Every let G be a connected graph,
$$L_{g} V_{g} \rightarrow V_{g}$$
, and $W = \frac{1}{2}a \cdot \Psi_{g}(a) \ge 0$?
Then G(W) has at most $K = 1$ connected components (if $F \ge 2$, G(W) is connected).
 \iff If $L = \lambda \cdot V$, $W = \frac{1}{2}a \cdot \Psi(a) \ge 0$?, then $\frac{1}{2}\left[F + 2c, G(W) \ge 0$ and $\frac{1}{2}a + 6f$ composite of $G(W)$
 \xrightarrow{WM} let A be a matrix with non-pase off disgonals, lite a Laplacan or submetrix of $G(e_{f})$
Such that graph of non-zero off disgonals is connected,
 $WH ergonals = \lambda_{1} \in \lambda_{2} \le 2 \lambda_{1}$. Then $\lambda_{1} < \lambda_{2}$ and λ_{1} has a strictly positive eigenec.
Proof Consider $\sigma I = A$. For big σ_{1} is non-negative Same eigenes as A .
Eigens $\sigma = \lambda_{1}$. So, $F \Rightarrow \sigma = \lambda_{1} \Rightarrow \sigma = \lambda_{2} \Rightarrow \lambda_{1} < \lambda_{2}$, and positive eigenec.
proof $\frac{1}{2}a \cdot \Psi(a) < 0$? So, $F \Rightarrow \sigma = \lambda_{1} \Rightarrow \sigma = \lambda_{2} \Rightarrow \lambda_{1} < \lambda_{2}$, and positive eigenec.
Proof Consider $\sigma I = A$. For big σ_{1} is non-negative Same eigeness as A .
Eigens $\sigma = \lambda_{1}$. So, $F \Rightarrow \sigma = \lambda_{1} \Rightarrow \sigma = \lambda_{2} \Rightarrow \lambda_{1} < \lambda_{2}$, and positive eigenec.
 $\frac{1}{2}a + \frac{1}{2}a \cdot \frac{1}{2}a + \frac{1}{2}a +$

Partitioning & Clubbrig: remove want writes by cetting two objes
Boundary of S = U is
$$\Im(S) = \frac{2}{2}(a_16)ee:aeS, b \notin S3$$

Isoperimetriz ratio $\Theta(S) = \frac{|2S||}{|s_1|}$ want S with $\Theta(S)$ small, $|S| = \frac{y}{2}$
 $\Theta_G = \min_{|S| = \frac{y}{2}}$ (attr. for $O = \frac{|S|}{|s_1|}$ (induce $G = \frac{y}{2}$ (A)
 $|S| = \frac{y}{2}$ (attr. for $O = \frac{|S|}{|s_1|}$ (induce G)
 $post = h_2 = \min_{|X| = 1} \frac{x^{TLx}}{x^{Tx}}$ Try $x = 1s - o1$, not $x^{T1} = 0$ so
 $\lambda_2 \in \frac{x[Lx}{x^{Tx}}$ $x^{Tx} = |S|(1-\sigma)$
As $L_1 = 0$ and $IL = 0$, $x^{TLx} = 1s^{TL} = 2 (1s(a) - 1s(b))^2 = |\Im(S)|$
Example $\sum_{|S| = 1}^{|S| = 2} (1s) = 2 (0s) = 1 \ \sigma = \frac{1}{2} + \frac{1}{2}(1-\sigma)$
 $f(s) = \frac{|S|}{|s|(1-\sigma)|} = \frac{|S|}{1-\sigma}$
Example $\sum_{|S| = 2}^{|S| = 2} (2s) = 2 \ O(s) = 1 \ \sigma = \frac{1}{2} + \frac{1}{2}(1-\sigma) = 1 + \frac{1}{2}(1-\sigma)$
 $f(s) = \frac{|W|}{|S|(1-\sigma)|} = \frac{|S|}{1-\sigma}$
Example $\sum_{|S| = 2}^{|X| = 2} (2s) = 2 \ O(s) = 1 \ \sigma = \frac{1}{2} + \frac{1}{2}(1-\sigma) = 1 + \frac{1}{2}(1-\sigma)$
 $f(s) = \frac{|W|}{|S|(1-\sigma)|} = \frac{1}{1-\sigma}$
Example $\sum_{|S| = 2}^{|X| = 2} (2s) = 2 \ O(s) = 1 \ \sigma = \frac{1}{2} + \frac{1}{2}(1-\sigma) = 1 + \frac{1}{2}(1-\sigma) = 1$

Can prove
$$\forall S \quad \varphi(S) \ge v_2(1-\sigma)$$
 where $\sigma = \frac{d(S)}{d(v)}$
Lite to state as $w(\partial(S))$ $d(v) \ge v_2$

Define
$$\phi_G = \min \phi(s)$$
. So $\phi_G \ge v_2/2$

Will show $Q_G \leq J_{2\nu_2} => 35 \text{ s.t. } Q(s) \leq J_{2\nu_2} - Cheeje's inequality.$