
Spectral Graph Theory Lecture 18

The Conjugate Gradient and Diameter

Daniel A. Spielman November 5, 2012

18.1 About these notes

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. The notes written after class way what I wish I
said.

My description of the Conjugate Gradient method is based on the manuscript of Nisheeth Vish-
noi [Vis12]. It is the simplest explanation of the Conjugate Gradient that I have seen.

18.2 Overview

I begin this lecture by describing the Conjugate Gradient algorithm for solving systems of linear
equations. I finish by discussing implications for the diameters of graphs.

18.3 Review of Last Lecture

In the last lecture we encountered both the first-order Richardson iteration and the Chebyshev
method for solving linear equations. We saw that these methods work because of the existence of
special polynomials. Given an ε, and 0 < λ1 < λn, we constructed a polynomial q(x) of degree

ln(2/ε)
(√

λn/λ1 + 1
)
/2

such that

q(0) = 1, and

|q(x)| ≤ ε, for λ1 ≤ x ≤ λn.

Given a positive-definite matrix A with eigenvalues between λ1 and λn and a right-hand side vector
b, we saw that

x t
def
= p(A)b

satisfied
‖x t − x‖ ≤ ε ‖x‖ ,

18-1

Lecture 18: November 5, 2012 18-2

where x is the vector for which Ax = b and p is the polynomial such that

q(x) = 1− xp(x).

In this lecture we will learn about the Conjugate Gradient algorithm which essentially finds the
optimal polynomial for any A and b, quickly.

18.4 The Matrix Norm

The Conjugate Gradient algorithm will be optimal when we measure the error in the matrix norm
rather than in the Euclidean norm. We define the matrix norm by

‖x‖A =
√
xTAx .

We say that x t is an ε-approximate solution if

‖x t − x‖A ≤ ε ‖x‖A .

While this at first looks like an unusual way to measure error, it turns out to be very useful. First,
many algorithms naturally produce bounds on the error in the matrix norm. Second, for almost
every application that I know of in which one wants to solve systems of linear equations, the matrix
norm provides the right way to measure the quality of approximate solutions. We will see one such
way next week.

We should observe that both the Richardon and Chebyshev methods achieve ε error in the A-norm.
Let q and p be polynomials satisfying the conditions stated in the previous section. Then,

‖p(A)b − x‖A = ‖p(A)Ax − x‖A .

Now, write x =
∑

i ciφi. Then,

x − p(A)Ax =
∑
i

ciq(λi)φi,

so
‖p(A)Ax − x‖2A =

∑
i

c2iλiq(λi)
2 ≤ ε2

∑
i

c2iλi = ε2 ‖x‖A .

18.5 Optimality in the A-norm

The iterative methods that we consider begin with the vector b, and then perform multiplications
by A and take linear combinations with vectors that have already been produced. So, after t
iterations they produce a vector that is in the span of{

b,Ab,A2b, . . . ,Atb
}
.

Lecture 18: November 5, 2012 18-3

This subspace is called the t+ 1st Krylov subspace generated by A and b.

The Conjugate Gradient will find the vector x t in this subspace that minimizes the error in the
A-norm. It will do so by computing a very useful basis of this subspace. But, before we describe
this basis, let’s examine the error in the A norm.

We have
‖x t − x‖2A = xT

t Ax t − 2xTAx t + xTAx = xT
t Ax t − 2bTx t + xTAx .

So, minimizing the error in the A-norm is equivalent to minimizing

1

2
xT
t Ax t − bTx t,

which is how the objective is usually presented.

Let p0, . . . ,pt be a basis of the t+ 1st Krylov subspace, and let

x t =
t∑

i=0

cipi.

Then, we have

1

2
xT
t Ax t − bTx t =

1

2

(
t∑

i=0

cipi

)T

A

(
t∑

i=0

cipi

)
− bT

(
t∑

i=0

cipi

)

=
1

2

t∑
i=0

c2ip
T
i Api −

t∑
i=0

cib
Tpi +

1

2

∑
i 6=j

cicjp
T
i Apj .

