interlacing Family of Polynomials

Theorem:
There is an i1, ..., 7 so that

Me(Piy. i) = Ak (o)

Po

P1 D2 D3

PN

P11 P12 P13 P21 P22 P23 P31 P32 P33




Interlacing Family of Polynomials

't remains to prove that the polynomials

S

DPiqig,... i (33) — X [U’hv; Sl o U’ikvik} (ZC)
form an interlacing family.

Will imply that with non-zero probability

Ak (X [Z rjr;f] (x)) > Ak (*CX [Z rjr;f} (:13))




Common interlacings

p1(x), p2(), ..., pn(T) have a common interlacing iff

for every convex combination ) u; = 1,15 > 0

;i i (%)

is real rooted




Common interlacings

p1(x), p2(), ..., pn(T) have a common interlacing iff
for every distribution on {1,...,n}

Ejrppj(z)

is real rooted




Common interlacings

p1(x),p2(x),...,pn(T) have a common interlacing iff
for every distribution on {1,...,n}
Ejoppj(z)

is real rooted

Proot: by similar picture.
(Dedieu ‘80, Fell ‘92, Chudnovsky-Seymour ‘07)



An interlacing family
Diy sionvie () = X 00y 05, + -+ F i, 07, | (2)

Nodes on the tree are labeled with

We need to show that for each i1, ..., i1, the polynomials

Diy,...in,i () have a common interlacing



An interlacing family
Diy sionvie () = X 00y 05, + -+ F i, 07, | (2)

Nodes on the tree are labeled with

We need to show that for each i1, ..., i1, the polynomials

Diy,...in,i () have a common interlacing

= (1= 50:) " Ix [vi o, + -+ + i v, + w05 ] (2)



An interlacing family

We need to show that for each i1, ..., i1, the polynomials

Pir,...,in,i () have a common interlacing

= (1= 20 foig o+ 0,05, + 0505] (@
Cauchy’s interlacing theorem implies

X (Vi V), + - o0, 4 v (2)
All interlace

X [Uilv;;kl + -+ Uihv;;ﬂ ()



An interlacing family

We need to show that for each i1, ..., i1, the polynomials

Pir,...,in,i () have a common interlacing

Proof:
= (1= 50:)" "7 x [vi v}, + - + vy, 05, + o505 (@)
Cauchy’s interlacing theorem implies
X (Vi V), + - o0, 4 v (2)

have a common interlacing



An interlacing family

Proof:
= (1= 20,)" " Ix v vl + -+ 0f + v;jvs| (x)
Cauchy’s interlacing theorem implies
X Vi V5, + 40,05+ v07 | (2)

have a common interlacing. So, for all distributions

4" . . * .« o o . * . *
Lo X [Uzlvil + v, v5 + v]vj} ()

is real rooted.



An interlacing family

Proof:
= (1 — +02)" " Ix [viyvf, + - +vi,0), + 0t ()
Cauchy’s interlacing theorem implies
X Vi V5, + 40,05+ v07 | (2)

have a common interlacing. So, for all distributions

J . . * e o o . * . *
Lo X [quil o Y, T Ujvj} (x)

is real rooted. And,
Ejrpn(1 = 50:) 7" x [, 0f, + -+ o,0f, + o505 ()

is also real rooted for every distribution p.
QED



Method of proof

Let 71, ..., Tk be chosen uniformly from {v1, ..., vy }

1. Ex {Z Tjr;f} () is real rooted

2. Ak (“3X [Z rjr;f] (x)) > (1 — S) %
3. With non-zero probability
Ak (X [Z Tjr;f] (x)) > Ak (ﬂx [Z rjrﬂ (x))

Because is an interlacing family of polynomials




In part 2

Will use the same approach to prove
Weaver's conjecture, and thereby Kadison-Singer

But, employ multivariate analogs of these arguments

and a direct bound on the roots of the polynomials.



