Bipartite Expanders.
A d-resular bipartite graph has adjacency erguals
d and -d.
It is an s-expander if all others have
absolute value
$$\leq$$
 Ed.
let Knin be couplete bipartite with 2n vertices
G is a bipartite \leq expander iff
(1.2) d L Knin \leq G \leq (HE) $\stackrel{d}{=}$ L Knin
As Knin has erguals $n : ergvec (\frac{1}{2})$
 $n : ergvec (\frac{1}{2})$
and all the rest are 0.

Def the double-cover of a graph
$$G = (U, E)$$

has vertices $V \neq \{0, i\}$ and edges
 $((q, d, (b, i))$ for all $(q, b) \neq E$.

Etaple

So, if G is an E-expanden It is a tipartile E-expander.

Distance bound comes from expansion.

Theorem let
$$G = (U \cup V, E)$$
 be a typosite ε -expader,
Then be all $S \subseteq V$ and $T \subseteq V$,
 $\left| E(S,T) - \frac{4}{5} |S| |T| \right| \leq \varepsilon d J |S| |T|$

Minimun Distance They if E = Sola, then min rel dist of of C satisfies S= 502/2 proof. Suffices to prove minimum weight of nonzero codewood 2 da-do2/2. Identify a codewood with the set of edges FSE on which it is I. IFI= pdn. Let F corresp a codeword. let SELL and TEV be endpoints of edges in F. As min dist of Co is = Tod, every vertex in U.V attached to an edge of F is attached to at least Tod. (S[, IT[= IFI . (s(=on, IT(= zn ques $\sigma_i \gamma \in \oint_{i=1}^{\infty}$ Ave desvee of G(SUT) = 2dez + 2d as $2\sigma_{\tau} \in \sigma^2 + \tau^2 \in \frac{\phi}{h}(\sigma_{\tau} \tau)$ ave degree of G(SUT) = d to + 2 d As are degree = 50d, $\delta_0 \in \frac{\phi}{\delta_0} + \varepsilon = 5 \quad \delta_0^2 \le \phi + \varepsilon \delta_0$

$$T f \varepsilon \in \delta_0[2] = 5 \quad \phi \simeq \frac{\delta_0^2}{2}.$$

 $\overline{}$

Deceding

$$\mathcal{P}$$
 U-sky: for each $a \in \mathcal{U}$, map bits on attacked
edges to closest coloward.
U-styp: same
Thy If $s \in do(3)$, this als convects $din \frac{\delta^2}{18}$
errors after $lg_{\frac{1}{3}}$ in iterations.
lem! For E,
 $s \in \mathcal{U}$ endpoints of F ,
 $T \in \mathcal{V}$ endpoints of $z = \frac{\delta d}{2}$ edges of F .
If $(s] \in \delta n/q$ then $|T| \leq \frac{3}{4}|s|$
proof are degree of $C(soT) \geq \frac{\delta d}{2} \cdot 2 \cdot \frac{|T|}{|s|(t|T|)}$
 $= \frac{\delta d \tau}{\delta + \tau}$
By Car, $\leq \frac{2d \sigma \tau}{\delta + \tau} + \epsilon d$

$$= 7 \mathcal{L} \stackrel{\varepsilon \sigma}{=} \frac{\varepsilon \sigma}{\delta_0 - 2\sigma - \varepsilon} \quad use \quad \varepsilon \stackrel{\varepsilon}{=} \frac{\delta_0}{3}, \quad \sigma \stackrel{\varepsilon}{=} \frac{\delta_0}{9} \mathcal{L}$$
$$\mathcal{T} \stackrel{\varepsilon}{=} \frac{3}{4} \sigma$$

proof of Them let F be edger mitigly memor.

$$[F(\leq \frac{dn \sigma^2}{R})]$$

 $S = vertices$ attached to eaver edges often flurt
 $U-store.$ $|S| \leq \frac{|F|}{\frac{bod}{2}} = \frac{\sigma \circ n}{9}$
Now, len 2 size of set in error decreases
 $try = \frac{3}{9}$ each iteration.