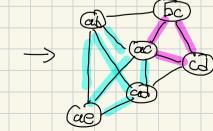
2025 - Mar - 31. Constructing Expenders.

Will say a d-nordar graph G is an 2-capader if
$$|\lambda_i - d| \leq 2d$$
 $|\lambda_i - d| \leq 2d$ $|\lambda_i| \leq 2d$
Our goal today: $n \rightarrow \infty$, I constait, 241 constait. General and hypercubes have $d \geq logn$, so no good.
Today, mesure spectral gap $S \equiv l \cdot 2$, so wait $S > 0$. $Sd \leq \lambda_i \leq (2-5)d$
Is known that random vegular graphs are expanders with $S \sim l - \frac{2bm}{2}$, but not explicit.
And, want very explicit. Given name of node, can compute neighbors in time poly (# bits in name)
Can then use in PST3.
Recursive construction.
N d S
let $G \equiv (U,E)$. The line-graph of G, $H \equiv (E,F)$
line-graph $n \geq nd \leq 3$
change $d \Rightarrow 2(d-1) \leq 3 \geq 5/2$
with $(Q_1b), (b,c)| \in F$ if $Q \equiv C$.
Change $\Rightarrow expander$ $J, K = d \leq 3 \geq 5(1-4)$
Edges of E connected if share endpoint
Equaring $d \Rightarrow ddd - 1 \leq 3 \geq 50^{-5^2}$

squaring: G² = edge (ad) sit. dist_G (ab) = 2 i.e. if 3 c sit. (ac) and (c) GE

 $M_{G^2} = M_G - dI$



-**d**,

Ē

Then If this line graph of a d-resular of then this 2(d-i) resular, and has all eigenvalues of G and eisual 2d with muth. $\frac{dy}{2}$ -n. Peaell $L_G = UTU$, where Ch is signed ease-vertex adj matrix. $U(a_ib)_i d = \begin{cases} 1 & if c_{-2}q \\ -1 & if c_{-6}b \\ 0 & 0 \cdot w. \end{cases}$	prof. BB and $BB^{\overline{l}}$ some exact up $$ 2000$ $\lambda_{\overline{l}}$ on eigenal of $l_{\overline{G}} = d\overline{l} - M_{\overline{G}} \iff$ $d - \lambda_{\overline{l}} \in eigs(M_{\overline{G}}) \iff 2d - \lambda_{\overline{l}} \in eigs(d\underline{r} \leftarrow M_{\overline{G}})$ $\leftrightarrow 2d - \lambda_{\overline{l}} \in eigs(M_{\overline{H}} + 2\overline{l})$ $\leftarrow = 2(d - 1) - \lambda_{\overline{l}} \in eigs(M_{\overline{H}})$
Let $B = U $, so only Oll. $B^T B = L_G = D + M_G$ $BB^T = M_H + 2I$	t^{2} λi an eignal of $L_{H} = 2(d-1)\overline{I} - M_{H} \frac{2d}{2}$
Eisvals stay same, but desnee almost Joubles	Peplece d-cliques by expendens.
So gap $\delta \rightarrow \delta/2$ Every as G \rightarrow d-clique in H	Let Z be $\not\models$ -vould α -expander on d nodes $fl = Z$ Z_{α} Z_{α}^{-} cope of Z on some vertices to a
H = Z Ka where Ka is clique on the declars (910)	(Iv) ka ≤ EZa ≤ (I+v) ka → H has degree 2k, sections

To improve 5 ap, square graph. For d-resular G, $G^2 = graph s.t. MG^2 = M_G^2 - dI$ (ret) is edge of G² if 3 cst. (rec) and (cil) edges of G. werket = # of such c. remove a self-loops Miceigs (MG) -> Mi2-d E eigs (MG2). G2 has desne d(d-1) (lem S(G2) 2 25(G) - S(G)? eg. if S= 13, 25-52=5165. Proof Mi=d-2i, Ni=5d $ecs S(LG^{2}) = d(d-1) - (Mi^{2} - d) = d^{2} - (d - \lambda_{i})^{2} = 2d\lambda_{i} - \lambda_{i}^{2} = 2d^{2}\delta - d^{2}\delta^{2} = d^{2}(2\delta - \delta^{2}) = d(d-1)(2\delta - \delta^{2})$ $(\hat{H})^2$ has $\frac{dn}{2}$ vertices. $2\frac{d(2n-1)}{2} - \frac{ve_{5}}{lar}, \quad gap \ge 2(1-\alpha)^{\delta/2} - (1-\alpha)^{2(\delta/2)^2} \approx (1-\alpha)^{\delta/2}$ To set above \mathcal{T} , use $((\mathcal{H})^2)^2$. If $\mathcal{T}(\mathcal{G}) \geq \frac{1}{3}$, $\alpha \leq \frac{1}{3}$, $\mathcal{T}(((\mathcal{H})^2)^2) \geq \frac{1}{3}$ Has de vertices, desne approx (4H, gap > 5 Start with any Go that satisfies these conditions, like Kn, n=(4H), So= 1/3 Need 2, expander on (4H) vertices, verse K. X-expander, X = 13 would suffice. so, use Ks.t. 2015-1 ~ 13, K-36