Main Theorem

Forall o > 0
if all [|[vi|| <a and > wvvf =1
then exists a partition into S, and S, with
eigs(ziesj Vv ) < % + 3«

Implies Akemann-Anderson Paving Conjecture,
which implies Kadison-Singer



We want

e1gs

FA
N[



We want

roots | x 151
0 ZUW'

\ i 1€55

VA
D=




We want

roots | y €7 () | <

DN

Consider expected polynomial with a random partition.



Method of proof

1. Prove expected characteristic polynomial
has real roots

2. Prove its largest root is at most 1/2 + 3«

3. Prove is an interlacing family, so
exists a partition whose polynomial
has largest root at most 1/2 + 3«



The Expected Polynomial

Indicate choices by 01, ...,0,: 1 € S,,
Z VU] 0
1:.0;,=1

O14...40n, L) = *k
Poq,..., ( ) X 0 Z -




The Expected Polynomial

a; = <UZ> fore e S a; = <O> for 1 € 5o
0 (%

(> viv} 0

1€51

*
0 E VU] Z.
\ 1€S2 /



Mixed Characteristic Polynomials

For a1, ..., @yn independently chosen random vectors

XD aia) ]

is their mixed characteristic polynomial.

Theorem: It only depends on A; = E a;a;
and, is real-rooted




Mixed Characteristic Polynomials

For a1, ..., @yn independently chosen random vectors

is their mixed characteristic polynomial.

Theorem: It only depends on A; =
and, is real-rooted

Tr (A;) = Tr(Ea;al) = ETr (a;a)) = E

(Y, i) = p(Ar, o Ap)

N k
44 CI,ZGJZ

a;||”




Mixed Characteristic Polynomials

For a1, ..., @yn independently chosen random vectors

43X[Zi aia:;] — M(Ala “e e A"’L)

is their mixed characteristic polynomial.

The constant term is the mixed discriminant of

Al .. A,



The constant term

When diagonal and d =n, c¢q is @ matrix permanent.

N ><\/> N
T




The constant term

When diagonal and d = n, c¢q is a matrix permanent.
Van der Waerden’s Conjecture becomes

1
cqg is minimized when A, = —1
n

Proved by Egorychev and Falikman ‘81.
Simpler proot by Gurvits (see Laurent-Schrijver)



The constant term

For Hermitian matrices, ¢4 is the mixed discriminant
Gurvits proved a lower bound on ¢q:

1
cqg is minimized when A, = —1
n

This was a conjecture of Bapat.



Other coefficients

One can generalize Gurvits's results
to prove lower bounds on all the coefficients.

1
\Ck| IS minimized when A; = —1
n

But, this does not imply useful bounds on the roots



Real Stable Polynomials

A multivariate generalization of real rootedness.

Complex roots of p € IR|z] come in conjugate pairs.

So, real rooted iff no roots with positive complex part.



Real Stable Polynomials
peR|z,...,2,]

is real stable if imag(z;) >0 foralli
implies p(z1,...,25n) #0

it has no roots in the upper half-plane

Isomorphic to Garding’s hyperbolic polynomials

Used by Gurvits (in his second proof)



Real Stable Polynomials
peR|z,...,2,]

is real stable if imag(z;) >0 foralli
implies p(z1,...,25n) #0

it has no roots in the upper half-plane

Isomorphic to Garding’s hyperbolic polynomials

Used by Gurvits (in his second proof)

See surveys of Pemantle and Wagner



Real Stable Polynomials

Borcea-Brandén ‘08:
For PSD matrices Aq,..., A,

det[z1A1 s ZnAn]

Is real stable



Real Stable Polynomials

(21, ..., 2n) real stable

implies (1 —0.,)p(z1,..., 2n) is real stable
(Lieb Sokal ‘81)

p(z1, ---, 2n) real stable

implies p(x,x,...,x) is real rooted



Real Roots
/L(Al, e ,An)(f) —

(H - a) o (Z A)

So, every mixed characteristic polynomial
is real rooted.

