Bipartite Expander.
A d-resular bipartite graph has adjacency erguals d and -d.
It is an s-expanden if all others have absolute value $\leq \varepsilon d$.

Let kun be complete bipartite with in vertices G is a bipartite ε-expander iff

$$
\left((\cdot \varepsilon) \frac{d}{n} L_{k_{n, n}} \leqslant G \leqslant(1+\varepsilon) \frac{d}{n} L_{k_{n, n}}\right.
$$

As $k_{n, n}$ has eiguale $n=\operatorname{eiguec}\left(\frac{1}{1}\right)$

$$
-n=\operatorname{ergrec}\binom{1}{-1}
$$

and all the rest are 0 .

How do we get a bipartite ε-expander?
(. By direct construction: is porer than nan-biportite kind.
2. By the double. lover of on ε-expander.

Def The double-cover of a graph $G=(U, E)$ hos vertices $U x\{0,1\}$ and edges
$((a, d,(b, i))$ for all $(a, b) \in E$.
Example

Prop If H is the double-cocer of G then the coffecary eigenvalues of H are $\pm \mu_{i}$, where μ_{i} are cedfrecency eigenvalues of G.
proof. $M_{H}=\left(\begin{array}{cc}0 & M_{G} \\ M_{E} & 0\end{array}\right)$
So, if G is an ε-expander H is a bipartite s-expaden.

Code construction
let vertex sets of G be U and $V, l u l=n$ G has $d n$ edges.
We put ore bit on each edge, so code least $=d n$.
If remains to impose constraints on those bits.
Assume that we have a linear code
Co of codeword beast d
rate T_{0} and min relative distance δ_{0}.

We require that for all $a \in \varphi \cup V$

$$
(Y(a, b))_{(a, b) \in E} \in C_{0} .
$$

So, the bits on edges attached to each vert loot like a code word in that small code.
There is a matrix M_{0} st. $x \in C_{0}$ ff $\mu_{0} x=0$ M_{0} is $d(1-$ to $+d .$. it imposes d-rod linear constraints.
In ital, the vertices impose 2 nd $\left(1-T_{0}\right)$ linear constraints.
This leaves at least $d u-2 n d(l-T)=n d\left(2 r_{0}-1\right)$ degrees of freedom,
So the rate is $\geq 2 r_{0}-1$. We need to $\geq \frac{1}{2}$

Encoding: One can use linear algebra to construct a bis generate matrix.
Encode by multiplying the message vector by this matrix.

Distance bound comes from expansion.
Theorem let $G=(U O V, E)$ be a tipoite ε-expander, Then fo all $S \subseteq U$ and $T \subseteq U$,

$$
\left|E(S, T)-\frac{d}{n}\right| s||T|| \leq \varepsilon d \sqrt{\operatorname{cs}| | T \mid}
$$

Cor For $s \leq v,\left(s l=\sigma n, T \leq U, T T=\tau_{n}\right.$ average degree of $\in(S O T)$ - induced subsroph - is at most

$$
\frac{2 d \sigma-r}{\sigma+r}+\varepsilon d
$$

$$
\begin{aligned}
\text { Proof ave degree } & =\frac{2 \cdot \# \text { edsel }}{\text { \#ventices }} \\
& \leq \frac{2 \frac{d}{n}|s||T|}{|s|+|T|}+\frac{2 \varepsilon d \sqrt{|s||T|}}{|s| t|T|} \\
& =\frac{2 d \sigma \tau}{\sigma t \tau} \quad \leq 5 d \text { as } \quad 2 \sqrt{\sigma \tau} \leqslant \sigma+\tau
\end{aligned}
$$

Minimum Distance
Then If $\varepsilon \leq \delta_{0} / 2$, then min rel dist δ of C satisfies $\delta \geq \delta_{0}^{2} / 2$
proof. Suffices to prove minimum weight of nonzero codeword $\geq d u-\delta_{0}^{2} / 2$.
Identify a codeword with the set of edges $F S E$ ar cuhizhit is 1. $|F|=\phi d n$. Let F cores a codeword.

Let $S \leq U$ ad $T \leqslant V$ be endpoints of echoes in F.
As min dist of $C O$ is \geq Sod,
every vervet in $U_{l} U$ attired to an edge ot F is attached to of least $\delta o d$.

$$
\begin{aligned}
|S|,|T| & \leq \frac{|F|}{\delta_{0} d} \cdot \quad|S|=\sigma_{n}, \quad|T|=\tau_{n} g i v e s \\
\sigma_{1}, \tau & \leq \frac{\phi}{\delta_{0}}
\end{aligned}
$$

Ave degree ot $G(S O T) \leq \frac{2 d \sigma r}{\sigma+\tau}+\varepsilon d$
as $2 \sigma \tau \leq \sigma^{2}+\tau^{2} \leq \frac{\phi}{d_{0}}(\sigma+\tau)$
ave degree of $G(S U T) \leq d \frac{\phi}{\delta_{0}}+\varepsilon d$
As ave degree $\geq \delta_{0} d$,

$$
\delta_{0} \leq \frac{\phi}{\delta_{0}}+\varepsilon \Rightarrow \delta_{0}^{2} \leq \phi+\varepsilon \delta_{0}
$$

If $\varepsilon \leq \delta_{0} / 2 \Rightarrow \phi \geq \frac{\delta_{0}^{2}}{2}$.

Decoding
\rightarrow Ulster: for each $a \in U$, mas bits on attacked edges to closest cocleword.
U-step: same
Thy If $\varepsilon \leq \delta_{0} / 3$, this alg corrects du $\frac{\delta^{2}}{18}$ eros after $\lg _{\frac{4}{3}} n$ iterations.
lem $F C E$,
$s \subset U$ endpoints of F,
$T \subset U$ endpoints of $\geq \frac{\delta_{d} d}{2}$ edges of F.
If $|s| \leq \delta_{n} / q$ then $|T| \leq \frac{3}{4}|s|$
proof ave degree of $G(S \cup T) \geq \frac{\delta_{0} d}{2} \cdot 2 \cdot \frac{|T|}{|s|+|T|}$

$$
\begin{aligned}
= & \frac{\delta_{0} d \tau}{\sigma+\tau} \\
\text { By cor, } & \leq \frac{2 d \sigma \tau}{\sigma+\tau}+\varepsilon d \\
\Rightarrow \tau & \frac{\varepsilon \sigma}{\delta_{0}-2 \sigma-\varepsilon} \text { use } \varepsilon \leq \frac{\delta_{0}}{3}, \sigma \leq \delta_{0} / q \\
\tau & \leq \frac{3}{4} \sigma
\end{aligned}
$$

leu2 Lef F be edjes in error ofter a Cl-stes. $S: a \in U$ attaded $b F$.
Lef $T=b \in V$ attacled to edjes in ever ofter a U-step.
If $\left|s l \leq \frac{n \delta_{0}}{9}, \quad \pi\right| \leq \frac{3}{4}|s|$.
prool. each $b \in T$ is attacled to at least $\frac{\sqrt{0 d}}{2}$ edes of F.
apply lem 1.
proof at Thm lef F be edger mitially newas.

$$
1 F\left(\leq \frac{\ln \delta_{0}^{2}}{18}\right.
$$

$S=$ vertices attadued to evror egges offer fivsl
U-ster. $|S| \leq \frac{|F|}{\frac{\delta_{0} d}{2}}=\frac{\delta_{0} n}{q}$
Now, len 2 size of sef in eiver derreates $b_{i} \frac{3}{4}$ each iteration.

