2025-Feb-3 Comparing Bogulos, lower bounds on
$$\lambda_2$$

 $A \ge 0$ means A is positive somi-definite = symmetric, no agather effects
 $c \Rightarrow xTAx = 0 \quad \forall x$
 $A \ge 8$ if $A - B \ge 0$. Is a partial order. $A \ge 8$ and $B \ge C \Rightarrow A \ge C$
but not all comparable. ($\frac{1}{68}$) $\frac{1}{2}$ ($\frac{90}{61}$)
For all symmetriz C_1 $A \ge B \Rightarrow A + C \ge B \pm C$
Durleads $G \ge H$ means $LG \ge L_H$. Recall $L_G = \sum_{a \rightarrow 6} ud_{1,6} (x(a) - x(b))^2$
So, if H has weights -zoto with $ud_{1,6} \ge z_{2,6}$, $\Theta_{1,6}$ there $G \ge H$
We obler write inequalities lifter $G \ge CH$, for some $c\ge 0$. $CH = Obler weights with filled
 CH is graph such that $L_G H = CL_H$. Equivise $\frac{1}{2}G \ge H$
Proof: $\lambda \pm (G) = min$ max $\frac{xTLat}{a} = min}$ max $\frac{c \cdot xTL_H + t}{c} = c \quad \lambda \equiv (CH)$
 $\frac{1}{2} \text{ for } A \ge 0$ in f where G in (set has edge $C(I,M)$
 $\frac{1}{2} \text{ for } A \ge 0$, $x \in R^M$ $(n-1)\sum_{x=1}^{M} (x(a) - x(a))^2 = (x(a) - x(a))^2$
Set $\Delta(a) = x(a) + 1$, so $x(i) - x(i) = \sum_{x=1}^{M} \Delta(a)$
 $MTS \quad (n-1)\sum_{x=1}^{M} \Delta(a)^2 = (\frac{T}{2}\Delta(a))^2$. Implied by $Gouch - Schwart \ge
 $(\sum_{x=1}^{M} \Delta(a)^2 = (\frac{T}{2}\Delta(a))^2$. Implied by $Gouch - Schwart \ge
 $(\sum_{x=1}^{M} \Delta(a)^2 = (\frac{T}{2}\Delta(a))^2$. Implied by $Gouch - Schwart \ge$$$$

Complete Binny Tree Tr 2013 h=20⁴¹-1 d=2, depth 10
40⁶50⁶5t depth 2
$$\lambda_2(T_n) \leq \frac{2}{n-1}$$
 1
Prop $\lambda_2(T_n) \geq (n-1)\log_2 n$ let Tab be unique peth in Tu from a to b
Tab has berth $\leq 2d \leq 2\log_2(n)$.
So $K_n = \sum G_{a,b} \leq 2d \sum Tab \leq 2d \sum T_n = 2d(2)T_n = dn(4-1) Tn$
 $acb = acb = 2d \sum Tab \leq 2d \sum Tn = 2d(2)T_n = dn(4-1) Tn$
 $acb = n + 2d \leq 2\log_2(n)$.
Experiment $\lambda_2(T_n) \approx n$. So, lets improve the lower based
Weak path inequality . let Puo be peth weight of Cacard be wa. Then
 $G_{1,n} \leq (\frac{2}{n} \frac{1}{m_n}) P_w$ prod $\Delta(a) = (x(a) - x(ac(1))^2$.
 $MTS (\sum \Delta(a))^2 \leq \sum \frac{1}{a} \sum_{a} (M_a \Delta(a))^2$. Let $3(a) = \Delta(a)^2$

Prop 22(Th)= 2n. For a cb, let Taib the peth from a b 6 in T, that give edges weight = 2 depth, starty edge depths at 1. So, weights on path are 2, 4, 8, ..., 2 d(a), 2, 4, 8, ..., 2 d(b) $\left(\sum \frac{1}{Wa}\right) = \left(\frac{1}{2} + \frac{1}{4} + \cdots\right) + \left(\frac{1}{2} + \frac{1}{4} + \cdots\right) = 2 \quad Ga_{1}b = 2 \quad Ta_{1}b$ And $\sum_{a \in b} \tilde{\tau}_{a,b} - c_{a} = c_{b} \int_{C} \int_{C} \int_{C} has weight 2^{d(c)} used = (2^{d(1-d(c))}) n + times$ Total weight = $n(2^{d+1-d(cd)} - 1) 2^{d(c)} \le n^2$. So $Z \widehat{T}_{a,b} \le N^2 T_n$ $k_n = 2 \sum_{a \in h} \overline{T_{a,b}} \leq 2n^2 T_h \longrightarrow A_2(T_n) \geq \frac{1}{2n}$ Approximations H~cG if tH & G & cH ex. let G be random - each edge with prob \pm . Then $G \approx \frac{1}{2} K_n C \approx 1 + L_n$ expanders are d-resular, d coust, like approx of the Sparifier: Its approx of any steph. # edber ~ 1/22