Z1=+""=2np==I



Our Interlacing Family

Indicate choices by 01, ..., 0, :

i Z VU]
1:.0;,=1
O71 geeey On L) =
p () = Xx )
Poy,.on(@) = E | Doy

1 €S,




Interlacing

p1(x) and pa(x) have a common interlacing iff
Ap1(z) + (1 — A)p2(x) isreal rooted forall 0 < A <1

We need to show that
)\pdl ..... O'k;,l(x) (1 o )\)pO'l,...O'k,2(£U)

is real rooted.




Interlacing

p1(x) and pa(x) have a common interlacing iff
Ap1(z) + (1 — A)p2(x) isreal rooted forall 0 < A <1

We need to show that
>\p01 ..... O'k,l(aj) (1 T A)pal,...ak,Q(x)

is real rooted.

It is a mixed characteristic polynomial, so is real-rooted.

Set o1 = 1 with probability A
Keep o; uniform for i >k +1



An upper bound on the roots

Theorem: If Y A, =1 and Tr(A;) < e then
max-root (pu(Aq, ..., A,)(x)) < (1 4+ /€)?



An upper bound on the roots

Theorem: If Y A, =1 and Tr(A;) < e then
max-root (pu(Aq, ..., A,)(x)) < (1 4+ /€)?

An upper bound of 2 is trivial (in our special case).

Need any constant strictly less than 2.



An upper bound on the roots

Theorem: If >~ A; =1 and Tr(4;) < e then
max-root (iu( A1, ..., A,)(z)) < (1 4+ /€)?

/L(Al, c . ,An)(CE‘) —

(H1 - a) o (Z A)

Z1=+""=2Zpn==I



An upper bound on the roots

Define: (w1, ..., wy,) is an upper bound on
the roots of p(z1, ..., 2n) if

p(z1, ...,

zn) > 0 for (z1,..., 2n)

\

N

|

|

U
B

>

(w1, ..., W)



An upper bound on the roots

Define: (w1, ..., wy,) is an upper bound on
the roots of p(z1, ..., 2n) if

p(21, .00y 2n) > 0 for (21, ..., 2n) > (w1, ..., wy)

Eventually set
K1y eeeyiom — L

i

2

—— so want
-

\{’\ wlz...:wn

|




Action of the operators




Action of the operators

— k (1= 9y)p(z,y)
-%k p(z,y)
-ﬁ




Action of the operators

— k (1= 9y)p(z,y)
-%k p(z,y)
-ﬁ

(1 o Gay)p(ilj, y) ~ p(:l?, Yy — 6)




The roots of (1 — 9, )p(x)
Define:

a-max(Aq, ..., A\p) = max {u Y u_l)\i = a}

a-max(p(x)) = a-max(roots(p))

Theorem (Batson-S-Srivastava):
If p(z) is real rooted and a > 0

a-max((1 — 0,)p(x)) < a-max(p(z)) 4



The roots of (1 — 9, )p(x)

Theorem (Batson-S-Srivastava):
If p(z) is real rooted and a > 0

1
1l — o

a-max((1 — 0,)p(x)) < a-max(p(z)) 4

 Def _P(w) I _
Proof: Define &,(u) = o) Z v Oy log p(u)

Set u = a-max(p(x)),so ¢,(u) = «

Suffices to show for all § > ﬁ

Dp_pr(u+9) < Pp(u)



The roots of (1 — 9, )p(x)

Define ¢,(u) = P(u) — Z - _1 S

Set u = a-max(p(x)),so0 ¢,(u) =«

Suffices to show forall o > 1_

Dp_p(u+9) < Pp(u)

(algebra)

5 () — @ (ut5) > — ot

—1—-®,(u—+9)



The roots of (1 — 9, )p(x)
Define ¢,(u) = P(u) = Z

®,(u) convex for u > max(p(x)) implies

Dy (1) — By (1 + ) > 6(~ ) (u + ))