To simplify the selection of the optimal constants ci, the Conjugate Gradient will compute a basis
p0, . . . ,pt that makes the rightmost term 0. That is, it will compute a basis such that pT

i Apj = 0
for all i 6= j. Such a basis is called an A-orthogonal basis.

When the last term is zero, the objective function becomes

t∑
i=0

(
1

2
c2ip

T
i Api − cibTpi

)
.

So, the terms corresponding to different is do not interact, and we can minimize the sum by
minimizing each term individually. The term

1

2
c2ip

T
i Api − bTpi

is minimized by setting its derivative in ci equal to zero, which gives

ci =
bTpi

pT
i Api

.

It remains to describe how we compute this A-orthogonal basis. The algorithm begins by setting

p0 = b.

Lecture 18: November 5, 2012 18-4

The next vector should be Ap0, but A-orthogonalized with respect to p0. That is,

p1 = Ap0 − p0

(Ap0)
TAp0

pT
0 Ap0

.

It is immediate that
p0Ap1 = 0.

In general, we set

pt+1 = Apt −
t∑

i=0

pi

(Apt)
TApi

pT
i Api

.

Let’s verify that pt+1 is A-orthogonal to pi for i ≤ t, assuming that p0, . . . ,pt are A-orthogonal.
We have

pT
j Apt+1 = pT

j AApt −
t∑

i=0

pT
j Api

(Apt)
TApi

pT
i Api

= pT
j A

2pt − pT
j Apj

(Apt)
TApi

pT
j Apj

= 0.

The computation of pt+1 is greatly simplified by the observation that all but two of the terms in
this sum are zero: for i < t− 1,

(Apt)
TApi = 0.

To see this, note that
(Apt)

TApi = pT
t A(Api),

and that Api is in the span of
{
p0, . . . ,pi+1

}
. So, this term will be zero if i+ 1 < t.

That means that

pt+1 = Apt − pt

(Apt)
TApt

pT
t Apt

− pt−1
(Apt)

TApt−1
pT
t−1Apt−1

.

So, one can compute pt+1 from pt and pt−1 while using only a constant number of multiplications
by A and a constant number of vector operations. This means that one can compute the entire basis
p0, . . . ,pt while performing only O(t) multiplications of vectors by A and O(t) vector operations.

The computation of x t by

x t =

t∑
i=0

pi

bTpi

pT
i Api

.

Only requires an additional O(t) more such operations.

In fact, only t multiplications by A are required to compute p0, . . . ,pt and x 1, . . . ,x t: every term
in the expressions for these vectors can be derived from the products Api. Thus, the Conjugate
Gradient algorithm can find the x t in the t + 1st Krylov subspace that minimizes the error in
the A-norm in time O(tn) plus the time required to perform t multiplications by A. Warning:
the algorithm that I have presented here differs from the true Conjugate gradient in that the

Lecture 18: November 5, 2012 18-5

true Conjugate Gradient re-arranges this computation to keep the norms of the vectors involved
reasonably small. Without this adjustment, the algorithm that I’ve described will fail in practice
as the vectors pi will become too large.

18.6 How Good is CG?

The Conjugate Gradient is at least as good as the Chebyshev iteration, in that it finds a vector
of smaller error in the A-norm in any given number of iterations. The optimality property of the
Conjugate Gradient causes it to perform remarkably well.

For example, one can see that it should never require more than n iterations. The vector x is
always in nth Krylov subspace. Here’s an easy way to see this. Let the distinct eigenvalues of A
be λ1, . . . , λk. Now, consider the polynomial

q(x)
def
=

∏k
i=1(λi − x)∏k

i=1 λi
.

You can verify that q is a degree k polynomial such that

q(0) = 1, and

q(λi) = 0, for all i.

So, CG should be able to find the exact answer to a system in A in k− 1 iterations. I say “should”
because, while this statement is true with infinite precision arithmetic, it doesn’t work out quite
this well in practice.

Ignoring for now issues of finite arithmetic, let’s consider the importance of this for sparse matrices
A. By a sparse matrix, I mean one with at most cn non-zero entries, for some constant c. That’s
not a rigorous definition, but it will help guide our discussion. Multiplication by a sparse matrix
can be done in time O(n). So, CG can solve a system of equations in a sparse matrix in time
O(n2). Note that this is proportional to how long it would take to just write the inverse of A, and
will probably be faster than any algorithm for computing the inverse. On the other hand, it only
provides the solution to one system in A.

