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A simple construction of expander graphs

Daniel A. Spielman October 28, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on October 28, 2015.

16.1 Overview

I am going to present the simplest construction of expanders that I have been able to find. By
“simplest”, I mean optimizing the tradeoff of simplicity of construction with simplicty of analysis.
It is inspired by the Zig-Zag product and replacement product constructions presented by Reingold,
Vadhan and Wigderson [RVW02].

For those who want the quick description, here it is. Begin with an expander. Take its line graph.
Obseve that the line graph is a union of cliques. So, replace each clique by a small expander. We
need to improve the expansion slightly, so square the graph. Square one more time. Repeat.

The analysis will be simple because all of the important parts are equalities, which I find easier to
understand than inequalities.

Our goal is to prove that for every ε > 0 there is a d for which we can efficiently construct an infinite
family of d-regular ε-expanders. I recall that these are graphs whose adjacency matrix eigenvalues
satisfy |µi| ≤ εd and whose Laplacian matrix eigenvalues satisfy |d− λi| ≤ εd. Viewed as a function
of ε, the d that we obtain in this construction is rather large. But, it is a constant.

Before we begin, I remind you that in Lecture 5 we showed that random generalized hybercubes
were ε expanders of degree O(f(ε) log n), for some function f . At some point, we will need to make
use of them. The reason they do not solve the problem is that their degrees depend on the number
of vertices.
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16.2 Squaring Graphs

We will first show that we can obtain a family of ε expanders from a family of β-expanders for any
β < 1. The reason is that squaring a graph makes it a better expander, although at the cost of
increasing its degree.

Given a graph G, we define the graph G2 to be the graph in which vertices u and v are connected
if they are at distance 2 in G. Formally, G2 should be a weighted graph in which the weight of an
edge is the number of such paths. We may form the adjacency matrix of G2 from the adjacency
matrix of G. Let A be the adjacency matrix of G. Then A2(u, v) is the number of paths of length
2 between u and v in G, and A2(v, v) is always d. We will eliminate those self-loops. So,

AG2 = A2
G − dIn.

If G has no cycles of length up to 4, then all of the edges in its square will have weight 1. The
following claim is immediate from this definition.

Claim 16.2.1. The adjacency matrix eigenvalues of G2 are precicely

µ2i − d,

where µ1, . . . , µn are the adjacency matrix eigenvalues of G.

Lemma 16.2.2. If {Gi}i is an infinite family of d-regular β expanders, then
{
G2

i

}
i

is an infinite
family of d(d− 1)-regular β2 expanders.

Lemma 16.2.3. For µ an eigenvalue of Gi other than d, we have

µ2 − d
d(d− 1)

=
µ2 − d
d2 − d

≤ µ2

d2
≤ β2.

So, by squaring enough times, we can convert a family of β expanders for any β < 1 into a family
of ε expanders.

16.3 Line Graphs

Our construction will leverage small expanders to make bigger expanders. To begin, we need a way
to make a graph bigger and still say something about its spectrum.

We use the line graph of a graph. Let G = (V,E) be a graph. The line graph of G is the graph
whose vertices are the edges of G in which two are connected if they share an endpoint in G. That
is,
(
(u, v), (w, z)

)
is an edge of the line graph if one of {u, v} is the same as one of {w, z}. The line

graph is often written L(G), but we won’t do that in this class so that we can avoid confusion with
the Laplacian.

insert picture here
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Let G be a d-regular graph with n vertices, and let H be its line graph. As G has dn/2 edges, H
has dn/2 vertices. Each vertex of H, say (u, v), has degree 2(d− 1): d− 1 neighbors for the other
edges attached to u and d− 1 for v. In fact, if we just consider one vertex u in V , then all vertices
in H of form (u, v) of G will be connected. That is, H contains a d-clique for every vertex in V .
We see that each vertex of H is contained in exactly two of these cliques.

Here is the great fact about the spectrum of the line graph.

Lemma 16.3.1. Let G be a d-regular graph with n vertices, and let H be its line graph. Then the
spectrum of the Laplacian of H is the same as the spectum of the Laplacian of G, except that it has
dn/2− n extra eigenvalues of 2d.

Before we prove this lemma, we need to recall the factorization of a Laplacian as the product of
the signed edge-vertex adjacency matrix times with transpose that we derived in Lecture 7. We
reserved the letter U for this matrix, and defined it by

U ((a, b), c) =


1 if a = c

−1 if b = c

0 otherwise.