Monotone decreasing implies only need

o > :
—1—-®,(u—+9)




The roots of (1 — 9, )p(x)

®,(u) convex for u > max(p(z)) implies

®p(u) — Pp(u+6) > (=P, (u+6))

Monotone decreasing implies only need
0 > :
1 —-®,(u+9)
I 1
1—o 11— @, (u) suffices.

and that 0 >



The roots of (1 — 9, )p(x)

®,(u) convex for u > max(p(z)) implies

®p(u) — Pp(u+6) > (=P, (u+6))

Monotone decreasing implies only need
0 > !
1 —-®,(u+9)
I 1
1—o 11— @, (u) suffices.

and that 0 >



The roots of (1 — 9, )p(x)

Theorem (Batson-S-Srivastava):
If p(z) is real rooted and a > 0

1

a-max((1 — 0,)p(x)) < a-max(p(z)) 4

Gives a sharp upper bound on the roots of
associated Laguerre polynomials.

The analogous argument with the min gives
the lower bound that we claimed before.

1l —



An upper bound on the roots

Theorem: If >~ A; =1 and Tr(4;) < e then
max-root (iu( A1, ..., A,)(z)) < (1 4+ /€)?

/L(Al, c . ,An)(CE‘) —

(H1 - a) o (Z A)

Z1=+""=2Zpn==I



A robust upper bound

Define: (w1, ...,wy) is an a-upper bound on

p(zlv 7Zn)
if it is an «;-max, in eachz; , and o; < «

Theorem:
If w is an a-upper bound on p, then

w + de; is an a-upper bound on p — azgp,

for 0 > 1_



A robust upper bound

Theorem:
It w is an a-upper bound on p, and § > ﬁ

w + de; is an a-upper bound on p —0..p,

Proof:
Same as before, but need to know that

azip(zla - e 7Z'rL)
p(z1,...,2n)

is decreasing and convex in 2z, above the roots




A robust upper bound

Proof:
Same as before, but need to know that

azip(zla I 7Zn)
p(z1,...,2n)

is decreasing and convex in z;, above the roots

Follows from a theorem of Helton and Vinnikov ‘07:

Every bivariate real stable polynomial can be written

det(A + Bx + Cy)



A robust upper bound

Proof:
Same as before, but need to know that

azip(zla I 7Zn)
p(z1,...,2n)

is decreasing and convex in z;, above the roots

Or, as pointed out by Renegar,
from a theorem Bauschke, Giiler, Lewis, and Sendov ‘01

Or, by a theorem of Brandén "07.

Or, see Terry Tao's blog for a (mostly) self-contained proof



An upper bound on the roots

Theorem: If >~ A; =1 and Tr(4;) < e then
max-root (iu( A1, ..., A,)(z)) < (1 4+ /€)?



A probabilistic interpretation

For a1, ..., @yn independently chosen random vectors
with finite support

suchthat E | >~ a;al | =1 and ’E L aia) ]H < e

then _ _
Pr Zaia? < (1++e)?| >0




Main Theorem
Forall & > 0
if all [|vi|| <«
then exists a partition into S, and S, with
: Ty o~ 1
eigs(Q_es, Viv; ) < 3 + 3a

Implies Akemann-Anderson Paving Conjecture,
which implies Kadison-Singer



Anderson’s Paving Conjecture ‘79

Reduction by Casazza-Edidin-Kalra-Paulsen ‘07 and Harvey "13:

There exist an € > 0 and a k so that
ifall ||lo;||” < 1/2 and S0l =1

then exists a partition of {1,...,n}into k parts s.t.

eigs(ziesj vivl) <1—¢

Can prove using the same technique



A conjecture

It > A; =1 and Tx(

A;) <€ then
max-root ((Aq, ..., A,)(x))

is largest when A; = <1



Questions

Can the partition be found in polynomial time?

What else can one construct this way?

How do operations that preserve real rootedness
move the roots and the Stieltjes transform?






