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Graphs and Networks

Analysis by Physical Metaphors

Algorithms (what I usually do)



A Social Network Graph
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A Social Network Graph
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A Social Network Graph




A Social Network Graph







Vertices = States. Edges connect adjoining states.



Vertices = States. Edges connect adjoining states.



Planar = can draw without crossing edges



Planar implies can draw with 4 colors



A Transportation Network
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Harris and Ross, RAND Corporation, 1955



A Mathematician’s Network

Vertices = Natural numbers
Edges between pairs where one divides another
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The Graph of a Mesh
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Protein-protein Interaction Networks

= protein

edge if “interact”

vertex
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Schwikowski, Uetz & Fields, Nature Biotechnology 2000



Protein-protein Interaction Networks
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vertex = protein
edge experimentally observed interaction

Schwikowski, Uetz & Fields, Nature Biotechnology 2000



Protein-protein Interaction Networks
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vertex = group of proteins
edges between groups with interacting proteins
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Other Networks

Web
Vertices = Web pages. Edges = links.

Trade networks
Vertices = Companies. Edges when trade.

Gene regulatory networks
Vertices = Genes.
Edge when one regulates another.

Etc.



Local Analysis of Networks

Examine degrees (number of attached edges)
of nodes.

Count triangles based at nodes

Small configurations



Global Analysis of Networks

Diameter: how many steps between nodes
Drawing: understand overall structure
Clusters: how to group the nodes
Inference: extrapolate from a few nodes

Importance: find most important nodes



Graphs as Spring Networks

View edges as rubber bands or ideal linear springs

Nail down some vertices, let rest settle

dwomwomd



Drawing by Spring Networks




Drawing by Spring Networks




Drawing by Spring Networks
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Drawing by Spring Nepworks




Drawing by Spring Nepworks
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Drawing by Spring Né

If the graph 1s planar,
then the spring drawing
has no crossing edges!




Drawing by Spring Nepworks




Drawing by Spring Networks




Draw o by Spring Networks
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Inference by Spring Networks

Assuming friends are similar, infer from limited data.




Inference by Spring Networks

Will you donate to X7

/ '. “
~
\\
)
!




Inference by Spring Networks

Will you donate to X?
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Inference by Spring Networks

Will you donate to X?
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Inference by Spring Networks
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Inference by Spring Networks

Will you donate to X7
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Inference by Spring Networks
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Inference by Spring Networks

Will you donate to X7

0 Estimate of Probability of “yes” 1



Some Networks
can not
be nicely drawn.



A “bad” drawing: mostly edges,

many edge crossings

edges are long




A “bad” drawing: mostly edges,
many edge crossings
edges are long




Some Networks
can not
be nicely drawn.

So,
we group their
nodes 1into clusters.



Dittusion 1n Graphs




Dittusion 1n Graphs Put stuff at a node.

Let stuft tlow along
edges to other nodes



Diffusion in Graphs Put stuff at a node.

Let stuft tlow along
edges to other nodes



Dittusion 1n Graphs Put stuff at a node.

Let stuft tlow along
edges to other nodes



Dittusion 1n Graphs

Eventually...

amount of stuff
at nodes

1s proportional to
their number

of edges



Clustering by Diffusion in Graphs

Earlier in the process
the nodes with
the most stuff
are clusters.




Clustering by Diffusion in Graphs

Earlier in the process
the nodes with
the most stuff
are clusters.

If there are clusters,
this finds them!



Importance: Personal PageRank

Spill paint at a node.
Paint both spreads

&’ \ \L and dries.
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Importance: Personal PageRank

Spill paint at a node.
Paint both spreads

and dries.




Importance: Personal PageRank
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Importance: Personal PageRank

Spill paint at a node.
Paint both spreads

and dries.




Importance: Personal PageRank

Spill paint at a node.
Paint both spreads

and dries.

Amount of dried paint,
measures importance
relative to initial node




Importance: Personal PageRank

Spill paint at a node.
Paint both spreads
and dries.

Amount of dried paint,
measures importance
relative to 1nitial node

Most important nodes
otve clusters, if they exist.



PageRank, used by Google to rank web
Similar idea.

But,

paint only tlows in the
directions of links.



Vibrations / Eigenvectors

The springs never stop vibrating
The “stutt” never stops moving

The motions are small



























The fundamental mode




The fundamental mode

I used this to choose the order and draw the network




The fundamental mode




The fundamental mode

I used this to choose the order and draw the network




Algorithmic Problems: how to quickly compute

The stable configuration of springs =
solve linear equations

The vibrations / fundamental modes =
compute eigenvectors

State of diffusion after a long time,
without just simulating and waiting
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Finding the Stable Configuration
is a problem of solving linear equations

3r —y—z=1

x4+ 2y —z2=0
—2x —y+4z = —1

Can solve exactly by Gaussian Elimination



Finding the Stable Configuration
is a problem of solving linear equations

3r —y—z=1

x4+ 2y —z2=0
—2x —y+4z = —1

Can solve exactly by Gaussian Elimination

Can solve approximately by simulating physics



Finding the Stable Configuration
is a problem of solving linear equations

3r —y—z=1

x4+ 2y —z2=0
—2x —y+4z = —1

Can solve exactly by Gaussian Elimination

Can solve approximately by simulating physics

Or, by much fancier algorithms (preconditioning)



Running Times ot Algorithms

Measure by n, the number of variables
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Running Times ot Algorithms

Measure by n, the number of variables

n3 : elimination
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Running Times ot Algorithms

Measure by n, the number of variables

number of steps
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Running Times ot Algorithms

Measure by n, the number of variables
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Running Times ot Algorithms

Measure by n, the number of variables

10%
4 2 I th t
8’* 1025 one year on all the supercomputers
i’
w 1020}
(-
@) RE one supercomputef second
-
U
"
-
S
0 Z
10 ' '
10° 10° 10°

n = number of variables

10°

n3 : elimination

n? : simulation

| nlog n: preconditioning



To learn more (and all the caveats)

See
my web page on Laplacians, Clustering, etc.
of

lecture notes from “Spectral Graph Theory”
and “Graphs and Networks”