For an unweighted graph, we have
LG = U TU .

Recall that each edge indexes one column, and that we made an arbitrary choice when we ordered
the edge (a, b) rather than (b, a). But, this arbitrary choice factors out when we multiply by U T .

16.4 The Spectrum of the Line Graph

Define the matrix |U | to be the matrix obtained by replacing every entry of U by its absolute
value. Now, consider |U |T |U |. It looks just like the Laplacian, except that all of its off-diagonal
entries are 1 instead of −1. So,

|U |T |U | = DG + AG = dI + AG,

as G is d-regular. We will also consider the matrix |U | |U |T . This is a matrix with nd/2 rows and
nd/2 columns, indexed by edges of G. The entry at the intersection of row (u, v) and column (w, z)
is

(δu + δv)T (δw + δz).

So, it is 2 if these are the same edge, 1 if they share a vertex, and 0 otherwise. That is

|U | |U |T = 2Ind/2 + AH .

Moreover, |U | |U |T and |U |T |U | have the same eigenvalues, except that the later matrix has
nd/2− n extra eigenvalues of 0.
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Proof of Lemma 16.3.1. First, let λi be an eigenvalue of LG. We see that

λi is an eigenvalue of DG −AG =⇒
d− λi is an eigenvalue of AG =⇒
2d− λi is an eigenvalue of DG + AG =⇒
2d− λi is an eigenvalue of 2Ind/2 + AH =⇒
2(d− 1)− λi is an eigenvalue of AH =⇒
λi is an eigenvalue of DH −AH .

Of course, this last matrix is the Laplacian matrix of H. We can similarly show that the extra
dn/2− n zero eigenvalues of 2Ind/2 + AH become 2d in LH .

While the line graph operation preserves λ2, it causes the degree of the graph to grow. So, we are
going to need to do more than just take line graphs to construct expanders.

To measure the qualities of the graphs that appear in our construction, we define a quantity that
we will call the relative spectral gap of a graph that we define by

r(G)
def
= min

(
λ2(G)

d
,
2d− λn

d

)
.

The graphs with larger relative spectral gaps are better expanders. An ε-expander has relative
spectral gap at least 1 − ε. By the discussion in the previous section, we know that it suffices to
find an infinite family of graphs with relative spectral gap strictly greater than 0.

Proposition 16.4.1. Let G be a d-regular graph for d ≥ 6 and let H be its line graph. Then,

r(H) =
λ2(G)

2(d− 1)
≥ r(G)/2.

Proof. As G is d-regular, λ2(G) ≤ d and λmax(G) ≤ 2d. So, λmax(H) = 2d and λ2(H) = λ2(G) ≤ d.
So, the term in the definition of the spectral ratio corresponding to the largest eigenvalue of H
satisfies

2(2d− 2)− λmax(H)

2d− 2
=

2(2d− 2)− 2d

2d− 2
= 1− 2

d
≥ 2/3,

as d ≥ 6. On the other hand,
λ2(H)

2d− 2
≤ d

2d− 2
≤ 3/5.

So,

min

(
λ2(H)

2d− 2
,
2(2d− 2)− λmax(H)

2d− 2

)
=
λ2(H)

2d− 2
.

We see that the spectral ratio of the line graph of G is approximately half that of G. But, the line
graph has more vertices. Our construction will produce an infinite family of d-regular graphs with
spectral ratio bounded below by some absolute constant β > 0. We will do this for small β, as the
analysis for large β is trickier.
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16.5 Approximations of Line Graphs

Our next step will be to construct approximations of line graphs. We already know how to approx-
imate complete graphs: we use expanders. As line graphs are sums of complete graphs, we will
approximate them by sums of expanders. That is, we replace each clique in the line graph by an
expander on d vertices. Since d will be a constant in our construction, we will be able to get these
small expanders from known constructions, like the random generalized hypercubes.

Let G be a d-regular graph and let Z be a graph on d vertices of degree z (we will use a low-degree
expander). We define the graph

G L©Z

to be the graph obtained by forming the edge graph of G, H, and then replacing every d-clique in
H by a copy of Z. Actually, this does not uniquely define G L©Z, as there are many ways to replace
a d-clique by a copy of Z. But, any choice will work. Note that every vertex of G L©Z has degree
2z.

