Adjacency Matrix Eigenvalues, Jan 22, 2025 To start, compute adjacency eigenals of star graph $\int \mathcal{M} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \end{pmatrix} = v \mathcal{S}_{v}^{T} + \mathcal{S}_{v} v^{T} \text{ where } v(q) = \begin{cases} 0 & q = 0 \\ 0 & 0 \\ 0 & 0 \end{cases}$

 \tilde{s} . M has rank 2, so n-2 eignals are O. $\tilde{s}\tilde{s}$. $Tr(M) = \sum_{i} \mu_{i} = O$. So, non-zero eignals are $\mu_{i} > 0 > \mu_{i}$ $\mu_{n} = -\mu_{i}$

Last becture saw haplaciten eigenalues
$$O = \lambda_i \in \lambda_2 \in \cdots \in \lambda_n$$

 $\lambda_i = \lambda_2$ iff disconnected.
Today, look at Adjulacy estimatives $M_1 = M_2 \geq \cdots \geq M_n$
If d-regular, $M_1 = d - \lambda_{i,1}$, $M_i = d$
But, interested in integralar case.
Will show $M_i = M_2$ iff disconnected, $M_n = -M_i$ iff disconticle,
chromatic $\# \leq 1 + L_{M_i, 1}$? protably next becture
Thm 1 For a weighted graph, dave $\leq M_i \leq d_{Max}$, durax = Max wheel degree
profe dave = $\frac{1}{n} \geq d(a) = \frac{M^T d}{n} = \frac{M^T M M}{M^T M} \leq M_i$ by Gavard-Fiednen
let Ψ_i be eigned of $\mu_{i,1}$ as arg max $\mathcal{P}_i(a)$. Weight $\Psi_i(a) = O$.
 $\mu_i \cdot \Psi_i(a) = (M_i)(a) = \sum_{b \in A} W_{b,1} \Psi_i(b) \leq \sum_{b \in A} W_{b,1}(a) = \mathcal{P}_i(a) d(a)$
 $\leq \Psi_i(a) d_{Max}(a)$ (\mathcal{F})

prod: If have equality in (4),
then
$$d(a) = d_{uax}$$
 and $P_{i}(b) = P_{i}(b)$ there
So, be easy wax $P_{i}(b)$, and can apply this arg to every
versible of a. As G is connected, everhally reach arry center
and conclude $P_{i} = P_{i}(a) \cdot 1$, $d(b) = d_{uax}$ the GU.
Answer 2: μ_{i} does a lot of work:
For S=V, let G(s) be subgraph induced on S.
Vertex set is S, edges $\frac{1}{5}(a_{1}b) \in E : aes, bess$
prof: Guisider IIs. $\mu_{i} \ge \frac{1}{5}\frac{1}{15}I_{s} = \frac{2}{a_{16}65}\frac{ua_{16}}{15I} = dae(G(s))$
And, we can have dave (G(s)) = dae(G)
 $M_{i} = 3.303...$ (Next class)

Answer 3: can be a poor backed on μ_1

Ex ster on n vertices \mathcal{A} n=6, dave = $\frac{2(n-1)}{n}$ $\mu_c = \sqrt{n-1}$ If goal is an upper bound on μ_1 , can do better

Def For an arbitry matrix
$$M$$
, $\|\mathcal{U}\|_{bd} \stackrel{\text{def}}{=} \max_{a} \sum_{b} |\mathcal{U}(a,b)|$
Thun't $\mathcal{M} \stackrel{q}{=} \mu \stackrel{q}{\to} \rightarrow |\mu| \in \|\mathcal{U}\|_{bd}$
prod let $a \in \arg\max_{a} |\mathcal{V}(a)|$. Then
 $|\mu| \cdot |\mathcal{V}(a)| = |\mathcal{U} \stackrel{q}{\to} |\alpha| \cdot |||_{bd} = |\sum_{b} \mathcal{M}(a,b) \stackrel{q}{\to} (b)| = |\mathcal{V}(b)| \left(\sum_{b} |\mathcal{M}(a,b)|\right)$
 $\leq |\mathcal{V}(a)| |\mathcal{U}\|_{bd}$
To improve band for star, let $\mathcal{M} = \begin{pmatrix} 0 & || 0 \\ 0 & || 0 \end{pmatrix}$, $d = n - 1$
let $D = \begin{pmatrix} \mathcal{M} \\ 1 \\ 0 \end{pmatrix}$, and consider $D^{-1}\mathcal{M}D = \begin{pmatrix} 0 & || \mathcal{M} \stackrel{q}{\to} \mathcal{M} \\ 0 \end{pmatrix}$
 $D^{-1}\mathcal{M}D$ has some eigends as \mathcal{M} , $(\mathcal{M} \stackrel{q}{\to} \mu \stackrel{q}{\to} \mathcal{O} \stackrel{q}{\to} \mathcal{O} \stackrel{q}{\to} \mathcal{M} \stackrel{q}{$