For another interesting example, consider the hypercube graph on n vertices. It only has log2 n
distinct eigenvalues. So, CG will only need log2 n iterations to solve linear systems in the Laplacian
of the hypercube. While there are other fast algorithms the exploit the special structure of the
hypercube, CG works well when one has a graph that is merely very close to the hypercube.

In general, CG works especially quickly on matrices in which the eigenvalues appear in just a few
clusters, and on matrices in which there are just a few extreme eigenvalues. We will learn more
about this in the next lecture.

Lecture 18: November 5, 2012 18-6

18.7 Laplacian Systems, again

This would be a good time to re-examine what we want when our matrix is a Laplacian. The Lapla-
cian does not have an inverse. Rather, we want a polynomial in the Laplacian that approximates
its pseudo-inverse (which we defined back in Lecture 8). If we were exactly solving the system of
linear equations, we would have found a polynomial p such that

p(L)b = x ,

where b = Lx , so this gives
p(L)Lx = x .

Of course, this is only reasonable if x is in the span of L. If the underlying graph is connected, this
only happens if x is orthogonal to the all-1s vector. Of course, L sends constant vectors to zero.
So, we want

p(L)L = Π,

where Π is the projection matrix that sends the constant vectors to zero, and acts as an identity
on the vectors that are orthogonal to the constant vectors. Recall that Π = 1

nLKn .

Similarly, p gives an ε-approximation of the pseudo-inverse if

‖p(L)L−Π‖ ≤ ε.

18.8 Bounds on the Diameter

Our intuition tells us that if we can quickly solve linear equations in the Laplacian matrix of a
graph by an iterative method, then the graph should have small diameter. We now make that
intuition precise.

If s and t are vertices that are at distance greater than d from each other, then

χT
s L

dχt = 0.

On the other hand, if L only has k distinct eigenvalues other than 0, then we can form a polynomial
p of degree k − 1 such that

Lp(L) = Π.

This allows us to prove the following theorem.

Theorem 18.8.1. Let G be a connected graph whose Laplacian has at most k distinct eigenvalues
other than 0. Then, the diameter of G is at most k.

Proof. Let d be the diameter of the graph and let s and t be two vertices at distance d from each
other. We have

eT
s Πe t = −1/n.

Lecture 18: November 5, 2012 18-7

On the other hand, we have just described a polynomial in L with zero constant term, given by
Lp(L), that has degree k and such that

Lp(L) = Π.

If the degree of this polynomial were less than d, we would have

eT
s Lp(L)e t = 0.

As this is not the case, we have d ≤ k.

We can similarly obtain bounds on the diameter from approximate pseudo-inverses. If p is a
polynomial such that

‖p(L)L−Π‖ ≤ ε,

then
eT
s (p(L)L−Π)e t ≤ ‖es‖ ‖p(L)L−Π‖ ‖e t‖ ≤ ε.

If s and t are at distance d from each other in the graph, and if the degree of p(L)L has degree less
than d, then

eT
s (p(L)L−Π)e t = eT

s (−Π)e t = 1/n.

This is a contradiction if ε < 1/n. So, the polynomials we constructed from Chebyshev polynomials
imply the following theorem of Chung, Faber and Manteuffel [CFM94]

Theorem 18.8.2. Let G = (V,E) be a connected graph, and let λ2 ≤ · · · ≤ λn be its Laplacian
eigenvalues. Then, the diameter of G is at most(

1

2

√
λn
λ2

+ 1

)
ln 2n.

References

[CFM94] F. R. K. Chung, V. Faber, and T. A. Manteuffel. On the diameter of a graph from
eigenvalues associated with its Laplacian. SIAM Journal on Discrete Mathematics, 7:443–
457, 1994.

[Vis12] Nisheeth K. Vishnoi. Lx = b, 2012. available at
http://research.microsoft.com/en-us/um/people/nvishno/Site/Lxb-Web.pdf.