Lemma 16.5.1. Let G be a d-regular graph, let H be the line graph of G, and let Z be a z-regular
α-expander. Then,

(1− α)
z

d
H 4 G L©Z 4 (1 + α)

z

d
H

Proof. As H is a sum of d-cliques, let H1, . . . ,Hn be those d-cliques. So,

LH =
n∑

i=1

LHi .

Let Zi be the graph obtained by replacing Hi with a copy of Z, on the same set of vertices. To
prove the lower bound, we compute

LG L©Z =
n∑

i=1

LZi < (1− α)
k

d

n∑
i=1

LHi = (1− α)
k

d
LH .

The upper bound is proved similarly.

Corollary 16.5.2. Under the conditions of Lemma 16.5.1,

r(G L©Z) ≥ 1− α
2

r(G).

Proof. The proof is similar to the proof of Proposition 16.4.1. We have

λ2(G L©Z) ≥ (1− α)
kλ2(G)

d
,

and
λmax(G L©Z) ≤ (1 + α)2k.
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So,

min (λ2(G L©Z), 2(2k)− λmax(G L©Z)) ≥ min

(
(1− α)

kλ2(G)

d
, (1− α)2k

)
= (1− α)

kλ2(G)

d
,

as λ2(G) ≤ d. So,

r(G L©Z) ≥ 1

2k
(1− α)kr(G) =

1− α
2

r(G).

So, the spectral ratio of G L©Z is a little less than half that of G. But, the degree of G L©Z is 2z,
which we will arrange to be much less than the degree of G, d.

We will choose z and d so that squaring this graph improves its relative spectral gap, but still leaves
its degree less than d. If G has relative spectral gap β, then G2 has relative spectral gap at least

2β − β2.

It is easy to see that when β is small, this gap is approximately 2β. This is not quite enough to
compensate for the loss of (1− ε)/2 in the corollary above, so we will have to square the graph once
more.

16.6 The whole construction

To begin, we need a “small” z-regular expander graph Z on

d
def
= (2z(2z − 1))2 − 2z(2z − 1)

vertices. It should be an ε-expander for some small ε. I believe that ε = 1/6 would suffice.

The other graph we will need to begin our construction will be a small d-regular expander graph
G0. We could use the constructions of expanders from error-correcting codes that we saw last
lecture to define Z and G0. And let β be the spectral ratio of G0. We will assume that β is small,
but greater than 0. I believe that β = 1/5 will work. Of course, it does not hurt to start with a
graph of larger spectral ratio.

We then construct G0 L©Z. The degree of this graph is 2z, and its spectral ratio is a little less than
β/2. So, we square the resulting graph, to obtain

(G0 L©Z)2.

It has degree approximately 4z2, and spectral ratio slightly less than β. But, for induction, we need
it to be more than β. So, we square one more time, to get a spectral ratio a little less than 2β. We
now set

G1 =
(

(G0 L©Z)2
)2
.
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The graph G1 is at least as good an approximation of a complete graph as G0, and it has degree
approximately 16z4. In general, we set

Gi+1 =
(

(Gi L©Z)2
)2
.

To make the inductive construction work, we need for Z to be a graph of degree z whose number
of vertices equals the degree of G. This is approximately 16z4, and is exactly

(2z(2z − 1))2 − 2z(2z − 1).

I’ll now carry out the computation of spectral ratios with more care. Let’s assume that G0 has a
spectral ratio of β ≥ 4/5, and assume, by way of induction, that ρ(Gi) ≥ 4/5. Also assume that Z
is a 1/6-expander. We then find

r(Gi L©Z) ≥ (1− ε)(4/5)/2 = 1/3.

So, Gi L©Z is a 2/3-expander. Our analysis of graph squares then tells us that Gi+1 is a (2/3)4-
expander. So,

r(Gi+1) ≥ 1− (2/3)4 = 65/81 > 4/5.

By induction, we conclude that every Gi has spectral ratio at least 4/5.

To improve their spectral ratios of the graphs we produce, we can just square them a few times.

16.7 Better Constructions

There is a better construction technique, called the Zig-Zag product [RVW02]. The Zig-Zag con-
struction is a little trickier to understand, but it achieves better expansion. I chose to present
the line-graph based construction because its analysis is very closely related to an analysis of the
Zig-Zag product.
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