In the book, we do the same for all d-ary trees:

we prove
$$\mu_1 \neq 2J_{d-1}$$
 is tight.
 $2J_{d-1}$ comes up a lot

Symmetric Perron-Frobenius Theory

For a connected, weighted, graph

$$\alpha \cdot \mu_1$$
 has a strictly positive eigenvector
 $b \cdot \mu_1 > \mu_2$
 $c \cdot \mu_1 \ge |\mu_1|$

proof of PF

a. Let $\Psi_{i} \in arif eigness of \mu_{i}$. Let $X(a) = [\Psi_{i}(a)]_{i} \forall a$ Will show $x \in arif eigness of \mu_{i}$. Let $S \rightarrow X(a) > 0 \quad \forall a$ $\mu_{i} = \Psi_{i}^{T}M\Psi_{i} = \sum_{q,b} M(a,b) \Psi_{i}(a)\Psi_{i}(b) = \sum_{q,b} M(a,b) [\Psi_{i}(b)] [\Psi_{i}(b)]$ $= x^{T}Mx = \mu_{i}$. Maximum, $x^{T}x = \Psi_{i}^{T}\Psi_{i} \Rightarrow Xeeigness of \mu_{i}$

b.
$$\mu_{2}$$
 (41. let Ψ_{2} be a curvit eigner of μ_{2} .
As $\Psi_{1}^{T}\Psi_{1}$ =0, Ψ_{2} has pos and neg entries.
Let $\chi(0) = |\Psi_{2}(a)|$, μ_{a} .
 $\mu_{2} = \Psi_{2}^{T}M\Psi_{2} \in \chi^{T}M_{Y} \in \mu_{1}$.
Assume, busic, $\mu_{2}=\mu_{1}$. So χ is non-neg cycle of μ_{1} ,
 $\stackrel{\text{len 5}}{\longrightarrow} \chi$ strictly pos $\rightarrow \Psi_{2}$ near zero
Connected $\rightarrow \exists (a_{1}b)\in \exists = \pm \cdot \Psi_{2}(a) < 0 < \Psi_{2}(b)$
 $\rightarrow \Psi_{2}M\Psi_{2} < \chi^{T}M\Psi_{1}$ torange $M(a_{1}b)\Psi_{2}(a|\Psi_{2}(b) < 0 < M(a_{2}b)\chi(d_{1}b))$
 $\stackrel{\chi}{\times}$
C. Let $\Psi_{n}\in$ unit expect of μ_{n} . $\chi(e) = |\Psi_{n}(e)|$, μ_{2}
 $|\mu_{n}| = |\Psi_{n}^{T}M\Psi_{n}| = \chi^{T}M_{Y} \leq M_{1}$ (\times)
 $\stackrel{\text{Thm}}{=} \text{If } G$ connected, $\mu_{n}=-\mu_{1}$ iff G is bipartite
 $pool => (*)$ tight => χ is pos eigner of μ_{1} , $\Psi_{1}(e) > 0$, μ_{2}
 $=> |\sum M(a_{1}b)\Psi_{1}(a)\Psi_{1}(b)| = \sum M(a_{1}b)|\Psi_{1}(b)| \cdot |\Psi_{2}(b)|$
 $all there forms have serve sign.
As in part b , $\exists (a_{1}b)\in E$ st. $\Psi_{n}(a) < 0 < \Psi_{n}(b)$, so sign is $-$
 \Rightarrow for all ($a(b)\in E$, $\Psi_{n}(a)\Psi_{n}(b) < 0$.$

Bipartition into pos and veg entries in
$$\mathcal{V}_{u}$$

 \Leftarrow Will show for Bipartite μ eignal \Leftrightarrow - μ eignal
 G bipartite \Rightarrow Can order vertices so that
 $M = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$ for some B
Let $M\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \mu\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$ so $\begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}\begin{pmatrix} x_0 \\ B^T & 0 \end{pmatrix} = \begin{pmatrix} Bx_1 \\ B^T & x_0 \end{pmatrix} = \begin{pmatrix} \mu x_0 \\ \mu x_1 \end{pmatrix}$
Then $M\begin{pmatrix} x_0 \\ -x_1 \end{pmatrix} = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}\begin{pmatrix} x_0 \\ -x_1 \end{pmatrix} = \begin{pmatrix} -Bx_1 \\ Bx_0 \end{pmatrix} = \begin{pmatrix} -\mu x_0 \\ \mu x_1 \end{pmatrix} = -\mu\begin{pmatrix} x_0 \\ -x_1 \end{pmatrix}$
So, $-\mu$ is an eigenvalue.

Next 2 lectures: make qualitative quantitative.
Bipartite
$$\Leftrightarrow$$
 2-colorable.
Chromatic number $\geq 1 + \frac{M_{1}}{-M_{1}}$ (Hoffman)
Connected $\Leftrightarrow M_{2} + M_{1} \rightarrow M_{2} + (\mu_{1} \leftrightarrow very connected)$
 $\lambda_{2} \gg 0$ (Fiedler / Chagger)
 $\mu_{1} \gg 1 + M_{2} + (\mu_{1} \leftrightarrow very connected)$
 $\lambda_{2} \gg 0$ (Fiedler / Chagger)